HIGMAN CRITERION REVISITED

MicHEL BROUE

Institut Henri—Poincaré & Institut de Mathématiques de Jussieu
August 2007

In memory of Donald Higman

ABSTRACT. Let V be a finite dimensional k—vector space endowed with an action of a finite
group G, hence endowed with a structure of kG—module. According to Higman’s criterion,
that module is projective if and only if there exists a k—linear endomorphism « of V' such that
degg-wg_l = Idy . We shall present a generalisation of that criterion to the more general
context of symmetric algebras. Having in mind some functors used in the representation theory
of finite reductive groups, we then generalise the appropriate version of Higman’s criterion
applied to relative projectivity to a situation where induction—restriction are replaced by
functors induced by pairs of “exact bimodules”.

On our way, we tried to present a rather self—contained introduction to the methods used

for representation theory of symmetric algebras.
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0. INTRODUCTION

While induction and restriction functors have been (and still are) the building stones of the
theory of modular representations of finite groups, the recent developments of the theory have
shown the pertinence and the importance of other functors like the Harish—Chandra induction—
truncation or, more generally, the Rickard functors (see for example [Br] and [Ril]), which cover
the case of the Deligne—Lusztig functors.

Moreover, the theory of representations of finite reductive groups has led to the study of
representation of Iwahori-Hecke algebras (see for example [Ge]) which, like finite group algebras,
are symmetric algebras. Besides, Calabi—Yau algebras have also revitalised the interest for

symmetric algebras.
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For all those reasons, it seemed reasonable to revisit some of the basic tools of representation
theory of finite group from a more general point of view : replace the group algebra by a
symmetric algebra, replace the induction—restriction functors by a pair of biadjoint functors,
generalise the notion of relative projectivity and its main criterion, Higman criterion, etc. and
do it in such a way that the machinery applies to triangulated categories (hence to derived
categories of modules categories), and not only to modules categories, at no supplementary

charge.

This is the aim of the present paper. We have made the choice of not considering the
compatibility of our functors with local structure of finite groups. We certainly hope that the
present approach will be soon extended to the more general context of exact pairs of functors
induced by splendid complexes [Ril] between derived bounded categories of group algebras.

It must be noticed that ways to generalisations of the original Higman’s criterion had been
opened half a century ago by Higman himself (see [Hi2], where he proved the “relative version”

of his criterion) and by Ikeda (see [Ik], where he considers Frobenius algebras over fields).

Apart from basic facts about adjunctions (for the elementary notions of categories used
here, we refer the reader to [Ja], [Kel] or [McL]), the paper tends to be self-contained : for
the convenience of the reader (and for our own consistency), we devote §1 to classical notation,
convention and definitions about modules over non commutative algebras, while we develop

basic definitions and properties of symmetric algebras in §2.

1. CONVENTIONS ON MODULES AND BIMODULES

Notions and results of that paragraph are classical (see for example [Bou] chap. II, or [Ja]). They
have been put here to fix convention and notation, as well as for the convenience of the reader.

All the rings we consider are unitary. The ring morphisms must be unitary.

Let R be a commutative unitary ring, and let A be an R-algebra, i.e., a ring A endowed

with a ring morphism from R into its center ZA.

Left modules, left representations.
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An A-module (or a left representation of A) is a pair (X, Ax) where
e X is an R—module,
o Ax:A— Endgr(X) is a morphism of R-algebras.

The morphism Ay is called the structural morphism.

When speaking of “modules”, one often omits the structural morphism (and only X is called the
module), by writing
ar = Ax(a)(z) fora€e Az e X.

We denote by 4Mod the category of A—modules : it is R-linear and abelian. We denote by

amod the full subcategory of finitely generated left A—modules.

Convention. For X and X’ A-modules, we let the morphisms from X to X’ act on the right,
so that the commutation with the elements of A becomes just an associativity property : for

0: X —> X', a€e A, xe X, wehave

(az)p = a(zy).
If X, X" € AMod, then Hom4 (X, X’) denotes the R—module of A-homomorphisms from X to
X'

If X € s\Mod, then E4X := End4(X) denotes the set of A-endomorphisms of M.

The opposite algebra and right modules.

The opposite algebra A°P is by definition the R—module A where the multiplication is defined
as (a,d’) — da.

A module-A (or a right representation of A) is by definition an A°’—module.

Let Y be a module-A. Letting the elements of A (which are the elements of A°P) act on the

right of Y, we get a structural morphism
py: A — Endgr(Y)P

(where Endg(Y)°P acts on the right of V).
We then set
ya = (y)py(a),

thus justifying the name “module-A”.
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Convention. For Y and Y’ modules—A, we let the morphisms from Y to Y’ act on the left,
so that the commutation with the elements of A becomes just an associativity property : for

0:Y =Y  aeA,yeY, we have

p(ya) = (py)a.

We denote by Hom(Y,Y”) 4 the R—module of morphisms of modules—A from Y to Y.

We set EY4 := End(Y) 4.

We denote by Mod 4 the (R-linear abelian) category of modules—A, which is also 4o» Mod.

We denote by mod 4 the full subcategory of finitely generated modules—A.

Bimodules.

Let A and B be two R-algebras. We denote by A ® g B the algebra defined on the tensor

product by the multiplication (a1 ® b1)(as ® be) := ajas @ bibs .
In what follows, whenever the ring controlling the tensor product is not specified, it means that the

tensor product is over R.

An (A, B)-bimodule, also called A-module-B, is by definition an (A ® g B°?)-module.

Let M be an A-module-B. Fora € A, b€ B°°, m € M, we set

amb := (a @ b)ym,,

thus justifying the name “A-module-B”.

(D Attention (1)

With the preceding notation, one has to consider that the elements of R act the same way

on both sides of M : for A € R and m € M, we have

Am = m\.

Notice that an A-module-B is naturally a B°°—module-A°P, i.e., a module—(A°? ®pr B).

Convention. The question “where do the morphisms of bimodules act 77 is solved by the
following convention : a morphism of A-modules—B is treated as a morphism of (A ®r B°P)—

modules, i.e., acts on the right.
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We set

Homy (M, M")p := Homag, ger (M, M') .

Using the above convention many natural structures follow from associativity. We list just

a few of them:

X € sMod — X € sAModg, x
Y € Mod4 = Y € py,Mody4
M € sModpg
_ Homuy (M, N) € pMode  [%]
N € AMOdC
M e BMOdA
— M ®a N € pModc
N € AMOdC

[*] for @ € Homa (M, N), we have m(bac) := ((mb)a)c.
Notice also the following natural isomorphisms :

A A5 EAL
PA: ALEAA

Aa: ZA S5 FE A, .

Isomorphisme cher a Cartan.

Let M be an (A, B)-bimodule. Let X (resp. Y) be an A—module (resp. a B—module).

The following fundamental result is the “isomorphisme cher & Henri Cartan” (cf. for example
m)).
1.1. Theorem. We have natural isomorphisms

Hom 4 (M %) Y, X) ~ Homp(Y,Hom4 (M, X))
through the maps
<a: M%}Y—>X> = (G y— (m—almey)))

(6:Y — Homy (M, X)) — (B m®y— ﬁ(y)(m))

The preceding isomorphisms express the fact that the pair of functors
(M B, HOH’IA(M, - ))

between 4Mod and pMod is an adjoint pair.



8 Michel Broué

Bimodules....
Let M be an object of 4JMod 4. We set the following notation
HY(A, M) := M* :={me M | (VYa € A)(am =ma)}
Ho(A, M) := M/[A, M],
where [A, M| denotes the R submodule of M generated by all the elements [a, m] := am — ma

forae A, me M.

Then we have natural isomorphisms
H%(A, M) = Hom (A, M) 4

HO(A, M) = A®(A®RAop) M

Let us denote by M* := Homp (M, R) the R—dual of M, an A-module-A.

1.2. Lemma. There is a natural isomorphism

Ho(M)* ~ H(M™).

Proof of 1.2. Indeed, by the isomorphisme cher a Cartan (1.1) applied to the algebras A®@pg A°P

and R, we have

Homp(A ®ag 400 M, R) ~ Hom g, aor (A, Hompg(M, R)).

Quadrimodules....
Let M € s)Modpg and let N € gMody4.

e We have a natural structure of (A ® g A°?)-module—(B ® g B°?) on M ®r N defined by
(a®@ad)(men)(bab):=ambxbnad .

e That structure is also a natural structure of (A®p B°P)-module-(A®g B°?) on M ®r N :
(a®@b)(m@n)(ad @) :=ambx bna .

Let us state a few formal properties of these structures and introduce some more notation.
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(QM1). We have
H°(A®g B°®, M @r N) =

{Zmi(@niEM@RN | (Va€ A, be B) Zamib(@ni:Zmi@bnia} )

i€l iel icl

We define the centralizers in M ® p N of respectively A and B by
Ca(M ®p N) := {Zml ®@n; € M @g N | (Va)Zami Rn; = Zmi@)nia}
C(M ®g N)p := {Zm,@n, € M®rN | (Vb)Zmib@)ni = Zmz ®bni}

Thus we have
H%(A®gr B, M @g N) = Cx(M ®@r N)NC(M @ N)p.
We also set

(M ®r N)*:=Ca(M @ N) and B(M @z N):=C(M ®r N)p.

(QM2). The R-module Hy(A ®pr B°°, M ®@p N) is naturally identified with the R—module

M
A%B defined as a “cyclic” tensor product “M @ N® 4" where the last “A” comes under the

first “M”.

It is clear, by definition of Hg, that
Ho(A®p B®, M ®zr N) = Ho(A,Ho(B°?, M @ N)).
Since Ho(B°?, M @r N) = M ®p N, it follows that
Ho(A®gr B®, M @r N) = Ho(A,M ®p N).

Thus we have proved the following lemma.

1.3. Lemma. Let M € sModpg and let N € gMod 4. We have

M
Ho(A®g B, M @5 N) = A9 = Ho(A, M ®p N) ~ Ho(B,N @4 M).
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(QM3). WheneverY is a B-module-B, we have a natural isomorphism

(M ®g N) ®B@Bor) Y <> M®pY @ N
(m QR n) ®(B®RBOP) Yr—— m P SpBYpn

(m®gn) QBerBr)Y <=1 MOpYSpn

In particular, we have natural isomorphisms which the reader is invited to describe :

(M ®r N) ®Bgppr) B— Mep N

(M ®r N) ®pgppr) (N @r M)— (M ®p N)®r (M @p N)
Characterization of finitely generated projective modules.
1.4. Lemma. Let X, Y and M be A-modules.
(1) The image of

Homu (X, M) ®r Hom4(M,Y) — Homx(X,Y)

consists of those morphisms X — Y, which factorize through M™, for some natural integer n.

(2) If M is an A—module—-B, the preceding map factorizes through a map

Hom (X, M) ®p Homy(M,Y) — Homu(X,Y)

Proof of 1.4. Let
T = Zn:ozi ® fB; € Homa (X, M) ®r Hom(M,Y).
i=1

The image of x in HomA(;(, Y) is > ;3. The maps «; (1 < i < n), respectively 3; (1 <
i < n), describe a unique map « : X — M™, respectively 3 : M™ — Y. Their composition a3
is equal to Y ", «;0;, which proves the assertion (1).

The proof of (2) is left to the reader. [

The A-dual of an A—module X is the module-A defined by

XY ;= Homu (X, A).
We define the map 7x y as the composition
Txy: X' ®aY — Homyu(X,Y).
We also set
TX = TX X -

Applying 1.4 to the particular case where M = A, we see that



Higman criterion 11
1.5. Lemma. The image of Tx y consists of those morphisms which factorize through A™, for

some n.

1.6. Definition. The elements of the image of Tx y are called the projective maps from X to

Y. We denote the set of all projective maps from X to'Y by Hom" (X,Y).

By 1.5, we see that Hom% (+,+) is a twosided ideal in Homa(+,*), i.e., all the Hom® (X,Y)
are abelian groups, and whenever f € Hom’ (X,Y), g € Homa(Y, Z) and h € Homx (W, X),
then fg € Hom® (X, Z) and hf € HomY (W,Y).

The notation X’ | X (“X’ is a summand of X”) means that X’ is a submodule of X and
there exists a submodule X" of X such that X = X' @ X",

The following omnibus theorem is classical.

1.7. Theorem—Definition. A finitely generated A—module M is called a projective module,

if it satisfies one of the following, equivalent conditions.

(i) Whenever ¢ is a surjective morphism from the A-module X onto the A-module Y
and Y is a morphism of M to Y, then there exists a morphism p of M to X such
that pp = 1.
(i) The functor Homa(M,+): AMod — gya,(myMod is an ezact functor.
(iii) Any A-linear surjection with image M is split.
(iv) M is a direct summand of a free module, i.e., M | A", for some integer n.
(v) The map Tar : MY @4 M — Hom (M, M) is onto.
(vi) The map Tx p : XY @4 M — Homa (X, M) is an isomorphism for all A-modules
X.
(vii) The map Tpr,x : MY @4 X — Homa (M, X) is an isomorphism for all A-modules
X.

(viii) The map Tpr is an isomorphism.

Short proof of 1.7.
(i) = (ii). (i) implies that the functor Hom4(M,+) is right exact. Since it is always left

exact, it is exact.
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(ii) = (iii). One applies the functor Hom4(M,*) and uses a preimage of 1;; to define a
splitting.

(iii) = (iv). Because M is finitely generated over A, it is an image, hence a summand, of
A" for some n.

(iv) = (v). Since M | A™, we know that Id; is in the image of 7as. Furthermore, 75/ is a
map in gud,(m)Modgaa, (ar) and consequently it is onto.

(v) = (vi). We exhibit the inverse of 7x . By (v) there exists an element

i n; @ m; such that 77 (3", ny @ m;) = 1. We define the map
¥ Homa (X, M) — XV @4 M

by o — iani(@mi. This map 1 satisfies Y o7x ar = Idyom ,(x,0r) and 7x p 09 = Ildxvg -
(v) = (1:111) Using the same element Y, n; @ m; as above, one can give an explicit formula
of the inverse of 7/, x, namely
Homa(M,X) — MY @4 X
« — i @ muor.
The implications (vi) = (v) and (vii) = (v) are trivial because Tar = Tarpr-

(vil) = (i). Since MY ®4 + is a right exact functor, the map ¢ in (i) induces a surjection
MY @4 X —= MY @, .

But MV ®4 X and MY ®4 Y are respectively isomorphic to Hom 4 (M, X) and Hom4(M,Y),

and so ¢ induces a surjection
Hom (M, X) —> Homy (M,Y) .
Now, any preimage of 1 satisfies the condition on p in (i).
(vil) = (viii) is trivial, as well as (viii) = (v). O

We denote the full subcategory of smod consisting of all the projective A-modules by
aproj. If M is an (A, B)-bimodule which is projective as an A-module, then we write M €

amodp N aproj, by abuse of notation.
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Similarly, we denote by proj 4 the category of finitely generated projective right A—modules
(“projective modules—A").

Notice also that the R-module of projective maps Hom’ (X,Y’) may be defined as the set

of those morphisms from X to Y which factorize through a projective A—module.

Projective modules and duality.

We recall that for an A-module X, we denote by XV its A-dual, a module-A. Now if YV is
a module-A, we denote by ‘Y its dual-A, an A-module.

If ¢: X — X’ is a morphism in 4Mod, then the map

eV XY S XY (WX A (py: X — A)

is a morphism in Mod 4. Hence we have a contravariant functor

aMod - Mod, , X — XV,

as well as a contravariant functor

MOdA—>AMOd s Y—>\/Y

We have a natural morphism of A—modules

X —Y(XY) , o= (y—ay).

The next proposition follows easily from the fact that finitely generated projective modules

are nothing but summands of free modules with finite rank.

1.8. Proposition.

(a) Whenever X is a finitely generated projective A—module (resp. Y is a finitely generated
projective module-A), then XV is a finitely generated projective module—A (resp. VY is
a finitely generated projective A—module).

(b) If X € aproj, the natural morphism X —" (XV) is an isomorphism and the functors

X — XY and Y =YY induce quasi-inverse equivalences between aproj and proj,.
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Remark. For X an A-module, the map

Hom 4 (X, X) — Hom(X", X")4

o’

is an isomorphism of algebras (because of our conventions about right actions of left morphisms

and vice-versa).

2. SYMMETRIC ALGEBRAS : DEFINITION AND FIRST PROPERTIES

2.A. Central forms and traces on projective modules

Central forms.

Let A be an R-algebra. A form ¢ € Hompg(A, R) is said to be central if it satisfies the
property

t(aa') =t(a’a) (Va,d’ € A).

Thus a central form can be identified with a form on the R—module A/[A, A].

Whenever X is an A-module, we denote by X* := Hompg(X, R) its R—dual, viewed as an
E 4 X—module—A.

We denote by CF(A, R) the R-submodule of A* consisting of all central forms on A. Then
CF(A, R) is the orthogonal of the submodule [A, A] of A, hence is canonically identified with
the R—module (A/[A, A])*.

If t: A — R is a central form on A, we shall still denote by ¢: A/[A, A] — R the form on

A/[A, A] which corresponds to t.

More generally, let M be an A—module-A, and let L be an R—module. An R-linear map t: M — L
is said to be central if t(am) = t(ma) for all a € A and m € M. In particular, the central forms on
M are the forms defined by the R-dual of H(A, M) = M/[A, M].

Note that the multiplication by elements of the center ZA of A gives the R—module A/[A, A]
a natural structure of ZA-module. Thus CF(A, R) inherits a structure of ZA-module, defined

by zt :=t(z+) (or zt(a) = t(za) for a € A) for all z € ZA and t € CF(A, R).

Traces on projective modules, characters.
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Let X be an A-module. Then the R—module XV ® 4 X is naturally equipped with a linear

form

XV o4 X — AJ[A, A

y®x+— xy mod [A, A].

In particular, if P is a finitely generated projective A-module, since P¥ @4 P ~ E4 P, we get

an R-linear map (the trace on a projective module)

)

trp/a: EaP — A/[A, A] | so tI‘P/A(Z(yi R x) = szyl mod [A4, 4].
2.1. Lemma. Whenever P is a finitely generated projective A—module, the trace
trp/a: EaP — A/[A, A]
is central.

Proof of 2.1. In what follows, we identify PV ® 4 P with E4P. Let z,2' € P and y,y’ € PV.

Then we have
(y@az)(y ®a2’) =ylay) ®aa’ =y@a (zy)2,
from which is follows that
trp/a((y ®@ax)(y ®aa’)) = (vy/)(2"y) mod [4, 4],
which shows indeed that tr4,p is central. [J

Now if t: A — R is a central form, we deduce by composition a central form
tp: EAP =R , ¢ t(trp(9)).

In particular, whenever X is a finitely generated projective R—module, we have the trace
form

trx/r: ErX — R defined by (y®@z)—azy,Vyec X" v e X.

2.2. Definition. Let X be an A-module which is a finitely generated projective R—module and
let \x: A — ErX denote the structural morphism. The character of the A-module X (or of

the representation of A defined by \x ) is the central form

xx: A= R ., aw—trxpr(Ax(a)).
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2.B. Symmetric algebras

Definition and first examples.

A central form t: A — R defines a morphism 7 of A-modules—A as follows :

Indeed, for a,d’,z € A, we have

tlazd') = t(aza’*) = t(za'*a) = at(x)a’ .

Note that the restriction of £ to ZA defines a ZA-morphism : ZA — CF(A, R).

2.3. Definition. Let A be an R—algebra. We say that A is a symmetric algebra if the following

conditions are fulfilled :

(S1) A is a finitely generated projective R—module,

(S2) There exists a central form t: A — R such that t is an isomorphism.

If A is a symmetric algebra and if t is a form like in (S2), we call t a symmetrizing form for

A.

Examples.
1. The trace is a symmetrizing form on the algebra Mat,, (R).

2. If G is a finite group, its group algebra RG is a symmetric algebra. The form

t:RG—R , > Mg\
geG

is called the canonical symmetrizing form on RG.
3. If k is a field, we shall see later that the algebra A := is not a symmetric

algebra.
The following example is singled out as a lemma.

2.4. Lemma. Let D be a finite dimensional division k—algebra. Then D is a symmetric

algebra.

Proof of 2.4.



Higman criterion 17
First we prove that [D,D] # D. It is enough to prove it in the case where D is central
(indeed, the ZD-vector space generated by {ab —ba | (a,b € A)} contains the k—vector space
generated by that set). In this case, we know that k ®j D is a matrix algebra Mat,, (k) over k.
If [D, D] = D, then every element of Mat,, (k) has trace zero, a contradiction.
Now choose a nonzero k-linear form ¢ on D whose kernel contains [D, D]. Thus ¢ is central.
Let us check that t is symmetrizing. To do that, it is enough to prove that tis injective. But if
x is a nonzero element of D, the map y — xy is a permutation of D, hence there exists y € D

such that ¢(zy) # 0, proving that #(z) # 0. O

2.5. Lemma. Let A be a symmetric algebra, with symmetrizing form t.

(1) The restriction of t to ZA

ZA— CF(A,R) , z—t(z)

is an isomorphism of Z A-modules. In particular, CF(A, R) is a free ZA-module of rank 1.
(2) A central form t(z) corresponding to an element z € ZA is a symmetrizing form if and

only if z is invertible.

Proof of 2.5. Let u be a form on A. By hypothesis, we have u = t(a*) for some a € A, and u
is central if and only if ais central. This shows the surjectivity of the map t: ZA — CF(A, R).
The injectivity results from the injectivity of ¢. Finally, this proves that symmetrizing forms

are the elements t of CF(A, R) such that {t} is a basis of CF(A4, R) as a ZA-module. O

Remark. As in the classical literature on symmetric algebras over fields, if ¢ is a symmetrizing

form on A, its kernel ker(¢) contains no left (or right) non trivial ideal of A.

Annihilators and orthogonals.

Let a be a subset of the algebra A. The right annihilator of a is defined as

Amn(a)s :={z € A | (a.z =0)}.

It is immediate to check that the right annihilator of a subset is a right ideal, and that the right

annihilator of a right ideal is a twosided ideal.
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Suppose now that A is a symmetric algebra, and choose a symmetrizing form ¢t on A. When-
ever a is a subset of A, we denote by a'l its orthogonal for the bilinear form defined by t,
i.€.,

at:={r € A | t(ax) = 0}.

Note that if a is stable by multiplication by (ZA)*, then a* does not depend on the choice of the
symmetrizing form t.

2.6. Proposition. Assume that A is symmetric.
(1) We have [A, At = ZA.
(2) If a is a left ideal of A, we have at = Ann(a)4 .
Proof of 2.6.

(1) We have

t(zab) = t(zba) < t(bza) = t(zba),

which shows that z € [A, A]* if and only if z € ZA.

(2) We have

ax=0% (Vy € A) t(yar) =0< t(ax) =0,

which proves (2). O

2.C. Characterizations in terms of module categories

This paragraph is written after Rickard (see [Ri2]).

Assume that A is an R—algebra which is a finitely generated projective R—module.

Let us first notice a few elementary properties.

1. Any finitely generated projective A—module is also a finitely generated projective R—

module.

Indeed, if A is a summand of R™, any summand of A™ is also a summand of R™".

2. If X is a finitely generated projective A-module and if Y is a module-A, then ¥ ® 4 X

is isomorphic to a summand of Y™ for some positive integer n. It follows that if moreover Y is
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a finitely generated projective R—module, then Y ® 4 X is also a finitely generated projective

R—module.

Let us denote by aproj the full subcategory of 4Mod whose objects are the finitely generated

projective A-modules. We define similarly the notation proj, and rproj.

2.7. Proposition. Let A be an R—algebra, assumed to be a finitely generated projective R—

module. The following conditions are equivalent.
(i) A is symmetric.
(ii)) A and A* are isomorphic as A—modules—A.

(iii) As (contravariant) functors sMod — Mod 4, we have

Hompg(*, R) ~ Homy(+, A).

(iii’) As (contravariant) functors Mods — aMod, we have

Hompg(+,R) ~ Hom(+, A) 4.

(iv) For P € 4proj and X € 4Mod N gproj we have natural isomorphisms

Hom (P, X) ~ Homx (X, P)*.

(iv’) For P € proj, and X € Mod4 N gproj we have natural isomorphisms

Hom(P, X)4 ~ Hom(X, P)% .

Proof of 2.7. Tt is enough to prove (i)<(ii), and (ii)=-(iii)=(iv)=-(ii).

(i)=(ii) results from the fact, noticed above, that if ¢ is a central form, then 7 is a morphism
of bimodules from A to A*.

(ii)=-(i). Assume that §: A"~ A* is a bimodule isomorphism. Set ¢ := 0(1). Then fora € A

we have

t(aa’) = 6(1)(aa’) = (a'6(1))(a) = 6(a’)(a) = (0(1)a)(a) = 0(1)(a'a) = t(d'a),

which shows both that ¢ is central and that # = 6.
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(ii)=-(iii). Let X be an A-module. Since A ~ A*, we have
Hom 4 (X, A) ~ Homy (X, Hompg(A, R)) .

By the “isomorphisme cher a Cartan”, it follows that Hom 4 (X, A) ~ Hompg(A ®4 X, R) hence
Homa (X, A) ~ Hompg(X, R).

(iii)=(iv). Let P be a finitely generated projective A-module and let X be a finitely
generated A-module. Since P is a finitely generated projective R—module, we have P ~
Hompg(P*, R), and it results from the “isomorphisme cher a Cartan” that Hom4(X, P) =~
Homp(P* ®4 X, R), and since P* ~ PV, we get Hom (X, P) ~ Homg(PY ®4 X, R).

Since the module—A PV is finitely generated projective and since X is a finitely generated pro-
jective R—module, we see that PV ® 4 X is also a finitely generated projective R—module, hence
we have Hom 4 (X, P)* ~ PY ®4 X . Since P is a finitely generated projective A-module, we
know that P¥®4 X ~ Hom (P, X). Hence we have proved that Hom 4 (X, P)* ~ Hom (P, X).

(iv)=-(ii). Choose P = X = A (viewed as an A-module). Then the natural isomorphism

Hom 4 (A, A)* ~ Homa (A, A) is a bimodule isomorphism A* ~ A. O
Symmetric algebras and projective modules.

2.8. Proposition. Let A be a symmetric R—algebra, and let P be a finitely generated projective

A-module. Then EAP is a symmetric R—algebra.
Proof of 2.8. Recall that we have an isomorphism of F4P-modules—F 4P
PY®4P-"5E4P.

Since P is a finitely generated projective A-module and since PV is a finitely generated R—
module, this shows that /4 P is a finitely generated projective R—module.

Moreover, by 2.7, condition (iii), we see that we have a natural isomorphism
Homy (P, P)* ~ Homa (P, P),

i.e., a bimodule isomorphism

EAP* ~ EAP,

which shows that E4 P is symmetric. [
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2.9. Corollary. An algebra which is Morita equivalent to a symmetric algebra is a symmetric

algebra.

Proof of 2.9. Indeed, we know that an algebra which is Morita equivalent to A is isomorphic

to the algebra of endomorphisms of a finitely generated projective A—module. O

Explicit isomorphisms.

We give here explicit formulas for the isomorphisms stated in 2.7. The reader is invited to

check the details.

2.10. Proposition.

(1) Whenever X is an A-module, the morphisms t and ux defined by

uyx: Homp (X, R) — Homyx (X, A)
Hom (X, A) — Hompg(X, R)
tx: Ux: § such that (azx) = t(aux (¢Y)(x))
pr—=t-¢

(Va € A,z € X, € Homp(X, R))
are inverse isomorphisms in Modg, x .
(2) Whenever X is an A—module which is a finitely generated projective R—module and P is

a finitely generated projective A—module, the pairing
Homu (P, X) x Homy (X, P) — R

(g, 1) = tp(pw)

s an R—duality.

Let us in particular exhibit a symmetrizing form on F4 P from a symmetrizing form on A.
Recall that the isomorphism PV ® 4 P —- E4P allows us to define the trace of the finitely

generated projective A—module P)
trp/a: EaP — AJ[AJA] , y®ax—xy mod [A,A],
and that composing this morphism with a central form ¢t on A, we get a central form
tp: E4P — R

on EAP
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2.11. Proposition. If P is a finitely generated projective A—module and if t is a symmetrizing

form on A, then the form tp is a symmetrizing form on E4P.

As noted by Keller, the choice of the form ¢p (among many other possible choices for a
symmetrizing form on E4P) actually corresponds to a unique “extension of ¢ on the category

of all finitely generated projective A-modules”, as shown by the next proposition [Ke2].

2.12. Proposition.

(1) The collection of forms (tp) (for P a finitely generated projective A—module) satisfies
the following property : whenever v € Homyu (P, Q) and B € Homux(Q, P), we have
tr(af) = to(8a).

(2) Reciprocally, if (tp: EaP — R) is a collection of symmetrizing forms (for P running
over the collection of finitely generated projective A-modules) such that t'y =t and
th(af) = to(Ba) for all « € Homa(P,Q) and 3 € Homa(Q, P), then for every P we

have t's = tp.

Example. The identity from R onto R is a symmetrizing form for R. It follows that the trace

is a symmetrizing form for the matrix algebra Mat,, (R).

Remark. A particular case of projective A—module is given by P := Ai where 7 is an idempotent
of A. The map

iai — (z — ziai)
is then an isomorphism iA4i — E4P. Through that isomorphism, the form ¢p becomes the

form

iai — t(iai) .

Products of symmetric algebras.
The proof of following result is an immediate consequence of the characterizations in 2.7,

and its proof is left to the reader.

2.13. Proposition. Let Ay, Ao, ..., A, be R—algebras which are finitely generated projective

R-modules, and let A be an algebra isomorphic to a product Ay X Ag X -+ x A,. Then A is
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symmetric if and only if each A; (i =1,2,...,n) is symmetric.

More concretely, we know that an isomorphism A ~ A; x As x --- x A, determines a

decomposition of the unit element 1 of A into a sum of mutually orthogonal central idempotents :

l=e1t+e+ - +en,

corresponding to a decomposition of A into a direct sum of twosided ideals :

A=a1®ayPd---Pa, with a;, = Ae;.

o If (t1,to,...,t,) is a family of symmetrizing forms on Ay, A, ..., A, respectively, then the
form defined on A by t1 + t3 + -+ + t,, is symmetrizing.
e If t is a symmetrizing form on A, its restriction to each a; = Ae; defines a symmetrizing

form in the algebra A;.

Principally symmetric algebras.

2.14. Proposition—Definition. Let A be a symmetric R—algebra, and let t be a symmetrizing

form. The following conditions are equivalent.

(i) The formt: A — R is onto.
(ii) R is isomorphic to a summand of A in RMod.

(iii) As an R—module, A is a progenerator.

If the preceding conditions are satisfied, we say that the algebra A is principally symmetric.

Proof of 2.14.

(i)=(ii) : Since t: A — R is onto and since R is a projective R-module, t splits and R is
indeed isomorphic to a direct summand of A as an R—module.

(ii)=-(iii) : obvious.

(iii)=-(i) : Since A is generator as an R-module, the ideal of R generated by all the (a,b)
(for a € A and b € A*) is equal to R. But since ¢ is symmetrizing, this ideal is equal to t(A),

which shows that ¢t is onto. [



24 Michel Broué
Examples.

1. If A is principally symmetric, and if B is an algebra which is Morita equivalent to A, then
B is principally symmetric.

In particular, the algebra Mat,,(R) is principally symmetric, and more generally, if X is a
progenerator for R, the algebra Er X is principally symmetric.

2. If all projective R—modules are free, then all symmetric R—algebras are principally sym-
metric.

3. The algebra RG (G a finite group) is principally symmetric.

4. If R = Ry x Rs (a product of two non zero rings), and if A := Ry, then A is a symmetric

R-algebra which is not principally symmetric.
3. THE CASIMIR ELEMENT AND ITS APPLICATIONS

3.A. Definition of the Casimir element

Actions on A ®pr A.

e Let A be an R-algebra. The module A ® A is naturally endowed with the following

structure of (A ® g A°P?)—module—(A @ A°P) :

(a®d)(z2y)(beb) :=arbxbyad .

Remark. That structure should be understood as a particular case of the structure of (A ®p A°)—
module—(B ®pr B°P?)-module which is defined on M ® g N (for M € 4Modg and N € zpMod,)
by

(a®ad)(men)(bal) :=amb® bnd .

We define the left and right centralizers of A in A ®g A :
Ca(A®RrA) = {Zai ®a, € AQr A | (Va)Zaai@)ag = Zai ®a;a}
C(A®Rr A)a := {Zai ®a, € AR A | (Va)Zam@a; = Zai@)aag}

We set
CA(A ®r A)A =Cxa(A®Rr A)N C(A ®prA)a.
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Notice that (cf. §1 for the notation M*)

Ca(A@rA)= (AR A)* ={(€ A®r A | (Va) (a® 1){ = (1®a)}

C(A®rA)s=4(AorA)={E€ AdrA | (Va)Ea®1) =E(1®a)}.

e The algebra ErA of R-endomorphisms of A has a structure of (A ®r A°P)-module-
(A®p A°P) inherited from the structure of (A ® g A°?)-module on each of the two factors A as

follows :

(Va € ErA, a,d’ ;b)) € A) ((a®ad').a.(b@V) :=[&— aa(a’&b)b]) .

Remark. That structure should be understood as a particular case of the structure of (A ®p A°P)—
module—(B ® g B°?)-module defined on Hompg(M, M) (for M € sModpg) by

(a®@d).a.(b@b) :=[£— aa(a’&b)D] .

Case where A is symmetric : the Casimir element.

Now assume that A is symmetric, and let ¢t be a symmetrizing form. Since A is a finitely

generated projective R—module, we have an isomorphism

A®r A" S ER(A) , z2@¢— [ p@)z].

Composing this isomorphism with the isomorphism

A®RA;>A®A* 5 517®y'_’x®/\(y)7

we get the isomorphism

. A®p A" Ep(A)
a @b [ t(b)a] .

It is immediate to check that this isomorphism is an isomorphism of (A ®p A°P)-modules—

(A ®pr A°P).

3.1. Definition. We denote by cy, (or simply c¥y) and we call the Casimir element of (A, 1)

the element of A® A corresponding to the identity Id4 of A through the preceding isomorphism.

The following lemma is an immediate consequence of the definition of the Casimir element.
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3.2. Lemma. Let I be a finite set, and let (e;);cr and (e});cr be two families of elements of

A indexed by I. The folllowing properties are equivalent :

(i) Czr = Ziel e @ e

(ii) For all a € A, we have a =), t(ae))e; .
e Notice that, by the formulas above, we have
(a®a)lda.(b® V') := [€ + ad€'D] ,
or, in other words,
(a®a)Ida.(b®b') = A aad )p(b'd),

where A(a) is the endomorphism of left multiplication by a and p(a) is the endomorphism of

right multiplication by a. In particular, we see that

(a®1)Ida =(1®a)ldg =Aa) and Idg.(a®1)=1da.(1®a)=p(a).

(D Attention (1)

Notice that the structure of A ® g A°°’~module on A ® g A defined here does not provide

a structure of A ® g A°’—module on A : the morphism
A®4 A — ErA |, a®ad — \ad)

is not an algebra morphism.

e Moreover, we know that the commutant of A(A) (resp. of p(A)) in ErA is p(A) (resp.
A(4)).

Through the isomorphism A ®4 A —- ErA described above, the preceding properties trans-

late as follows.

3.3. Proposition. Assume ¢ =3, e; ® €.

(1) For all a,a’ € A, we have

E aeia'®e§:5 e; ®adeja.
i
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(2) The map

A— Cpr(A®RrA) | GHZaei(@e;:Zei@e;&

is an isomorphism of A—modules—A.
(2°) The map

A—-CA®rA)a , ar Zem@e; = Zei@me;
is an isomorphism of A-modules—A.

Examples.

o If A= RG (G a finite group), we have cp =3 597 ' ®9.

o If A = Mat,(R) (and ¢ is the ordinary trace), then ¢y = Y, F;; ® E;; (where Ej ;
denotes the usual elementary matrix whose all entries are zero except on the i-the row and j-th
column where the entry is 1).

e Assume that A is free over R. Let (e;);e; be an R-basis of A, and let (e});c; be the dual

basis (defined by t(ezel,) = 0;), then ¢ =3, €l @ e;.

We also define the central Casimir element as the image 2% of ¢} by the multiplication

morphism A ® A — A. Thus, if ¢} =3, ;€] ® e;, we have
2= Z ehe; .
i

Remarks.

e For A = RG, the central Casimir element is the scalar |G]|.

e For A = Mat,,(R), the central Casimir element is the scalar m.

The existence of an element such as ¢!} is a necessary and sufficient condition for a central

form t to be centralizing, as shown by the following lemma (whose proof is left to the reader).

3.4. Lemma. Let u be a central form on A. Assume that there exists an element f =
> fi®f;i € A®r A such that } -  u(af})f; = a for alla € A. Then u is symmetrizing, and f

1s its Casimir element.

From now on, we assume that I is a finite set and (e;);er, (€});er are two families of elements
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of A indexed by I, such that

Let us denote by x +— " the involutive automorphism of A® A defined by (a®da’)" :=d’ ®@a.

3.5. Proposition.

(1) We have
(Cil‘)[‘:cir’ ’I;,e., Ze;@eZ:Zel(@e;
i€l i€l

(2) For all a € A, we have

a= Zt(aeé)ei = Zt(aei)eé = Zt(e;)eia = Zt(ei)ega.

Proof of 3.5. Indeed, by 3.2, we have e; = 3, t(eje’;)e; , hence

Z e @e; = Zt(eée})ej Qe = Zej ® Zt(e;e;)ei
i

i ,J J
= Zej ® Zt(e;e;)ei = Z ej ®ej.
J i J
The assertion (2) is an immediate consequence of (1) and of 3.2. O

We define three maps :

)
Bilr*: A A — A , a@g’HZeiae;a/,

(2

T4 A— A4 aHZeiaengiTrA(a@)l),

Tra:A—A | dw—dl] = Za’eie; =Bir*(1®d'),

(2

and we have

e Tr” is a central morphism of ZA modules :
Tr(zaad’) = 2Tr*(d’a) (Vz € ZA and a,d € A),

and its image is contained in ZA (hence is an ideal of ZA),
e BiTr*(a ® o) = Tr(a)a’ = ' Tr? (a) .

e Tr, is a morphism of A-modules—A.
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Separably symmetric algebras.

3.6. Proposition. If 24 is invertible in ZA, the multiplication morphism

ARrA—A |, a®d —ad,

is split as a morphism of A—modules—A.

Proof of 3.6. Indeed, the composition of the morphism of A-modules—A defined by

A—A®pA |, a—ac

with the multiplication A ® g A — A is equal to the morphism

A—A |, a—az.

In other words, if we view ¢} as an element of the algebra A @ A°P, then (cf})? = 2I¢y. Thus

we see that if 27" is invertible in ZA, the element (21)~'c%} is a central idempotent in the algebra
A®4 A°P, and the morphism

A— A A% | aw a(ZN) e

is a section of the multiplication morphism, identifying A with a direct summand of A ®z A as an
A-module-A.

O

Remark. If t is replaced by another symmetrizing form, i.e., by a form ¢(z+) where z is an
invertible element of ZA, then 24" is replaced by zz%'. Hence the invertibility of 2} depends

only on the algebra A and not on the choice of t.
An algebra A such that the the multiplication morphism

ARrA— A |, a®d — ad,

is split as a morphism of A-modules—A is called separable.
A symmetric algebra A such that 2" is invertible in ZA is called symmetrically separable.

@ Attention @

A symmetrically separable algebra is indeed separable, but the converse is not true. For
example, a matrix algebra Mat,,(R) is separable, but it is symmetrically separable if and
only if m is invertible in R.

Note that the previous example shows as well that the property of being symmetrically
separable is not stable under a Morita equivalence.

The following fundamental example justifies the notation and the name chosen for the map

A,
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3.7. Example. Let us consider the particular case where A := Er X, for X a finitely generated

projective R—module. Let us identify A with X* ®g X, and let us set
Idx =) fi®e;.

We know that A is symmetric, and that ¢ := trx/g is a symmetrizing form.

We leave as an exercise to the reader to check the following properties.

1) i =3%,(five)®(f;®e)).

(2) The map Tr: A — ZA coincides with trx/r: ErX — R.

3.B. Casimir element, trace and characters

All throughout this paragraph, A is assumed to be a symmetric R—algebra, with symmetrizing

form ¢.

For 7: A — R a linear form, we denote by 7° the element of A defined by the condition
t(7°h) = 7(h) forallac A.
We know that 7 is central if and only if 7° is central in A.

It is easy to check the following property.

3.8. Lemma. We have 70 =3, 7(e})e; = >, 7(ei)e}, and more generally, for all a € A, we

7 [

have ™% = >, T(ela)e; = >, T(e;a)el .
The biregular representation of A is by definition the morphism
A®r A" - EFrA |, a®d — (x+— axd).

defining the structure of A-module-A of A.

Composing this morphism with the trace tra,r, we then get a linear form on A ®p AP,

called the biregular character of A, and denoted by Xzireg.

3.9. Proposition. We have

XA(a®a) = 1B (a® ),
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or, in other words

W a@d) =Y Hd'eae) = H(Tr' (a)a') = HaTr (@)

%

Proof of 3.9. We know by 3.5, (3), that

axa' = Z t(axzd'e))e;

i

which shows that the endomorphism of A defined by a ® a’ correspond to the element

Z%\(a’eia) Re e AF®A

i
whose trace is

Zt(a/eiaei) = t(Tr*(a)d’) .

g

Let xreg denote the character of the (left) regular representation of A, i.e., the linear form

on A defined by

Xreg(a) = trA/R(AA(a))
where Ag(a): A — A, z — ax, is the left multiplication by a.

3.10. Corollary. For all a € A, we have

— pr ; 0o _ _pr
Xreg(@) = t(azly), or, in other words, Xy, = 2} -

3.11. Corollary. Let i be an idempotent of A. Let xa; denote the character of the (finitely

generated projective) A—module Ai. Then we have
A
X?Au =T (4).

Indeed, we have

trai/r(a) = tra/r(a®i) = taTr?(i)).
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3.C. Projective center, Higman’s criterion

The projective center of an algebra.

Let A be an R-algebra, and let M be an A-module-A. We know (see §1) that the morphism
Homu(A, M)a — M | ¢ (1)
is an isomorphism. In particular, we have
Hom4 (A, A®r A°P)4 = (A® A)4.

The module Hom® (A4, M) 4 consisting of projective morphisms (see 1.6) from A to M is the

image of the map
Homy (A, A®pr AP)4 @ M — Homa(A,M)s , ¢ @m+— (a+— (ap)m).
Through the previous isomorphism, this translates to
(AR APV @M — M* | z@mw— zm,
i.e., we have a natural isomorphism
(A®p AP)AM = Hom" (A, M), .
3.12. Definition—Proposition. The module
(A®g AP)A = {s,a;:0d; | (a € A)(Ta; ®a; € (A®g A)*)}
is called the projective center of A and is denoted by ZP*A. This is an ideal in Z A and the map
ZP"A — Homy (A, A)a , 2z (a+— az2)

induces an isomorphism of ZA-modules from ZP*A onto Hom" (A, A) 4.

When A is symmetric.

If A is symmetric, and if ¢f =), €] ® e;, it results from 3.3 that
(A9r A = {Sicja@e; | (ac A)}.

Thus we have
(A®p A)AM = {x,eime; | (me M)},

which makes the next result obvious.
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3.13. Proposition. The module Hom" (A, M) is naturally isomorphic to the image of the
map
T M — MY | me Sm= Ze;mei.
i
In particular, ZY' is the image of the map Tr4: A— A.

Notice that since ¢ € C(A ®r A)a, the map Tr factorizes through [A, M] and so defines
a map
Tr: Hy(A, M) — H°(A, M).

Example. If A= RG (G a finite group), then ZP*RG is the image of

TR%:. RG — ZRG |, z+— ngg_l .
geG

Let us denote by Cl(G) the set of conjugacy classes of G, and for C' € Cl(G), let us define a

central element by

SC:=>g.

geC
Then it is immediate to check that
G
Z"RG = P |C|SC.
CeCI(G) ]

Higman’s criterion.

If X and X’ are A—modules, applying what precedes to the case where M := Hompg(X, X'),

we get a map
Tr: Homp(X, X') —» Homa(X, X') |, a— [z+— Z(eia(ega:))] :

For an A-module X, let us describe in terms of the Casimir element the inverse of the

isomorphism (see 2.10)

Homy (X, A) — Hompg(X, R)

Tyt
pr—=t-9.
By the formula given in 2.10, (1), we see that, for all z € X and ¢ € Hompg(X, R), we have

By 3.8, we then get the following property.
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3.14. Lemma. For any A-module X, the morphism

Homp(X, R) — Homyu (X, A)

Yo [z Y w(da)e =y ple)e) ]
is the inverse of the isomorphism t% .

Let X and X’ be A-modules such that X or X' is a finitely generated projective R—module.
It results from 3.14 that the natural morphism Homa (X, A) ®p X’ — Hom4 (X, X’) factorizes

as follows :
A
Hom (X, A) ®p X' — Hompg(X, R) @z X' — Homp(X, X)) Homa (X, X') .

The next lemma is now an immediate consequence of the characterization of finitely generated

projective modules.

3.15. Lemma. Let X and X' be A-modules such that X is a finitely generated projective

R-module.
(1) The submodule Hom" (X, X") of Homa (X, X') consisting of maps factorizing through a

finitely generated projective A—module coincides with the image of the map

Hompg (X, X') — Homu (X, X')
T
a [z Ze;a(eix)]
il

(2) The image of the map

Trd: EgX — ExX

is a twosided ideal of E4X.

The following proposition follows from the preceding lemma. It is known, in the case where

A = RG, as the “Higman’s criterion” (see [Hil]).

3.16. Proposition. Let A be a symmetric R-algebra, with Casimir element ), €] @ e;.

Let X be an A—module which is a finitely generated projective R—module.
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Then X is a projective A—module if and only if there exists an R—endomorphism « of X

such that

(Vz € X) Ze;a(eim) =zx.

Remark. For symmetric algebras over fields, Higman’s criterion is also a necessary and sufficient
condition for X to be injective. That property will be addressed (and generalized) in a more

general context below (see 6.8).

4. SCHUR ELEMENTS

The notion of Schur element of an absolutely irreducible representation of a symmetric algebra
(as well as the application to orthogonality relations between characters) was first introduced by
M. Geck in its HabilitationSchrift [Ge] (see also [GeRo]). We present here a slight generalisation of
that notion.

Quotients of symmetric algebras.

Let A and B be two symmetric algebras, and let A: A — B be a surjective algebra morphism.

The morphism A defines a morphism
ARrA® - BrB® | a®d — Ma)®@ \d),

hence defines a structure of A—module-A on B.

Remark. We shall apply what follows, for example, to the following context. Let A be a finite
dimensional algebra over a (commutative) field k, let X be an irreducible A-module, let D := F4 X
(a division algebra), and let B := EXp. We know that B is a symmetric algebra, and by the

“double centralizer property” we know that the structural morphism Ay: A — B is onto.

Let t be a symmetrizing form on A and let u be a symmetrizing form on B.

Let cff = Y ,e; ®e; and ¢y = 3, f; ® f] be the corresponding Casimir elements for
respectively A and B.

The form - \ is a central form on A, so there exists an element (u-\)? € ZA whose image

under  is u - X. Since A is onto, the element sy := A((u - \)°) belongs to ZB.

4.1. Definition. The element sy is called the Schur element of the (surjective) morphism \.
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4.2. Proposition. We have

ARAN()) =sacy  and ANZY) =sx2h .

Proof of 4.2. Let us set ¢y = 3. el ®e;. We have, for alla € A :
(wA)’a =Y t((w)) ac))e; , hence (u.\)’a =Y u(A(a)A(e)))e; ,
from which we deduce

saM(a) = u(Aae)))A(es)

%

Since ) is surjective, it follows that for all b € B we have

sxb =" u(bA(e]))A(es),

which shows that, through the isomorphism B ®pr B — ErB defined by u, the element

> A(€f) ® A(e;) corresponds to syIdg. This implies that

Zx\ ) @ A(e;) = sacly .

g

Remark. Choose A = B and X :=1d4. Now if ¢ and u are two symmetrizing forms on A, we have
u = t(u’+) . The formula of the preceding proposition can be written (with obvious notation) :

0 pr
CAt_u CAu

The structure of A—-module—A on B defined by A allows us to define, for N any B—module-B,
the trace map

T4 N —» N4 | n— n—Z)\ e;)n\(e
The following property is an immediate consequence of 4.2.

4.3. Corollary. Whenever N is a B—module-B, we have
Tr(n) = sy TrP(n) .

We give now a characterisation of the situation where the Schur element is invertible.
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4.4. Proposition. The following properties are equivalent.
(i) The Schur element sy is invertible in ZB.
(ii) The morphism A: A — B is split as a morphism of A-modules—A.
(ii) B is a projective A—module.
(iv) Any projective B—module is a projective A—module.

If the above properties are fullfilled, then the map

B— A

b Z u(sy 'bA(e)))e

is a section of A as a morphism of A-modules—A.

Proof of 4.4.
(i)=(ii) : Since

D €)@ Me:) = sacy

%

and since s) is invertible, we have

cg:s/\lz)\ ) @ A(e;) .

It follows that

Ao (b)) =D u(sy'bA(e => u(bf]

i J

which proves that o is a section of .
Let us set 5 := (u.)\)?, and let us choose a preimage 3’ of s;\l in A. If we choose a preimage

bofb through A, we have

Zu(sglb)\(e;))ei = Zu(A(E’Be;))ei = Zt(Eg’ge;)ei = 53'b

= ulbsy ' Ae}))ei = > _u(A(b'e)))e; = > t(b3s'be))e;
- A
= b3d
which makes it obvious that ¢ commute with the twosided action of A.
(ii)=-(iii) : Since A is split as a morphism of A-modules, we see that B is projective as an

A-module.
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(iii)=(iv) : obvious.
(iv)=-(i) : Since B is a finitely generated projective A-module, Higman’s criterion (see 3.16)

shows that there is § € EgrB such that TrA(ﬂ) = Idg. By 4.3, we then see that
S)\TTB(ﬁ) = IdB .

Since Tr?(B8) € Homp(B, B) = B, that last equality shows that sy is invertible in B, hence is

invertible in ZB. O

Remark. Since o is a morphism of A-modules—A, it follows that, for

ex:=o(l) = Zu(sglb)\(eg))ei ,

we have

a(bb') = aed’

whenever \(a) = b and A\(a’) = V', hence in particular e is a central idempotent of A. Thus we

may view (B, \,0) as :
(

B:Ae)\

A A— Aeyn , araey
o:Aex — A , aeyr— aey.
\

Schur elements of split irreducible modules.

In the case where R = k, a (commutative) field, the next definition coincides with the
definition of a split irreducible module. The reader may keep this example in mind.
4.5. Definition. An A-module X is called split quasi irreducible if

(1) X is a generator and a finitely generated projective R—module (a“progenerator” for
RMOd),

(2) the morphism Ax: A — ErX is onto.

Note that if X is split quasi irreducible, then X induces a Morita equivalence between R

and ErX, and so in particular the map

R— ErX , A+~ Adyx
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is an isomorphism from R onto the center Z(ErX) of EgX. Thus the restriction of Ax to ZA
induces an algebra morphism

wx: ZA— R.

We denote by xx the character of the A—module X, i.e., the central form on A defined by

xx(a) = trx/r(Ax(a)).
The next result is an immediate application of the definition.

4.6. Lemma. Let X be a split quasi irreducible A—module. The Schur element of X is the

element sx € R defined by

Sx = wX(Xg().

Example. Assume R = C and A = CG (G a finite group). Let x be the character of an

irreducible CG-module. Then the Schur element of this module is the scalar s, :=|G|/x(1).

4.7. Proposition. For X a split quasi irreducible A—module, with character x := xx, we have
(1) sxx(1) = 32 x(ef)x(ei)
(2) sxx(1)* = x (32; eei) -
Proof of 4.7.
0

The trace of the central element sx = wx(x%) is x(1)sx = x(1)x(x%), and since x° =
22 x(€)ei, we see that x(1)sx = 3=, x(ef)x(e:) -

The second assertion is a consequence of the following lemma.
4.8. Lemma. Whenever a € ErX, the central element TrA(a) is the scalar multiplication by
sxtrx/p(c).

Indeed, this is an immediate application of the results of example 3.7 and of 4.3.

Let us give a “direct” proof as an exercise.
Since for all a € A we have ax” =), x(ae})e; , it follows that

Ax(ax?) = x(aehAx(er),

and if @ = Ax(a), we get

adx(x’) = sxa = ZtrX/R(a)\X(e;)))\X(ei) .
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Hence, through the isomorphism ErX — X* ® X , the action of sxa on X corresponds to the
element

S trxr(Ax(e)al) @ Ax(er)
and its trace is

oxtrx/r(@) = Y trx/r(x())a(Ax(e))

K2

O
Proposition 4.4 has the following important consequence.

4.9. Proposition. Let X be a split quasi irreducible A—module. The following properties are
equivalent.
(i) Its Schur element sx is invertible in R.
(ii) The structural morphism Ax: A — ErX s split as morphism of A—modules—A.
(iii) X is a projective A—module.
If the above properties are satisfied, then the map

ERX—>A

a— Z trX/R(s;(lozeg)ei

(2

is a section of A\ as a morphism of A—-modules—A.

Remark. The last formula of the above proposition is what Serre calls the “Fourier inversion
formula” in the case where A is the group algebra of a finite group over the complex numbers
field (see [Se| 6.2, prop. 11).
Case of a symmetric algebra over a field.

Let k£ be a field, and let A be a finite dimensional symmetric k—algebra.

If X is an irreducible A—module, we recall that the algebra Dx := E4 X is a division algebra,
that the algebra B := EXp, is symmetric, and that the structural morphism \: A — B is
onto. Thus each irreducible A-module has a Schur element sx € ZDx, and since ZDx is a

field, the Schur element sx is invertible if and only if it is nonzero.

4.10. Proposition. Let k be a field, and let A be a finite dimensional symmetric k—algebra.

The following assertions are equivalent.

(i) A is semi-simple.
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(ii) Whenever X € Irr(A), then sx # 0.

Proof of 4.10. This follows from the fact that a finite dimensional k—algebra is semi—simple if

and only if all its irreducible modules are projective. [

Now assume that the algebra A := A/Rad(A) is split, i.e., that

(VS € Irr(A)) , Enda(S) = kIds, hence A-— H Endy(95).
Selrr(A)

Let us denote by a + @ the canonical epimorphism from A onto A.
Let S € Irr(A). By a slight abuse of notation, we consider that the structural morphism

defining the structure of A-module of S is defined by the composition :
A — A25End,(S).

Let us denote by eg the corresponding central idempotent of A, and let us choose an element
es € A whose image modulo Rad(A) is eg.

We have
xs(a) = t(x%a) = trg;r(As(@)) .

For all S,T € Irr(A), it follows that

t(x%era) = trg/i(As(era)) = ds,rxs(a),

and so
Xeer = 0s.7X% -
The above formula allows us to prove the following orthogonality relation between characters

of absolutely irreducible modules.

4.11. Proposition. Let A be a symmetric algebra such that A/Rad(A) is split. Let cP* =

> € ®e; be the Casimir element of A. For all S,T € Irr(A), we have

ssxs(1) if S=T,
> xs(e)xr(e) =
‘ 0 if S#T.
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Symmetric split semi—simple algebras.

4.12. Proposition. Let k be a field, and let A be a finite dimensional symmetric k—algebra
with symmetrizing form t. Assume that A is split semi—simple. For each irreducible character
X of A, let ey, be the primitive idempotent of the center ZA associated with x, and let s, denote
its Schur element.

(1) We have

(2) We have

Proof of 4.12.
(1) Since, for all a € A, we have x(eyh) = x(h), we see that ¢t(x"e,h) = t(x"h), which
proves that x* = x"e, . The desired equality results from the fact that, for all z € ZA, we have

z = erlrr(FA) wX(Z)eX :

(2) Through the isomorphism between A and its dual, the equality

t:ZiX

S
XEIrr(FA) X

is equivalent to

1= ) L,

S
X€EIrr(FA) X

which is obvious by (1) above. O

5. PARABOLIC SUBALGEBRAS

Definition and first properties.

The following definition covers the case of subalgebras such as RH (H a subgroup of G) of a
group algebra RG, as well as the case of the socalled parabolic subalgebras of Hecke algebras.
5.1. Definition. Let A be a symmetric R—algebra, and let t be a symmetrizing form on A. A
subalgebra B of A is called parabolic (relative to t) if the following two conditions are satisfied

(Pal) Viewed as a B—module through left multiplication, A is projective.
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(Pa2) The restriction of t to B is a symmetrizing form for B.

Remarks.

1. Condition (Pal) is equivalent to :

(Pal’) Viewed as a module-B through right multiplication, A is projective.

Indeed, A is a projective B—module if and only if A* is a projective module-B, hence (since A*
is isomorphic to A) if and only if A is a projective module-B.

2. Condition (Pa2) is equivalent to :

(Pal’) We have BN B+ =0.

5.2. Proposition. Let A be a symmetric algebra with a symmetrizing form t and let B be a
subalgebra of A such that A is a projective B—module.
(1) The subalgebra B is parabolic if and only if B ® B+ = A, and then the corresponding

projection of A onto B is the morphism of B—modules—B
Bra: A— B such that t(Bra(a)b) =t(ab) forallac A andbe B.

(2) If (1) is satisfied, then Bt is the B-submodule-B of A characterized by the following two
properties :
(a) We have A= B ® B+ (as B-modules-B),

(b) Bt C ker(t).

Example. Assume A = RG and B = RH (G a finite group, H a subgroup of G). Then the

map Bri% is defined as follows :

g ifgeH,
Briif (9) =
0 ifg¢ H.

For that reason, we shall call Brg the “Brauer morphism” from A to B.

(D Attention (1)

The subalgebra R.1 is not necessarily a parabolic subalgebra.

Indeed, the symmetrizing forms on R are the forms 7 such that 7(1) € R*. Thus R.1 is parabolic
if and only if ¢(1) is invertible in R.
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This is not always the case, since for A := Mat,,,(R) and ¢ := tr, we have ¢(1) = m. This example
shows as well that the property of R.1 to be parabolic is not stable under Morita equivalence.

Remarks.
e If R.1 is parabolic, we may wish to normalize the form ¢t by assuming that ¢(1) = 1.

e If R.1 is parabolic, then A is principally symmetric (see 2.14).

But an algebra may be principally symmetric without R.1 being parabolic, as shown by the
example A := Mat,,(R) when m is not invertible in R.

6. EXACT BIMODULES AND ASSOCIATED FUNCTORS

6.A. Selfdual pairs of exact bimodules

In what follows, we denote by A and B two symmetric R—algebras. We assume chosen two

symmetrizing forms ¢ and v on respectively A and B.

6.1. Definition. An A-module-B M is called exact if M is finitely generated projective both

as an A-module and as a module—B.

If M is exact, the functors

M®pg+*: pMod —- yMod and - ®4 M: Mody — Modpg

defined by M are exact.

Definition. A selfdual pair of exact bimodules for A and B is a pair (M, N) where M is an

erxact A—-module-B, and N is an exact B-module-A endowed with an R—duality of bimodules
MxN—R , (m,n)— (m,n),
i.e., an R—-bilinear map such that
(amb,n) = (m,bna) (Na€ A, be B,meM,neN),

which induces (bimodules) isomorphisms

M- N* and N -5 M*.
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Examples.
1. Take B = R, M =4 AR (i.e., A viewed as an object in ymodgr), N =g A4 (i.e., A viewed
as an object in gpmod 4, and (a,b) := t(ab). Then (4Ar,r A4) is an exact pair of bimodules

for A and R, called the trivial pair for A.

2. Let G be a finite group, and let U be a subgroup of GG whose order is invertible in R. Let
N¢g(U) denote the normalizer of U in G, and let us set H := Ng(U)/U. Then the set G/U is
naturally endowed with a left action of G and a right action of H, and the set U\G is naturally
endowed with a left action of H and a right action of G.

Take A := RG, B := RH (both induced with the canonical symmetrizing forms of group

algebras), M := R[G/U] (the R—free module with basis G/U), N := R[U\G], and

1 ifUg = (gU)™!
(gU,Ug') =
0 if not.

Then the pair (R[G/U], R[U\G]) is an exact pair of bimodules for RG and RH.

The functor defined by M is the so—called “Harish—Chandra induction” : take an RH-module
Y, view it as an RNg(U)-module, and induce it up to RG.

The adjoint functor defined by N is the “Harish-Chandra restriction (or truncation)” : take

an RG—module X, and view its fixed points under U as an RH-module.

3. The following example is a generalization of the previous two examples.
Let B be a parabolic subalgebra of A, let e be a central idempotent of A and let f be a

central idempotent of B. Let us choose
M :=eAf , N:=fAe , (m,n):=t(mn).
Then the functor induced by M is the induction truncated by e :
Y — eInd3Y,
while the functor induced by N is the restriction truncated by f :

X — fRespX .
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Let (M, N) be a self dual pair of exact bimodules.

1. The isomorphism N —— M*, composed with the isomorphism M* —» M = Hom4 (M, A)

given by 2.10, gives an isomorphism N — M"Y of B-modules-A , which is described as follows :

6.2. the element n € N defines the A-linear form m — mn on M such that
t(mn) = (m,n).
Similarly, we have an isomorphism M —~ NV of A-modules-B , which is described as fol-
lows :

6.3. the element m € M defines the B-linear form n — nm on N such that

u(nm) = (m,n).

2. The isomorphism M —~+ NV described above induces isomorphisms

M ®p N-——N"Y®p N -~ EgN -~ EMpg.

We know (see 2.11) that there is a symmetrizing form uy on the algebra EgN. Transporting
the algebra structure and the form uy through the preceding isomorphisms gives the following

property.

6.4. Proposition.
(1) The rule

(m®@pn)(m' ®@pn') :=mep (nm')n

provides M @p N with a structure of algebra isomorphic to EgN (and EMpg).
(2) The form

tun: M@ N —R , m®pn+— (m,n)
s a symmetrizing form on the algebra M Qp N.

Similarly, we have an algebra structure on N ® 4 M and a symmetrizing form

INM:N®AaM—R |, n®am— (m,n).
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We denote by cpr,y the unity of M @ g N (i.e.,the “(M, N)— Casimir element”).
Thus, if cprn = Y, m; @p ng, for all m € M and n € N we have

Zm®3 (nmi)n; = Zmi ®p (nim)n=mpn.

Similarly, we denote by ¢y as the unity of the algebra N ®4 M.
The case of the trivial pair.
Let us consider the trivial pair (4 Agr,g Aa) for A. Then

e The algebra A ® 4 A is isomorphic to A and its symmetrizing form is the form t.
e The algebra A ®p A is isomorphic to FrA and its symmetrizing form is defined by

a®a +— t(aa).
(D Attention (1)

The algebra A ® g A mentioned above is not, in general, isomorphic to A ® A°P.

Notice also that the multiplication in the algebra A @z A is defined by the rule

(ad)bab) =axt(db),

and that by its very definition, ¢!y is the unity of this algebra.

Adjunctions.

Let (M, N) be a selfdual pair of exact bimodules for A and B. Since M ~ NY and N ~ MV,
the pair (M ®p+, N ®4 ) is a pair of biadjoint functors, i.e., a pair of functors left and right
adjoint to each other.

The isomorphisms N -+ M"Y and M -~ NV described in 6.2 and 6.3, together with the
adjunctions defined by the “isomorphisme cher a Cartan”, define the following set of four

adjunctions (described in terms of morphisms of bimodules) :

Mg N — A B—-N®, M
EM,N: and NM,N:

m®gn—mn b— ben, v

) (

N®,u M — B A—- M®&pN
ENM: and NN,M :

n®pmr— nm a > acy N
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6.5. Proposition. The morphisms
€M’N:M®BN—>A and T]NyMZA—>M®BN

are adjoint one to the other relatively to the bilinear forms defined on A and M ®p N by

respectively t and tyr N, i.e.,

t(EMVN(.I)a) = tM’N(anVM(a)) (V$ eEM®Pp N, a < A)

6.B. Relative projectivity, relative injectivity

Let us generalize the preceding situation, by replacing 4Mod and gMod by two arbitrary
R-linear triangulated or abelian categories 2 and B, and by considering M : 8 — 2 and
N : 2l — 9B two functors such that (M, N) is a biadjoint pair.

Like in the “concrete” situation considered above, let (eps N, ma,n) (resp. (en,a, M) ) be

a counit and a unit associated with an adjunction for the pair (M, N) (resp. (N, M) ).

Notation. We say that an object X’ of such a (R-linear triangulated) category 2 is isomorphic

to a direct summand of an object X if there exist two morphisms

v X' =X
such that mo:=1Idx.
T X — X’
This is indeed equivalent (see [BS], lemma 1.8) to the existence of an object X" and an isomor-

phism

X=X oX".

6.6. Definition. For X and X' in 2, we denote by Tr (X, X"), and call relative trace, the
map

Tr (X, X'): Homp (NX, NX') — Homg (X, X')

defined by

Try (X, X')(8) = enrn (X') 0 M(B) oy e (X) X X’

WN,NI\L TEM,N
M

MNX 2% yNx



Higman criterion 49
If it is clear from the context what the domain and the codomain of § are, we will write
Tr} (B) instead of Trdf (X, X’)(B). Furthermore, Trj (X) stands for Tr (X, X). Notice that

the map Tr% is defined, as well.

The following example is fundamental.
Example : Induction and restriction from R. Let A be a symmetric R-algebra with
symmetrizing form ¢ and Casimir element cir =), €6 ®e;. Wetake A = yMod, B = pMod
and consider the pair of biadjoint functors defined by the module A, considered as an object

of sAModg, and as an object of gMod 4. In other words, the functors are the induction Indf}

and the restriction Resé. Let us set

A
Resy

and Trff .= TrIndg .

The verification of the following two statements is left to the reader.

1. For X, X’ € sMod, the map
Try : Homp(X, X') — Hom (X, X)

is defined by

Tr(6)(z) = Z eif(ejz) = Tr' () ,

thus in other words we have

Trg =T,
2. For Y, Y’ € pMod, the map
Tr% : Homy (A®RY,A®rY') — Homp(Y,Y")

is defined in the following way. Let o be an element of Homa(A®r Y, A®rY’) and y € Y. If

a(l1®y) =>,a; ® y;, then the relative trace is given by the formula

Tl (@) (y) = > tad)y:

%
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6.7. Proposition. Whenever we have three morphisms
B:NX —-NX" | a:X;—X , o:X — X7,

we have

o o TrN (B) oo = TrN (N(a/) o Bo N(a)) .
In particular, the image of TrX is a two-sided ideal in Homg(+,*).
Proof of 6.7. Since n, s is a natural transformation, the diagram

X
X1 77N,M( 1) MN(Xl)

lMN(a)

¥ N, M (X) MN(X)

commutes, i.e.,

MN (o) onn,pm(X1) = v m(X) oa.

Similarly, we get

5M,N(Xi) OMN(O/) = O/O€M7N(X/) .

Using these equations, we obtain

X, — o x X’4‘II>X’1

nN,M(Xl)\L nN,M(X)l EM,N(X/)T EM,N(Xi)T

MNX, MV v x M v MY v

o oTrM (B)oa=a oeyn(X')o M(B)onnm(X)oa

= earn(X{) 0 M(N(a') 0 f o N(a) o v (X))

g

The following theorem generalizes to our general context the classical and relative Higman’s
criteria ([Hil] and [Hi2]) as well as it extends to our context the equivalence of injectivity
and projectivity for modules over a symmetric algebra over a field — see examples below, in

particular the paragraph “Relative projective modules and projective modules”.
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6.8. Theorem. Let® and B be R-linear triangulated or abelian categories, and let M : B — 2

and N : A — B two exact functors such that (M, N) is a biadjoint pair.

For an object X in 2, the following statements are equivalent:

(i) X is isomorphic to a direct summand of MN(X).
(ii) X s isomorphic to a direct summand of M(Y'), for some object Y in B.
(iii) The morphism Idx is in the image of Tril (X).
(iv) The morphism ny v(X) : X — MN(X) has a left inverse.
(v) The morphism en,n(X) : MN(X) — X has a right inverse.

(vi) Relative projectivity of X :

X
Y
o g o
N () 2 l
N(X") —= N(X") x" —Ts x!
B8

Given morphisms o : X — X' and 7 : X" — X' such that there exists a morphism (3 :
N(X') — N(X") with N(7) o B = Idn(x, then there exists a morphism & : X — X"
with ™o & = a.

(vil) Relative injectivity of X :

X
A .
« NG
N() T N
N(X') =——= N(X") PO
B8

Given morphisms o : X' — X and v : X' — X" such that there exists a morphism

f:N(X") = N(X') with foN (1) = Idy(x), then there exists a morphism & : X" — X

with & oL = a.

To prove the above theorem we need the following lemma.

6.9. Lemma. We have Tryt (M(Y))(un(Y) oenar(Y)) = Idps(yy.
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Proof of 6.9. By definition, we have

MY MY
WN,NIMi TEM,NM
MNMY MNMY
MY

Tey (M (Y))(mr.v (Y) 0 enar(Y) =

em,N(M(Y)) o M(nu,n(Y)) o M(en,m(Y)) o, m(M(Y)) -

It is a classical property of adjunctions (see [McL] or [Ja]) that ey, n(M(Y)) o M(ny.n(Y))

and M(en m(Y)) oy (M(Y)) are the identity on M (Y). O

Proof of 6.8. We prove the implications

and

(i)=(ii) : trivial.

(ii)=-(iii) : We may assume that X = M(Y). For if X is a direct summand of M (Y), we
have to morphisms p : M(Y) — X and i : X — M(Y) such that poi = Idx. Hence, if
TeX (M(Y))(6) is the identity morphism on M (Y), then the identity morphism on X is given

by po Tri (M(Y))(8) o i and using proposition 6.7, we get
Idx = Trd (N(p) 0o Bo N(i)) .

For X = M(Y) the assertion follows from lemma 6.9.

(iii)=-(iv) and (ili)=(v) : These implications follow from the definition of the relative trace,

since we have

Idy = T¥ (X)(8) = ear.v(X) 0 M(8) 0 ny,as (X) -

(iv)=-(i) and (v)=>(i) : clear.
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(ii)=-(vi) : We may assume that X = M(Y). Let ¢ be an adjunction for the pair (M, N).
Given a morphism a : M(Y) — X', we must construct a morphism & : M(Y) — X" such that
mod& = «. Using the adjunction, we get a morphism ¢y x/(«) : Y — N(X’), which we compose

with 8 to obtain a morphism from Y to N(X"). We claim that if we set

A~ —

&=y (Bopyxi(a),

then & has the desired property. Since the adjunction is natural, we have

o gy (Bopy.xi(a)) = oy (N(m) o Bopy.xi(a)).

By assumption, N(m) o 3 = Idy(x/, from which it follows that mo & = av.

The proof of the implication (ii)=-(vii) is analogous to the previous one.

(vi)=(v) : Let us choose a := Idx and 7 := e, ny(X). We have to check that the morphism
N(em,n(X)) splits : this follows from the properties of an adjunction, since N(ep n(X)) o
NN (N (X)) is the identity on N(X) (see for example [McL]).

The proof of the implication (vii)=-(iv) is similar to the previous one. [

6.10. Definition. An object X of the category 2, satisfying one of the conditions in theo-

rem 6.8, is called M-split (or relatively M -projective, or relatively M -injective).
Notice that any object isomorphic to M (Y') (for Y € 9B) is M—split.

Example : Induction—restriction with R. Let A be a symmetric algebra over R, and

consider the categories

A= ,Mod and B = rMod.

We have already seen that the functors M := Indj% and N := Res‘}% build a biadjoint pair. We

shall prove and generalize below the following set of properties.

e The relative trace Tr}% is the trace Tr* defined in the previous paragraph, i.e., the
multiplication by the Casimir element.
e The split modules are the relatively R—projective modules.

e For X a finitely generated A—module, the following conditions are equivalent.
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(i) X is a projective A—module,
(ii) X is a projective R—module and a split module (relatively projective R—module).
If R =k, a field, the A-split modules are exactly the projective modules and the projective
modules coincide with the injective modules.
Relatively projective modules and projective modules.

Consider the following particular situation :

e B is a symmetric subalgebra of A such that A is a projective B-module (hence, as we
have already noted, A is a projective module-B). We choose a symmetrizing form ¢ on A and

a symmetrizing form u on B.

e We choose M := A (viewed as an object of s\Modp), N := A (viewed as an object of

sMod,), and the pairing A x A — R is defined by (a,a’) — t(aa’).

Thus the functor M ®p * coincides with the induction

Ind%: s5Mod — 4Mod,

while the functor N ® 4 = coincides with the restriction

Resg: AMod — pMod.

We then say that an A-module X is relatively B—projective when it is split for the pair (M, N)

just defined.

We construct in this context the analog of the Casimir element.

Since A is a (finitely generated) projective B—module, the natural morphism

Homp(A,B) ®p A — EA

is an isomorphism. Since B is symmetric, its chosen symmetrizing form u induces a natural

isomorphism

Homp (A, B) = A*,



Higman criterion 55
and since A is symmetric, its chosen symmetrizing form t induces an isomorphism A — A*.

So we get an isomorphism (of (A ® A°P)-modules—(FpA ® EpA°P))
AR A EA.

We call relative Casimir element and we denote by c; the element of A®p A which corresponds
to Id 4 through the preceding isomorphism.

Let X be an A—module. The relative trace may be viewed as a morphism
Tr4: Homp (X, X') — Homyu (X, X').

This morphism is nothing but the multiplication by the relative Casimir element cs : if cf3 =

>, a; ®pa;, and if Y is any A-module-A, we have

yB L y4
A
Try: B
Yy cpy =Y ayal.

Example. The following example is precisely the case of Higman’s criterion for relative pro-
jectivity ([Hil]).
Assume A = RG and B = RH (G a finite group, H a subgroup of G). Then we have

chf = Z 9Oru g ",
9€[G/H]

where [G/H| denote a complete set of representatives of the left cosets of G modulo H. Thus,

whenever Y is an RG-module-RG and y € Y, we have

TRGw) = > gyg '
9elG/H]

In such a situation, projectivity and relative projectivity are connected by the following
property.
6.11. Proposition. Let B be a symmetric subalgebra of A such that A is a projective B—
module. Let X be a finitely generated A—module. The following conditions are equivalent.

(i) X is a projective A—module.

(il) X is relatively B—projective and Res‘éX s a projective B—module.
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Proof of 6.11.

(i)=(ii) Since A is a projective B-module, any projective A—module is also (by restriction)
a projective B-module. Moreover, if a morphism X" — X’ gets a right inverse after restriction

to B, it is onto, and so every morphism X — X’ can be lifted to a suitable morphism X — X"'.

X
s
a
N Res () A /,/ﬂ_ i
Resi(X") T Resz (X’) X" —"= x'

(ii)=-(i) Since X is relatively projective, we may choose an endomorphism
t: Resp(X) — Resp(X) such that Tri(:) =1Idx .

Suppose given a surjective morphism X”—>X’ and a morphism X ——X’. Since Res‘éX is
projective, there exists a morphism ~: ReséX — Res’éX " such that the following triangle
commutes :

Reng e, TY=aL.

7
vy -
e (673
'
£

™
Resp X" —— Resg X'

Applying Trg to this last equality, we get
T Tra(y) = aTrg(l) = o,
and this shows that the morphism « has been indeed lifted to a suitable morphism X — X”. [

Harish-Chandra functors.

The relative trace introduced above may be computed in terms of generalized Casimir ele-
ments (see below §6.E for the definition of ¢y n), generalizing the element CES defined above.

Let us for example consider the case of Harish—Chandra induction-restriction, as defined in
§6.1 above, example 2 and 3 (from which we borrow the notation).

We set
1
A:=RG, B:=RNg(U), H:=Ng(U)JU , e:=1, f:=e(U) ::mZu
uelU

M := R|G/U] and N := R[U\G],
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and we denote by R% the functor defined by M (the Harish-Chandra induction).
Then the relative Casimir element is
CM,N = Z ge(U)®@pe(U)g™ !,
9€[G/Ng(U)]

and the generalized relative Higman’s criterion becomes
6.12. Proposition. Let X be an RG-module. Then X is a summand of R%(Y) for some
RH -module Y if and only if there exists an endomorphism 3 of the RH -module XY such that

> 9Byt =1ldx.

g€lG/Na(U)]
6.C. The M-Stable Category

Generalities.

What follows could be written in the general context of triangulated categories (and we hope
it will be done soon). Nevertheless, for the sake of comfort of a reader unfamiliar with triangles,
we shall assume now that 2 and B are two R-linear abelian categories, and as previously we
denote by (M, N) a pair of biadjoint functors for (A, B).

We denote by Hom)! (X, X’) the image of Trf (X, X’) in Homg (X, X’) and call these mor-
phisms the “M-split morphisms”.

By definition, the M—split objects are those objects whose identity is M—split (i.e., such that
all endomorphisms are M—split).

Since the M-split morphism functor Homg (+,+) is an ideal (see 6.7), we have the following

property.

6.13. Lemma. A morphism X — X' in A is M-split if and only if it factorizes through an
M —split object of A.

6.14. Definition. The category pyStab(2l) (or, by abuse of notation, Stab(2)), is defined as
follows:

(1) the objects of Stab(2) are the objects of A,



58 Michel Broué
2) the morphisms in Stab(2l), which we denote by Hom3! v, s), are the morphisms in A
A,M

modulo the M -split morphisms, i.e.,

Homstg a7 (X, X') := Homg (X, X')/Homy! (X, X') .

Let A be an R-algebra. In the situation where 2l = 4Mod, B = pMod and the biadjoint

pair of functors is given by (Indé7 Resg), we denote the corresponding stable category by 4Stab.

Remarks.

1. If R =k, a field, then the category sStab coincides with the ususal notion of the stable
category, i.e., the module category “modulo the projectives”. But in general, our category
AStab is not the quotient of 4Mod modulo the projective A—modules.

2. Stab(%l) is an R-linear additive category (but in general not an abelian category ; we
leave its triangulated structure to further work).

From the way we defined the M-stable category, it is clear that there is a natural functor

St : A — Stab(2).
6.15. Proposition. If X is an object in A, then St(X) ~ 0 if and only if X is M -split.

Proof of 6.15. 1f St(X) ~ 0, then the identity on X is in the image of the relative trace Tr (X),
which is equivalent to say that X is M-split.

If X is M-split, then the identity on X is an M-split homomorphism and therefore it is zero

in Stab(2). Thus, we have St(X) ~0. O
The Heller Functor on Stab(2).
Whenever o € Homg (X, X’), we denote by o' its image in Homif’M(X, X').

6.16. Proposition. (Schanuel’s lemma) Let A and B be two R-linear abelian categories and

let (M, N) be a biadjoint pair of functors on A and B. Assume that
0—- X 5P X, -0 and 0— X)-2P, "X, -0

are short exact sequences in 2 such that

(1) Their images through N are split,
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(2) Py and Py are M-split objects.

Then there exists an isomorphism
Homaf’M(Xl,Xg) = HomaM(X{,Xé)

oSt — O/St
determined, for o € Homgy (X1, X2) and o € Homy (X], X%), by the following condition : there
exists u € Homg(Py, Py) such that the diagram

L1 1
X{ — P —— X3

1

L1 Ul
Xé — P ——= X5

commautes.
Proof of 6.16. We may assume that « is given. Then, since N(m3) splits and P; is a M-split
object, there exists a map u and a map o’ such that the above diagram commutes. It suffices
to verify that ot is zero if and only if o/*" is zero.

If ot is zero, then o factorizes through the object P,. Let us say a = my o h, where
h: X1 — P,. The map u — h om is a map from P; to the kernel of my. Therefore, if we set
h' =wu— homy, then o = h' o1, i.e., the map o' factorizes through an M-split object. The

converse implication can be verified similarly. O

Remark. Tt follows from the proof of Schanuel’s lemma that (o, u, ) defines a single homotopy

class of morphisms from
0— X -5%P"5X, -0 to 0— X5-25P"5Xy —0

This is a particular case of a more general lemma about projective resolution which will not be

addressed here.

6.17. Corollary. Assume that
0-Xi =P —-X—>0 and 0-X,—>P,—X—0

are short exact sequences in 2 such that

(1) their images through N are split,

(2) Py and Py are M-split objects.
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Then there exists an isomorphism
O X7 "> X, in Stab(2)
characterized by the following condition : there exists u € Homg (Py, Py) such that the diagram

L1 ™1
X, 2sp X

e

L1 T2
Xy p s X

commutes.

This corollary allows us to define a functor 2, : Stab(2() — Stab(2(), the Heller functor.
It is given by Q(X) == X].
Similarly, we have a functor 3} : Stab(2) — Stab(2(). It can be check that the functors

Qs and Q" induce reciprocal equivalences of Stab(2l).

The case of 4Stab : the Heller bimodules.

Let again A be a symmetric R—algebra.
From now on, we assume that A = 4Mod, 8 = pMod and the modules inducing the
biadjoint pair of functors are M € sModgr and N € pRMods. We proceed to give another

definition of the Heller functors 24 and Qzl.

We call Heller bimodule and we denote by 4 the kernel of the multiplication morphism
ArA— A.

Thus we have
QA: {Zai@)bi ‘ Zaibi:O} .

o Viewing Q4 as a left ideal in A ®p A°P, we see that if ). a; ® b; € Q4, we have

Zai®bi:Z(ai®bi_1®aibi):Z(1®bi)(ai®1—1®ai)7

% 3

hence Q4 is the left ideal of A @ g A°P generated by {a®1—-1®a | (a € A)}.
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e Since (A®g A)4 is by definition the right annihilator in A®g A°P of the set {a®1—1®a |

(a € A)}, it follows that

(A ®R A)A - Ann(QA)(A®RAop) .
e If A is symmetric and ¢ is a symmetrizing form, then the form

A®rA® - R

A

a®a — ta)t(a)

is a symmetrizing form on A ® g A°P. Then it follows from what precedes that

(A QR A)A = Qj)

where the orthogonal is relative to the form ¢°".

The inverse Heller bimodule le is defined as the quotient

Q' =(Aer A)/(Axg A)4.

Thus we see that the form ¢°* induces an isomorphism of A-modules—A :

Q0.

Taking the dual (relative to the forms ¢ and ¢ of the short exact sequence

0—-Qy > AQQRA® - A -0,

we get the short exact sequence

O—>A—>A®RAOP—>QZI—>O.

6.18. Proposition.

(1) The A-modules-A Q4 and Q' are ezact.

(2) The bimodules Q4 ® 4 Q:‘l and Q:‘l ® 404 are both isomorphic to A in the category 4Stab 4.
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6.19. Corollary. The functors
Qa, QZl: aMod — 4Mod

induce reciprocal selfequivalences on 4Stab.

Proof of 6.18.

(1) Since A is projective on both sides, we see that
O—>QA—>A®RAL>A—>O

is a split short exact sequence in 4Mod, as well as in Mod . In particular, it is R-split.
Taking the dual with respect to the bilinear forms defined above yields the R—split short exact
sequence

0 AL AR A— Q7 —0.

The relative injectivity of A implies that this sequence splits in 4Mod and in Mod 4. Thus,
we have shown that 24 and Q;‘l are in 4proj N proj,.

(2) Since we want the isomorphism from Q4 ® 4 Qzl to A to be in 4Stab,, the symmetric
algebra to consider here is (A @z A°P). We shall apply Schanuel’s lemma to the short exact

sequences ,U«®Idn,1
00— Q4@ —= A2 Q" -0t 0

0— ASA®RA— Q7  —0

These sequences split as sequences in 4 Mod, since Qzl is an A-projective module. In particular,
they split when restricted to R. Thus, by Schanuel’s lemma, it is enough to check that A®@gr A
and A®p Q;l are both relatively (A®pg A°P)-projective, hence it is enough to remark that they
are projective (A ®p A°P)-modules.

Similarly, one shows that Q;‘l ®4 Q4 is isomorphic to A in the category 4Stab,. O

6.20. Definition. For X, X’ € sMod and n € N, we set
Ext’y (X, X') := Hom , stan (2% (X), X') .
Note that we have also

Ext’} (X, X') = Hom , sgap (X, Q27" (X)) .
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6.21. Proposition. Let A and B be symmetric R—algebras.

Let M € sModgpg be an exact bimodule. Then the functor M ®p+ commutes with €., i.e.,

Qg ®AML>M®B Qg insStabg.

Proof of 6.21. The module M induces a functor on the stable category.

Consider the following two short exact sequences
004 > AR A5A -0 and 0—Qp — B®r BB 0.

If we tensor the first one over A with M and the second one over B with M, we get the two

short exact sequences
034 M - AR rM > M —0and 0 - MR —>MxrB—M —0.

Both sequences split as sequences over R. Since M is in projgp, A ®gr M is a projective
A ®p B°®—module. Similarly, one shows that M ®p B is a projective A ® g B°P—module. Thus,

we can apply Schanuel’s lemma and get an isomorphism
Q4 ®aM-—M®pQp in 4Stabg.

O
As an application of the previous proposition, we get the following corollary.

6.22. Corollary. (Schapiro’s lemma) Let (M, N) be a self dual pair of exact bimodules for
the algebras A and B. Then (24 @4 M, le ®a N) is also a self dual pair of exact bimodules
for the algebras A and B.

In particular, for all n € N, we have
Ext} (M(Y), X) ~ Exts(Y,N(X)) .
Proof of 6.22. We will only show that QM is left adjoint to leN. We know that both,

(M,N) and (Q4, Qzl), are biadjoint pairs. Thus the functor 24 M is left adjoint to the functor

NQZl. By proposition 6.21, NQZl is naturally equivalent to the functor QE;IN. O



64 Michel Broué

6.D. Stable Equivalences of Morita Type

Let (M, N) be a selfdual exact pair of bimodules for A and B. Since the functors M ®@p .

and N ® 4 . factorize through the functors

Sta: aAMod — 4Stab and St : gMod — gStab,

the bimodules M and N induce two functors

M ®p.: gStab — 4Stab and N ®4.: 4Stab — gStab.

Since the functors M ®p+* and N ®4 « are biadjoint, the induced functors on the stable
categories are biadjoint, as well. The associated adjunctions are the images in the stable
categories of the adjunctions of M and N on the module category level.

These preliminaries suggest the following definition of a stable equivalence of Morita type.

6.23. Definition. Let M and N be bimodules as above. We say that M and N induce a stable

equivalence of Morita type between A and B if

M®g N ~Ain o,Staby and N ®4 M ~ B in gStabpg

through the counits and the units of the adjunctions.

Remark. Notice (see for example [McL]) that we do not need to specify which counits and units
provide the above isomorphisms. If one appropriate pair of them are isomorphisms, then all of them

will be isomorphisms.

6.24. Definition. The stable center of the symmetric algebra A, denoted by Z5A, is the

quotient ZAJZPT A.

Remark. 1f we view A as an object in the category (ag,a-r)Mod, then the center of A is iso-
morphic to End( g, a0r)(A). It follows from the definition of the stable category (g, a0r)Stab
and the definition of projective endomorphisms of A considered as an (A ® g A°P)-module, that

the stable center of A is isomorphic to End<A®RAop>Stab(A).
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6.25. Proposition. A stable equivalence of Morita type between the symmetric algebras A

and B induces an algebra isomorphism

Z8"A~ 7%B.

Proof of 6.25. Let astab’) denote the full subcategory of sstab4 whose objects are the exact
A-modules—A. Assume that (M, N) induces a stable equivalence of Morita type between A and
B. Then the pair (M g N, N @r M) (where M ®pr N is viewed as an (A ® g A°?)-module-
(B®gr B°) and N ®g M is viewed as a (B ®g B°?)-module-(A ®pr A°P) as previously) induce
inverse equivalences between 4stab’y and pstab!, which exchange A and B. The assertion

follows from the fact that Z5(A) is the algebra of endomorphisms of A in gstab®). O

6.E. (M, N)—split algebras

More on exact pairs.

We keep the notation introduced in §D above.

By the isomorphisme cher a Cartan, and by projectivity of the B—module N, we have
(M ®@p N)* = Hy(B,M @ N)* ~ H'(B,N ®r M) ~ (N @z M)? ~ M ®p N .

It follows that the pairing
(M®p N)x (M®gN)— R
(m@n,m @n') — (m,n')(m',n)
defines a duality between M ®p N and itself, hence that (M @5 N, M ®p N) is an exact pair
between the algebra A and itself.
Similarly, (N ®4 M, N ®4 M) is an exact pair between the algebra B and itself.
Let us now compute the pairing (N ®4 M) x (N ® 4 M) — B associated to the previous
pairing and to the chosen symmetrizing form on B. We do it through the following series of
isomorphisms (which uses the projectivity of the B-module N ® 4 M and the isomorphisme

cher & Cartan) :

N ®a M - Homa (M, M) - Hom(M,Homg(N, B)) — Hompg(N ®4 M, B).
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We have

n®am (x— (zn)m) = (z = (y(en)m)) = (y @4z — (y(zn)m)) .
Thus we have proved the following lemma.

6.26. Lemma.
(1) The pairing (N ®4 M) x (N ®4 M) — B is given as follows : forn®am and n’ @4 m’
m N @a M, we have
(n®@am)(n' @4m’)) = (n(mn")m’).
(2) The pairing (M @p N) x (M ®@p N) — A is given as follows : for m®@pgn and m' @gn’

m M ®p N, we have

((m®p n)(m' @pn')) = (m(nm)n').

Notice the natural isomorphisms of R—algebras
N®a M -——Homus(M,M) , n®sm— (x— (zn)m
N®sM-"Hom(N,N)a , n®am+— (y— n(my)
(where, as seen before, the structure of algebra on N ® 4 M is defined by (n®4m)(n’@am’) :=
(n®a (mn/)m’ ), and similarly
M ®p N “>Hompg(N,N) , m®pgn+— (y— (ym)n

M ®p N ——Hom(M,M)g , m®pgn+— (x+— m(ny)

We shall now describe the inverses of the above isomorphisms. Let us denote by

CM,N ‘= Zua B Va

e

the Casimir element of M ® g N, i.e., the element such that (see 3.2 above for a particular case)
Vn € N, Z(n,ua)ya =n and Vme M, Z,ua(uam) =m.
[e% (0%

Then the inverse of the isomorphism M ®pg N — Hom(M, M)p is given by

@szﬂa®BVa'

«

We leave to the reader to write down similar formulae for the other isomorphisms quoted above.

The following lemma follows from what precedes.
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6.27. Lemma.

(1) The R—duality functor induces an isomorphism
Hom 4 (M, M)p ~ Hompg(N,N)4

which in turn induces the following isomorphism of algebras
(N ®s M)2 =5 (M op N)A

Zni Q4 my; — Z(,uani)mi QB Vg -
i

o,

(2) In particular, the morphism
(MepN)* —ZA , > mj@pn;— » (m;n;)
J J
induces the following morphism

(N®a M)B — ZA an XA My = Z(Mam)(miVa) .

Similarly, we denote by

CN,M = Z V//g XA ,U//g
B

the Casimir element of N ® 4 M.

Quadrimodules again.
Let us consider the objects (see above §1, Quadrimodules)
F:=M®grN € (agpaor)yModpg,Bor)
G:=N®rM € (BgrpryMod g, a0v) -
Then the pair (F,G) with the pairing defined by
FxG—R

(m@n,n @m')— (m,n)(m',n),

is an exact pair for the algebras A ® g A°P? and B ® g B°P.

e We have
F®(B®RBOP) G;’(M B N) ®R (M B N)

(men)® (M e@m')— (megn) g (m @pn).
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Notice that the structure of (A ® A°P)-module-(A ® A°?) on M @ g N ® g M ®p N is

given by
(a®a®)(mopn @gm' @pn)(d @) :=am@pn'd @ d'm’ @pna’)

Similarly we have

G @agpaer)y F—= (N @4 M) @p (N ®a M)
(n@m)@(men)— (0 @am)@r (n@asm').

e Through that isomorphisms the counits are given by

(

(M@BN)®R(M®BN)—>A®RAOP

EF.G

(men)®(nem')— (mn')®g (m'n), and

(N®aM)®r (N®aM)— Bpr B
G, F =

(n"@am)®r (n®@am') — (n'm)@g (nm’).

The units are given by
B®rB?® - N®aM®rN®a M

NEG = l—cgr=cNm®rCNM = Z Vs @A g QR Vy @4 [l

’ 5.6

b b =Y bl @a s Or vy @a pph’ =Y Vs @a b @ bV ®a iy
8.5 Wt

A®RAOP—>M®BN®RM®BN

l—crg=cu,Nn QrCMu,N = § Ha B Vo QR fla! @B Vo

a,af

NG, Fr =

a®a’ Z Ao ®B Vo OR flor @p Vara® = Z fto ®B Vo ®p a°lgr @p Vo -

a,af a,af

e We have

FBLM®BN€A®Aomed , (M®grn)pgper br—mbRpn

GA-"5N®a M€ ggpoomod , (0 @pm/) @agace a—n'a®@am’



Higman criterion 69

Let us compute the relative trace
Trg(A) : Homp(GA,GA)p ~ Homp(N @4 M,N @4 M)g — ZA ~Homa(A,A)a.

e Following lemma 6.26, we have the following isomorphism
N®aMopN®s M-——Hompg(N @4 M, N @4 M)

n@amepn @am' — ((y®ax)— (ylzn)m)n' @4 m’) ,

from which we deduce the following isomorphism :

(N®a Mo Ny M)P ZHomp(N @y M,N @4 M)g

Zni ®am; @p N, @ m; — <(y ®a ) Z(y(:cnz)ml)n; ®4 mé) :

% 4

e The relative trace
Tr&(A): (N ®@a M@ N@a M)P — ZA
is computed as follows.
For £ € (N®a M ®5 N ®4 M)B, we denote by E the corresponding element of

Homp(N ®4 M,N ®4 M)p. Then Tr&(¢) is the image of 1 through the following

composition of morphisms

A A

CG,F(A)\L Tap,G(A)
M@pEQpN

M@ NRAM@gN ——-—>M@pN s Mg N
One finds

Trg: an Ram; dp n; ®a m; = ZZ(M(xnz)(mm;)(mgya) .

1 « (2

Bicenter and relative traces.
Definition. The bicenter Z(M, N) is the algebra defined by
Z(M, N) = HOIDA®Bop(M QR N,M QR N)A@BOP .

Notice that
(F ®BgBor G)A®Aop ~(M®gN®sMopN)B

(G Qagaor F)BEE” ~ (N @4 M@ N @4 M)A

Applying lemma 6.27 (where we replace the pair (M, N) by the pair (F,G) defined above), we

get
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6.28. Proposition.

(1) There are isomorphisms of R—algebras
Z(M,N)~ (M &g N @4 Mo N)E~(NosMeog Ny MA.

(2) We have the following diagram involving relative traces

M

Z(M,N)~ (M@ N®s M ®p N)* ~ (N @4 Mo N4 M)E

M

where the relative traces can be computed with two formulae as follows :

ZA

ZB

(M ®p N®sMegN)* - ZA
Trh(A):
Z(mz ®p ni @4 m; @p n;) Z(mz(nzm;)nz)
(N®s Mo Nos M)P - ZA
TrE(A):
D (i @am; @pn;@ami) = (tans)(ming)(mive)

(We recall that ), jta ®B Ve is the Casimir element of M @p N ).

Remark. The isomorphism of R-modules Z(M,N) ~ (M ®p N ®4 M ®p N)*, may be written
Z(M,N) ~ H*(A,M &5 N ®4 M ®g N), which implies Z(M, N)* ~ Ho(A, M &5 N ©4 M @5 N).
Thus we may see Z(M, N)* as the cyclic tensor product

M
®a B®
N N

®B A®
M

(M, N) split algebras.
The following proposition is an immediate application of 6.8.

6.29. Proposition—Definition. The following assertions are equivalent.

(i) A is isomorphic to a direct summand of M @p N in sAMod4.

(ii) em,n is a split epimorphism in sMod 4.
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(iii) nn ar is a split monomorphism in sMod 4.
(iv) The trace map
Tr5(A): Z(M,N) — ZA
s onto.
(v) Every A-module is M —split.
If the preceding conditions are satisfied, we say that the algebra A is (M, N)-split (or, by abuse
of language if the context (M, N) is clear, we say that A is B-split).
Example : Induction—Restriction with R. Choose B := R, M :=4 Ar, N :=gp A4 and
(a,a’) :=t(aa).
1. The following conditions are equivalent.
(i) A is principally symmetric.
(ii) R is A-split.
2. The following conditions are equivalent.
(i) A is separable.

(ii) A is R-split.

Example : Induction—Restriction with a parabolic subalgebra. Let B be a parabolic

subalgebra for A (see above §5). Choose

M:=pAp, N:=gAa, (a,d):=t(ad).

Let B be the orthogonal of B in A, so that A = B @ B and that Brig: A — B is the
projection onto B parallel to B+.

Then we have the following pairing associated with the preceding scalar product
Ax s A— A, a®qd — ad
AxpA— B, a®pad — Bri(ad).

It is clear that B is always A—split, while A is B—split if and only if A is a summand of

A®p Ain 4Mod4.
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Let ¢4 = Y, e; ®p e, be the relative Casimir element, i.e., the element such that, for all
b€ B, we have ), Br’é(be,’)e; =b.

The “double relative trace” is

(Aop AP = 74

Yoxjoy—= > eld wy)e
J i

Notice that the element 1®51 belongs to (A®p A)B. Its image by Trg is the relative projective

F.
Trg:

central element z4. Thus if 24 is invertible in ZA, the algebra A is B-split.

For example if A = RG and B = RH, then corresponding relative trace is Y a; ®p a] +—
de[G/H] ga;aig~1, and the relative projective central element is |G : H|. It follows that if the

index |G : H| is invertible in R, then RG is RH-split.

Example : Induction—restriction with idempotents.

This example is of course a generalisation of the preceding example.
We still denote by

e B a parabolic subalgebra of A,
° Brg: A — B the “Brauer morphism”, projection of A onto B parallel to B+,

° cg =Y, ®pe;, € A®p A the relative Casimir element of A relative to B.
Let e be a central idempotent in A and let f be a central idempotent in B. We shall apply
what precedes to the symmetric algebras Ae and Bf.
Choose
M :=ceAf , N := fAe, (a,d’) :=t(ad’).
Then we have the following pairing associated with the preceding scalar product
Mxs M — Ae, a®@4d — aad

N xgN — Bf, a®pad — Bra(ad),

and the Casimir element cps n is

ey =Y eeif ®p feje.

7

The relative traces are computed as follows

Tré: (feAf @p fAef)P — ZAe Zaj ®p aj — Zei(z ajaj)e;
J i J

Tr

QR

. (eAf @p fAef @p fAe)* — ZBf Z:L‘j ®Qp zj QB Y; — ZBf’é(f’fj)Bfg(zj)Bfg(yj)-

J J
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As an application of proposition 6.29, we get the following proposition, a generalisation of old

results of Fan Yun [Fal] and [Fa2] (see also Alperin’s point of view in [Al], §15).

6.30. Proposition.

(1) The following assertions are equivalent :

(i) Every Ae-module is a summand of Inde for some Bf-module Y.

(ii) The relative trace (fAef)? — ZAe is onto.

(2) The following assertions are equivalent :

(i) Ewery Bf-module is a summand of Reng for some Ae—module X .

(ii) The Brauer morphism Bro: (AefA)* — ZBf is onto.

[Al]
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[GeRo]

[Hil]
[Hi2]
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