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Unipotent characters for G2 © ©

Character Degree Fake degree Eigenvalue Family

φ1,0 1 1 1 C1

φ1,6 q6 q6 1 C1

φ2,1
1
6qΦ2

2Φ3 qΦ8 1 S3.(1, 1)
φ2,2

1
2qΦ2

2Φ6 q2Φ4 1 S3.(g2, 1)
φ′1,3

1
3qΦ3Φ6 q3 1 S3.(g3, 1)

φ′′1,3
1
3qΦ3Φ6 q3 1 S3.(1, ρ)

G2[1] 1
6qΦ2

1Φ6 0 1 S3.(1, ε)
G2[−1] 1

2qΦ2
1Φ3 0 −1 S3.(g2, ε)

G2[ζ3] 1
3qΦ2

1Φ2
2 0 ζ3 S3.(g3, ζ3)

G2[ζ2
3 ] 1

3qΦ2
1Φ2

2 0 ζ2
3 S3.(g3, ζ

2
3 )
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Unipotent characters for G4 3© 3©
(G4 = 2×S3)

Character Degree FakeDegree Eigenvalue Family

φ1,0 1 1 1 C1

φ2,1
3−
√
−3

6 qΦ′3Φ4Φ′′6 qΦ4 1 X3.01

φ2,3
3+
√
−3

6 qΦ′′3Φ4Φ′6 q3Φ4 1 X3.02

Z3 : 2
√
−3
3 qΦ1Φ2Φ4 0 ζ2

3 X3.12
φ3,2 q2Φ3Φ6 q2Φ3Φ6 1 C1

φ1,4
−
√
−3

6 q4Φ′′3Φ4Φ′′6 q4 1 X5.1

φ1,8

√
−3
6 q4Φ′3Φ4Φ′6 q8 1 X5.2

φ2,5
1
2q4Φ2

2Φ6 q5Φ4 1 X5.3

Z3 : 11
√
−3
3 q4Φ1Φ2Φ4 0 ζ2

3 X5.4
G4

1
2q4Φ2

1Φ3 0 −1 X5.5

Φ′3,Φ
′′
3 (resp. Φ′6,Φ

′′
6 ) are factors of Φ3 (resp Φ6) in Q(ζ3)
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Finite reductive groups

G a reductive group over Fq,

F an isogeny such that G is finite.
For simplicity we assume (G,F ) split. Set G := GF .

{G -conjugacy classes of F–stable maximal tori of G }
←→ { conjugacy classes of the Weyl group W }

UnCh(G ) := {Unipotent characters}
:= {Irreducible constituents of RG

Tw
(1)}

UnSh(G ) := {Unipotent character sheaves}
= Another C–basis for the space of class functions on G generated by
UnCh(G ).

Lusztig’s Fourier matrix S
:= (square) matrix between UnCh(G ) and UnSh(G ).

The blocks of S correspond to
Lusztig’s families of unipotent characters.
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Lusztig’s Fourier matrix for G2

(1, 1) (g2, 1) (g3, 1) (1, ρ) (1, ε) (g2, ε) (g3, ζ3) (g3, ζ
2
3 )

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

(1, 1) 0 0 1
6

1
2

1
3

1
3

1
6

1
2

1
3

1
3

(g2, 1) 0 0 1
2

1
2 0 0 − 1

2 − 1
2 0 0

(g3, 1) 0 0 1
3 0 2

3 − 1
3

1
3 0 − 1

3 − 1
3

(1, ρ) 0 0 1
3 0 − 1

3
2
3

1
3 0 − 1

3 − 1
3

(1, ε) 0 0 1
6 − 1

2
1
3

1
3

1
6 − 1

2
1
3

1
3

(g2, ε) 0 0 1
2 − 1

2 0 0 − 1
2

1
2 0 0

(g3, ζ3) 0 0 1
3 0 − 1

3 − 1
3

1
3 0 2

3 − 1
3

(g3, ζ
2
3 ) 0 0 1

3 0 − 1
3 − 1

3
1
3 0 − 1

3
2
3
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Lusztig’s Fourier matrix for G2

(1, 1) (g2, 1) (g3, 1) (1, ρ) (1, ε) (g2, ε) (g3, ζ3) (g3, ζ
2
3 )

1 . . . . . . . . .

. 1 . . . . . . . .

(1, 1) . . 1
6

1
2

1
3

1
3

1
6

1
2

1
3

1
3

(g2, 1) . . 1
2

1
2 . . − 1

2 − 1
2 . .

(g3, 1) . . 1
3 . 2

3 − 1
3

1
3 . − 1

3 − 1
3

(1, ρ) . . 1
3 . − 1

3
2
3

1
3 . − 1

3 − 1
3

(1, ε) . . 1
6 − 1

2
1
3

1
3

1
6 − 1

2
1
3

1
3

(g2, ε) . . 1
2 − 1

2 . . − 1
2

1
2 . .

(g3, ζ3) . . 1
3 . − 1

3 − 1
3

1
3 . 2

3 − 1
3

(g3, ζ
2
3 ) . . 1

3 . − 1
3 − 1

3
1
3 . − 1

3
2
3
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Unipotent characters for G2 © ©

Character Degree Fake degree Eigenvalue Family
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The Fourier matrix for G4

01 02 12 1 2 3 4 5

1 0 0 0 0 0 0 0 0 0

01 0 3−
√
−3

6
3+
√
−3

6

√
−3
3 0 0 0 0 0 0

02 0 3+
√
−3

6
3−
√
−3

6 −
√
−3
3 0 0 0 0 0 0

12 0
√
−3
3 −

√
−3
3

√
−3
3 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 −
√
−3
6

√
−3
6

1
2

√
−3
3

1
2

2 0 0 0 0 0
√
−3
6 −

√
−3
6

1
2 −

√
−3
3

1
2

3 0 0 0 0 0 1
2

1
2

1
2 0 −1

2

4 0 0 0 0 0
√
−3
3 −

√
−3
3 0

√
−3
3 0

5 0 0 0 0 0 1
2

1
2 −1

2 0 1
2
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The Fourier matrix for G4

01 02 12 1 2 3 4 5

1 . . . . . . . . .

01 . 3−
√
−3

6
3+
√
−3

6

√
−3
3 . . . . . .

02 . 3+
√
−3

6
3−
√
−3

6 −
√
−3
3 . . . . . .

12 .
√
−3
3 −

√
−3
3

√
−3
3 . . . . . .

. . . . 1 . . . . .

1 . . . . . −
√
−3
6

√
−3
6

1
2

√
−3
3

1
2

2 . . . . .
√
−3
6 −

√
−3
6

1
2 −

√
−3
3

1
2

3 . . . . . 1
2

1
2

1
2 . −1

2

4 . . . . .
√
−3
3 −

√
−3
3 .

√
−3
3 .

5 . . . . . 1
2

1
2 −1

2 . 1
2

Michel Broué Pseudo reductive groups over Fx ?



Unipotent characters for G4 3© 3©

Character Degree FakeDegree Eigenvalue Family

φ1,0 1 1 1 C1
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√
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√
−3
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Z3 : 2
√
−3
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−
√
−3
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√
−3
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√
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Harish-Chandra series

A Levi subgroup of an F–stable parabolic subgroup P of G is called a
1–Levi subgroup of G.

It gives rise to

P

F

AA
AA

NG

F

(L)

V

F

||||
L

F

WG(L)

vvvvv

1

DDDDD
{{{{{

and to

I Harish–Chandra induction RG
L := IndG

P · ResP→L

: CLmod→ CG mod

I and restriction ∗RG
L : CG mod→ CLmod

I which do not depend on the choice of P.
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Definition : cuspidal character

An irreducible character γ of G is said to be 1–cuspidal

if, whenever L
is a proper 1–Levi subgroup, we have ∗RG

L (γ) = 0 .

A pair (L, λ) is called 1–cuspidal if L is a 1–Levi subgroup of G and λ
a 1–cuspidal irreducible character of L.

Main theorem

1 Partition :

IrrK (G ) =
•⋃

(L,λ) cuspidal/G
Irr RG

L (λ)

2 For (L, λ) 1–cuspidal, the relative Weyl group

WG (L, λ) := NG (L, λ)/L

is a finite Coxeter group.

3 The commuting algebra EndKG RG
L (λ) is a Hecke algebra for

WG (L, λ).
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Michel Broué Pseudo reductive groups over Fx ?



Definition : cuspidal character

An irreducible character γ of G is said to be 1–cuspidal if, whenever L
is a proper 1–Levi subgroup, we have ∗RG

L (γ) = 0 .

A pair (L, λ) is called 1–cuspidal if L is a 1–Levi subgroup of G and λ
a 1–cuspidal irreducible character of L.

Main theorem
1 Partition :

IrrK (G ) =
•⋃

(L,λ) cuspidal/G
Irr RG

L (λ)

2 For (L, λ) 1–cuspidal, the relative Weyl group

WG (L, λ) := NG (L, λ)/L

is a finite Coxeter group.

3 The commuting algebra EndKG RG
L (λ) is a Hecke algebra for

WG (L, λ).
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Degrees and Eigenvalues

Degrees

The elements of UnCh(G ) and UnSh(G ) are parametrized by finite
sets which are independent of q

(depend only on the “type” of G).

The degrees of elements of UnCh(G ) and UnSh(G ) are polynomials
evaluated at q.

I Among the unipotent character sheaves are the functions

Rχ =
1

|W |
∑
w∈W

χ(w)RG
Tw

and DegRχ is the graded multiplicity of χ in the coinvariant algebra of
W , evaluated at q (the fake degree of χ).

I The degrees of the irreducible constituents of RG
L (λ) are given by the

“generic degrees” for the Hecke algebra of WG(L, λ).

The Fourier matrix is independent of q.
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Michel Broué Pseudo reductive groups over Fx ?



Degrees and Eigenvalues

Degrees

The elements of UnCh(G ) and UnSh(G ) are parametrized by finite
sets which are independent of q (depend only on the “type” of G).

The degrees of elements of UnCh(G ) and UnSh(G ) are polynomials
evaluated at q.

I Among the unipotent character sheaves are the functions

Rχ =
1

|W |
∑
w∈W

χ(w)RG
Tw

and DegRχ is the graded multiplicity of χ in the coinvariant algebra of
W , evaluated at q (the fake degree of χ).

I The degrees of the irreducible constituents of RG
L (λ) are given by the

“generic degrees” for the Hecke algebra of WG(L, λ).

The Fourier matrix is independent of q.
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Unipotent characters for G2 © ©

In red, the principal series = degrees prime to Φ1 (i.e., Degχ(q)q=1 6= 0)

Character Degree Fake degree Eigenvalue Family

φ1,0 1 1 1 C1

φ1,6 q6 q6 1 C1

φ2,1
1
6qΦ2

2Φ3 qΦ8 1 S3.(1, 1)
φ2,2

1
2qΦ2

2Φ6 q2Φ4 1 S3.(g2, 1)
φ′1,3

1
3qΦ3Φ6 q3 1 S3.(g3, 1)

φ′′1,3
1
3qΦ3Φ6 q3 1 S3.(1, ρ)

G2[1] 1
6qΦ2

1Φ6 0 1 S3.(1, ε)
G2[−1] 1

2qΦ2
1Φ3 0 −1 S3.(g2, ε)

G2[ζ3] 1
3qΦ2

1Φ2
2 0 ζ3 S3.(g3, ζ3)

G2[ζ2
3 ] 1

3qΦ2
1Φ2

2 0 ζ2
3 S3.(g3, ζ

2
3 )
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Unipotent characters for G4 3© 3©
Red = the principal series
Blue = series (L,λ)
Purple = Cuspidal

Character Degree FakeDegree Eigenvalue Family

φ1,0 1 1 1 C1

φ2,1
3−
√
−3

6 qΦ′3Φ4Φ′′6 qΦ4 1 X3.01

φ2,3
3+
√
−3

6 qΦ′′3Φ4Φ′6 q3Φ4 1 X3.02

Z3 : 2
√
−3
3 qΦ1Φ2Φ4 0 ζ2

3 X3.12
φ3,2 q2Φ3Φ6 q2Φ3Φ6 1 C1

φ1,4
−
√
−3

6 q4Φ′′3Φ4Φ′′6 q4 1 X5.1

φ1,8

√
−3
6 q4Φ′3Φ4Φ′6 q8 1 X5.2

φ2,5
1
2q4Φ2

2Φ6 q5Φ4 1 X5.3

Z3 : 11
√
−3
3 q4Φ1Φ2Φ4 0 ζ2

3 X5.4
G4

1
2q4Φ2

1Φ3 0 −1 X5.5
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Eigenvalues of Frobenius

RG
Tw

(g) =
∑

i (−1)iTrace(g | H i
c(Xw ,Q`))

Each H i
c(Xw ,Q`)) is a G ×<F>–module.

For any unipotent character ρ ∈ UnCh(G ), the eigenvalues of F on
the ρ-isotypic part of H i

c(Xw ,Q`)) are

λρq
n/2

where

I n ∈ N
I λρ is a root of unity independent of i and of w .

Definition

λρ is the eigenvalue of Frobenius attached to ρ.
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Reflection data and the Spetses game

By the isogeny theorem, (G,F ) is determined by its reflection datum

(X (T),Y (T),Φ,Φ∨, q)

All the above data (unipotent characters, degrees, Fourier matrix,
eigenvalues of Frobenius) can be obtained as a combinatorial game
starting from

I W ⊂ GL(V ), where V = X (T)⊗ C.

I The Hecke algebra

H(W ) = 〈s | (s− q)(s + 1) = 0〉

Spetses island : there we started to play the same game, replacing the
Weyl group W by the complex reflection group of order 3.
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Hecke algebras of complex reflection groups

Every complex reflection group W has a nice presentation “à la
Coxeter” :

G2 : © © , G4 : 3© 3©

and a field of realisation QW :

QG2 = Q and QG4 = Q(ζ3) .

The associated generic Hecke algebra is defined from such a
presentation :

H(G2) :=< S ,T ;


STSTST = TSTSTS

(S − u0)(S − u1) = 0

(T − v0)(T − v1) = 0

>

H(G4) :=< S ,T ;

{
STS = TST

(S − u0)(S − u1)(S − u2) = 0
>
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1 The generic Hecke algebra H(W ) is free of rank |W | over the
corresponding Laurent polynomial ring Z[(u±1

i ), (v±1
j ), . . . ].

2 It becomes a split semisimple algebra over a field obtained by
extracting suitable roots of the indeterminates.

3 With suitable choice we get a bijection

Irr(W )
∼−→ Irr(H(G )) , χ 7→ χH(W ) .

4 The generic Hecke algebra H(W ) is endowed with a canonical
symmetrizing form t : H(W )→ Z[(u±1

i ), (v±1
j ), . . . ]

I which specialises to the canonical form of the group algebra QW W ,
I and satisfies some other condition.

5 The Schur elements of the irreducible characters of W are the
elements sχ ∈ ZW [(x±1

i ), (y±1
j ), . . . ] defined by

t =
∑

χ∈Irr(W )

1

sχ
χH(W ) .
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Spetsial algebras

The spetsial Hecke algebra is the specialisation of H(W ) defined as
follows :

If G =©
s
d

m©
t
e · · · ,

then the relation

(S − u0)(S − u1) · · · (S − ud−1) = 0

specializes to
(S − q)(Sd−1 + · · ·+ S + 1) = 0

Thus the spetsial algebra becomes the group algebra of W at q = 1.

In our cases :

I For G2 : (S − q)(S + 1) = 0

I For G4 : (S − q)(S2 + S + 1) = 0
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Spetsial groups

The group W is called spetsial if

Degχ(q) := qN(q − 1)rPW (q)/Sχ ∈ QW [q]

Here is the list of the spetsial groups :

I Among the imprimitive groups : G (e, 1, r),G (e, e, r) .

I Among the exceptional groups :

Group Gn 4 5 6 7 8 9 10 11 12 13 14 15 16
Rank 2 2 2 2 2 2 2 2 2 2 2 2 2

Group Gn 17 18 19 20 21 22 23 24 25 26 27
Rank 2 2 2 2 2 2 3 3 3 3 3

Remark H3

Group Gn 28 29 30 31 32 33 34 35 36 37
Rank 4 4 4 4 4 5 6 6 7 8

Remark F4 H4 E6 E7 E8
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Michel Broué Pseudo reductive groups over Fx ?



Spetsial groups

The group W is called spetsial if

Degχ(q) := qN(q − 1)rPW (q)/Sχ ∈ QW [q]

Here is the list of the spetsial groups :

I Among the imprimitive groups : G (e, 1, r),G (e, e, r) .

I Among the exceptional groups :

Group Gn 4 5 6 7 8 9 10 11 12 13 14 15 16
Rank 2 2 2 2 2 2 2 2 2 2 2 2 2

Group Gn 17 18 19 20 21 22 23 24 25 26 27
Rank 2 2 2 2 2 2 3 3 3 3 3

Remark H3

Group Gn 28 29 30 31 32 33 34 35 36 37
Rank 4 4 4 4 4 5 6 6 7 8

Remark F4 H4 E6 E7 E8
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ζ-Harish-Chandra theory (simplified version)

Back to the context of a finite reductive group with Weyl group W .

Let
w ∈W be a ζ–regular element, i.e., V (w , ζ) := ker(w − ζIdV ) is maximal.

The centralizer W (w) of w is a complex reflection group on V (w , ζ).

NG (Tw , Id)/Tw 'W (w).

There is a ζ–cyclotomic Hecke algebra HW (w) for W (w) which
controls RG

Tw
(1).

I A unipotent character ρ is in RG
Tw

(1) iff Degρ(ζ) 6= 0.

I Conjecturally, there is a good choice of a Deligne–Lusztig variety
attached to w such that HW (w) = EndQ`G (H•c (Xw ,Q`))

The conjecture also predicts the eigenvalues of Frobenius attached to
constituents of RG

Tw
(1).

This conjecture was prompted by the abelian defect groups conjecture.
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Cyclotomic Hecke algebras

For G2

Regular ζ W (ζ) HW (ζ)

1 G2 (s − q)(s + 1)

−1 G2 (s − q)(s − 1)

ζ3 C6 (s − q2)(s − q)(s − 1)(s3 + q3)

ζ6 C6 (s − q2)(s + q)(s − 1)(s3 − q3)

For G4

Regular ζ W (ζ) HW (ζ)

1 G4 (s − q)(s + 1)

−1 G4 (s − q)(s − 1)

ζ3 C6 (s − q2)(s − 1)(s + 1)(s + ζ3q)(s − ζ3)(s + q)

ζ4 C4 (s − q3)(s − 1)(s − q)(s + 1)

ζ6 C6 (s − q2)(s − q)(s − 1)(s − ζ2
3q)(s − ζ2

3 )(s + 1)
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Unipotent characters for G4 3© 3©

In red = the Φ′6–series.
• = the Φ4–series.

Character Degree FakeDegree Eigenvalue Family

• φ1,0 • 1 1 1 C1

φ2,1
3−
√
−3

6 qΦ′3Φ4Φ′′6 qΦ4 1 X3.01

φ2,3
3+
√
−3

6 qΦ′′3Φ4Φ′6 q3Φ4 1 X3.02

Z3 : 2
√
−3
3 qΦ1Φ2Φ4 0 ζ2

3 X3.12
• φ3,2 • q2Φ3Φ6 q2Φ3Φ6 1 C1

φ1,4
−
√
−3

6 q4Φ′′3Φ4Φ′′6 q4 1 X5.1

φ1,8

√
−3
6 q4Φ′3Φ4Φ′6 q8 1 X5.2

• φ2,5 • 1
2q4Φ2

2Φ6 q5Φ4 1 X5.3

Z3 : 11
√
−3
3 q4Φ1Φ2Φ4 0 ζ2

3 X5.4
• G4 • 1

2q4Φ2
1Φ3 0 −1 X5.5
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Fourier matrices : G4

01 02 12 1 2 3 4 5

1 . . . . . . . . .

01 . 3−
√
−3

6
3+
√
−3

6

√
−3
3 . . . . . .

02 . 3+
√
−3

6
3−
√
−3

6 −
√
−3
3 . . . . . .

12 .
√
−3
3 −

√
−3
3

√
−3
3 . . . . . .

. . . . 1 . . . . .

1 . . . . . −
√
−3
6

√
−3
6

1
2

√
−3
3

1
2

2 . . . . .
√
−3
6 −

√
−3
6

1
2 −

√
−3
3

1
2

3 . . . . . 1
2

1
2

1
2 . −1

2

4 . . . . .
√
−3
3 −

√
−3
3 .

√
−3
3 .

5 . . . . . 1
2

1
2 −1

2 . 1
2
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Fourier matrices : Properties

Let S be the Fourier matrix.

1 S is symmetric.

2 S−1 = S .

3 S4 = 1.

Let Ω be the diagonal matrix of Frobenius eigenvalues.

4 S2Ω = ΩS2.

5 (ΩS)3 = 1.

Thus S and Ω define a representation of SL2(Z).

6 If i0 is a row of S corresponding to a special character of a Rouquier
block, then for all i , j , k the sums

∑
l SilSjlSklS

−1
i0l

are integral.

(A special character is one whose fake degree has same valuation as the
corresponding generic degree)
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Families and Harish–Chandra theories

UnCh(G ) =
•⋃
F∈Fam(G)

F (Lusztig families, blocks of Fourier matrix)

(and for all d) =
•⋃

(L,λ)d–cuspidal/G
Irr RG

L (λ) = IrrHG (L, λ)

So what are the sets F ∩ IrrHG (L, λ) ?

Lusztig has described the intersections with the principal series
Irr RG

T1
(1) using the Kazhdan-Lusztig basis, thus defining

families of characters of W .

In general, the partition

IrrHG (L, λ) =
•⋃
F∈Fam(G)

F ∩ IrrHG (L, λ)

is the partition into Rouquier blocks of the cyclotomic Hecke algebra
HG (L, λ).

Michel Broué Pseudo reductive groups over Fx ?



Families and Harish–Chandra theories

UnCh(G ) =
•⋃
F∈Fam(G)

F

(Lusztig families, blocks of Fourier matrix)

(and for all d) =
•⋃

(L,λ)d–cuspidal/G
Irr RG

L (λ) = IrrHG (L, λ)

So what are the sets F ∩ IrrHG (L, λ) ?

Lusztig has described the intersections with the principal series
Irr RG

T1
(1) using the Kazhdan-Lusztig basis, thus defining

families of characters of W .

In general, the partition

IrrHG (L, λ) =
•⋃
F∈Fam(G)

F ∩ IrrHG (L, λ)

is the partition into Rouquier blocks of the cyclotomic Hecke algebra
HG (L, λ).
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Michel Broué Pseudo reductive groups over Fx ?



Families and Harish–Chandra theories

UnCh(G ) =
•⋃
F∈Fam(G)

F (Lusztig families, blocks of Fourier matrix)

(and for all d)

=
•⋃

(L,λ)d–cuspidal/G
Irr RG

L (λ) = IrrHG (L, λ)

So what are the sets F ∩ IrrHG (L, λ) ?

Lusztig has described the intersections with the principal series
Irr RG

T1
(1) using the Kazhdan-Lusztig basis, thus defining

families of characters of W .

In general, the partition

IrrHG (L, λ) =
•⋃
F∈Fam(G)

F ∩ IrrHG (L, λ)

is the partition into Rouquier blocks of the cyclotomic Hecke algebra
HG (L, λ).
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Rouquier blocks

The Rouquier blocks of a cyclotomic Hecke algebra of a group W are
the ordinary blocks of that algebra over the ring

ZW

[
q, q−1,

(
1

qn − 1

)
n≥1

]

They are, roughly speaking, the bad primes blocks of the Hecke
algebra, where the bad primes are those prime ideals of ZW which
divide the Schur elements (in other words, the primes in the
denominators of the generic degrees).

All Rouquier blocks of all cyclotomic Hecke algebras of all complex
reflection groups have been determined (Malle–Rouquier, Broué–Kim,
Kim, Chlouveraki).
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Spetses

We call Spets for a spetsial reflection group W a list of
I unipotent degrees,
I parameters for relative cylotomic Hecke algebras,
I eigenvalues of Frobenius,
I Fourier matrices

satisfying the above properties... and many other.

Lusztig knew already a solution for Coxeter groups which are not
Weyl groups (except the Fourier matrix for H4 which was determined
by Malle in 1994).

Malle gave a solution for imprimitive Spetsial complex reflection
groups in 1995, and also proposed (unpublished) data for many
primitive Spetsial groups.

We can now show that there is a unique solution for all primitive
spetsial complex reflection groups.
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