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Abstract. Let V be a finite dimensional k–vector space endowed with an action of a finite

group G, hence endowed with a structure of kG–module. According to Higman’s criterion,

that module is projective if and only if there exists a k–linear endomorphism α of V such thatP
g∈G g ·α · g−1 = IdV . We shall present a generalisation of that criterion to the more general

context of symmetric algebras. Having in mind some functors used in the representation theory

of finite reductive groups, we then generalise the appropriate version of Higman’s criterion

applied to relative projectivity to a situation where induction–restriction are replaced by

functors induced by pairs of “exact bimodules”.

On our way, we tried to present a rather self–contained introduction to the methods used

for representation theory of symmetric algebras.
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0. Introduction

While induction and restriction functors have been (and still are) the building stones of the

theory of modular representations of finite groups, the recent developments of the theory have

shown the pertinence and the importance of other functors like the Harish–Chandra induction–

truncation or, more generally, the Rickard functors (see for example [Br] and [Ri1]), which cover

the case of the Deligne–Lusztig functors.

Moreover, the theory of representations of finite reductive groups has led to the study of

representation of Iwahori–Hecke algebras (see for example [Ge]) which, like finite group algebras,

are symmetric algebras. Besides, Calabi–Yau algebras have also revitalised the interest for

symmetric algebras.
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For all those reasons, it seemed reasonable to revisit some of the basic tools of representation

theory of finite group from a more general point of view : replace the group algebra by a

symmetric algebra, replace the induction–restriction functors by a pair of biadjoint functors,

generalise the notion of relative projectivity and its main criterion, Higman criterion, etc. and

do it in such a way that the machinery applies to triangulated categories (hence to derived

categories of modules categories), and not only to modules categories, at no supplementary

charge.

This is the aim of the present paper. We have made the choice of not considering the

compatibility of our functors with local structure of finite groups. We certainly hope that the

present approach will be soon extended to the more general context of exact pairs of functors

induced by splendid complexes [Ri1] between derived bounded categories of group algebras.

It must be noticed that ways to generalisations of the original Higman’s criterion had been

opened half a century ago by Higman himself (see [Hi2], where he proved the “relative version”

of his criterion) and by Ikeda (see [Ik], where he considers Frobenius algebras over fields).

Apart from basic facts about adjunctions (for the elementary notions of categories used

here, we refer the reader to [Ja], [Ke1] or [McL]), the paper tends to be self–contained : for

the convenience of the reader (and for our own consistency), we devote §1 to classical notation,

convention and definitions about modules over non commutative algebras, while we develop

basic definitions and properties of symmetric algebras in §2.

1. Conventions on modules and bimodules

Notions and results of that paragraph are classical (see for example [Bou] chap. II, or [Ja]). They
have been put here to fix convention and notation, as well as for the convenience of the reader.

All the rings we consider are unitary. The ring morphisms must be unitary.

Let R be a commutative unitary ring, and let A be an R–algebra, i.e., a ring A endowed

with a ring morphism from R into its center ZA.

Left modules, left representations.
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An A–module (or a left representation of A) is a pair (X,λX) where

• X is an R–module,

• λX : A→ EndR(X) is a morphism of R–algebras.

The morphism λX is called the structural morphism.
When speaking of “modules”, one often omits the structural morphism (and only X is called the

module), by writing
ax := λX(a)(x) for a ∈ A, x ∈ X .

We denote by AMod the category of A–modules : it is R–linear and abelian. We denote by

Amod the full subcategory of finitely generated left A–modules.

Convention. For X and X ′ A–modules, we let the morphisms from X to X ′ act on the right,

so that the commutation with the elements of A becomes just an associativity property : for

ϕ : X → X ′ , a ∈ A , x ∈ X, we have

(ax)ϕ = a(xϕ) .

If X,X ′ ∈ AMod, then HomA(X,X ′) denotes the R–module of A–homomorphisms from X to

X ′.

If X ∈ AMod, then EAX := EndA(X) denotes the set of A-endomorphisms of M .

The opposite algebra and right modules.

The opposite algebra Aop is by definition the R–module A where the multiplication is defined

as (a, a′) 7→ a′a.

A module–A (or a right representation of A) is by definition an Aop–module.

Let Y be a module–A. Letting the elements of A (which are the elements of Aop) act on the

right of Y , we get a structural morphism

ρY : A→ EndR(Y )op

(where EndR(Y )op acts on the right of Y ).

We then set

ya := (y)ρY (a) ,

thus justifying the name “module–A”.
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Convention. For Y and Y ′ modules–A, we let the morphisms from Y to Y ′ act on the left,

so that the commutation with the elements of A becomes just an associativity property : for

ϕ : Y → Y ′ , a ∈ A , y ∈ Y , we have

ϕ(ya) = (ϕy)a .

We denote by Hom(Y, Y ′)A the R–module of morphisms of modules–A from Y to Y ′.

We set EYA := End(Y )A.

We denote by ModA the (R–linear abelian) category of modules–A, which is also AopMod.

We denote by modA the full subcategory of finitely generated modules–A.

Bimodules.

Let A and B be two R–algebras. We denote by A ⊗R B the algebra defined on the tensor

product by the multiplication (a1 ⊗ b1)(a2 ⊗ b2) := a1a2 ⊗ b1b2 .
In what follows, whenever the ring controlling the tensor product is not specified, it means that the
tensor product is over R.

An (A,B)–bimodule, also called A–module–B, is by definition an (A⊗R Bop)–module.

Let M be an A–module–B. For a ∈ A , b ∈ Bop , m ∈M , we set

amb := (a⊗ b)m,

thus justifying the name “A–module–B”.

n! Attention n!
With the preceding notation, one has to consider that the elements of R act the same way

on both sides of M : for λ ∈ R and m ∈M , we have

λm = mλ .

Notice that an A–module–B is naturally a Bop–module–Aop, i.e., a module–(Aop ⊗R B).

Convention. The question “where do the morphisms of bimodules act ?” is solved by the

following convention : a morphism of A–modules–B is treated as a morphism of (A⊗R Bop)–

modules, i.e., acts on the right.
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We set

HomA(M,M ′)B := HomA⊗RBop(M,M ′) .

Using the above convention many natural structures follow from associativity. We list just

a few of them:
X ∈ AMod =⇒ X ∈ AModEAX

Y ∈ModA =⇒ Y ∈ EYA
ModA

M ∈ AModB

N ∈ AModC

 =⇒ HomA(M,N) ∈ BModC [∗]

M ∈ BModA

N ∈ AModC

 =⇒ M ⊗A N ∈ BModC

[*] for α ∈ HomA(M,N) , we have m(bαc) := ((mb)α)c .

Notice also the following natural isomorphisms :

λA : A ∼−→EAA

ρA : A ∼−→EAA

λA : ZA ∼−→EAAA .

Isomorphisme cher à Cartan.

Let M be an (A,B)–bimodule. Let X (resp. Y ) be an A–module (resp. a B–module).

The following fundamental result is the “isomorphisme cher à Henri Cartan” (cf. for example

[Il]).

1.1. Theorem. We have natural isomorphisms

HomA(M ⊗
B
Y,X) ' HomB(Y,HomA(M,X))

through the maps 
(
α : M ⊗

B
Y → X

)
7→ (α̂ : y 7→ (m 7→ α(m⊗ y)))

(β : Y → HomA(M,X)) 7→
(
β̂ : m⊗ y 7→ β(y)(m)

)
The preceding isomorphisms express the fact that the pair of functors

(M ⊗B � , HomA(M, � ))

between AMod and BMod is an adjoint pair.
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Bimodules....

Let M be an object of AModA. We set the following notation

H0(A,M) := MA := {m ∈M | (∀a ∈ A)(am = ma)}

H0(A,M) := M/[A,M ] ,

where [A,M ] denotes the R submodule of M generated by all the elements [a,m] := am−ma

for a ∈ A , m ∈M .

Then we have natural isomorphisms

H0(A,M) = HomA(A,M)A

H0(A,M) = A⊗(A⊗RAop) M .

Let us denote by M∗ := HomR(M,R) the R–dual of M , an A–module–A.

1.2. Lemma. There is a natural isomorphism

H0(M)∗ ' H0(M∗) .

Proof of 1.2. Indeed, by the isomorphisme cher à Cartan (1.1) applied to the algebras A⊗RAop

and R, we have

HomR(A⊗A⊗RAop M,R) ' HomA⊗RAop(A,HomR(M,R)) .

�

Quadrimodules....

Let M ∈ AModB and let N ∈ BModA.

• We have a natural structure of (A⊗R Aop)–module–(B ⊗R Bop) on M ⊗R N defined by

(a⊗ a′)(m⊗ n)(b⊗ b′) := amb⊗ b′na′ .

• That structure is also a natural structure of (A⊗RBop)–module–(A⊗RBop) on M ⊗RN :

(a⊗ b)(m⊗ n)(a′ ⊗ b′) := amb⊗ b′na′ .

Let us state a few formal properties of these structures and introduce some more notation.
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(QM1). We have

H0(A⊗R Bop,M ⊗R N) ={∑
i∈I

mi ⊗ ni ∈M ⊗R N | (∀a ∈ A , b ∈ B)
∑
i∈I

amib⊗ ni =
∑
i∈I

mi ⊗ bnia

}
.

We define the centralizers in M ⊗R N of respectively A and B by

CA(M ⊗R N) :=

{∑
i

mi ⊗ ni ∈M ⊗R N | (∀a)
∑
i

ami ⊗ ni =
∑
i

mi ⊗ nia

}

C(M ⊗R N)B :=

{∑
i

mi ⊗ ni ∈M ⊗R N | (∀b)
∑
i

mib⊗ ni =
∑
i

mi ⊗ bni

}

Thus we have

H0(A⊗R Bop,M ⊗R N) = CA(M ⊗R N) ∩ C(M ⊗R N)B .

We also set

(M ⊗R N)A := CA(M ⊗R N) and B(M ⊗R N) := C(M ⊗R N)B .

(QM2). The R–module H0(A ⊗R Bop,M ⊗R N) is naturally identified with the R–module
M
A⊗B
N

defined as a “cyclic” tensor product “M ⊗B N⊗A” where the last “A” comes under the

first “M”.

It is clear, by definition of H0, that

H0(A⊗R Bop,M ⊗R N) = H0(A,H0(Bop,M ⊗R N)).

Since H0(Bop,M ⊗R N) = M ⊗B N , it follows that

H0(A⊗R Bop,M ⊗R N) = H0(A,M ⊗B N) .

Thus we have proved the following lemma.

1.3. Lemma. Let M ∈ AModB and let N ∈ BModA. We have

H0(A⊗R Bop,M ⊗R N) =
M
A⊗B
N

= H0(A,M ⊗B N) ' H0(B,N ⊗AM) .
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(QM3). Whenever Y is a B–module–B, we have a natural isomorphism
(M ⊗R N)⊗(B⊗Bop) Y oo ∼ // M ⊗B Y ⊗B N

(m⊗R n)⊗(B⊗RBop) y
� // m⊗B y ⊗B n

(m⊗R n)⊗(B⊗RBop) y oo � m⊗B y ⊗B n

In particular, we have natural isomorphisms which the reader is invited to describe :

(M ⊗R N)⊗(B⊗RBop) B
∼−→M ⊗B N

(M ⊗R N)⊗(B⊗RBop) (N ⊗RM) ∼−→ (M ⊗B N)⊗R (M ⊗B N)

Characterization of finitely generated projective modules.

1.4. Lemma. Let X, Y and M be A–modules.

(1) The image of

HomA(X,M)⊗R HomA(M,Y ) −→ HomA(X,Y )

consists of those morphisms X → Y , which factorize through Mn, for some natural integer n.

(2) If M is an A–module–B, the preceding map factorizes through a map

HomA(X,M)⊗B HomA(M,Y ) −→ HomA(X,Y )

Proof of 1.4. Let

x =
n∑
i=1

αi ⊗ βi ∈ HomA(X,M)⊗R HomA(M,Y ) .

The image of x in HomA(X,Y ) is
∑n
i=1 αiβi. The maps αi (1 ≤ i ≤ n), respectively βi (1 ≤

i ≤ n), describe a unique map α : X → Mn, respectively β : Mn → Y . Their composition αβ

is equal to
∑n
i=1 αiβi, which proves the assertion (1).

The proof of (2) is left to the reader. �

The A–dual of an A–module X is the module–A defined by

X∨ := HomA(X,A) .

We define the map τX,Y as the composition

τX,Y : X∨ ⊗A Y −→ HomA(X,Y ) .

We also set

τX := τX,X .

Applying 1.4 to the particular case where M = A, we see that
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1.5. Lemma. The image of τX,Y consists of those morphisms which factorize through An, for

some n.

1.6. Definition. The elements of the image of τX,Y are called the projective maps from X to

Y . We denote the set of all projective maps from X to Y by Hompr
A (X,Y ).

By 1.5, we see that Hompr
A (� , � ) is a twosided ideal in HomA(� , � ), i.e., all the Hompr

A (X,Y )

are abelian groups, and whenever f ∈ Hompr
A (X,Y ), g ∈ HomA(Y, Z) and h ∈ HomA(W,X),

then fg ∈ Hompr
A (X,Z) and hf ∈ Hompr

A (W,Y ).

The notation X ′ | X (“X ′ is a summand of X”) means that X ′ is a submodule of X and

there exists a submodule X ′′ of X such that X = X ′ ⊕X ′′.

The following omnibus theorem is classical.

1.7. Theorem–Definition. A finitely generated A–module M is called a projective module,

if it satisfies one of the following, equivalent conditions.

(i) Whenever ϕ is a surjective morphism from the A–module X onto the A–module Y

and ψ is a morphism of M to Y , then there exists a morphism ρ of M to X such

that ρϕ = ψ.

(ii) The functor HomA(M, � ) : AMod→ EndA(M)Mod is an exact functor.

(iii) Any A–linear surjection with image M is split.

(iv) M is a direct summand of a free module, i.e., M |An, for some integer n.

(v) The map τM : M∨ ⊗AM → HomA(M,M) is onto.

(vi) The map τX,M : X∨ ⊗A M → HomA(X,M) is an isomorphism for all A–modules

X.

(vii) The map τM,X : M∨ ⊗A X → HomA(M,X) is an isomorphism for all A–modules

X.

(viii) The map τM is an isomorphism.

Short proof of 1.7.

(i) ⇒ (ii). (i) implies that the functor HomA(M, � ) is right exact. Since it is always left

exact, it is exact.
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(ii) ⇒ (iii). One applies the functor HomA(M, � ) and uses a preimage of 1M to define a

splitting.

(iii) ⇒ (iv). Because M is finitely generated over A, it is an image, hence a summand, of

An for some n.

(iv) ⇒ (v). Since M |An, we know that IdM is in the image of τM . Furthermore, τM is a

map in EndA(M)ModEndA(M) and consequently it is onto.

(v) ⇒ (vi). We exhibit the inverse of τX,M . By (v) there exists an element∑n
i=1 ni ⊗mi such that τM (

∑n
i=1 ni ⊗mi) = 1M . We define the map

ψ : HomA(X,M) −→ X∨ ⊗AM

by α 7−→
n∑
i=1

αni⊗mi. This map ψ satisfies ψ◦τX,M = IdHomA(X,M) and τX,M ◦ψ = IdX∨⊗AM .

(v)⇒ (vii). Using the same element
∑n
i=1 ni⊗mi as above, one can give an explicit formula

of the inverse of τM,X , namely

HomA(M,X) −→ M∨ ⊗A X

α 7−→
∑n
i=1 ni ⊗miα .

The implications (vi) ⇒ (v) and (vii) ⇒ (v) are trivial because τM = τM,M .

(vii) ⇒ (i). Since M∨ ⊗A � is a right exact functor, the map ϕ in (i) induces a surjection

M∨ ⊗A X
ϕ∗ // // M∨ ⊗A Y .

But M∨ ⊗A X and M∨ ⊗A Y are respectively isomorphic to HomA(M,X) and HomA(M,Y ),

and so ϕ induces a surjection

HomA(M,X)
ϕ∗ // // HomA(M,Y ) .

Now, any preimage of ψ satisfies the condition on ρ in (i).

(vii) ⇒ (viii) is trivial, as well as (viii) ⇒ (v). �

We denote the full subcategory of Amod consisting of all the projective A–modules by

Aproj. If M is an (A,B)-bimodule which is projective as an A–module, then we write M ∈

AmodB ∩ Aproj, by abuse of notation.
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Similarly, we denote by projA the category of finitely generated projective right A–modules

(“projective modules–A”).

Notice also that the R–module of projective maps Hompr
A (X,Y ) may be defined as the set

of those morphisms from X to Y which factorize through a projective A–module.

Projective modules and duality.

We recall that for an A–module X, we denote by X∨ its A–dual, a module-A. Now if Y is

a module–A, we denote by ∨Y its dual–A, an A–module.

If ϕ : X → X ′ is a morphism in AMod, then the map

ϕ∨ : X ′∨ → X∨ , (y′ : X ′ → A) 7→ (ϕ.y′ : X → A)

is a morphism in ModA. Hence we have a contravariant functor

AMod→ModA , X → X∨ ,

as well as a contravariant functor

ModA → AMod , Y →∨Y .

We have a natural morphism of A–modules

X −→∨ (X∨) , x 7→ (y 7→ xy) .

The next proposition follows easily from the fact that finitely generated projective modules

are nothing but summands of free modules with finite rank.

1.8. Proposition.

(a) Whenever X is a finitely generated projective A–module (resp. Y is a finitely generated

projective module–A), then X∨ is a finitely generated projective module–A (resp. ∨Y is

a finitely generated projective A–module).

(b) If X ∈ Aproj, the natural morphism X 7→∨ (X∨) is an isomorphism and the functors

X 7→ X∨ and Y 7→∨Y induce quasi–inverse equivalences between Aproj and projA.
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Remark. For X an A–module, the map
HomA(X,X)→ Hom(X∨, X∨)A

ϕ 7→ ϕ∨

is an isomorphism of algebras (because of our conventions about right actions of left morphisms

and vice-versa).

2. Symmetric algebras : Definition and first properties

2.A. Central forms and traces on projective modules

Central forms.

Let A be an R–algebra. A form t ∈ HomR(A,R) is said to be central if it satisfies the

property

t(aa′) = t(a′a) (∀a, a′ ∈ A) .

Thus a central form can be identified with a form on the R–module A/[A,A].

Whenever X is an A–module, we denote by X∗ := HomR(X,R) its R–dual, viewed as an

EAX–module–A.

We denote by CF(A,R) the R–submodule of A∗ consisting of all central forms on A. Then

CF(A,R) is the orthogonal of the submodule [A,A] of A, hence is canonically identified with

the R–module (A/[A,A])∗.

If t : A → R is a central form on A, we shall still denote by t : A/[A,A] → R the form on

A/[A,A] which corresponds to t.
More generally, let M be an A–module–A, and let L be an R–module. An R–linear map t : M → L
is said to be central if t(am) = t(ma) for all a ∈ A and m ∈M . In particular, the central forms on
M are the forms defined by the R–dual of H0(A,M) = M/[A,M ].

Note that the multiplication by elements of the center ZA of A gives the R–module A/[A,A]

a natural structure of ZA–module. Thus CF(A,R) inherits a structure of ZA–module, defined

by zt := t(z� ) (or zt(a) = t(za) for a ∈ A) for all z ∈ ZA and t ∈ CF(A,R).

Traces on projective modules, characters.
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Let X be an A–module. Then the R–module X∨ ⊗A X is naturally equipped with a linear

form 
X∨ ⊗A X → A/[A,A]

y ⊗ x 7→ xy mod [A,A] .

In particular, if P is a finitely generated projective A–module, since P∨ ⊗A P ' EAP , we get

an R–linear map (the trace on a projective module)

trP/A : EAP → A/[A,A] , so trP/A(
∑
i

(yi ⊗ xi) =
∑
i

xiyi mod [A,A] .

2.1. Lemma. Whenever P is a finitely generated projective A–module, the trace

trP/A : EAP → A/[A,A]

is central.

Proof of 2.1. In what follows, we identify P∨ ⊗A P with EAP . Let x, x′ ∈ P and y, y′ ∈ P∨.

Then we have

(y ⊗A x)(y′ ⊗A x′) = y(xy′)⊗A x′ = y ⊗A (xy′)x′ ,

from which is follows that

trP/A((y ⊗A x)(y′ ⊗A x′)) = (xy′)(x′y) mod [A,A] ,

which shows indeed that trA/P is central. �

Now if t : A→ R is a central form, we deduce by composition a central form

tP : EAP → R , ϕ 7→ t(trP (ϕ)) .

In particular, whenever X is a finitely generated projective R–module, we have the trace

form

trX/R : ERX → R defined by (y ⊗ x) 7→ xy , ∀y ∈ X∗, x ∈ X .

2.2. Definition. Let X be an A–module which is a finitely generated projective R–module and

let λX : A → ERX denote the structural morphism. The character of the A–module X (or of

the representation of A defined by λX) is the central form

χX : A→ R , a 7→ trX/R(λX(a)) .
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2.B. Symmetric algebras

Definition and first examples.

A central form t : A→ R defines a morphism t̂ of A–modules–A as follows :

t̂ : A→ A∗

a 7→ t̂(a) : a′ 7→ t(aa′)

Indeed, for a, a′, x ∈ A, we have

t̂(axa′) = t(axa′� ) = t(xa′� a) = at̂(x)a′ .

Note that the restriction of t̂ to ZA defines a ZA–morphism : ZA→ CF(A,R).

2.3. Definition. Let A be an R–algebra. We say that A is a symmetric algebra if the following

conditions are fulfilled :

(S1) A is a finitely generated projective R–module,

(S2) There exists a central form t : A→ R such that t̂ is an isomorphism.

If A is a symmetric algebra and if t is a form like in (S2), we call t a symmetrizing form for

A.

Examples.

1. The trace is a symmetrizing form on the algebra Matn(R).

2. If G is a finite group, its group algebra RG is a symmetric algebra. The form

t : RG→ R ,
∑
g∈G

λgg 7→ λ1

is called the canonical symmetrizing form on RG.

3. If k is a field, we shall see later that the algebra A :=

 k k

0 k

 is not a symmetric

algebra.

The following example is singled out as a lemma.

2.4. Lemma. Let D be a finite dimensional division k–algebra. Then D is a symmetric

algebra.

Proof of 2.4.
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First we prove that [D,D] 6= D. It is enough to prove it in the case where D is central

(indeed, the ZD–vector space generated by {ab− ba | (a, b ∈ A)} contains the k–vector space

generated by that set). In this case, we know that k⊗k D is a matrix algebra Matm(k) over k.

If [D,D] = D, then every element of Matm(k) has trace zero, a contradiction.

Now choose a nonzero k–linear form t on D whose kernel contains [D,D]. Thus t is central.

Let us check that t is symmetrizing. To do that, it is enough to prove that t̂ is injective. But if

x is a nonzero element of D, the map y 7→ xy is a permutation of D, hence there exists y ∈ D

such that t(xy) 6= 0, proving that t̂(x) 6= 0. �

2.5. Lemma. Let A be a symmetric algebra, with symmetrizing form t.

(1) The restriction of t̂ to ZA

ZA→ CF(A,R) , z 7→ t(z� )

is an isomorphism of ZA–modules. In particular, CF(A,R) is a free ZA–module of rank 1.

(2) A central form t̂(z) corresponding to an element z ∈ ZA is a symmetrizing form if and

only if z is invertible.

Proof of 2.5. Let u be a form on A. By hypothesis, we have u = t(a � ) for some a ∈ A, and u

is central if and only if a is central. This shows the surjectivity of the map t̂ : ZA→ CF(A,R).

The injectivity results from the injectivity of t̂. Finally, this proves that symmetrizing forms

are the elements t of CF(A,R) such that {t} is a basis of CF(A,R) as a ZA–module. �

Remark. As in the classical literature on symmetric algebras over fields, if t is a symmetrizing

form on A, its kernel ker(t) contains no left (or right) non trivial ideal of A.

Annihilators and orthogonals.

Let a be a subset of the algebra A. The right annihilator of a is defined as

Ann(a)A := {x ∈ A | (a.x = 0)} .

It is immediate to check that the right annihilator of a subset is a right ideal, and that the right

annihilator of a right ideal is a twosided ideal.
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Suppose now that A is a symmetric algebra, and choose a symmetrizing form t on A. When-

ever a is a subset of A, we denote by a⊥ its orthogonal for the bilinear form defined by t,

i.e.,

a⊥ := {x ∈ A | t(ax) = 0} .

Note that if a is stable by multiplication by (ZA)×, then a⊥ does not depend on the choice of the
symmetrizing form t.

2.6. Proposition. Assume that A is symmetric.

(1) We have [A,A]⊥ = ZA .

(2) If a is a left ideal of A, we have a⊥ = Ann(a)A .

Proof of 2.6.

(1) We have

t(zab) = t(zba)⇔ t(bza) = t(zba) ,

which shows that z ∈ [A,A]⊥ if and only if z ∈ ZA.

(2) We have

ax = 0⇔ (∀y ∈ A) t(yax) = 0⇔ t(ax) = 0 ,

which proves (2). �

2.C. Characterizations in terms of module categories

This paragraph is written after Rickard (see [Ri2]).

Assume that A is an R–algebra which is a finitely generated projective R–module.

Let us first notice a few elementary properties.

1. Any finitely generated projective A–module is also a finitely generated projective R–

module.
Indeed, if A is a summand of Rm, any summand of An is also a summand of Rmn.

2. If X is a finitely generated projective A–module and if Y is a module–A, then Y ⊗A X

is isomorphic to a summand of Y n for some positive integer n. It follows that if moreover Y is
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a finitely generated projective R–module, then Y ⊗A X is also a finitely generated projective

R–module.

Let us denote by Aproj the full subcategory of AMod whose objects are the finitely generated

projective A–modules. We define similarly the notation projA and Rproj.

2.7. Proposition. Let A be an R–algebra, assumed to be a finitely generated projective R–

module. The following conditions are equivalent.

(i) A is symmetric.

(ii) A and A∗ are isomorphic as A–modules–A.

(iii) As (contravariant) functors AMod −→ModA, we have

HomR(� , R) ' HomA(� , A) .

(iii’) As (contravariant) functors ModA −→ AMod, we have

HomR(� , R) ' Hom(� , A)A .

(iv) For P ∈ Aproj and X ∈ AMod ∩ Rproj we have natural isomorphisms

HomA(P,X) ' HomA(X,P )∗ .

(iv’) For P ∈ projA and X ∈ModA ∩ Rproj we have natural isomorphisms

Hom(P,X)A ' Hom(X,P )∗A .

Proof of 2.7. It is enough to prove (i)⇔(ii), and (ii)⇒(iii)⇒(iv)⇒(ii).

(i)⇒(ii) results from the fact, noticed above, that if t is a central form, then t̂ is a morphism

of bimodules from A to A∗.

(ii)⇒(i). Assume that θ : A ∼−→A∗ is a bimodule isomorphism. Set t := θ(1). Then for a ∈ A

we have

t(aa′) = θ(1)(aa′) = (a′θ(1))(a) = θ(a′)(a) = (θ(1)a′)(a) = θ(1)(a′a) = t(a′a) ,

which shows both that t is central and that t̂ = θ.
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(ii)⇒(iii). Let X be an A–module. Since A ' A∗, we have

HomA(X,A) ' HomA(X,HomR(A,R)) .

By the “isomorphisme cher à Cartan”, it follows that HomA(X,A) ' HomR(A⊗AX,R) hence

HomA(X,A) ' HomR(X,R).

(iii)⇒(iv). Let P be a finitely generated projective A–module and let X be a finitely

generated A–module. Since P is a finitely generated projective R–module, we have P '

HomR(P ∗, R), and it results from the “isomorphisme cher à Cartan” that HomA(X,P ) '

HomR(P ∗ ⊗A X,R) , and since P ∗ ' P∨, we get HomA(X,P ) ' HomR(P∨ ⊗A X,R) .

Since the module–A P∨ is finitely generated projective and since X is a finitely generated pro-

jective R–module, we see that P∨⊗AX is also a finitely generated projective R–module, hence

we have HomA(X,P )∗ ' P∨ ⊗A X . Since P is a finitely generated projective A–module, we

know that P∨⊗AX ' HomA(P,X) . Hence we have proved that HomA(X,P )∗ ' HomA(P,X) .

(iv)⇒(ii). Choose P = X = A (viewed as an A–module). Then the natural isomorphism

HomA(A,A)∗ ' HomA(A,A) is a bimodule isomorphism A∗ ' A. �

Symmetric algebras and projective modules.

2.8. Proposition. Let A be a symmetric R–algebra, and let P be a finitely generated projective

A–module. Then EAP is a symmetric R–algebra.

Proof of 2.8. Recall that we have an isomorphism of EAP–modules–EAP

P∨ ⊗A P
∼−→EAP .

Since P is a finitely generated projective A–module and since P∨ is a finitely generated R–

module, this shows that EAP is a finitely generated projective R–module.

Moreover, by 2.7, condition (iii), we see that we have a natural isomorphism

HomA(P, P )∗ ' HomA(P, P ) ,

i.e., a bimodule isomorphism

EAP
∗ ' EAP ,

which shows that EAP is symmetric. �



Higman criterion 21

2.9. Corollary. An algebra which is Morita equivalent to a symmetric algebra is a symmetric

algebra.

Proof of 2.9. Indeed, we know that an algebra which is Morita equivalent to A is isomorphic

to the algebra of endomorphisms of a finitely generated projective A–module. �

Explicit isomorphisms.

We give here explicit formulas for the isomorphisms stated in 2.7. The reader is invited to

check the details.

2.10. Proposition.

(1) Whenever X is an A–module, the morphisms t∗X and uX defined by

t∗X :


HomA(X,A)→ HomR(X,R)

φ 7→ t · φ
uX :



uX : HomR(X,R)→ HomA(X,A)

such that ψ(ax) = t(auX(ψ)(x))

(∀a ∈ A, x ∈ X,ψ ∈ HomR(X,R))

are inverse isomorphisms in ModEAX .

(2) Whenever X is an A–module which is a finitely generated projective R–module and P is

a finitely generated projective A–module, the pairing
HomA(P,X)×HomA(X,P )→ R

(ϕ,ψ) 7→ tP (ϕψ)

is an R–duality.

Let us in particular exhibit a symmetrizing form on EAP from a symmetrizing form on A.

Recall that the isomorphism P∨ ⊗A P
∼−→EAP allows us to define the trace of the finitely

generated projective A–module P )

trP/A : EAP −→ A/[A,A] , y ⊗A x 7→ xy mod [A,A] ,

and that composing this morphism with a central form t on A, we get a central form

tP : EAP −→ R

on EAP .
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2.11. Proposition. If P is a finitely generated projective A–module and if t is a symmetrizing

form on A, then the form tP is a symmetrizing form on EAP .

As noted by Keller, the choice of the form tP (among many other possible choices for a

symmetrizing form on EAP ) actually corresponds to a unique “extension of t on the category

of all finitely generated projective A–modules”, as shown by the next proposition [Ke2].

2.12. Proposition.

(1) The collection of forms (tP ) (for P a finitely generated projective A–module) satisfies

the following property : whenever α ∈ HomA(P,Q) and β ∈ HomA(Q,P ), we have

tP (αβ) = tQ(βα).

(2) Reciprocally, if (t′P : EAP → R) is a collection of symmetrizing forms (for P running

over the collection of finitely generated projective A–modules) such that t′A = t and

t′P (αβ) = t′Q(βα) for all α ∈ HomA(P,Q) and β ∈ HomA(Q,P ), then for every P we

have t′P = tP .

Example. The identity from R onto R is a symmetrizing form for R. It follows that the trace

is a symmetrizing form for the matrix algebra Matn(R).

Remark. A particular case of projective A–module is given by P := Ai where i is an idempotent

of A. The map

iai 7→ (x 7→ xiai)

is then an isomorphism iAi
∼−→EAP . Through that isomorphism, the form tP becomes the

form

iai 7→ t(iai) .

Products of symmetric algebras.

The proof of following result is an immediate consequence of the characterizations in 2.7,

and its proof is left to the reader.

2.13. Proposition. Let A1, A2, . . . , An be R–algebras which are finitely generated projective

R–modules, and let A be an algebra isomorphic to a product A1 × A2 × · · · × An. Then A is
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symmetric if and only if each Ai (i = 1, 2, . . . , n) is symmetric.

More concretely, we know that an isomorphism A ' A1 × A2 × · · · × An determines a

decomposition of the unit element 1 of A into a sum of mutually orthogonal central idempotents :

1 = e1 + e2 + · · ·+ en ,

corresponding to a decomposition of A into a direct sum of twosided ideals :

A = a1 ⊕ a2 ⊕ · · · ⊕ an with ai = Aei .

• If (t1, t2, . . . , tn) is a family of symmetrizing forms on A1, A2, . . . , An respectively, then the

form defined on A by t1 + t2 + · · ·+ tn is symmetrizing.

• If t is a symmetrizing form on A, its restriction to each ai = Aei defines a symmetrizing

form in the algebra Ai.

Principally symmetric algebras.

2.14. Proposition–Definition. Let A be a symmetric R–algebra, and let t be a symmetrizing

form. The following conditions are equivalent.

(i) The form t : A→ R is onto.

(ii) R is isomorphic to a summand of A in RMod.

(iii) As an R–module, A is a progenerator.

If the preceding conditions are satisfied, we say that the algebra A is principally symmetric.

Proof of 2.14.

(i)⇒(ii) : Since t : A → R is onto and since R is a projective R–module, t splits and R is

indeed isomorphic to a direct summand of A as an R–module.

(ii)⇒(iii) : obvious.

(iii)⇒(i) : Since A is generator as an R–module, the ideal of R generated by all the 〈a, b〉

(for a ∈ A and b ∈ A∗) is equal to R. But since t is symmetrizing, this ideal is equal to t(A),

which shows that t is onto. �
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Examples.

1. If A is principally symmetric, and if B is an algebra which is Morita equivalent to A, then

B is principally symmetric.

In particular, the algebra Matm(R) is principally symmetric, and more generally, if X is a

progenerator for R, the algebra ERX is principally symmetric.

2. If all projective R–modules are free, then all symmetric R–algebras are principally sym-

metric.

3. The algebra RG (G a finite group) is principally symmetric.

4. If R = R1 ×R2 (a product of two non zero rings), and if A := R1, then A is a symmetric

R–algebra which is not principally symmetric.

3. The Casimir element and its applications

3.A. Definition of the Casimir element

Actions on A⊗R A.

• Let A be an R–algebra. The module A ⊗R A is naturally endowed with the following

structure of (A⊗R Aop)–module–(A⊗R Aop) :

(a⊗ a′)(x⊗ y)(b⊗ b′) := axb⊗ b′ya′ .

Remark. That structure should be understood as a particular case of the structure of (A⊗RAop)–
module–(B ⊗R Bop)–module which is defined on M ⊗R N (for M ∈ AModB and N ∈ BModA)
by

(a⊗ a′)(m⊗ n)(b⊗ b′) := amb⊗ b′na′ .

We define the left and right centralizers of A in A⊗R A :

CA(A⊗R A) :=

{∑
i

ai ⊗ a′i ∈ A⊗R A | (∀a)
∑
i

aai ⊗ a′i =
∑
i

ai ⊗ a′ia

}

C(A⊗R A)A :=

{∑
i

ai ⊗ a′i ∈ A⊗R A | (∀a)
∑
i

aia⊗ a′i =
∑
i

ai ⊗ aa′i

}

We set
CA(A⊗R A)A := CA(A⊗R A) ∩ C(A⊗R A)A .
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Notice that (cf. §1 for the notation MA)

CA(A⊗R A) = (A⊗R A)A = { ξ ∈ A⊗R A | (∀a) (a⊗ 1)ξ = (1⊗ a)ξ }

C(A⊗R A)A = A(A⊗R A) = { ξ ∈ A⊗R A | (∀a) ξ(a⊗ 1) = ξ(1⊗ a) } .

• The algebra ERA of R–endomorphisms of A has a structure of (A ⊗R Aop)–module–

(A⊗RAop) inherited from the structure of (A⊗RAop)–module on each of the two factors A as

follows :

(∀α ∈ ERA , a, a′, b, b′ ∈ A ) ((a⊗ a′).α.(b⊗ b′) := [ ξ 7→ aα(a′ξb′)b ]) .

Remark. That structure should be understood as a particular case of the structure of (A⊗RAop)–
module–(B ⊗R Bop)–module defined on HomR(M,M) (for M ∈ AModB) by

(a⊗ a′).α.(b⊗ b′) := [ ξ 7→ aα(a′ξb′)b ] .

Case where A is symmetric : the Casimir element.

Now assume that A is symmetric, and let t be a symmetrizing form. Since A is a finitely

generated projective R–module, we have an isomorphism

A⊗R A∗
∼−→ER(A) , x⊗ ϕ 7→ [ ξ 7→ ϕ(ξ)x ] .

Composing this isomorphism with the isomorphism

A⊗R A
∼−→A⊗A∗ , x⊗ y 7→ x⊗ t̂(y) ,

we get the isomorphism

(∗)


A⊗R A

∼−→ER(A)

a⊗ b 7→ [ ξ 7→ t(bξ)a ] .

It is immediate to check that this isomorphism is an isomorphism of (A ⊗R Aop)–modules–

(A⊗R Aop).

3.1. Definition. We denote by cpr
A,t (or simply cpr

A ) and we call the Casimir element of (A, t)

the element of A⊗A corresponding to the identity IdA of A through the preceding isomorphism.

The following lemma is an immediate consequence of the definition of the Casimir element.
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3.2. Lemma. Let I be a finite set, and let (ei)i∈I and (e′i)i∈I be two families of elements of

A indexed by I. The folllowing properties are equivalent :

(i) cpr
A =

∑
i∈I e

′
i ⊗ ei .

(ii) For all a ∈ A, we have a =
∑
i t(ae

′
i)ei .

• Notice that, by the formulas above, we have

(a⊗ a′).IdA.(b⊗ b′) := [ ξ 7→ aa′ξb′b ] ,

or, in other words,

(a⊗ a′).IdA.(b⊗ b′) := λ(aa′)ρ(b′b) ,

where λ(a) is the endomorphism of left multiplication by a and ρ(a) is the endomorphism of

right multiplication by a. In particular, we see that

(a⊗ 1).IdA = (1⊗ a).IdA = λ(a) and IdA.(a⊗ 1) = IdA.(1⊗ a) = ρ(a) .

n! Attention n!
Notice that the structure of A⊗R Aop–module on A⊗R A defined here does not provide

a structure of A⊗R Aop–module on A : the morphism

A⊗A Aop → ERA , a⊗ a′ 7→ λ(aa′)

is not an algebra morphism.

• Moreover, we know that the commutant of λ(A) (resp. of ρ(A)) in ERA is ρ(A) (resp.

λ(A)).

Through the isomorphism A⊗AA
∼−→ERA described above, the preceding properties trans-

late as follows.

3.3. Proposition. Assume cpr
A =

∑
i ei ⊗ e′i .

(1) For all a, a′ ∈ A, we have

∑
aeia

′ ⊗ e′i =
∑
i

ei ⊗ a′e′ia .
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(2) The map

A→ CA(A⊗R A) , a 7→
∑
i

aei ⊗ e′i =
∑
i

ei ⊗ e′ia

is an isomorphism of A–modules–A.

(2’) The map

A→ C(A⊗R A)A , a 7→
∑
i

eia⊗ e′i =
∑
i

ei ⊗ ae′i

is an isomorphism of A–modules–A.

Examples.

• If A = RG (G a finite group), we have cpr
RG =

∑
g∈G g

−1 ⊗ g .

• If A = Matn(R) (and t is the ordinary trace), then cpr
A =

∑
i,j Ei,j ⊗ Ej,i (where Ei,j

denotes the usual elementary matrix whose all entries are zero except on the i-the row and j-th

column where the entry is 1).

• Assume that A is free over R. Let (ei)i∈I be an R–basis of A, and let (e′i)i∈I be the dual

basis (defined by t(eie′i′) = δi,i′), then cpr
A =

∑
i∈I e

′
i ⊗ ei .

We also define the central Casimir element as the image zpr
A of cpr

A by the multiplication

morphism A⊗A −→ A. Thus, if cpr
A =

∑
i∈I e

′
i ⊗ ei, we have

zpr
A =

∑
i

e′iei .

Remarks.

• For A = RG, the central Casimir element is the scalar |G|.

• For A = Matm(R), the central Casimir element is the scalar m.

The existence of an element such as cpr
A is a necessary and sufficient condition for a central

form t to be centralizing, as shown by the following lemma (whose proof is left to the reader).

3.4. Lemma. Let u be a central form on A. Assume that there exists an element f =∑
j f
′
j ⊗ fj ∈ A⊗R A such that

∑
j u(af ′j)fj = a for all a ∈ A. Then u is symmetrizing, and f

is its Casimir element.

From now on, we assume that I is a finite set and (ei)i∈I , (e′i)i∈I are two families of elements
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of A indexed by I, such that

cpr
A =

∑
i∈I

e′i ⊗ ei .

Let us denote by x 7→ xι the involutive automorphism of A⊗A defined by (a⊗a′)ι := a′⊗a .

3.5. Proposition.

(1) We have

(cpr
A )ι = cpr

A , i.e.,
∑
i∈I

e′i ⊗ ei =
∑
i∈I

ei ⊗ e′i .

(2) For all a ∈ A, we have

a =
∑
i

t(ae′i)ei =
∑
i

t(aei)e′i =
∑
i

t(e′i)eia =
∑
i

t(ei)e′ia .

Proof of 3.5. Indeed, by 3.2, we have e′i =
∑
j t(e

′
ie
′
j)ej , hence

∑
i

e′i ⊗ ei =
∑
i,j

t(e′ie
′
j)ej ⊗ ei =

∑
j

ej ⊗
∑
i

t(e′ie
′
j)ei

=
∑
j

ej ⊗
∑
i

t(e′je
′
i)ei =

∑
j

ej ⊗ e′j .

The assertion (2) is an immediate consequence of (1) and of 3.2. �

We define three maps :

BiTrA : A⊗A→ A , a⊗ a′ 7→
∑
i

eiae
′
ia
′ ,

TrA : A→ A , a 7→
∑
i

eiae
′
i = BiTrA(a⊗ 1) ,

TrA : A→ A , a′ 7→ a′zpr
A =

∑
i

a′eie
′
i = BiTrA(1⊗ a′) ,

and we have

• TrA is a central morphism of ZA modules :

TrA(zaa′) = zTrA(a′a) (∀z ∈ ZA and a, a′ ∈ A) ,

and its image is contained in ZA (hence is an ideal of ZA),

• BiTrA(a⊗ a′) = TrA(a)a′ = a′TrA(a) .

• TrA is a morphism of A–modules–A.
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Separably symmetric algebras.

3.6. Proposition. If zpr
A is invertible in ZA, the multiplication morphism

A⊗R A→ A , a⊗ a′ 7→ aa′ ,

is split as a morphism of A–modules–A.

Proof of 3.6. Indeed, the composition of the morphism of A–modules–A defined by

A→ A⊗R A , a 7→ acpr
A

with the multiplication A⊗R A→ A is equal to the morphism

A→ A , a 7→ azpr
A .

In other words, if we view cpr
A as an element of the algebra A ⊗R Aop, then (cpr

A )2 = zpr
A c

pr
A . Thus

we see that if zpr
A is invertible in ZA, the element (zpr

A )−1cpr
A is a central idempotent in the algebra

A⊗A Aop, and the morphism

A→ A⊗R Aop , a 7→ a(zpr
A )−1cpr

A

is a section of the multiplication morphism, identifying A with a direct summand of A⊗R A as an
A–module–A.

�

Remark. If t is replaced by another symmetrizing form, i.e., by a form t(z � ) where z is an

invertible element of ZA, then zpr
A is replaced by zzpr

A . Hence the invertibility of zpr
A depends

only on the algebra A and not on the choice of t.
An algebra A such that the the multiplication morphism

A⊗R A→ A , a⊗ a′ 7→ aa′ ,

is split as a morphism of A–modules–A is called separable.
A symmetric algebra A such that zpr

A is invertible in ZA is called symmetrically separable.n! Attention n!
A symmetrically separable algebra is indeed separable, but the converse is not true. For
example, a matrix algebra Matm(R) is separable, but it is symmetrically separable if and
only if m is invertible in R.

Note that the previous example shows as well that the property of being symmetrically
separable is not stable under a Morita equivalence.

The following fundamental example justifies the notation and the name chosen for the map

TrA.
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3.7. Example. Let us consider the particular case where A := ERX, for X a finitely generated

projective R–module. Let us identify A with X∗ ⊗R X, and let us set

IdX =
∑
i

fi ⊗ ei .

We know that A is symmetric, and that t := trX/R is a symmetrizing form.

We leave as an exercise to the reader to check the following properties.

(1) cpr
A =

∑
i,j(fi ⊗ ei)⊗ (fj ⊗ ej) .

(2) The map TrA : A→ ZA coincides with trX/R : ERX → R.

3.B. Casimir element, trace and characters

All throughout this paragraph, A is assumed to be a symmetricR–algebra, with symmetrizing

form t.

For τ : A→ R a linear form, we denote by τ0 the element of A defined by the condition

t(τ0h) = τ(h) for all a ∈ A .

We know that τ is central if and only if τ0 is central in A.

It is easy to check the following property.

3.8. Lemma. We have τ0 =
∑
i τ(e′i)ei =

∑
i τ(ei)e′i , and more generally, for all a ∈ A, we

have τ0a =
∑
i τ(e′ia)ei =

∑
i τ(eia)e′i .

The biregular representation of A is by definition the morphism

A⊗R Aop → ERA , a⊗ a′ 7→ (x 7→ axa′) .

defining the structure of A–module–A of A.

Composing this morphism with the trace trA/R, we then get a linear form on A ⊗R Aop,

called the biregular character of A, and denoted by χbireg
A .

3.9. Proposition. We have

χbireg
A (a⊗ a′) = t(BiTrA(a⊗ a′)) ,
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or, in other words

χbireg
A (a⊗ a′) =

∑
i

t(a′eiaei) = t(TrA(a)a′) = t(aTrA(a′)) .

Proof of 3.9. We know by 3.5, (3), that

axa′ =
∑
i

t(axa′e′i)ei ,

which shows that the endomorphism of A defined by a⊗ a′ correspond to the element

∑
i

t̂(a′eia)⊗ ei ∈ A∗ ⊗A

whose trace is ∑
i

t(a′eiaei) = t(TrA(a)a′) .

�

Let χreg denote the character of the (left) regular representation of A, i.e., the linear form

on A defined by

χreg(a) := trA/R(λA(a))

where λA(a) : A −→ A , x 7→ ax , is the left multiplication by a.

3.10. Corollary. For all a ∈ A, we have

χreg(a) = t(azpr
A ) , or, in other words, χ0

reg = zpr
A .

3.11. Corollary. Let i be an idempotent of A. Let χAi denote the character of the (finitely

generated projective) A–module Ai. Then we have

χ0
Ai = TrA(i) .

Indeed, we have

trAi/R(a) = trA/R(a⊗ i) = t(aTrA(i)) .
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3.C. Projective center, Higman’s criterion

The projective center of an algebra.

Let A be an R–algebra, and let M be an A–module–A. We know (see §1) that the morphism

HomA(A,M)A →MA , ϕ 7→ ϕ(1)

is an isomorphism. In particular, we have

HomA(A,A⊗R Aop)A = (A⊗A)A .

The module Hompr
A (A,M)A consisting of projective morphisms (see 1.6) from A to M is the

image of the map

HomA(A,A⊗R Aop)A ⊗M → HomA(A,M)A , ϕ⊗m 7→ (a 7→ (aϕ)m) .

Through the previous isomorphism, this translates to

(A⊗R Aop)A ⊗M →MA , x⊗m 7→ xm ,

i.e., we have a natural isomorphism

(A⊗R Aop)AM = Hompr
A (A,M)A .

3.12. Definition–Proposition. The module

(A⊗R Aop)A.A =
{P

iaiaa
′
i | (a ∈ A)(P

iai ⊗ a′i ∈ (A⊗R A)A)
}

is called the projective center of A and is denoted by ZprA. This is an ideal in ZA and the map

ZprA→ HomA(A,A)A , z 7→ (a 7→ az)

induces an isomorphism of ZA–modules from ZprA onto Hompr
A (A,A)A.

When A is symmetric.

If A is symmetric, and if cpr
A =

∑
i e
′
i ⊗ ei , it results from 3.3 that

(A⊗R A)A = {P
ie
′
ia⊗ ei | (a ∈ A)} .

Thus we have

(A⊗R A)AM = {P
ie
′
imei | (m ∈M)} ,

which makes the next result obvious.
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3.13. Proposition. The module Hompr
A (A,M)A is naturally isomorphic to the image of the

map

TrA : M →MA , m 7→ cpr
Am =

∑
i

e′imei .

In particular, Zpr
A is the image of the map TrA : A→ A .

Notice that since cpr
A ∈ C(A⊗R A)A, the map TrA factorizes through [A,M ] and so defines

a map

TrA : H0(A,M)→ H0(A,M) .

Example. If A = RG (G a finite group), then ZprRG is the image of

TrRG : RG→ ZRG , x 7→
∑
g∈G

gxg−1 .

Let us denote by Cl(G) the set of conjugacy classes of G, and for C ∈ Cl(G), let us define a

central element by

SC :=
∑
g∈C

g .

Then it is immediate to check that

ZprRG =
⊕

C∈Cl(G)

|G|
|C|
SC .

Higman’s criterion.

If X and X ′ are A–modules, applying what precedes to the case where M := HomR(X,X ′),

we get a map

TrA : HomR(X,X ′)→ HomA(X,X ′) , α 7→ [x 7→
∑
i

(eiα(e′ix)) ] .

For an A–module X, let us describe in terms of the Casimir element the inverse of the

isomorphism (see 2.10)

t∗X :


HomA(X,A)→ HomR(X,R)

φ 7→ t · φ .

By the formula given in 2.10, (1), we see that, for all x ∈ X and ψ ∈ HomR(X,R), we have

uX(ψ)(x) = ψ̂(� x) .

By 3.8, we then get the following property.
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3.14. Lemma. For any A–module X, the morphism
HomR(X,R)→ HomA(X,A)

ψ 7→ [ x 7→
∑
i

ψ(e′ix)ei =
∑
i

ψ(eix)e′i ]

is the inverse of the isomorphism t∗X .

Let X and X ′ be A–modules such that X or X ′ is a finitely generated projective R–module.

It results from 3.14 that the natural morphism HomA(X,A)⊗R X ′ → HomA(X,X ′) factorizes

as follows :

HomA(X,A)⊗R X ′
∼−→HomR(X,R)⊗R X ′

∼−→HomR(X,X ′)TrA

−→HomA(X,X ′) .

The next lemma is now an immediate consequence of the characterization of finitely generated

projective modules.

3.15. Lemma. Let X and X ′ be A–modules such that X is a finitely generated projective

R–module.

(1) The submodule Hompr
A (X,X ′) of HomA(X,X ′) consisting of maps factorizing through a

finitely generated projective A–module coincides with the image of the map

TrA :


HomR(X,X ′) −→ HomA(X,X ′)

α 7→ [x 7→
∑
i∈I

e′iα(eix) ]

(2) The image of the map

TrA : ERX −→ EAX

is a twosided ideal of EAX.

The following proposition follows from the preceding lemma. It is known, in the case where

A = RG, as the “Higman’s criterion” (see [Hi1]).

3.16. Proposition. Let A be a symmetric R–algebra, with Casimir element
∑
i e
′
i ⊗ ei.

Let X be an A–module which is a finitely generated projective R–module.
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Then X is a projective A–module if and only if there exists an R–endomorphism α of X

such that

(∀x ∈ X) ,
∑
i

e′iα(eix) = x .

Remark. For symmetric algebras over fields, Higman’s criterion is also a necessary and sufficient

condition for X to be injective. That property will be addressed (and generalized) in a more

general context below (see 6.8).

4. Schur elements

The notion of Schur element of an absolutely irreducible representation of a symmetric algebra
(as well as the application to orthogonality relations between characters) was first introduced by
M. Geck in its HabilitationSchrift [Ge] (see also [GeRo]). We present here a slight generalisation of
that notion.

Quotients of symmetric algebras.

Let A and B be two symmetric algebras, and let λ : A � B be a surjective algebra morphism.

The morphism λ defines a morphism

A⊗R Aop → B ⊗R Bop , a⊗ a′ 7→ λ(a)⊗ λ(a′) ,

hence defines a structure of A–module–A on B.

Remark. We shall apply what follows, for example, to the following context. Let A be a finite

dimensional algebra over a (commutative) field k, let X be an irreducible A–module, let D := EAX

(a division algebra), and let B := EXD. We know that B is a symmetric algebra, and by the

“double centralizer property” we know that the structural morphism λX : A→ B is onto.

Let t be a symmetrizing form on A and let u be a symmetrizing form on B.

Let cpr
A =

∑
i ei ⊗ e′i and cpr

B =
∑
j fj ⊗ f ′j be the corresponding Casimir elements for

respectively A and B.

The form u · λ is a central form on A, so there exists an element (u · λ)0 ∈ ZA whose image

under t̂ is u · λ. Since λ is onto, the element sλ := λ((u · λ)0) belongs to ZB.

4.1. Definition. The element sλ is called the Schur element of the (surjective) morphism λ.
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4.2. Proposition. We have

(λ⊗ λ)(cpr
A ) = sλc

pr
B and λ(zpr

A ) = sλz
pr
B .

Proof of 4.2. Let us set cpr
A =

∑
i e
′
i ⊗ ei. We have, for all a ∈ A :

(u.λ)0a =
∑
i

t((u.λ)0ae′i)ei , hence (u.λ)0a =
∑
i

u(λ(a)λ(e′i))ei ,

from which we deduce

sλλ(a) =
∑
i

u(λ(ae′i))λ(ei) .

Since λ is surjective, it follows that for all b ∈ B we have

sλb =
∑
i

u(bλ(e′i))λ(ei) ,

which shows that, through the isomorphism B ⊗R B
∼−→ERB defined by û, the element∑

i λ(e′i)⊗ λ(ei) corresponds to sλIdB . This implies that

∑
i

λ(e′i)⊗ λ(ei) = sλc
pr
B .

�

Remark. Choose A = B and λ := IdA. Now if t and u are two symmetrizing forms on A, we have
u = t(u0� ) . The formula of the preceding proposition can be written (with obvious notation) :

cpr
A,t = u0cpr

A,u .

The structure of A–module–A on B defined by λ allows us to define, for N any B–module–B,

the trace map

TrA : N → NA , n 7→ cpr
A .n =

∑
i

λ(ei)nλ(e′i) .

The following property is an immediate consequence of 4.2.

4.3. Corollary. Whenever N is a B–module–B, we have

TrA(n) = sλTrB(n) .

We give now a characterisation of the situation where the Schur element is invertible.
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4.4. Proposition. The following properties are equivalent.

(i) The Schur element sλ is invertible in ZB.

(ii) The morphism λ : A � B is split as a morphism of A–modules–A.

(ii) B is a projective A–module.

(iv) Any projective B–module is a projective A–module.

If the above properties are fullfilled, then the map

σ :


B −→ A

b 7→
∑
i

u(s−1
λ bλ(e′i))ei

is a section of λ as a morphism of A–modules–A.

Proof of 4.4.

(i)⇒(ii) : Since ∑
i

λ(e′i)⊗ λ(ei) = sλc
pr
B ,

and since sλ is invertible, we have

cpr
B = s−1

λ

∑
i

λ(e′i)⊗ λ(ei) .

It follows that

λ(σ(b)) =
∑
i

u(s−1
λ bλ(e′i))λ(ei) =

∑
j

u(bf ′j)fj = b ,

which proves that σ is a section of λ.

Let us set s̃ := (u.λ)0, and let us choose a preimage s̃′ of s−1
λ in A. If we choose a preimage

b̃ of b through λ, we have∑
i

u(s−1
λ bλ(e′i))ei =

∑
i

u(λ(s̃′b̃e′i))ei =
∑
i

t(s̃s̃′b̃e′i)ei = s̃s̃′b̃

=
∑
i

u(bs−1
λ λ(e′i))ei =

∑
i

u(λ(b̃s̃′e′i))ei =
∑
i

t(b̃s̃s̃′b̃e′i)ei

= b̃s̃s̃′ ,

which makes it obvious that σ commute with the twosided action of A.

(ii)⇒(iii) : Since λ is split as a morphism of A–modules, we see that B is projective as an

A–module.
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(iii)⇒(iv) : obvious.

(iv)⇒(i) : Since B is a finitely generated projective A–module, Higman’s criterion (see 3.16)

shows that there is β ∈ ERB such that TrA(β) = IdB . By 4.3, we then see that

sλTrB(β) = IdB .

Since TrB(β) ∈ HomB(B,B) = B, that last equality shows that sλ is invertible in B, hence is

invertible in ZB. �

Remark. Since σ is a morphism of A–modules–A, it follows that, for

eλ := σ(1) =
∑
i

u(s−1
λ bλ(e′i))ei ,

we have

σ(bb′) = aea′

whenever λ(a) = b and λ(a′) = b′, hence in particular e is a central idempotent of A. Thus we

may view (B, λ, σ) as : 

B = Aeλ

λ : A→ Aeλ , a 7→ aeλ

σ : Aeλ → A , aeλ 7→ aeλ .

Schur elements of split irreducible modules.

In the case where R = k, a (commutative) field, the next definition coincides with the

definition of a split irreducible module. The reader may keep this example in mind.

4.5. Definition. An A–module X is called split quasi irreducible if

(1) X is a generator and a finitely generated projective R–module (a“progenerator” for

RMod),

(2) the morphism λX : A→ ERX is onto.

Note that if X is split quasi irreducible, then X induces a Morita equivalence between R

and ERX, and so in particular the map

R→ ERX , λ 7→ λIdX
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is an isomorphism from R onto the center Z(ERX) of ERX. Thus the restriction of λX to ZA

induces an algebra morphism

ωX : ZA→ R .

We denote by χX the character of the A–module X, i.e., the central form on A defined by

χX(a) = trX/R(λX(a)) .

The next result is an immediate application of the definition.

4.6. Lemma. Let X be a split quasi irreducible A–module. The Schur element of X is the

element sX ∈ R defined by

sX := ωX(χ0
X) .

Example. Assume R = C and A = CG (G a finite group). Let χ be the character of an

irreducible CG–module. Then the Schur element of this module is the scalar sχ := |G|/χ(1) .

4.7. Proposition. For X a split quasi irreducible A–module, with character χ := χX , we have

(1) sXχ(1) =
∑
i χ(e′i)χ(ei) ,

(2) sXχ(1)2 = χ (
∑
i e
′
iei) .

Proof of 4.7.

The trace of the central element sX = ωX(χ0
X) is χ(1)sX = χ(1)χ(χ0

X), and since χ0 =∑
i χ(e′i)ei, we see that χ(1)sX =

∑
i χ(e′i)χ(ei) .

The second assertion is a consequence of the following lemma.

4.8. Lemma. Whenever α ∈ ERX, the central element TrA(α) is the scalar multiplication by

sXtrX/R(α).

Indeed, this is an immediate application of the results of example 3.7 and of 4.3.
Let us give a “direct” proof as an exercise.
Since for all a ∈ A we have aχ0 =

∑
i
χ(ae′i)ei , it follows that

λX(aχ0) =
∑
i

χ(ae′i)λX(ei) ,

and if α = λX(a), we get

αλX(χ0) = sXα =
∑
i

trX/R(αλX(e′i))λX(ei) .
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Hence, through the isomorphism ERX
∼−→X∗ ⊗ X , the action of sXα on X corresponds to the

element ∑
i

trX/R(λX(e′i)α(� ))⊗ λX(ei)

and its trace is
σXtrX/R(α) =

∑
i

trX/R(λX(e′i)α(λX(ei))) .

�

Proposition 4.4 has the following important consequence.

4.9. Proposition. Let X be a split quasi irreducible A–module. The following properties are

equivalent.

(i) Its Schur element sX is invertible in R.

(ii) The structural morphism λX : A � ERX is split as morphism of A–modules–A.

(iii) X is a projective A–module.

If the above properties are satisfied, then the map

σ :


ERX −→ A

α 7→
∑
i

trX/R(s−1
X αe′i)ei

is a section of λ as a morphism of A–modules–A.

Remark. The last formula of the above proposition is what Serre calls the “Fourier inversion

formula” in the case where A is the group algebra of a finite group over the complex numbers

field (see [Se] 6.2, prop. 11).

Case of a symmetric algebra over a field.

Let k be a field, and let A be a finite dimensional symmetric k–algebra.

If X is an irreducible A–module, we recall that the algebra DX := EAX is a division algebra,

that the algebra B := EXDX
is symmetric, and that the structural morphism λ : A → B is

onto. Thus each irreducible A–module has a Schur element sX ∈ ZDX , and since ZDX is a

field, the Schur element sX is invertible if and only if it is nonzero.

4.10. Proposition. Let k be a field, and let A be a finite dimensional symmetric k–algebra.

The following assertions are equivalent.

(i) A is semi–simple.
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(ii) Whenever X ∈ Irr(A), then sX 6= 0.

Proof of 4.10. This follows from the fact that a finite dimensional k–algebra is semi–simple if

and only if all its irreducible modules are projective. �

Now assume that the algebra A := A/Rad(A) is split, i.e., that

(∀S ∈ Irr(A)) , EndA(S) = k IdS , hence A
∼−→

∏
S∈Irr(A)

Endk(S) .

Let us denote by a 7→ a the canonical epimorphism from A onto A.

Let S ∈ Irr(A). By a slight abuse of notation, we consider that the structural morphism

defining the structure of A–module of S is defined by the composition :

A→ A
λS−→Endk(S) .

Let us denote by eS the corresponding central idempotent of A, and let us choose an element

ẽS ∈ A whose image modulo Rad(A) is eS .

We have

χS(a) = t(χ0
Sa) = trS/k(λS(a)) .

For all S, T ∈ Irr(A), it follows that

t(χ0
S ẽTa) = trS/k(λS(eTa)) = δS,TχS(a) ,

and so

χ0
S ẽT = δS,Tχ

0
S .

The above formula allows us to prove the following orthogonality relation between characters

of absolutely irreducible modules.

4.11. Proposition. Let A be a symmetric algebra such that A/Rad(A) is split. Let cpr =∑
i e
′
i ⊗ ei be the Casimir element of A. For all S, T ∈ Irr(A), we have

∑
i

χS(e′i)χT (ei) =


sSχS(1) if S = T ,

0 if S 6= T .
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Symmetric split semi–simple algebras.

4.12. Proposition. Let k be a field, and let A be a finite dimensional symmetric k–algebra

with symmetrizing form t. Assume that A is split semi–simple. For each irreducible character

χ of A, let eχ be the primitive idempotent of the center ZA associated with χ, and let sχ denote

its Schur element.

(1) We have

sχ 6= 0 and χ0 = sχeχ .

(2) We have

t =
∑

χ∈Irr(A)

1
sχ

χ .

Proof of 4.12.

(1) Since, for all a ∈ A, we have χ(eχh) = χ(h) , we see that t(χ0eχh) = t(χ0h) , which

proves that χ0 = χ0eχ . The desired equality results from the fact that, for all z ∈ ZA, we have

z =
∑
χ∈Irr(FA) ωχ(z)eχ .

(2) Through the isomorphism between A and its dual, the equality

t =
∑

χ∈Irr(FA)

1
sχ

χ

is equivalent to

1 =
∑

χ∈Irr(FA)

1
sχ

χ0 ,

which is obvious by (1) above. �

5. Parabolic subalgebras

Definition and first properties.

The following definition covers the case of subalgebras such as RH (H a subgroup of G) of a

group algebra RG, as well as the case of the socalled parabolic subalgebras of Hecke algebras.

5.1. Definition. Let A be a symmetric R–algebra, and let t be a symmetrizing form on A. A

subalgebra B of A is called parabolic (relative to t) if the following two conditions are satisfied

(Pa1) Viewed as a B–module through left multiplication, A is projective.
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(Pa2) The restriction of t to B is a symmetrizing form for B.

Remarks.

1. Condition (Pa1) is equivalent to :

(Pa1’) Viewed as a module–B through right multiplication, A is projective.

Indeed, A is a projective B–module if and only if A∗ is a projective module–B, hence (since A∗

is isomorphic to A) if and only if A is a projective module–B.

2. Condition (Pa2) is equivalent to :

(Pa1’) We have B ∩B⊥ = 0 .

5.2. Proposition. Let A be a symmetric algebra with a symmetrizing form t and let B be a

subalgebra of A such that A is a projective B–module.

(1) The subalgebra B is parabolic if and only if B ⊕ B⊥ = A , and then the corresponding

projection of A onto B is the morphism of B–modules–B

BrAB : A→ B such that t(BrAB(a)b) = t(ab) for all a ∈ A and b ∈ B .

(2) If (1) is satisfied, then B⊥ is the B–submodule–B of A characterized by the following two

properties :

(a) We have A = B ⊕B⊥ (as B–modules–B),

(b) B⊥ ⊆ ker(t).

Example. Assume A = RG and B = RH (G a finite group, H a subgroup of G). Then the

map BrRGRH is defined as follows :

BrRGRH(g) =


g if g ∈ H ,

0 if g /∈ H .

For that reason, we shall call BrAB the “Brauer morphism” from A to B.

n! Attention n!
The subalgebra R.1 is not necessarily a parabolic subalgebra.

Indeed, the symmetrizing forms on R are the forms τ such that τ(1) ∈ R×. Thus R.1 is parabolic
if and only if t(1) is invertible in R.
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This is not always the case, since for A := Matm(R) and t := tr, we have t(1) = m. This example
shows as well that the property of R.1 to be parabolic is not stable under Morita equivalence.

Remarks.

• If R.1 is parabolic, we may wish to normalize the form t by assuming that t(1) = 1.

• If R.1 is parabolic, then A is principally symmetric (see 2.14).
But an algebra may be principally symmetric without R.1 being parabolic, as shown by the

example A := Matm(R) when m is not invertible in R.

6. Exact bimodules and associated functors

6.A. Selfdual pairs of exact bimodules

In what follows, we denote by A and B two symmetric R–algebras. We assume chosen two

symmetrizing forms t and u on respectively A and B.

6.1. Definition. An A–module–B M is called exact if M is finitely generated projective both

as an A–module and as a module–B.

If M is exact, the functors

M ⊗B � : BMod→ AMod and � ⊗AM : ModA →ModB

defined by M are exact.

Definition. A selfdual pair of exact bimodules for A and B is a pair (M,N) where M is an

exact A–module–B, and N is an exact B–module–A endowed with an R–duality of bimodules

M ×N → R , (m,n) 7→ 〈m,n〉 ,

i.e., an R–bilinear map such that

〈amb, n〉 = 〈m, bna〉 (∀a ∈ A , b ∈ B , m ∈M , n ∈ N) ,

which induces (bimodules) isomorphisms

M
∼−→N∗ and N

∼−→M∗ .



Higman criterion 45

Examples.

1. Take B = R, M =AAR (i.e., A viewed as an object in AmodR), N =RAA (i.e., A viewed

as an object in RmodA, and 〈a, b〉 := t(ab) . Then (AAR,RAA) is an exact pair of bimodules

for A and R, called the trivial pair for A.

2. Let G be a finite group, and let U be a subgroup of G whose order is invertible in R. Let

NG(U) denote the normalizer of U in G, and let us set H := NG(U)/U . Then the set G/U is

naturally endowed with a left action of G and a right action of H, and the set U\G is naturally

endowed with a left action of H and a right action of G.

Take A := RG, B := RH (both induced with the canonical symmetrizing forms of group

algebras), M := R[G/U ] (the R–free module with basis G/U), N := R[U\G], and

〈gU, Ug′〉 :=


1 if Ug′ = (gU)−1

0 if not.

Then the pair (R[G/U ], R[U\G]) is an exact pair of bimodules for RG and RH.

The functor defined by M is the so–called “Harish–Chandra induction” : take an RH–module

Y , view it as an RNG(U)–module, and induce it up to RG.

The adjoint functor defined by N is the “Harish–Chandra restriction (or truncation)” : take

an RG–module X, and view its fixed points under U as an RH–module.

3. The following example is a generalization of the previous two examples.

Let B be a parabolic subalgebra of A, let e be a central idempotent of A and let f be a

central idempotent of B. Let us choose

M := eAf , N := fAe , 〈m,n〉 := t(mn) .

Then the functor induced by M is the induction truncated by e :

Y 7→ e.IndABY ,

while the functor induced by N is the restriction truncated by f :

X 7→ f.ResABX .
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Let (M,N) be a self dual pair of exact bimodules.

1. The isomorphismN
∼−→M∗, composed with the isomorphismM∗

∼−→M∨ = HomA(M,A)

given by 2.10, gives an isomorphism N
∼−→M∨ of B–modules–A , which is described as follows :

6.2. the element n ∈ N defines the A–linear form m 7→ mn on M such that

t(mn) = 〈m,n〉 .

Similarly, we have an isomorphism M
∼−→N∨ of A–modules–B , which is described as fol-

lows :

6.3. the element m ∈M defines the B–linear form n 7→ nm on N such that

u(nm) = 〈m,n〉 .

2. The isomorphism M
∼−→N∨ described above induces isomorphisms

M ⊗B N
∼−→N∨ ⊗B N

∼−→EBN
∼−→EMB .

We know (see 2.11) that there is a symmetrizing form uN on the algebra EBN . Transporting

the algebra structure and the form uN through the preceding isomorphisms gives the following

property.

6.4. Proposition.

(1) The rule

(m⊗B n)(m′ ⊗B n′) := m⊗B (nm′)n

provides M ⊗B N with a structure of algebra isomorphic to EBN (and EMB).

(2) The form

tM,N : M ⊗B N → R , m⊗B n 7→ 〈m,n〉

is a symmetrizing form on the algebra M ⊗B N .

Similarly, we have an algebra structure on N ⊗AM and a symmetrizing form

tN,M : N ⊗AM → R , n⊗A m 7→ 〈m,n〉 .
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We denote by cM,N the unity of M ⊗B N (i.e., the “(M,N)– Casimir element”).
Thus, if cM,N =

∑
i
mi ⊗B ni, for all m ∈M and n ∈ N we have∑
i

m⊗B (nmi)ni =
∑
i

mi ⊗B (nim)n = m⊗B n .

Similarly, we denote by cN,M the unity of the algebra N ⊗AM .

The case of the trivial pair.

Let us consider the trivial pair (AAR,RAA) for A. Then

• The algebra A⊗A A is isomorphic to A and its symmetrizing form is the form t.

• The algebra A ⊗R A is isomorphic to ERA and its symmetrizing form is defined by

a⊗ a′ 7→ t(aa′).

n! Attention n!
The algebra A⊗R A mentioned above is not, in general, isomorphic to A⊗Aop.

Notice also that the multiplication in the algebra A⊗R A is defined by the rule

(a⊗ a′)(b⊗ b′) := a⊗ t(a′b)b′ ,

and that by its very definition, cpr
A is the unity of this algebra.

Adjunctions.

Let (M,N) be a selfdual pair of exact bimodules for A and B. Since M ' N∨ and N 'M∨,

the pair (M ⊗B � , N ⊗A � ) is a pair of biadjoint functors, i.e., a pair of functors left and right

adjoint to each other.

The isomorphisms N ∼−→M∨ and M
∼−→N∨ described in 6.2 and 6.3, together with the

adjunctions defined by the “isomorphisme cher à Cartan”, define the following set of four

adjunctions (described in terms of morphisms of bimodules) :

εM,N :


M ⊗B N → A

m⊗B n 7→ mn

and ηM,N :


B → N ⊗AM

b 7→ bcN,M

εN,M :


N ⊗AM → B

n⊗B m 7→ nm

and ηN,M :


A→M ⊗B N

a 7→ acM,N
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6.5. Proposition. The morphisms

εM,N : M ⊗B N → A and ηN,M : A→M ⊗B N

are adjoint one to the other relatively to the bilinear forms defined on A and M ⊗B N by

respectively t and tM,N , i.e.,

t(εM,N (x)a) = tM,N (xηN,M (a)) (∀x ∈M ⊗B N , a ∈ A) .

6.B. Relative projectivity, relative injectivity

Let us generalize the preceding situation, by replacing AMod and BMod by two arbitrary

R–linear triangulated or abelian categories A and B, and by considering M : B → A and

N : A→ B two functors such that (M,N) is a biadjoint pair.

Like in the “concrete” situation considered above, let (εM,N , ηM,N ) (resp. (εN,M , ηN,M ) ) be

a counit and a unit associated with an adjunction for the pair (M,N) (resp. (N,M) ).

Notation. We say that an object X ′ of such a (R–linear triangulated) category A is isomorphic

to a direct summand of an object X if there exist two morphisms
ι : X ′ → X

π : X → X ′
such that π ◦ ι = IdX .

This is indeed equivalent (see [BS], lemma 1.8) to the existence of an object X ′′ and an isomor-

phism

X
∼−→X ′ ⊕X ′′ .

6.6. Definition. For X and X ′ in A, we denote by TrMN (X,X ′), and call relative trace, the

map

TrMN (X,X ′) : HomB(NX,NX ′) −→ HomA(X,X ′)

defined by

TrMN (X,X ′)(β) := εM,N (X ′) ◦M(β) ◦ ηN,M (X) : X

ηN,M

��

X ′

MNX
Mβ // MNX ′

εM,N

OO
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If it is clear from the context what the domain and the codomain of β are, we will write

TrMN (β) instead of TrMN (X,X ′)(β). Furthermore, TrMN (X) stands for TrMN (X,X). Notice that

the map TrNM is defined, as well.

The following example is fundamental.

Example : Induction and restriction from R. Let A be a symmetric R-algebra with

symmetrizing form t and Casimir element cpr
A =

∑
i ei ⊗ e′i. We take A = AMod, B = RMod

and consider the pair of biadjoint functors defined by the module A, considered as an object

of AModR, and as an object of RModA. In other words, the functors are the induction IndAR

and the restriction ResAR. Let us set

TrAR := TrIndA
R

ResA
R

and TrRA := TrResA
R

IndA
R

.

The verification of the following two statements is left to the reader.

1. For X,X ′ ∈ AMod, the map

TrAR : HomR(X,X ′)→ HomA(X,X ′)

is defined by

TrAR(β)(x) =
∑
i

eiβ(e′ix) = TrA(x) ,

thus in other words we have

TrAR = TrA .

2. For Y, Y ′ ∈ RMod, the map

TrRA : HomA(A⊗R Y,A⊗R Y ′)→ HomR(Y, Y ′)

is defined in the following way. Let α be an element of HomA(A⊗R Y,A⊗R Y ′) and y ∈ Y . If

α(1⊗ y) =
∑
i ai ⊗ yi, then the relative trace is given by the formula

TrRA(α)(y) =
∑
i

t(ai)yi .
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6.7. Proposition. Whenever we have three morphisms

β : NX → NX ′ , α : X1 → X , α′ : X ′ → X ′1 ,

we have

α′ ◦ TrMN (β) ◦ α = TrMN (N(α′) ◦ β ◦N(α)) .

In particular, the image of TrMN is a two-sided ideal in HomA( � , � ).

Proof of 6.7. Since ηN,M is a natural transformation, the diagram

X1

ηN,M (X1) //

α

��

MN(X1)

MN(α)

��
X

ηN,M (X) // MN(X)

commutes, i.e.,

MN(α) ◦ ηN,M (X1) = ηN,M (X) ◦ α .

Similarly, we get

εM,N (X ′1) ◦MN(α′) = α′ ◦ εM,N (X ′) .

Using these equations, we obtain

X1
α //

ηN,M (X1)

��

X

ηN,M (X)

��

X ′
α′ // X ′1

MNX1
MNα // MNX

Mβ // MNX ′

εM,N (X′)

OO

MNα′ // MNX ′1

εM,N (X′1)

OO

α′ ◦ TrMN (β) ◦ α = α′ ◦ εM,N (X ′) ◦M(β) ◦ ηN,M (X) ◦ α

= εM,N (X ′1) ◦M(N(α′) ◦ β ◦N(α)) ◦ ηN,M (X1)

= TrMN (N(α′) ◦ β ◦N(α)) .

�

The following theorem generalizes to our general context the classical and relative Higman’s

criteria ([Hi1] and [Hi2]) as well as it extends to our context the equivalence of injectivity

and projectivity for modules over a symmetric algebra over a field – see examples below, in

particular the paragraph “Relative projective modules and projective modules”.
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6.8. Theorem. Let A and B be R–linear triangulated or abelian categories, and let M : B→ A

and N : A→ B two exact functors such that (M,N) is a biadjoint pair.

For an object X in A, the following statements are equivalent:

(i) X is isomorphic to a direct summand of MN(X).

(ii) X is isomorphic to a direct summand of M(Y ), for some object Y in B.

(iii) The morphism IdX is in the image of TrMN (X).

(iv) The morphism ηN,M (X) : X →MN(X) has a left inverse.

(v) The morphism εM,N (X) : MN(X)→ X has a right inverse.

(vi) Relative projectivity of X :

N(X ′′)
N(π) //

N(X ′)
β

oo

Xeα
}}{

{
{

{
α

��
X ′′

π // X ′

Given morphisms α : X → X ′ and π : X ′′ → X ′ such that there exists a morphism β :

N(X ′)→ N(X ′′) with N(π) ◦ β = IdN(X′), then there exists a morphism α̂ : X → X ′′

with π ◦ α̂ = α.

(vii) Relative injectivity of X :

N(X ′)
N(ι) //

N(X ′′)
β

oo

X

X ′

α

OO

ι // X ′′

eαaaC
C

C
C

Given morphisms α : X ′ → X and ι : X ′ → X ′′ such that there exists a morphism

β : N(X ′′)→ N(X ′) with β◦N(ι) = IdN(X′), then there exists a morphism α̂ : X ′′ → X

with α̂ ◦ ι = α.

To prove the above theorem we need the following lemma.

6.9. Lemma. We have TrMN (M(Y ))(ηM,N (Y ) ◦ εN,M (Y )) = IdM(Y ).
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Proof of 6.9. By definition, we have

MY

ηN,MM

��

MY

MNMY

MεN,M %%KKKKKKKKKK MNMY

εM,NM

OO

MY

MηM,N

99ssssssssss

TrMN (M(Y ))(ηM,N (Y ) ◦ εN,M (Y )) =

εM,N (M(Y )) ◦M(ηM,N (Y )) ◦M(εN,M (Y )) ◦ ηN,M (M(Y )) .

It is a classical property of adjunctions (see [McL] or [Ja]) that εM,N (M(Y )) ◦M(ηM,N (Y ))

and M(εN,M (Y )) ◦ ηN,M (M(Y )) are the identity on M(Y ). �

Proof of 6.8. We prove the implications

(i)⇒ (ii)⇒ (iii)⇒

 (iv) ⇒ (i)

(v) ⇒ (i)

and

(ii)⇒

 (vi) ⇒ (v)

(vii) ⇒ (iv) .

(i)⇒(ii) : trivial.

(ii)⇒(iii) : We may assume that X = M(Y ). For if X is a direct summand of M(Y ), we

have to morphisms p : M(Y ) → X and i : X → M(Y ) such that p ◦ i = IdX . Hence, if

TrMN (M(Y ))(β) is the identity morphism on M(Y ), then the identity morphism on X is given

by p ◦ TrMN (M(Y ))(β) ◦ i and using proposition 6.7, we get

IdX = TrMN (N(p) ◦ β ◦N(i)) .

For X = M(Y ) the assertion follows from lemma 6.9.

(iii)⇒(iv) and (iii)⇒(v) : These implications follow from the definition of the relative trace,

since we have

IdX = TrMN (X)(β) = εM,N (X) ◦M(β) ◦ ηN,M (X) .

(iv)⇒(i) and (v)⇒(i) : clear.
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(ii)⇒(vi) : We may assume that X = M(Y ). Let ϕ be an adjunction for the pair (M,N).

Given a morphism α : M(Y )→ X ′, we must construct a morphism α̂ : M(Y )→ X ′′ such that

π ◦ α̂ = α. Using the adjunction, we get a morphism ϕY,X′(α) : Y → N(X ′), which we compose

with β to obtain a morphism from Y to N(X ′′). We claim that if we set

α̂ := ϕ−1
Y,X′′(β ◦ ϕY,X′(α)) ,

then α̂ has the desired property. Since the adjunction is natural, we have

π ◦ ϕ−1
Y,X′′(β ◦ ϕY,X′(α)) = ϕ−1

Y,X′(N(π) ◦ β ◦ ϕY,X′(α)) .

By assumption, N(π) ◦ β = IdN(X′), from which it follows that π ◦ α̂ = α.

The proof of the implication (ii)⇒(vii) is analogous to the previous one.

(vi)⇒(v) : Let us choose α := IdX and π := εM,N (X). We have to check that the morphism

N(εM,N (X)) splits : this follows from the properties of an adjunction, since N(εM,N (X)) ◦

ηM,N (N(X)) is the identity on N(X) (see for example [McL]).

The proof of the implication (vii)⇒(iv) is similar to the previous one. �

6.10. Definition. An object X of the category A, satisfying one of the conditions in theo-

rem 6.8, is called M -split (or relatively M -projective, or relatively M -injective).

Notice that any object isomorphic to M(Y ) (for Y ∈ B) is M–split.

Example : Induction–restriction with R. Let A be a symmetric algebra over R, and

consider the categories

A = AMod and B = RMod .

We have already seen that the functors M := IndAR and N := ResAR build a biadjoint pair. We

shall prove and generalize below the following set of properties.

• The relative trace TrAR is the trace TrA defined in the previous paragraph, i.e., the

multiplication by the Casimir element.

• The split modules are the relatively R–projective modules.

• For X a finitely generated A–module, the following conditions are equivalent.
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(i) X is a projective A–module,

(ii) X is a projective R–module and a split module (relatively projective R–module).

If R = k, a field, the A-split modules are exactly the projective modules and the projective

modules coincide with the injective modules.

Relatively projective modules and projective modules.

Consider the following particular situation :

• B is a symmetric subalgebra of A such that A is a projective B–module (hence, as we

have already noted, A is a projective module–B). We choose a symmetrizing form t on A and

a symmetrizing form u on B.

• We choose M := A (viewed as an object of AModB), N := A (viewed as an object of

BModA), and the pairing A×A→ R is defined by (a, a′) 7→ t(aa′).

Thus the functor M ⊗B � coincides with the induction

IndAB : BMod→ AMod ,

while the functor N ⊗A � coincides with the restriction

ResAB : AMod→ BMod .

We then say that an A–module X is relatively B–projective when it is split for the pair (M,N)

just defined.

We construct in this context the analog of the Casimir element.

Since A is a (finitely generated) projective B–module, the natural morphism

HomB(A,B)⊗B A→ EBA

is an isomorphism. Since B is symmetric, its chosen symmetrizing form u induces a natural

isomorphism

HomB(A,B) ∼−→A∗ ,
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and since A is symmetric, its chosen symmetrizing form t induces an isomorphism A
∼−→A∗.

So we get an isomorphism (of (A⊗Aop)–modules–(EBA⊗ EBAop))

A⊗B A
∼−→EBA .

We call relative Casimir element and we denote by cAB the element of A⊗BA which corresponds

to IdA through the preceding isomorphism.

Let X be an A–module. The relative trace may be viewed as a morphism

TrAB : HomB(X,X ′)→ HomA(X,X ′) .

This morphism is nothing but the multiplication by the relative Casimir element cAB : if cAB =∑
i ai ⊗B a′i , and if Y is any A–module–A, we have

TrAB :


Y B → Y A

y 7→ cAB .y =
∑
i

aiya
′
i .

Example. The following example is precisely the case of Higman’s criterion for relative pro-

jectivity ([Hi1]).

Assume A = RG and B = RH (G a finite group, H a subgroup of G). Then we have

cRGRH =
∑

g∈[G/H]

g ⊗RH g−1 ,

where [G/H] denote a complete set of representatives of the left cosets of G modulo H. Thus,

whenever Y is an RG–module–RG and y ∈ Y H , we have

TrRGRH(y) =
∑

g∈[G/H]

gyg−1 .

In such a situation, projectivity and relative projectivity are connected by the following

property.

6.11. Proposition. Let B be a symmetric subalgebra of A such that A is a projective B–

module. Let X be a finitely generated A–module. The following conditions are equivalent.

(i) X is a projective A–module.

(ii) X is relatively B–projective and ResABX is a projective B–module.



56 Michel Broué

Proof of 6.11.

(i)⇒(ii) Since A is a projective B–module, any projective A–module is also (by restriction)

a projective B–module. Moreover, if a morphism X ′′ → X ′ gets a right inverse after restriction

to B, it is onto, and so every morphism X → X ′ can be lifted to a suitable morphism X → X ′′.

ResAB(X ′′)
ResA

B(π)// ResAB(X ′)
β

oo

Xeα
}}{

{
{

{
α

��
X ′′

π // X ′

(ii)⇒(i) Since X is relatively projective, we may choose an endomorphism

ι : ResAB(X)→ ResAB(X) such that TrAB(ι) = IdX .

Suppose given a surjective morphism X ′′
π−→X ′ and a morphism X

α−→X ′. Since ResABX is

projective, there exists a morphism γ : ResABX → ResABX
′′ such that the following triangle

commutes :

ResABX
γ

yys s
s

s
s

αι

��
ResABX

′′ π // ResABX
′

i.e., πγ = αι .

Applying TrAB to this last equality, we get

π.TrAB(γ) = αTrAB(ι) = α ,

and this shows that the morphism α has been indeed lifted to a suitable morphism X → X ′′. �

Harish-Chandra functors.

The relative trace introduced above may be computed in terms of generalized Casimir ele-

ments (see below §6.E for the definition of cM,N ), generalizing the element CRGRH defined above.

Let us for example consider the case of Harish–Chandra induction–restriction, as defined in

§6.1 above, example 2 and 3 (from which we borrow the notation).

We set

A := RG , B := RNG(U) , H := NG(U)/U , e := 1 , f := e(U) :=
1
|U |

∑
u∈U

u

M := R[G/U ] and N := R[U\G] ,
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and we denote by RGH the functor defined by M (the Harish–Chandra induction).

Then the relative Casimir element is

cM,N :=
∑

g∈[G/NG(U)]

ge(U)⊗B e(U)g−1 ,

and the generalized relative Higman’s criterion becomes

6.12. Proposition. Let X be an RG–module. Then X is a summand of RGH(Y ) for some

RH–module Y if and only if there exists an endomorphism β of the RH–module XU such that

∑
g∈[G/NG(U)]

gβg−1 = IdX .

6.C. The M-Stable Category

Generalities.

What follows could be written in the general context of triangulated categories (and we hope

it will be done soon). Nevertheless, for the sake of comfort of a reader unfamiliar with triangles,

we shall assume now that A and B are two R–linear abelian categories, and as previously we

denote by (M,N) a pair of biadjoint functors for (A,B).

We denote by HomM
A (X,X ′) the image of TrMN (X,X ′) in HomA(X,X ′) and call these mor-

phisms the “M -split morphisms”.

By definition, the M–split objects are those objects whose identity is M–split (i.e., such that

all endomorphisms are M–split).

Since the M–split morphism functor HomM
A (� , � ) is an ideal (see 6.7), we have the following

property.

6.13. Lemma. A morphism X → X ′ in A is M -split if and only if it factorizes through an

M–split object of A.

6.14. Definition. The category MStab(A) (or, by abuse of notation, Stab(A)), is defined as

follows:

(1) the objects of Stab(A) are the objects of A,
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(2) the morphisms in Stab(A), which we denote by Homst
A,M (�, �), are the morphisms in A

modulo the M -split morphisms, i.e.,

HomstA,M (X,X ′) := HomA(X,X ′)/HomM
A (X,X ′) .

Let A be an R-algebra. In the situation where A = AMod, B = RMod and the biadjoint

pair of functors is given by (IndAR,ResAR), we denote the corresponding stable category by AStab.

Remarks.

1. If R = k, a field, then the category AStab coincides with the ususal notion of the stable

category, i.e., the module category “modulo the projectives”. But in general, our category

AStab is not the quotient of AMod modulo the projective A–modules.

2. Stab(A) is an R-linear additive category (but in general not an abelian category ; we

leave its triangulated structure to further work).

From the way we defined the M -stable category, it is clear that there is a natural functor

St : A→ Stab(A).

6.15. Proposition. If X is an object in A, then St(X) ' 0 if and only if X is M -split.

Proof of 6.15. If St(X) ' 0, then the identity on X is in the image of the relative trace TrMN (X),

which is equivalent to say that X is M -split.

If X is M -split, then the identity on X is an M -split homomorphism and therefore it is zero

in Stab(A). Thus, we have St(X) ' 0. �

The Heller Functor on Stab(A).

Whenever α ∈ HomA(X,X ′), we denote by αst its image in Homst
A,M (X,X ′).

6.16. Proposition. (Schanuel’s lemma) Let A and B be two R-linear abelian categories and

let (M,N) be a biadjoint pair of functors on A and B. Assume that

0→ X ′1
ι1−→P1

π1−→X1 → 0 and 0→ X ′2
ι2−→P2

π2−→X2 → 0

are short exact sequences in A such that

(1) Their images through N are split,
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(2) P1 and P2 are M -split objects.

Then there exists an isomorphism

Homst
A,M (X1, X2) ∼−→ Homst

A,M (X ′1, X
′
2)

αst 7−→ α′
st

determined, for α ∈ HomA(X1, X2) and α′ ∈ HomA(X ′1, X
′
2), by the following condition : there

exists u ∈ HomA(P1, P2) such that the diagram

X ′1
ι1 //

α′

��

P1
π1 //

u

��

X1

α

��
X ′2

ι1 // P2
π2 // X2

commutes.

Proof of 6.16. We may assume that α is given. Then, since N(π2) splits and P1 is a M -split

object, there exists a map u and a map α′ such that the above diagram commutes. It suffices

to verify that αst is zero if and only if α′st is zero.

If αst is zero, then α factorizes through the object P2. Let us say α = π2 ◦ h, where

h : X1 → P2. The map u − h ◦ π1 is a map from P1 to the kernel of π2. Therefore, if we set

h′ = u − h ◦ π1, then α′ = h′ ◦ ι1, i.e., the map α′ factorizes through an M -split object. The

converse implication can be verified similarly. �

Remark. It follows from the proof of Schanuel’s lemma that (α′, u, α) defines a single homotopy

class of morphisms from

0→ X ′1
ι1−→P1

π1−→X1 → 0 to 0→ X ′2
ι2−→P2

π2−→X2 → 0

This is a particular case of a more general lemma about projective resolution which will not be

addressed here.

6.17. Corollary. Assume that

0→ X ′1 → P1 → X → 0 and 0→ X ′2 → P2 → X → 0

are short exact sequences in A such that

(1) their images through N are split,

(2) P1 and P2 are M -split objects.
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Then there exists an isomorphism

ϕst : X ′1
∼−→X ′2 in Stab(A)

characterized by the following condition : there exists u ∈ HomA(P1, P2) such that the diagram

X ′1
ι1 //

ϕ

��

P1
π1 //

u

��

X

IdX

��
X ′2

ι1 // P2
π2 // X

commutes.

This corollary allows us to define a functor ΩM : Stab(A) → Stab(A), the Heller functor.

It is given by ΩM (X) := X ′1.

Similarly, we have a functor Ω−1
M : Stab(A) → Stab(A). It can be check that the functors

ΩM and Ω−1
M induce reciprocal equivalences of Stab(A).

The case of AStab : the Heller bimodules.

Let again A be a symmetric R–algebra.

From now on, we assume that A = AMod, B = RMod and the modules inducing the

biadjoint pair of functors are M ∈ AModR and N ∈ RModA. We proceed to give another

definition of the Heller functors ΩA and Ω−1
A .

We call Heller bimodule and we denote by ΩA the kernel of the multiplication morphism

A⊗R A→ A .

Thus we have

ΩA =

{∑
i

ai ⊗ bi |
∑
i

aibi = 0

}
.

• Viewing ΩA as a left ideal in A⊗R Aop, we see that if
∑
i ai ⊗ bi ∈ ΩA, we have

∑
i

ai ⊗ bi =
∑
i

(ai ⊗ bi − 1⊗ aibi) =
∑
i

(1⊗ bi)(ai ⊗ 1− 1⊗ ai) ,

hence ΩA is the left ideal of A⊗R Aop generated by {a⊗ 1− 1⊗ a | (a ∈ A)}.
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• Since (A⊗RA)A is by definition the right annihilator in A⊗RAop of the set {a⊗1−1⊗a |

(a ∈ A)}, it follows that

(A⊗R A)A = Ann(ΩA)(A⊗RAop) .

• If A is symmetric and t is a symmetrizing form, then the form

ten :


A⊗R Aop → R

a⊗ a′ 7→ t(a)t(a′)

is a symmetrizing form on A⊗R Aop. Then it follows from what precedes that

(A⊗R A)A = Ω⊥A ,

where the orthogonal is relative to the form ten.

The inverse Heller bimodule Ω−1
A is defined as the quotient

Ω−1
A := (A⊗R A)/(A⊗R A)A .

Thus we see that the form ten induces an isomorphism of A–modules–A :

Ω−1
A

∼−→Ω∗A .

Taking the dual (relative to the forms t and ten of the short exact sequence

0→ ΩA → A⊗R Aop → A→ 0 ,

we get the short exact sequence

0→ A→ A⊗R Aop → Ω−1
A → 0 .

6.18. Proposition.

(1) The A–modules–A ΩA and Ω−1
A are exact.

(2) The bimodules ΩA⊗AΩ−1
A and Ω−1

A ⊗AΩA are both isomorphic to A in the category AStabA.
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6.19. Corollary. The functors

ΩA , Ω−1
A : AMod→ AMod

induce reciprocal selfequivalences on AStab.

Proof of 6.18.

(1) Since A is projective on both sides, we see that

0→ ΩA → A⊗R A
µ−→A→ 0

is a split short exact sequence in AMod, as well as in ModA. In particular, it is R–split.

Taking the dual with respect to the bilinear forms defined above yields the R–split short exact

sequence

0→ A
µ∗−→A⊗R A→ Ω−1

A → 0 .

The relative injectivity of A implies that this sequence splits in AMod and in ModA. Thus,

we have shown that ΩA and Ω−1
A are in Aproj ∩ projA.

(2) Since we want the isomorphism from ΩA ⊗A Ω−1
A to A to be in AStabA, the symmetric

algebra to consider here is (A ⊗R Aop). We shall apply Schanuel’s lemma to the short exact

sequences
0 // ΩA ⊗A Ω−1

A
// A⊗R Ω−1

A

µ⊗Id
Ω−1

A// Ω−1
A

// 0

0→ A
µ∗−→A⊗R A→ Ω−1

A → 0

These sequences split as sequences in AMod, since Ω−1
A is an A-projective module. In particular,

they split when restricted to R. Thus, by Schanuel’s lemma, it is enough to check that A⊗R A

and A⊗RΩ−1
A are both relatively (A⊗RAop)-projective, hence it is enough to remark that they

are projective (A⊗R Aop)–modules.

Similarly, one shows that Ω−1
A ⊗A ΩA is isomorphic to A in the category AStabA. �

6.20. Definition. For X , X ′ ∈ AMod and n ∈ N, we set

ExtnA(X,X ′) := Hom
AStab(ΩnA(X), X ′) .

Note that we have also

ExtnA(X,X ′) = Hom
AStab(X,Ω−n(X ′)) .
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6.21. Proposition. Let A and B be symmetric R–algebras.

Let M ∈ AModB be an exact bimodule. Then the functor M ⊗B � commutes with Ω�, i.e.,

ΩA ⊗AM
∼−→M ⊗B ΩB inAStabB .

Proof of 6.21. The module M induces a functor on the stable category.

Consider the following two short exact sequences

0→ ΩA → A⊗R A
µA−→A→ 0 and 0→ ΩB → B ⊗R B

µB−→B → 0 .

If we tensor the first one over A with M and the second one over B with M , we get the two

short exact sequences

0→ ΩA ⊗AM → A⊗RM →M → 0 and 0→M ⊗B ΩB →M ⊗R B →M → 0 .

Both sequences split as sequences over R. Since M is in projB , A ⊗R M is a projective

A⊗RBop–module. Similarly, one shows that M ⊗RB is a projective A⊗RBop–module. Thus,

we can apply Schanuel’s lemma and get an isomorphism

ΩA ⊗AM
∼−→M ⊗B ΩB in AStabB .

�

As an application of the previous proposition, we get the following corollary.

6.22. Corollary. (Schapiro’s lemma) Let (M,N) be a self dual pair of exact bimodules for

the algebras A and B. Then (ΩA ⊗AM,Ω−1
B ⊗A N) is also a self dual pair of exact bimodules

for the algebras A and B.

In particular, for all n ∈ N, we have

ExtnA(M(Y ), X) ' ExtnB(Y,N(X)) .

Proof of 6.22. We will only show that ΩAM is left adjoint to Ω−1
B N . We know that both,

(M,N) and (ΩA,Ω−1
A ), are biadjoint pairs. Thus the functor ΩAM is left adjoint to the functor

NΩ−1
A . By proposition 6.21, NΩ−1

A is naturally equivalent to the functor Ω−1
B N . �
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6.D. Stable Equivalences of Morita Type

Let (M,N) be a selfdual exact pair of bimodules for A and B. Since the functors M ⊗B �

and N ⊗A � factorize through the functors

StA : AMod −→ AStab and StB : BMod −→ BStab ,

the bimodules M and N induce two functors

M ⊗B � : BStab −→ AStab and N ⊗A � : AStab −→ BStab .

Since the functors M ⊗B � and N ⊗A � are biadjoint, the induced functors on the stable

categories are biadjoint, as well. The associated adjunctions are the images in the stable

categories of the adjunctions of M and N on the module category level.

These preliminaries suggest the following definition of a stable equivalence of Morita type.

6.23. Definition. Let M and N be bimodules as above. We say that M and N induce a stable

equivalence of Morita type between A and B if

M ⊗B N ' A in AStabA and N ⊗AM ' B in BStabB ,

through the counits and the units of the adjunctions.

Remark. Notice (see for example [McL]) that we do not need to specify which counits and units

provide the above isomorphisms. If one appropriate pair of them are isomorphisms, then all of them

will be isomorphisms.

6.24. Definition. The stable center of the symmetric algebra A, denoted by ZstA, is the

quotient ZA/ZprA.

Remark. If we view A as an object in the category (A⊗RAop)Mod, then the center of A is iso-

morphic to End(A⊗RAop)(A). It follows from the definition of the stable category (A⊗RAop)Stab

and the definition of projective endomorphisms of A considered as an (A⊗RAop)-module, that

the stable center of A is isomorphic to End(A⊗RAop)Stab(A).
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6.25. Proposition. A stable equivalence of Morita type between the symmetric algebras A

and B induces an algebra isomorphism

ZstA ' ZstB .

Proof of 6.25. Let Astabpr
A denote the full subcategory of AstabA whose objects are the exact

A–modules–A. Assume that (M,N) induces a stable equivalence of Morita type between A and

B. Then the pair (M ⊗R N , N ⊗RM) (where M ⊗R N is viewed as an (A⊗R Aop)–module–

(B⊗RBop) and N ⊗RM is viewed as a (B⊗RBop)–module–(A⊗RAop) as previously) induce

inverse equivalences between Astabpr
A and Bstabpr

B which exchange A and B. The assertion

follows from the fact that Zst(A) is the algebra of endomorphisms of A in Astabpr
A . �

6.E. (M,N)–split algebras

More on exact pairs.

We keep the notation introduced in §D above.

By the isomorphisme cher à Cartan, and by projectivity of the B–module N , we have

(M ⊗B N)∗ = H0(B,M ⊗R N)∗ ' H0(B,N ⊗RM) ' (N ⊗RM)B 'M ⊗B N .

It follows that the pairing 
(M ⊗B N)× (M ⊗B N)→ R

(m⊗ n,m′ ⊗ n′) 7→ 〈m,n′〉〈m′, n〉

defines a duality between M ⊗B N and itself, hence that (M ⊗B N,M ⊗B N) is an exact pair

between the algebra A and itself.

Similarly, (N ⊗AM,N ⊗AM) is an exact pair between the algebra B and itself.

Let us now compute the pairing (N ⊗A M) × (N ⊗A M) → B associated to the previous

pairing and to the chosen symmetrizing form on B. We do it through the following series of

isomorphisms (which uses the projectivity of the B–module N ⊗A M and the isomorphisme

cher à Cartan) :

N ⊗AM
∼−→HomA(M,M) ∼−→HomA(M,HomB(N,B)) ∼−→HomB(N ⊗AM,B) .
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We have

n⊗A m 7→ (x 7→ (xn)m) 7→ (x 7→ (y(xn)m)) 7→ (y ⊗A x 7→ (y(xn)m)) .

Thus we have proved the following lemma.

6.26. Lemma.

(1) The pairing (N ⊗AM)× (N ⊗AM)→ B is given as follows : for n⊗Am and n′⊗Am′

in N ⊗AM , we have

((n⊗A m)(n′ ⊗A m′)) = (n(mn′)m′) .

(2) The pairing (M ⊗BN)× (M ⊗BN)→ A is given as follows : for m⊗B n and m′⊗B n′

in M ⊗B N , we have

((m⊗B n)(m′ ⊗B n′)) = (m(nm′)n′) .

Notice the natural isomorphisms of R–algebras
N ⊗AM

∼−→HomA(M,M) , n⊗A m 7→ (x 7→ (xn)m

N ⊗AM
∼−→Hom(N,N)A , n⊗A m 7→ (y 7→ n(my)

(where, as seen before, the structure of algebra on N⊗AM is defined by (n⊗Am)(n′⊗Am′) :=

(n⊗A (mn′)m′ ), and similarly
M ⊗B N

∼−→HomB(N,N) , m⊗B n 7→ (y 7→ (ym)n

M ⊗B N
∼−→Hom(M,M)B , m⊗B n 7→ (x 7→ m(ny)

We shall now describe the inverses of the above isomorphisms. Let us denote by

cM,N :=
∑
α

µα ⊗B να

the Casimir element of M⊗BN , i.e., the element such that (see 3.2 above for a particular case)

∀n ∈ N ,
∑
α

(nµα)να = n and ∀m ∈M ,
∑
α

µα(ναm) = m.

Then the inverse of the isomorphism M ⊗B N
∼−→Hom(M,M)B is given by

ϕ 7→
∑
α

ϕµα ⊗B να .

We leave to the reader to write down similar formulae for the other isomorphisms quoted above.

The following lemma follows from what precedes.
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6.27. Lemma.

(1) The R–duality functor induces an isomorphism

HomA(M,M)B ' HomB(N,N)A

which in turn induces the following isomorphism of algebras
(N ⊗AM)B ∼−→ (M ⊗B N)A∑
i

ni ⊗A mi 7→
∑
α,i

(µαni)mi ⊗B να .

(2) In particular, the morphism

(M ⊗B N)A → ZA ,
∑
j

mj ⊗B nj 7→
∑
j

(mjnj)

induces the following morphism

(N ⊗AM)B → ZA ,
∑
i

ni ⊗A mi 7→
∑
α,i

(µαni)(miνα) .

Similarly, we denote by

cN,M :=
∑
β

ν′β ⊗A µ′β

the Casimir element of N ⊗AM .

Quadrimodules again.

Let us consider the objects (see above §1, Quadrimodules)

F := M ⊗R N ∈ (A⊗RAop)Mod(B⊗RBop)

G := N ⊗RM ∈ (B⊗RBop)Mod(A⊗RAop) .

Then the pair (F,G) with the pairing defined by
F ×G −→ R

(m⊗ n , n′ ⊗m′) 7→ 〈m,n′〉〈m′, n〉 ,

is an exact pair for the algebras A⊗R Aop and B ⊗R Bop.

• We have 
F ⊗(B⊗RBop) G

∼−→ (M ⊗B N)⊗R (M ⊗B N)

(m⊗ n)⊗ (n′ ⊗m′) 7→ (m⊗B n′)⊗R (m′ ⊗B n) .



68 Michel Broué

Notice that the structure of (A⊗ Aop)–module–(A⊗ Aop) on M ⊗B N ⊗RM ⊗B N is

given by

(a⊗ a0)(̇m⊗B n′ ⊗R m′ ⊗B n)(̇a′ ⊗ a′0) := am⊗B n′a′ ⊗R a′
0
m′ ⊗B na0)

Similarly we have
G⊗(A⊗RAop) F

∼−→ (N ⊗AM)⊗R (N ⊗AM)

(n′ ⊗m′)⊗ (m⊗ n) 7→ (n′ ⊗A m)⊗R (n⊗A m′) .

• Through that isomorphisms the counits are given by

εF,G =


(M ⊗B N)⊗R (M ⊗B N)→ A⊗R Aop

(m⊗ n′)⊗ (n⊗m′) 7→ (mn′)⊗R (m′n) , and

εG,F =


(N ⊗AM)⊗R (N ⊗AM)→ B ⊗R Bop

(n′ ⊗A m)⊗R (n⊗A m′) 7→ (n′m)⊗R (nm′) .

The units are given by

ηF,G =



B ⊗R Bop → N ⊗AM ⊗R N ⊗AM

1 7→ cG,F = cN,M ⊗R cN,M =
∑
β,β′

ν′β ⊗A µ′β ⊗R ν′β′ ⊗A µ′β′

b⊗ b0 7→
∑
β,β′

bν′β ⊗A µ′β ⊗R ν′β′ ⊗A µ′β′b0 =
∑
β,β′

ν′β ⊗A µ′βb⊗R b0ν′β′ ⊗A µ′β′

ηG,F =



A⊗R Aop →M ⊗B N ⊗RM ⊗B N

1 7→ cF,G = cM,N ⊗R cM,N =
∑
α,α′

µα ⊗B να ⊗R µα′ ⊗B να′

a⊗ a0 7→
∑
α,α′

aµα ⊗B να ⊗R µα′ ⊗B να′a0 =
∑
α,α′

µα ⊗B ναa⊗R a0µα′ ⊗B να′ .

• We have

FB
∼−→M ⊗B N ∈ A⊗Aopmod , (m⊗R n)⊗B⊗Bop b 7→ mb⊗B n

GA
∼−→N ⊗AM ∈ B⊗Bopmod , (n′ ⊗R m′)⊗A⊗Aop a 7→ n′a⊗A m′
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Let us compute the relative trace

TrFG(A) : HomB(GA,GA)B ' HomB(N ⊗AM,N ⊗AM)B −→ ZA ' HomA(A,A)A .

• Following lemma 6.26, we have the following isomorphism
N ⊗AM ⊗B N ⊗AM

∼−→HomB(N ⊗AM,N ⊗AM)

n⊗A m⊗B n′ ⊗A m′ 7→ ((y ⊗A x) 7→ (y(xn)m)n′ ⊗A m′) ,

from which we deduce the following isomorphism :
(N ⊗AM ⊗B N ⊗AM)B ∼−→HomB(N ⊗AM,N ⊗AM)B∑
i

ni ⊗A mi ⊗B n′i ⊗A m′i 7→

(
(y ⊗A x) 7→

∑
i

(y(xni)mi)n′i ⊗A m′i

)
,

• The relative trace

TrFG(A) : (N ⊗AM ⊗B N ⊗AM)B → ZA

is computed as follows.

For ξ ∈ (N ⊗A M ⊗B N ⊗A M)B , we denote by ξ̃ the corresponding element of

HomB(N ⊗A M,N ⊗A M)B . Then TrFG(ξ) is the image of 1 through the following

composition of morphisms

A

cG,F (A)

��

A

M ⊗B N ⊗AM ⊗B N
M⊗B

eξ⊗BN // M ⊗B N ⊗AM ⊗B N

εF,G(A)

OO

One finds

TrFG :
∑
i

ni ⊗A mi ⊗B n′i ⊗A m′i 7→
∑
α

∑
i

(µαni)(min
′
i)(m

′
iνα) .

Bicenter and relative traces.

Definition. The bicenter Z(M,N) is the algebra defined by

Z(M,N) := HomA⊗Bop(M ⊗R N,M ⊗R N)A⊗Bop .

Notice that 
(F ⊗B⊗Bop G)A⊗A

op
' (M ⊗B N ⊗AM ⊗B N)B

(G⊗A⊗Aop F )B⊗B
op
' (N ⊗AM ⊗B N ⊗AM)A

Applying lemma 6.27 (where we replace the pair (M,N) by the pair (F,G) defined above), we

get
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6.28. Proposition.

(1) There are isomorphisms of R–algebras

Z(M,N) ' (M ⊗B N ⊗AM ⊗B N)B ' (N ⊗AM ⊗B N ⊗AM)A .

(2) We have the following diagram involving relative traces

ZA

Z(M,N) ' (M ⊗B N ⊗AM ⊗B N)A ' (N ⊗AM ⊗B N ⊗AM)B

TrF
G(A)

22fffffffffffffffffffffffffff

TrG
F (B)

,,XXXXXXXXXXXXXXXXXXXXXXXXXXX

ZB

where the relative traces can be computed with two formulae as follows :

TrFG(A) :


(M ⊗B N ⊗AM ⊗B N)A → ZA

∑
i

(mi ⊗B ni ⊗A m′i ⊗B n′i) 7→
∑
i

(mi(nim′i)ni)

TrFG(A) :


(N ⊗AM ⊗B N ⊗AM)B → ZA

∑
i

(ni ⊗A mi ⊗B n′i ⊗A m′i) 7→
∑
α,i

(µαni)(min
′
i)(m

′
iνα)

(We recall that
∑
α µα ⊗B να is the Casimir element of M ⊗B N).

Remark. The isomorphism of R–modules Z(M,N) ' (M ⊗B N ⊗A M ⊗B N)A , may be written
Z(M,N) ' H0(A,M ⊗BN ⊗AM ⊗BN) , which implies Z(M,N)∗ ' H0(A,M ⊗BN ⊗AM ⊗BN) .
Thus we may see Z(M,N)∗ as the cyclic tensor product

M

⊗A B⊗
N N

⊗B A⊗
M

(M,N) split algebras.

The following proposition is an immediate application of 6.8.

6.29. Proposition–Definition. The following assertions are equivalent.

(i) A is isomorphic to a direct summand of M ⊗B N in AModA.

(ii) εM,N is a split epimorphism in AModA.
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(iii) ηN,M is a split monomorphism in AModA.

(iv) The trace map

TrFG(A) : Z(M,N)→ ZA

is onto.

(v) Every A–module is M–split.

If the preceding conditions are satisfied, we say that the algebra A is (M,N)–split (or, by abuse

of language if the context (M,N) is clear, we say that A is B–split).

Example : Induction–Restriction with R. Choose B := R, M :=A AR, N :=R AA and

〈a, a′〉 := t(aa′).

1. The following conditions are equivalent.

(i) A is principally symmetric.

(ii) R is A–split.

2. The following conditions are equivalent.

(i) A is separable.

(ii) A is R–split.

Example : Induction–Restriction with a parabolic subalgebra. Let B be a parabolic

subalgebra for A (see above §5). Choose

M :=AAB , N :=BAA , 〈a, a′〉 := t(aa′) .

Let B⊥ be the orthogonal of B in A, so that A = B ⊕ B⊥ and that BrAB : A → B is the

projection onto B parallel to B⊥.

Then we have the following pairing associated with the preceding scalar product

A×A A→ A , a⊗A a′ 7→ aa′

A×B A→ B , a⊗B a′ 7→ BrAB(aa′) .

It is clear that B is always A–split, while A is B–split if and only if A is a summand of

A⊗B A in AModA.
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Let cAB =
∑
i ei ⊗B e′i be the relative Casimir element, i.e., the element such that, for all

b ∈ B, we have
∑
i BrAB(bei)e′i = b .

The “double relative trace” is

TrFG :


(A⊗B A)B → ZA∑
j

xj ⊗ yj 7→
∑
i

ei(
∑
j

xjyj)e′i

Notice that the element 1⊗B 1 belongs to (A⊗BA)B . Its image by TrAB is the relative projective

central element zAB . Thus if zAB is invertible in ZA, the algebra A is B–split.
For example if A = RG and B = RH, then corresponding relative trace is

∑
ai ⊗B a′i 7→∑

g∈[G/H]
gaia

′
ig
−1 , and the relative projective central element is |G : H|. It follows that if the

index |G : H| is invertible in R, then RG is RH–split.

Example : Induction–restriction with idempotents.

This example is of course a generalisation of the preceding example.

We still denote by

• B a parabolic subalgebra of A,

• BrAB : A→ B the “Brauer morphism”, projection of A onto B parallel to B⊥,

• cAB =
∑
i ei ⊗B e′i ∈ A⊗B A the relative Casimir element of A relative to B.

Let e be a central idempotent in A and let f be a central idempotent in B. We shall apply

what precedes to the symmetric algebras Ae and Bf .

Choose

M := eAf , N := fAe , 〈a, a′〉 := t(aa′) .

Then we have the following pairing associated with the preceding scalar product

M ×AM → Ae , a⊗A a′ 7→ aa′

N ×B N → Bf , a⊗B a′ 7→ BrAB(aa′) ,

and the Casimir element cM,N is

cM,N =
∑
i

eeif ⊗B fe′ie .

The relative traces are computed as follows

TrFG : (feAf ⊗B fAef)B → ZAe ,
∑
j

aj ⊗B a′j 7→
∑
i

ei(
∑
j

aja
′
j)e
′
i

TrGF : (eAf ⊗B fAef ⊗B fAe)A → ZBf ,
∑
j

xj ⊗B zj ⊗B yj 7→
∑
j

BrAB(xj)BrAB(zj)BrAB(yj) .
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As an application of proposition 6.29, we get the following proposition, a generalisation of old

results of Fan Yun [Fa1] and [Fa2] (see also Alperin’s point of view in [Al], §15).

6.30. Proposition.

(1) The following assertions are equivalent :

(i) Every Ae–module is a summand of IndABY for some Bf–module Y .

(ii) The relative trace (fAef)B → ZAe is onto.

(2) The following assertions are equivalent :

(i) Every Bf–module is a summand of ResABX for some Ae–module X.

(ii) The Brauer morphism BrAB : (AefA)A → ZBf is onto.
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[Bou] N. Bourbaki, Algèbre I, Hermann, Paris, 1970.
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