Theorem 1.158 Page 51 must be Replaced By The followING STATEMENT.

Theorem 1.158.

(1) For $d \geq 1$ not divisible by a square, the ring of integers of $\mathbb{Q}[\sqrt{-d}](d>0)$ is a principal ideal domain if and only if $d \in\{1,2,3,7,11,19,43,67,163\}$.
(2) For $d \geq 1$ not divisible by a square, the ring of integers of $\mathbb{Q}[\sqrt{-d}](d>0)$ is a Euclidean ring if and only if $d \in\{1,2,3,7,11\}$,
and it is Euclidean for the map $N(a+b \sqrt{-d}):=a^{2}+d b^{2}$.
(3) For $m \in \mathbb{Z} \backslash\{0\}$, m not divisible by a square, the ring of integers of $\mathbb{Q}[\sqrt{m}]$ is Euclidean for the map $N(a+b \sqrt{m}):=\left|a^{2}-m b^{2}\right|$ if and only if
$m \in\{-1, \pm 2, \pm 3,5,6, \pm 7, \pm 11,13,17,19,21,29,33,37,41,57,73\}$.
There are other quadratic real extensions of \mathbb{Q} whose ring of integers is Euclidean, but not for the function N defined above.

