Pseudo reductive groups over \mathbb{F}_{\times} ?

Michel Broué

Institut Henri–Poincaré

May 2009

Michel Broué Pseudo reductive groups over \mathbb{F}_{X} ?

・ロン ・回と ・ヨン・

Joint work between Michel Broué, Gunter Malle, and Jean Michel,

Joint work between Michel Broué, Gunter Malle, and Jean Michel,

initiated in the Greek island named SPETSES in 1993.

回 と く ヨ と く ヨ と …

Joint work between Michel Broué, Gunter Malle, and Jean Michel,

initiated in the Greek island named SPETSES in 1993.

Character	Degree	Fake degree	Eigenvalue	Family
<i>φ</i> _{1,0}	1	1	1	<i>C</i> ₁
$\phi_{1,6}$	q^6	q^6	1	C_1
$\phi_{2,1}$	$\frac{1}{6}q\Phi_2^2\Phi_3$	$q\Phi_8$	1	$S_{3}.(1,1)$
$\phi_{2,2}$	$\frac{1}{2}q\Phi_2^2\Phi_6$	$q^2\Phi_4$	1	$S_3.(g_2,1)$
$\phi'_{1,3}$	$\frac{1}{3}q\Phi_3\Phi_6$	q^3	1	$S_3.(g_3, 1)$
$\phi_{1,3}''$	$\frac{1}{3}q\Phi_3\Phi_6$	q^3	1	$S_{3}.(1, \rho)$
$G_2[1]$	$\frac{1}{6}q\Phi_1^2\Phi_6$	0	1	$S_3.(1,\varepsilon)$
$G_2[-1]$	$\frac{1}{2}q\Phi_1^2\Phi_3$	0	-1	$S_3.(g_2,\varepsilon)$
$G_2[\zeta_3]$	$\frac{1}{3}q\Phi_1^2\Phi_2^2$	0	ζ_3	$S_{3}.(g_{3},\zeta_{3})$
$G_2[\zeta_3^2]$	$\frac{1}{3}q\Phi_1^{\overline{2}}\Phi_2^{\overline{2}}$	0	ζ_3^2	$S_3.(g_3,\zeta_3^2)$

Unipotent characters for G_4

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Unipotent characters for G_4

Character	Degree	FakeDegree	Eigenvalue	Family
$\phi_{1,0}$	1	1	1	C_1
$\phi_{2,1}$	$\frac{3-\sqrt{-3}}{6}q\Phi_3'\Phi_4\Phi_6''$	$q\Phi_4$	1	<i>X</i> ₃ .01
$\phi_{2,3}$	$\frac{3+\sqrt{-3}}{6}q\Phi_3''\Phi_4\Phi_6'$	$q^3\Phi_4$	1	<i>X</i> ₃ .02
<i>Z</i> ₃ : 2	$\frac{\sqrt{-3}}{3}q\Phi_1\Phi_2\Phi_4$	0	ζ_3^2	<i>X</i> ₃ .12
$\phi_{3,2}$	$q^2\Phi_3\Phi_6$	$q^2\Phi_3\Phi_6$	1	C_1
$\phi_{1,4}$	$\frac{-\sqrt{-3}}{6}q^4\Phi_3''\Phi_4\Phi_6''$	q^4	1	$X_{5}.1$
$\phi_{1,8}$	$rac{\sqrt{-3}}{6}q^4\Phi_3'\Phi_4\Phi_6'$	q^8	1	<i>X</i> ₅ .2
$\phi_{2,5}$	$\frac{1}{2}q^4\Phi_2^2\Phi_6$	$q^5\Phi_4$	1	<i>X</i> ₅ .3
<i>Z</i> ₃ : 11	$\frac{\sqrt{-3}}{3}q^{\overline{4}}\Phi_1\Phi_2\Phi_4$	0	ζ_3^2	<i>X</i> ₅ .4
G ₄	$\frac{1}{2}q^4\Phi_1^2\Phi_3$	0	-1	$X_{5}.5$

 Φ'_3, Φ''_3 (resp. Φ'_6, Φ''_6) are factors of Φ_3 (resp Φ_6) in $\mathbb{Q}(\zeta_3)$

 $(G_4 = 2 \times \mathfrak{S}_3)$

< 臣 > (< 臣 >)

• **G** a reductive group over $\overline{\mathbf{F}}_{q}$,

< 注→ < 注→

• **G** a reductive group over $\overline{\mathbf{F}}_q$, F an isogeny such that G is finite.

< 注→ < 注→ -

• **G** a reductive group over $\overline{\mathbf{F}}_q$, *F* an isogeny such that *G* is finite. For simplicity we assume (**G**, *F*) split.

★ E ► ★ E ►

• **G** a reductive group over $\overline{\mathbf{F}}_q$, F an isogeny such that G is finite. For simplicity we assume (\mathbf{G}, F) split. Set $G := \mathbf{G}^F$.

★ E ▶ < E ▶</p>

- **G** a reductive group over $\overline{\mathbf{F}}_q$, F an isogeny such that G is finite. For simplicity we assume (\mathbf{G}, F) split. Set $G := \mathbf{G}^F$.
- { G-conjugacy classes of F-stable maximal tori of G }

< 注 ▶ < 注 ▶ ...

- **G** a reductive group over $\overline{\mathbf{F}}_q$, F an isogeny such that G is finite. For simplicity we assume (\mathbf{G}, F) split. Set $G := \mathbf{G}^F$.
- { G-conjugacy classes of F−stable maximal tori of G }
 ←→ { conjugacy classes of the Weyl group W }

★ E ► ★ E ►

- **G** a reductive group over $\overline{\mathbf{F}}_q$, F an isogeny such that G is finite. For simplicity we assume (\mathbf{G}, F) split. Set $G := \mathbf{G}^F$.
- { G-conjugacy classes of F−stable maximal tori of G }
 ←→ { conjugacy classes of the Weyl group W }
- UnCh(G) := {Unipotent characters}

御 と く ヨ と く ヨ と … ヨ

- **G** a reductive group over $\overline{\mathbf{F}}_q$, F an isogeny such that G is finite. For simplicity we assume (\mathbf{G}, F) split. Set $G := \mathbf{G}^F$.
- { G-conjugacy classes of F−stable maximal tori of G }
 ←→ { conjugacy classes of the Weyl group W }
- $UnCh(G) := \{ \frac{Unipotent characters}{:= \{ Irreducible constituents of R_{T_w}^G(1) \} }$

(< E) < E > E

- **G** a reductive group over $\overline{\mathbf{F}}_q$, F an isogeny such that G is finite. For simplicity we assume (\mathbf{G}, F) split. Set $G := \mathbf{G}^F$.
- { G-conjugacy classes of F−stable maximal tori of G }
 ←→ { conjugacy classes of the Weyl group W }
- $UnCh(G) := \{ \frac{Unipotent characters}{:= \{ Irreducible constituents of R_{T_w}^G(1) \} \}$
- UnSh(G) := {<u>Unipotent character sheaves</u>}

回り くほり くほり ……ほ

- **G** a reductive group over $\overline{\mathbf{F}}_q$, F an isogeny such that G is finite. For simplicity we assume (\mathbf{G}, F) split. Set $G := \mathbf{G}^F$.
- { G-conjugacy classes of F−stable maximal tori of G }
 ←→ { conjugacy classes of the Weyl group W }
- UnCh(G) := {Unipotent characters} := {Irreducible constituents of $R_{T_w}^{G}(1)$ }
- UnSh(G) := {Unipotent character sheaves}
 - = Another \mathbb{C} -basis for the space of class functions on G generated by UnCh(G).
- Lusztig's Fourier matrix S

< □ > < □ > < □ > □ □

- **G** a reductive group over $\overline{\mathbf{F}}_q$, F an isogeny such that G is finite. For simplicity we assume (\mathbf{G}, F) split. Set $G := \mathbf{G}^F$.
- { G-conjugacy classes of F−stable maximal tori of G }
 ←→ { conjugacy classes of the Weyl group W }
- $UnCh(G) := \{ \frac{Unipotent characters}{:= \{ Irreducible constituents of R_{T_w}^{G}(1) \} }$
- UnSh(G) := {Unipotent character sheaves}
 - = Another \mathbb{C} -basis for the space of class functions on G generated by UnCh(G).
- Lusztig's Fourier matrix S

:= (square) matrix between UnCh(G) and UnSh(G).

(日) (四) (王) (王) (王)

- **G** a reductive group over $\overline{\mathbf{F}}_q$, F an isogeny such that G is finite. For simplicity we assume (\mathbf{G}, F) split. Set $G := \mathbf{G}^F$.
- { G-conjugacy classes of F−stable maximal tori of G }
 ←→ { conjugacy classes of the Weyl group W }
- $UnCh(G) := \{ \frac{Unipotent characters}{:= \{ Irreducible constituents of R_{T_w}^{G}(1) \} }$
- UnSh(G) := {Unipotent character sheaves}
 Another C-basis for the space of class functions on G generated by

UnCh(G).

- <u>Lusztig's Fourier matrix</u> S
 := (square) matrix between UnCh(G) and UnSh(G).
- The blocks of S correspond to

Lusztig's families of unipotent characters.

			(1, 1)	$(g_2,1)$	$(g_3, 1)$	$(1, \rho)$	$(1, \varepsilon)$	(g_2, ε)	(g_3,ζ_3)	(g_3,ζ_3^2)
	1	0	0	0	0	0	0	0	0	0
	0	1	0	0	0	0	0	0	0	0
(1,1)	0	0	$\frac{1}{6}$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{3}$
$(g_2, 1)$	0	0	$\frac{1}{2}$	$\frac{1}{2}$	0	0	$-\frac{1}{2}$	$-\frac{1}{2}$	0	0
$(g_3, 1)$	0	0	$\frac{1}{3}$	0	$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{1}{3}$	0	$-\frac{1}{3}$	$-\frac{1}{3}$
$(1, \rho)$	0	0	$\frac{1}{3}$	0	$-\frac{1}{3}$	$\frac{2}{3}$	$\frac{1}{3}$	0	$-\frac{1}{3}$	$-\frac{1}{3}$
$(1, \varepsilon)$	0	0	$\frac{1}{6}$	$-\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{6}$	$-\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{3}$
(g_2, ε)	0	0	$\frac{1}{2}$	$-\frac{1}{2}$	0	0	$-\frac{1}{2}$	$\frac{1}{2}$	0	0
(g_3,ζ_3)	0	0	$\frac{1}{3}$	0	$-\frac{1}{3}$	$-\frac{1}{3}$	$\frac{1}{3}$	0	$\frac{2}{3}$	$-\frac{1}{3}$
(g_3,ζ_3^2)	0	0	$\frac{1}{3}$	0	$-\frac{1}{3}$	$-\frac{1}{3}$	$\frac{1}{3}$	0	$-\frac{1}{3}$	$\frac{2}{3}$

			(1,1)	$(g_2, 1)$	$(g_3, 1)$	(1, <i>ρ</i>)	$(1, \varepsilon)$	(g_2, ε)	(g_3,ζ_3)	(g_3,ζ_3^2)
	1									
	.	1								
(1, 1)		•	$\frac{1}{6}$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{3}$
$(g_2, 1)$		•	$\frac{1}{2}$	$\frac{1}{2}$			$-\frac{1}{2}$	$-\frac{1}{2}$		
$(g_3, 1)$		•	$\frac{1}{3}$		$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{1}{3}$	•	$-\frac{1}{3}$	$-\frac{1}{3}$
$(1, \rho)$		•	$\frac{1}{3}$		$-\frac{1}{3}$	$\frac{2}{3}$	$\frac{1}{3}$	•	$-\frac{1}{3}$	$-\frac{1}{3}$
$(1, \varepsilon)$		•	$\frac{1}{6}$	$-\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{6}$	$-\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{3}$
(g_2, ε)		•	$\frac{1}{2}$	$-\frac{1}{2}$			$-\frac{1}{2}$	$\frac{1}{2}$		
(g_3,ζ_3)		•	$\frac{1}{3}$		$-\frac{1}{3}$	$-\frac{1}{3}$	$\frac{1}{3}$	•	$\frac{2}{3}$	$-\frac{1}{3}$
(g_3,ζ_3^2)		•	$\frac{1}{3}$	•	$-\frac{1}{3}$	$-\frac{1}{3}$	$\frac{1}{3}$	•	$-\frac{1}{3}$	$\frac{2}{3}$

Character	Degree	Fake degree	Eigenvalue	Family
<i>φ</i> _{1,0}	1	1	1	<i>C</i> ₁
$\phi_{1,6}$	q^6	q^6	1	C_1
$\phi_{2,1}$	$\frac{1}{6}q\Phi_2^2\Phi_3$	$q\Phi_8$	1	$S_{3}.(1,1)$
$\phi_{2,2}$	$\frac{1}{2}q\Phi_2^2\Phi_6$	$q^2\Phi_4$	1	$S_3.(g_2,1)$
$\phi'_{1,3}$	$\frac{1}{3}q\Phi_3\Phi_6$	q^3	1	$S_3.(g_3, 1)$
$\phi_{1,3}''$	$\frac{1}{3}q\Phi_3\Phi_6$	q^3	1	$S_{3}.(1, \rho)$
$G_2[1]$	$\frac{1}{6}q\Phi_1^2\Phi_6$	0	1	$S_3.(1,\varepsilon)$
$G_2[-1]$	$\frac{1}{2}q\Phi_1^2\Phi_3$	0	-1	$S_3.(g_2,\varepsilon)$
$G_2[\zeta_3]$	$\frac{1}{3}q\Phi_1^2\Phi_2^2$	0	ζ_3	$S_{3}.(g_{3},\zeta_{3})$
$G_2[\zeta_3^2]$	$\frac{1}{3}q\Phi_1^{\overline{2}}\Phi_2^{\overline{2}}$	0	ζ_3^2	$S_3.(g_3,\zeta_3^2)$

The Fourier matrix for G_4

		01	02	12		1	2	3	4	5
	1	0	0	0	0	0	0	0	0	0
01	0	$\frac{3-\sqrt{-3}}{6}$	$\frac{3+\sqrt{-3}}{6}$	$\frac{\sqrt{-3}}{3}$	0	0	0	0	0	0
02	0	$\frac{3+\sqrt{-3}}{6}$	$\frac{3-\sqrt{-3}}{6}$	$-\frac{\sqrt{-3}}{3}$	0	0	0	0	0	0
12	0	$\frac{\sqrt{-3}}{3}$	$-\frac{\sqrt{-3}}{3}$	$\frac{\sqrt{-3}}{3}$	0	0	0	0	0	0
	0	0	0	0	1	0	0	0	0	0
1	0	0	0	0	0	$-\frac{\sqrt{-3}}{6}$	$\frac{\sqrt{-3}}{6}$	$\frac{1}{2}$	$\frac{\sqrt{-3}}{3}$	$\frac{1}{2}$
2	0	0	0	0	0	$\frac{\sqrt{-3}}{6}$	$-\frac{\sqrt{-3}}{6}$	$\frac{1}{2}$	$-\frac{\sqrt{-3}}{3}$	$\frac{1}{2}$
3	0	0	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$
4	0	0	0	0	0	$\frac{\sqrt{-3}}{3}$	$-\frac{\sqrt{-3}}{3}$	0	$\frac{\sqrt{-3}}{3}$	0
5	0	0	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$

・ロト ・回 ト ・ヨト ・ヨト

The Fourier matrix for G_4

		01	02	12		1	2	3	4	5
	1									
01	.	$\frac{3-\sqrt{-3}}{6}$	$\frac{3+\sqrt{-3}}{6}$	$\frac{\sqrt{-3}}{3}$						
02		$\frac{3+\sqrt{-3}}{6}$	$\frac{3-\sqrt{-3}}{6}$	$-\frac{\sqrt{-3}}{3}$						
12		$\frac{\sqrt{-3}}{3}$	$-\frac{\sqrt{-3}}{3}$	$\frac{\sqrt{-3}}{3}$						
		•			1					
1						$-\frac{\sqrt{-3}}{6}$	$\frac{\sqrt{-3}}{6}$	$\frac{1}{2}$	$\frac{\sqrt{-3}}{3}$	$\frac{1}{2}$
2						$\frac{\sqrt{-3}}{6}$	$-\frac{\sqrt{-3}}{6}$	$\frac{1}{2}$	$-\frac{\sqrt{-3}}{3}$	$\frac{1}{2}$
3						$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$		$-\frac{1}{2}$
4	.					$\frac{\sqrt{-3}}{3}$	$-\frac{\sqrt{-3}}{3}$		$\frac{\sqrt{-3}}{3}$	
5					•	$\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	•	$\frac{1}{2}$

・ロト ・回 ト ・ヨト ・ヨト

Character	Degree	FakeDegree	Eigenvalue	Family
$\phi_{1,0}$	1	1	1	C_1
$\phi_{2,1}$	$\frac{3-\sqrt{-3}}{6}q\Phi_3'\Phi_4\Phi_6''$	$q\Phi_4$	1	<i>X</i> ₃ .01
$\phi_{2,3}$	$\frac{3+\sqrt{-3}}{6}q\Phi_3''\Phi_4\Phi_6'$	$q^3\Phi_4$	1	<i>X</i> ₃ .02
<i>Z</i> ₃ : 2	$\frac{\sqrt{-3}}{3}q\Phi_1\Phi_2\Phi_4$	0	ζ_3^2	<i>X</i> ₃ .12
$\phi_{3,2}$	$q^2\Phi_3\Phi_6$	$q^2\Phi_3\Phi_6$	1	C_1
$\phi_{1,4}$	$\frac{-\sqrt{-3}}{6}q^4\Phi_3^{\prime\prime}\Phi_4\Phi_6^{\prime\prime}$	q^4	1	$X_{5}.1$
$\phi_{1,8}$	$rac{\sqrt{-3}}{6}q^4\Phi_3'\Phi_4\Phi_6'$	q^8	1	<i>X</i> ₅ .2
$\phi_{2,5}$	$\frac{1}{2}q^4\Phi_2^2\Phi_6$	$q^5\Phi_4$	1	<i>X</i> ₅ .3
<i>Z</i> ₃ : 11	$\frac{\sqrt{-3}}{3}q^{\overline{4}}\Phi_1\Phi_2\Phi_4$	0	ζ_3^2	<i>X</i> ₅ .4
G ₄	$\frac{1}{2}q^4\Phi_1^2\Phi_3$	0	-1	$X_{5}.5$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Э

Michel Broué Pseudo reductive groups over \mathbb{F}_{X} ?

ヘロア 人間 アメヨア 人口 ア

• A Levi subgroup of an *F*-stable parabolic subgroup **P** of **G** is called a 1-Levi subgroup of **G**.

□ > < E > < E > -

- A Levi subgroup of an *F*-stable parabolic subgroup **P** of **G** is called a <u>1-Levi subgroup of **G**</u>.
- It gives rise to

< ≣⇒

- A Levi subgroup of an *F*-stable parabolic subgroup **P** of **G** is called a <u>1-Levi subgroup of **G**</u>.
- It gives rise to

< ≣⇒

< ≣ >

- A Levi subgroup of an *F*-stable parabolic subgroup **P** of **G** is called a <u>1-Levi subgroup of **G**</u>.
- It gives rise to

and to

< ≣⇒

< ≣ >

- A Levi subgroup of an *F*-stable parabolic subgroup **P** of **G** is called a 1-Levi subgroup of **G**.
- It gives rise to

and to

• Harish–Chandra induction $R_L^G := \operatorname{Ind}_P^G \cdot \operatorname{Res}_{P \to L}$

- ◆ 臣 ▶ - ◆ 臣 ▶ - -

- A Levi subgroup of an *F*-stable parabolic subgroup **P** of **G** is called a 1-Levi subgroup of **G**.
- It gives rise to

and to

▶ Harish–Chandra induction $R_L^G := \operatorname{Ind}_P^G \cdot \operatorname{Res}_{P \to L} : {}_{\mathbb{C}L}\mathbf{mod} \to {}_{\mathbb{C}G}\mathbf{mod}$

▶ ★ E ▶ ★ E ▶ E

- A Levi subgroup of an *F*-stable parabolic subgroup **P** of **G** is called a 1-Levi subgroup of **G**.
- It gives rise to

and to

- ▶ Harish–Chandra induction $R_L^G := \operatorname{Ind}_P^G \cdot \operatorname{Res}_{P \to L} : {}_{\mathbb{C}L}\mathbf{mod} \to {}_{\mathbb{C}G}\mathbf{mod}$
- and restriction $*R_L^G : {}_{\mathbb{C}G}\mathbf{mod} \to {}_{\mathbb{C}L}\mathbf{mod}$

→ 米屋→ 米屋→ 一屋

- A Levi subgroup of an *F*-stable parabolic subgroup **P** of **G** is called a 1-Levi subgroup of **G**.
- It gives rise to

and to

- ▶ Harish–Chandra induction $R_L^G := \operatorname{Ind}_P^G \cdot \operatorname{Res}_{P \to L} : {}_{\mathbb{C}L}\mathbf{mod} \to {}_{\mathbb{C}G}\mathbf{mod}$
- and restriction $*R_L^G : {}_{\mathbb{C}G}\mathbf{mod} \to {}_{\mathbb{C}L}\mathbf{mod}$
- which do not depend on the choice of P.

Definition : cuspidal character

Michel Broué Pseudo reductive groups over \mathbb{F}_{X} ?

(ロ) (四) (注) (注) (注) [
• An irreducible character γ of G is said to be 1-cuspidal

個 と く ヨ と く ヨ と …

æ

An irreducible character γ of G is said to be <u>1-cuspidal</u> if, whenever L is a proper 1-Levi subgroup, we have *R_L^G(γ) = 0.

- An irreducible character γ of G is said to be <u>1-cuspidal</u> if, whenever L is a proper 1-Levi subgroup, we have *R_L^G(γ) = 0.
- A pair (L, λ) is called 1-cuspidal if L is a 1-Levi subgroup of G and λ a 1-cuspidal irreducible character of L.

< 注→ < 注→

- An irreducible character γ of G is said to be <u>1-cuspidal</u> if, whenever L is a proper 1-Levi subgroup, we have *R_L^G(γ) = 0.
- A pair (L, λ) is called 1-cuspidal if L is a 1-Levi subgroup of G and λ a 1-cuspidal irreducible character of L.

Main theorem

- An irreducible character γ of G is said to be <u>1-cuspidal</u> if, whenever L is a proper 1-Levi subgroup, we have *R_L^G(γ) = 0.
- A pair (L, λ) is called 1-cuspidal if L is a 1-Levi subgroup of G and λ a 1-cuspidal irreducible character of L.

Main theorem

• Partition :

$$\operatorname{Irr}_{\mathcal{K}}(G) = \bigcup_{(L,\lambda) \text{ cuspidal}/G}^{\bullet} \operatorname{Irr} R_{L}^{G}(\lambda)$$

- An irreducible character γ of G is said to be <u>1-cuspidal</u> if, whenever L is a proper 1-Levi subgroup, we have *R_L^G(γ) = 0.
- A pair (L, λ) is called 1-cuspidal if L is a 1-Levi subgroup of G and λ a 1-cuspidal irreducible character of L.

Main theorem

1 Partition :

$$\operatorname{Irr}_{\mathcal{K}}(G) = \bigcup_{(L,\lambda) \text{ cuspidal}/G} \operatorname{Irr} R_L^G(\lambda)$$

2 For (L, λ) 1–cuspidal, the <u>relative Weyl group</u>

$$W_G(L,\lambda) := N_G(L,\lambda)/L$$

is a finite Coxeter group.

- An irreducible character γ of G is said to be <u>1-cuspidal</u> if, whenever L is a proper 1-Levi subgroup, we have ${}^*R_L^G(\gamma) = 0$.
- A pair (L, λ) is called 1-cuspidal if L is a 1-Levi subgroup of G and λ a 1-cuspidal irreducible character of L.

Main theorem

Partition :

$$\operatorname{Irr}_{K}(G) = \bigcup_{(L,\lambda) \text{ cuspidal}/G} \operatorname{Irr} R_{L}^{G}(\lambda)$$

2 For (L, λ) 1–cuspidal, the <u>relative Weyl group</u>

$$W_G(L,\lambda) := N_G(L,\lambda)/L$$

is a finite Coxeter group.

 The commuting algebra End_{KG} R^G_L(λ) is a Hecke algebra for W_G(L, λ).

Degrees

< 口 > < 回 > < 回 > < 回 > < 回 > <

æ

Degrees

• The elements of UnCh(G) and UnSh(G) are parametrized by finite sets which are independent of q

★ E ► ★ E ►

Degrees

 The elements of UnCh(G) and UnSh(G) are parametrized by finite sets which are independent of q (depend only on the "type" of G).

★ E ► < E ► ...</p>

Degrees

- The elements of UnCh(G) and UnSh(G) are parametrized by finite sets which are independent of q (depend only on the "type" of G).
- The degrees of elements of UnCh(G) and UnSh(G) are polynomials evaluated at q.

白 と く ヨ と く ヨ と …

Degrees

- The elements of UnCh(G) and UnSh(G) are parametrized by finite sets which are independent of q (depend only on the "type" of G).
- The degrees of elements of UnCh(G) and UnSh(G) are polynomials evaluated at q.
 - Among the unipotent character sheaves are the functions

$$R_{\chi} = \frac{1}{|W|} \sum_{w \in W} \chi(w) R_{\mathsf{T}_w}^{\mathsf{G}}$$

回 と く ヨ と く ヨ と …

Degrees

- The elements of UnCh(G) and UnSh(G) are parametrized by finite sets which are independent of q (depend only on the "type" of G).
- The degrees of elements of UnCh(G) and UnSh(G) are polynomials evaluated at q.
 - Among the unipotent character sheaves are the functions

$$R_{\chi} = \frac{1}{|W|} \sum_{w \in W} \chi(w) R_{\mathsf{T}_w}^{\mathsf{G}}$$

and $\text{Deg}R_{\chi}$ is the graded multiplicity of χ in the coinvariant algebra of W, evaluated at q (the fake degree of χ).

イロン イ部ン イヨン イヨン 三日

Degrees

- The elements of UnCh(G) and UnSh(G) are parametrized by finite sets which are independent of q (depend only on the "type" of G).
- The degrees of elements of UnCh(G) and UnSh(G) are polynomials evaluated at q.
 - Among the unipotent character sheaves are the functions

$$R_{\chi} = \frac{1}{|W|} \sum_{w \in W} \chi(w) R_{\mathsf{T}_w}^{\mathsf{G}}$$

and $\text{Deg}R_{\chi}$ is the graded multiplicity of χ in the coinvariant algebra of W, evaluated at q (the <u>fake degree of χ </u>).

The degrees of the irreducible constituents of R^G_L(λ) are given by the "generic degrees" for the Hecke algebra of W_G(L, λ).

(ロ) (同) (E) (E) (E)

Degrees

- The elements of UnCh(G) and UnSh(G) are parametrized by finite sets which are independent of q (depend only on the "type" of G).
- The degrees of elements of UnCh(G) and UnSh(G) are polynomials evaluated at q.
 - Among the unipotent character sheaves are the functions

$$R_{\chi} = \frac{1}{|W|} \sum_{w \in W} \chi(w) R_{\mathsf{T}_w}^{\mathsf{G}}$$

and $\text{Deg}R_{\chi}$ is the graded multiplicity of χ in the coinvariant algebra of W, evaluated at q (the <u>fake degree of χ </u>).

- The degrees of the irreducible constituents of R^G_L(λ) are given by the "generic degrees" for the Hecke algebra of W_G(L, λ).
- The Fourier matrix is independent of q.

・ロト ・回ト ・ヨト ・ヨト

 $\bigcirc = \bigcirc$

< 注→ < 注→ -

In red, the principal series = degrees prime to Φ_1 (*i.e.*, $\text{Deg}_{\chi}(q)_{q=1} \neq 0$)

Character	Degree	Fake degree	Eigenvalue	Family
$\phi_{1,0}$	1	1	1	C_1
$\phi_{1,6}$	q^6	q^6	1	C_1
$\phi_{2,1}$	$\frac{1}{6}q\Phi_2^2\Phi_3$	$q\Phi_8$	1	$S_{3}.(1,1)$
$\phi_{2,2}$	$\frac{1}{2}q\Phi_2^2\Phi_6$	$q^2 \Phi_4$	1	$S_{3}.(g_{2},1)$
$\phi'_{1,3}$	$\frac{1}{3}q\Phi_3\Phi_6$	q^3	1	$S_{3}.(g_{3},1)$
$\phi_{1,3}''$	$\frac{1}{3}q\Phi_3\Phi_6$	q^3	1	$S_{3}.(1, \rho)$
$G_{2}[1]$	$\frac{1}{6}q\Phi_1^2\Phi_6$	0	1	$S_3.(1, \varepsilon)$
$G_2[-1]$	$\frac{1}{2}q\Phi_1^2\Phi_3$	0	-1	$S_3.(g_2,\varepsilon)$
$G_2[\zeta_3]$	$\frac{1}{3}q\Phi_1^2\Phi_2^2$	0	ζ3	$S_3.(g_3,\zeta_3)$
$G_2[\zeta_3^2]$	$\frac{1}{3}q\Phi_1^{\overline{2}}\Phi_2^{\overline{2}}$	0	ζ_3^2	$S_{3}.(g_{3},\zeta_{3}^{2})$

Unipotent characters for G_4

Red = the principal series Blue = series (L,λ) Purple = Cuspidal

Character	Degree	FakeDegree	Eigenvalue	Family
$\phi_{1,0}$	1	1	1	C_1
$\phi_{2,1}$	$\frac{3-\sqrt{-3}}{6}q\Phi_3'\Phi_4\Phi_6''$	$q\Phi_4$	1	<i>X</i> ₃ .01
$\phi_{2,3}$	$\frac{3+\sqrt{-3}}{6}q\Phi_3''\Phi_4\Phi_6'$	$q^3\Phi_4$	1	<i>X</i> ₃ .02
<i>Z</i> ₃ : 2	$\frac{\sqrt{-3}}{3}q\Phi_1\Phi_2\Phi_4$	0	ζ_3^2	<i>X</i> ₃ .12
$\phi_{3,2}$	$q^2\Phi_3\Phi_6$	$q^2\Phi_3\Phi_6$	1	C_1
$\phi_{1,4}$	$\frac{-\sqrt{-3}}{6}q^4\Phi_3''\Phi_4\Phi_6''$	q^4	1	$X_{5}.1$
$\phi_{1,8}$	$rac{\sqrt{-3}}{6}q^4\Phi_3'\Phi_4\Phi_6'$	q^8	1	<i>X</i> ₅ .2
$\phi_{2,5}$	$\frac{1}{2}q^4\Phi_2^2\Phi_6$	$q^5\Phi_4$	1	<i>X</i> ₅ .3
<i>Z</i> ₃ : 11	$\frac{\sqrt{-3}}{3}q^4\Phi_1\Phi_2\Phi_4$	0	ζ_3^2	<i>X</i> ₅ .4
G ₄	$\frac{1}{2}q^4\Phi_1^2\Phi_3$	0	-1	$X_{5}.5$

★ E ► ★ E ►

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

•
$$R_{\mathbf{T}_w}^{\mathbf{G}}(g) = \sum_i (-1)^i \operatorname{Trace}(g \mid H_c^i(\mathbf{X}_w, \mathbb{Q}_\ell))$$

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

- $R_{\mathbf{T}_w}^{\mathbf{G}}(g) = \sum_i (-1)^i \operatorname{Trace}(g \mid H_c^i(\mathbf{X}_w, \mathbb{Q}_\ell))$
- Each $H^i_c(\mathbf{X}_w, \mathbb{Q}_\ell))$ is a $G \times \langle F \rangle$ -module.

個人 くほん くほん しほ

- $R_{\mathbf{T}_w}^{\mathbf{G}}(g) = \sum_i (-1)^i \operatorname{Trace}(g \mid H_c^i(\mathbf{X}_w, \mathbb{Q}_\ell))$
- Each $H_c^i(\mathbf{X}_w, \mathbb{Q}_\ell)$ is a $G \times \langle F \rangle$ -module.
- For any unipotent character ρ ∈ UnCh(G), the eigenvalues of F on the ρ-isotypic part of Hⁱ_c(X_w, Q_ℓ)) are

個人 くほん くほん しほ

- $R_{\mathbf{T}_w}^{\mathbf{G}}(g) = \sum_i (-1)^i \operatorname{Trace}(g \mid H_c^i(\mathbf{X}_w, \mathbb{Q}_\ell))$
- Each $H_c^i(\mathbf{X}_w, \mathbb{Q}_\ell)$ is a $G \times \langle F \rangle$ -module.
- For any unipotent character ρ ∈ UnCh(G), the eigenvalues of F on the ρ-isotypic part of Hⁱ_c(X_w, Q_ℓ)) are

$$\lambda_{
ho} q^{n/2}$$

where

御 と く ヨ と く ヨ と … ヨ

- $R_{\mathbf{T}_w}^{\mathbf{G}}(g) = \sum_i (-1)^i \operatorname{Trace}(g \mid H_c^i(\mathbf{X}_w, \mathbb{Q}_\ell))$
- Each $H_c^i(\mathbf{X}_w, \mathbb{Q}_\ell)$ is a $G \times \langle F \rangle$ -module.
- For any unipotent character ρ ∈ UnCh(G), the eigenvalues of F on the ρ-isotypic part of Hⁱ_c(X_w, Q_ℓ)) are

$$\lambda_{
ho} q^{n/2}$$

where

▶ $n \in \mathbb{N}$

御 と く ヨ と く ヨ と … ヨ

- $R_{\mathbf{T}_w}^{\mathbf{G}}(g) = \sum_i (-1)^i \operatorname{Trace}(g \mid H_c^i(\mathbf{X}_w, \mathbb{Q}_\ell))$
- Each $H_c^i(\mathbf{X}_w, \mathbb{Q}_\ell)$ is a $G \times \langle F \rangle$ -module.
- For any unipotent character ρ ∈ UnCh(G), the eigenvalues of F on the ρ-isotypic part of Hⁱ_c(X_w, Q_ℓ)) are

$$\lambda_{
ho} q^{n/2}$$

where

- ▶ $n \in \mathbb{N}$
- λ_{ρ} is a root of unity <u>independent of *i* and of *w*</u>.

□ > < E > < E > < E</p>

- $R_{\mathbf{T}_w}^{\mathbf{G}}(g) = \sum_i (-1)^i \operatorname{Trace}(g \mid H_c^i(\mathbf{X}_w, \mathbb{Q}_\ell))$
- Each $H_c^i(\mathbf{X}_w, \mathbb{Q}_\ell)$ is a $G \times \langle F \rangle$ -module.
- For any unipotent character ρ ∈ UnCh(G), the eigenvalues of F on the ρ-isotypic part of Hⁱ_c(X_w, Q_ℓ)) are

$$\lambda_{
ho} q^{n/2}$$

where

- ▶ $n \in \mathbb{N}$
- λ_{ρ} is a root of unity <u>independent of *i* and of *w*</u>.

Definition

 λ_{ρ} is the eigenvalue of Frobenius attached to ρ .

(4回) (注) (注) (注) (注)

Michel Broué Pseudo reductive groups over \mathbb{F}_{X} ?

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

æ

• By the isogeny theorem, (\mathbf{G}, F) is determined by its reflection datum

< 注→ < 注→ -

• By the isogeny theorem, (\mathbf{G}, F) is determined by its reflection datum

 $(X(\mathbf{T}), Y(\mathbf{T}), \Phi, \Phi^{\vee}, q)$

副 と く ヨ と く ヨ と

• By the isogeny theorem, (**G**, *F*) is determined by its reflection datum

 $(X(\mathbf{T}), Y(\mathbf{T}), \Phi, \Phi^{\vee}, q)$

• All the above data (unipotent characters, degrees, Fourier matrix, eigenvalues of Frobenius) can be obtained as a combinatorial game starting from

 $(X(\mathbf{T}), Y(\mathbf{T}), \Phi, \Phi^{\vee}, q)$

• All the above data (unipotent characters, degrees, Fourier matrix, eigenvalues of Frobenius) can be obtained as a combinatorial game starting from

•
$$W \subset GL(V)$$
, where $V = X(\mathbf{T}) \otimes \mathbb{C}$.

 $(X(\mathbf{T}), Y(\mathbf{T}), \Phi, \Phi^{\vee}, q)$

- All the above data (unipotent characters, degrees, Fourier matrix, eigenvalues of Frobenius) can be obtained as a combinatorial game starting from
 - $W \subset GL(V)$, where $V = X(\mathbf{T}) \otimes \mathbb{C}$.
 - The Hecke algebra

$$\mathcal{H}(\mathcal{W}) = \langle \mathbf{s} \mid (\mathbf{s} - q)(\mathbf{s} + 1) = 0 \rangle$$

★ E > < E >

 $(X(\mathbf{T}), Y(\mathbf{T}), \Phi, \Phi^{\vee}, q)$

- All the above data (unipotent characters, degrees, Fourier matrix, eigenvalues of Frobenius) can be obtained as a combinatorial game starting from
 - $W \subset GL(V)$, where $V = X(\mathbf{T}) \otimes \mathbb{C}$.
 - The Hecke algebra

$$\mathcal{H}(\mathcal{W}) = \langle \mathbf{s} \mid (\mathbf{s} - q)(\mathbf{s} + 1) = 0
angle$$

• Spetses island :

★ E ▶ ★ E ▶

 $(X(\mathbf{T}), Y(\mathbf{T}), \Phi, \Phi^{\vee}, q)$

- All the above data (unipotent characters, degrees, Fourier matrix, eigenvalues of Frobenius) can be obtained as a combinatorial game starting from
 - $W \subset GL(V)$, where $V = X(\mathbf{T}) \otimes \mathbb{C}$.
 - The Hecke algebra

$$\mathcal{H}(W) = \langle \mathbf{s} \mid (\mathbf{s} - q)(\mathbf{s} + 1) = 0 \rangle$$

• <u>Spetses island</u> : there we started to play the same game, replacing the Weyl group *W* by the complex reflection group of order 3.

(本間) (本語) (本語) (語)

Hecke algebras of complex reflection groups

Michel Broué Pseudo reductive groups over \mathbb{F}_{X} ?

< ≥ > < ≥ > ...

A ■

Hecke algebras of complex reflection groups

• Every complex reflection group *W* has a nice presentation "à la Coxeter" :

$$G_2: \bigcirc = \bigcirc$$
, $G_4: \bigcirc = \bigcirc$

★ E ► ★ E ►

æ

Hecke algebras of complex reflection groups

• Every complex reflection group *W* has a nice presentation "à la Coxeter" :

$$G_2$$
 : \bigcirc , G_4 : \bigcirc \bigcirc

and a field of realisation \mathbb{Q}_W :

$$\mathbb{Q}_{G_2} = \mathbb{Q}$$
 and $\mathbb{Q}_{G_4} = \mathbb{Q}(\zeta_3)$.

- < 注 → < 注 → - -
Hecke algebras of complex reflection groups

• Every complex reflection group *W* has a nice presentation "à la Coxeter" :

$$G_2$$
: \bigcirc , G_4 : \bigcirc \bigcirc

and a field of realisation \mathbb{Q}_W :

$$\mathbb{Q}_{G_2} = \mathbb{Q}$$
 and $\mathbb{Q}_{G_4} = \mathbb{Q}(\zeta_3)$.

• The associated generic Hecke algebra is defined from such a presentation :

$$\mathcal{H}(G_2) := \langle S, T ; \begin{cases} STSTST = TSTSTS \\ (S - u_0)(S - u_1) = 0 \\ (T - v_0)(T - v_1) = 0 \end{cases}$$
$$\mathcal{H}(G_4) := \langle S, T ; \begin{cases} STS = TST \\ (S - u_0)(S - u_1)(S - u_2) = 0 \end{cases}$$

● The generic Hecke algebra H(W) is free of rank |W| over the corresponding Laurent polynomial ring Z[(u_i^{±1}), (v_i^{±1}),...].

白 と く ヨ と く ヨ と …

- The generic Hecke algebra H(W) is free of rank |W| over the corresponding Laurent polynomial ring Z[(u_i^{±1}), (v_i^{±1}),...].
- It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates.

回 と く ヨ と く ヨ と …

- The generic Hecke algebra H(W) is free of rank |W| over the corresponding Laurent polynomial ring Z[(u_i^{±1}), (v_i^{±1}),...].
- It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates.
- With suitable choice we get a bijection

$$\operatorname{Irr}(W) \xrightarrow{\sim} \operatorname{Irr}(\mathcal{H}(G)) \quad , \quad \chi \mapsto \chi_{\mathcal{H}}(W) \, .$$

回 と く ヨ と く ヨ と …

- The generic Hecke algebra H(W) is free of rank |W| over the corresponding Laurent polynomial ring Z[(u_i^{±1}), (v_i^{±1}),...].
- It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates.
- With suitable choice we get a bijection

$$\operatorname{Irr}(W) \xrightarrow{\sim} \operatorname{Irr}(\mathcal{H}(G)) \quad , \quad \chi \mapsto \chi_{\mathcal{H}}(W) \, .$$

- The generic Hecke algebra H(W) is endowed with a canonical symmetrizing form t : H(W) → Z[(u_i^{±1}), (v_i^{±1}),...]
 - which specialises to the canonical form of the group algebra Q_WW,
 - and satisfies some other condition.

・日本 ・ モン・ ・ モン

- The generic Hecke algebra H(W) is free of rank |W| over the corresponding Laurent polynomial ring Z[(u_i^{±1}), (v_i^{±1}),...].
- It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates.
- With suitable choice we get a bijection

$$\operatorname{Irr}(W) \xrightarrow{\sim} \operatorname{Irr}(\mathcal{H}(G)) \quad , \quad \chi \mapsto \chi_{\mathcal{H}}(W) \, .$$

- The generic Hecke algebra H(W) is endowed with a canonical symmetrizing form t : H(W) → Z[(u_i^{±1}), (v_i^{±1}),...]
 - which specialises to the canonical form of the group algebra $\mathbb{Q}_W W$,
 - and satisfies some other condition.
- The Schur elements of the irreducible characters of W are the elements s_χ ∈ Z_W[(x_i^{±1}), (y_j^{±1}),...] defined by

$$t = \sum_{\chi \in \mathsf{Irr}(W)} \frac{1}{s_{\chi}} \chi_{\mathcal{H}}(W).$$

イロン イヨン イヨン イヨン

Spetsial algebras

If
$$G = \underbrace{\bigoplus_{s} m}_{t} \underbrace{e}_{t} \cdots$$
,

If
$$G = \underbrace{\bigcirc}_{s} \underbrace{\stackrel{m}{\underbrace{e}}}_{t} \cdots$$
,

then the relation

$$(S-u_0)(S-u_1)\cdots(S-u_{d-1})=0$$

(4回) (注) (注) (注) (注)

If
$$G = \underbrace{\bigcirc}_{s} \underbrace{\stackrel{m}{e}}_{t} \cdots$$
,

then the relation

$$(S - u_0)(S - u_1) \cdots (S - u_{d-1}) = 0$$

specializes to

$$(S-q)(S^{d-1}+\cdots+S+1)=0$$

▲圖▶ ▲屋▶ ▲屋▶

If
$$G = \underbrace{\bigcirc}_{s} \underbrace{\stackrel{m}{e}}_{t} \cdots$$
,

then the relation

$$(S - u_0)(S - u_1) \cdots (S - u_{d-1}) = 0$$

specializes to

$$(S-q)(S^{d-1}+\cdots+S+1)=0$$

Thus the spetsial algebra becomes the group algebra of W at q = 1.

白 と く ヨ と く ヨ と

If
$$G = \underbrace{\bigcirc}_{s} \underbrace{\stackrel{m}{\underbrace{e}}}_{t} \cdots$$
,

then the relation

$$(S - u_0)(S - u_1) \cdots (S - u_{d-1}) = 0$$

specializes to

$$(S-q)(S^{d-1}+\cdots+S+1)=0$$

Thus the spetsial algebra becomes the group algebra of W at q = 1. • In our cases :

白 と く ヨ と く ヨ と …

If
$$G = \underbrace{\bigcirc}_{s} \underbrace{\stackrel{m}{e}}_{t} \cdots$$
,

then the relation

$$(S - u_0)(S - u_1) \cdots (S - u_{d-1}) = 0$$

specializes to

$$(S-q)(S^{d-1}+\cdots+S+1)=0$$

Thus the spetsial algebra becomes the group algebra of W at q = 1.

In our cases :

• For
$$G_2$$
: $(S-q)(S+1) = 0$

白 と く ヨ と く ヨ と …

If
$$G = \underbrace{\bigcirc}_{s} \underbrace{\stackrel{m}{\underbrace{e}}}_{t} \cdots$$
,

then the relation

$$(S - u_0)(S - u_1) \cdots (S - u_{d-1}) = 0$$

specializes to

$$(S-q)(S^{d-1}+\cdots+S+1)=0$$

Thus the spetsial algebra becomes the group algebra of W at q = 1.

• In our cases :

• For
$$G_2$$
: $(S-q)(S+1) = 0$

• For G_4 : $(S-q)(S^2+S+1)=0$

御 と く き と く き と … き

◆□ > ◆□ > ◆臣 > ◆臣 > ○

• The group W is called <u>spetsial</u> if

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

• The group W is called <u>spetsial</u> if

 $\mathsf{Deg}_\chi(q) := q^N(q-1)^r P_W(q)/S_\chi$

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

• The group W is called <u>spetsial</u> if

 $\mathsf{Deg}_\chi(q) := q^N (q-1)^r \mathcal{P}_W(q) / \mathcal{S}_\chi \in \mathbb{Q}_W[q]$

(日) (四) (王) (王) (王)

• The group W is called <u>spetsial</u> if

 $\mathsf{Deg}_{\chi}(q) := q^{N}(q-1)^{r} P_{W}(q) / S_{\chi} \in \mathbb{Q}_{W}[q]$

• Here is the list of the spetsial groups :

(《圖》 《문》 《문》 - 문

• The group W is called <u>spetsial</u> if

 $\mathsf{Deg}_\chi(q) := q^N (q-1)^r P_W(q) / S_\chi \in \mathbb{Q}_W[q]$

- Here is the list of the spetsial groups :
 - Among the imprimitive groups : G(e, 1, r), G(e, e, r).

- (回) (三) (=

• The group W is called spetsial if

 $\mathsf{Deg}_\chi(q) := q^N (q-1)^r P_W(q) / S_\chi \in \mathbb{Q}_W[q]$

- Here is the list of the spetsial groups :
 - Among the imprimitive groups : G(e, 1, r), G(e, e, r).
 - Among the exceptional groups :

個人 くほん くほん しき

• The group W is called <u>spetsial</u> if

 $\mathsf{Deg}_\chi(q) := q^N (q-1)^r P_W(q) / S_\chi \in \mathbb{Q}_W[q]$

- Here is the list of the spetsial groups :
 - Among the imprimitive groups : G(e, 1, r), G(e, e, r).
 - Among the exceptional groups :

-													
Group G _n	4	5	6	7	8	9	10	11	12	13	14	15	16
Rank	2	2	2	2	2	2	2	2	2	2	2	2	2
Group G _n	17	7	18	19	2	0	21	22	23	24	25	26	27
Rank		2	2	2		2	2	2	3	3	3	3	3
Remark									<i>H</i> ₃				
Group G	'n	28	29)	30	31	L 3	2 3	3 34	4 3!	5 3	53	7
Ran	ık	4	2	1	4	Z	1.	4 !	56	56	ĵ .	7	8
Remar	'k	F_4			H ₄					E	5 E	7 E	8
									• •		P 🔸 📢	≣ ≻ I <	표 🛌 🗉
				N 41 - I	I D		D						

Back to the context of a finite reductive group with Weyl group W.

白 と く ヨ と く ヨ と …

Back to the context of a finite reductive group with Weyl group W. Let $w \in W$ be a ζ -regular element,

(本部) (本語) (本語) (注語)

Back to the context of a finite reductive group with Weyl group W. Let $w \in W$ be a ζ -regular element, *i.e.*, $V(w, \zeta) := \ker(w - \zeta \operatorname{Id}_V)$ is maximal.

回り くほり くほり ……ほ

Back to the context of a finite reductive group with Weyl group W. Let $w \in W$ be a ζ -regular element, *i.e.*, $V(w, \zeta) := \ker(w - \zeta \operatorname{Id}_V)$ is maximal.

• The centralizer W(w) of w is a complex reflection group on $V(w, \zeta)$.

米部 シネヨシネヨシ 三日

Back to the context of a finite reductive group with Weyl group W. Let $w \in W$ be a ζ -regular element, *i.e.*, $V(w, \zeta) := \ker(w - \zeta \operatorname{Id}_V)$ is maximal.

- The centralizer W(w) of w is a complex reflection group on $V(w, \zeta)$.
- $N_G(\mathbf{T}_w, \mathrm{Id})/T_w \simeq W(w).$

★@→ ★ E→ ★ E→ E

Back to the context of a finite reductive group with Weyl group W. Let $w \in W$ be a ζ -regular element, *i.e.*, $V(w, \zeta) := \ker(w - \zeta \operatorname{Id}_V)$ is maximal.

- The centralizer W(w) of w is a complex reflection group on $V(w, \zeta)$.
- $N_G(\mathbf{T}_w, \mathrm{Id})/T_w \simeq W(w).$
- There is a <u>ζ-cyclotomic Hecke algebra</u> *H_W(w)* for *W(w)* which controls *R*^G_{T_w}(1).

イロン イボン イヨン イヨン 三日

Back to the context of a finite reductive group with Weyl group W. Let $w \in W$ be a ζ -regular element, *i.e.*, $V(w, \zeta) := \ker(w - \zeta \operatorname{Id}_V)$ is maximal.

- The centralizer W(w) of w is a complex reflection group on $V(w, \zeta)$.
- $N_G(\mathbf{T}_w, \mathrm{Id})/T_w \simeq W(w).$
- There is a <u>ζ-cyclotomic Hecke algebra</u> *H_W(w)* for *W(w)* which controls *R*^G_{T_w}(1).
 - A unipotent character ρ is in $R_{T_w}^{\mathbf{G}}(1)$ iff $\operatorname{Deg}_{\rho}(\zeta) \neq 0$.

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

Back to the context of a finite reductive group with Weyl group W. Let $w \in W$ be a ζ -regular element, *i.e.*, $V(w, \zeta) := \ker(w - \zeta \operatorname{Id}_V)$ is maximal.

- The centralizer W(w) of w is a complex reflection group on $V(w, \zeta)$.
- $N_G(\mathbf{T}_w, \mathrm{Id})/T_w \simeq W(w).$
- There is a <u>ζ-cyclotomic Hecke algebra</u> *H_W(w)* for *W(w)* which controls *R^G_{T_w}(1)*.
 - A unipotent character ρ is in $R_{T_w}^{\mathbf{G}}(1)$ iff $\operatorname{Deg}_{\rho}(\zeta) \neq 0$.
 - Conjecturally, there is a good choice of a Deligne–Lusztig variety attached to w such that H_W(w) = End_{QℓG}(H[•]_c(X_w, Q_ℓ))

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

Back to the context of a finite reductive group with Weyl group W. Let $w \in W$ be a ζ -regular element, *i.e.*, $V(w, \zeta) := \ker(w - \zeta \operatorname{Id}_V)$ is maximal.

- The centralizer W(w) of w is a complex reflection group on $V(w, \zeta)$.
- $N_G(\mathbf{T}_w, \mathrm{Id})/T_w \simeq W(w).$
- There is a <u>ζ-cyclotomic Hecke algebra</u> *H_W(w)* for *W(w)* which controls *R^G_{T_w}(1)*.
 - A unipotent character ρ is in $R_{T_w}^{\mathbf{G}}(1)$ iff $\operatorname{Deg}_{\rho}(\zeta) \neq 0$.
 - Conjecturally, there is a good choice of a Deligne–Lusztig variety attached to w such that H_W(w) = End_{QℓG}(H[•]_c(X_w, Qℓ))
- The conjecture also predicts the eigenvalues of Frobenius attached to constituents of $R_{T_w}^{G}(1)$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Back to the context of a finite reductive group with Weyl group W. Let $w \in W$ be a ζ -regular element, *i.e.*, $V(w, \zeta) := \ker(w - \zeta \operatorname{Id}_V)$ is maximal.

- The centralizer W(w) of w is a complex reflection group on $V(w, \zeta)$.
- $N_G(\mathbf{T}_w, \mathrm{Id})/T_w \simeq W(w).$
- There is a <u>ζ-cyclotomic Hecke algebra</u> *H_W(w)* for *W(w)* which controls *R^G_{T_w}(1)*.
 - A unipotent character ρ is in $R_{\mathbf{T}_w}^{\mathbf{G}}(1)$ iff $\operatorname{Deg}_{\rho}(\zeta) \neq 0$.
 - Conjecturally, there is a good choice of a Deligne–Lusztig variety attached to w such that H_W(w) = End_{QℓG}(H[•]_c(X_w, Qℓ))
- The conjecture also predicts the eigenvalues of Frobenius attached to constituents of $R_{T_w}^{G}(1)$.

This conjecture was prompted by the abelian defect groups conjecture.

(ロ) (同) (E) (E) (E)

Cyclotomic Hecke algebras

||◆聞 |> ||◆ 臣 |> ||◆ 臣 |>

Cyclotomic Hecke algebras

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Cyclotomic Hecke algebras

For G_2

Regular ζ	$W(\zeta)$	$\mathcal{H}_W(\zeta)$
1	G ₂	(s-q)(s+1)
-1	G ₂	(s-q)(s-1)
ζ3	<i>C</i> ₆	$(s-q^2)(s-q)(s-1)(s^3+q^3)$
ζ6	<i>C</i> ₆	$(s-q^2)(s+q)(s-1)(s^3-q^3)$

◆□ > ◆□ > ◆臣 > ◆臣 > ○
Cyclotomic Hecke algebras

For G_2

Regular ζ	$W(\zeta)$	$\mathcal{H}_W(\zeta)$
1	G ₂	(s-q)(s+1)
-1	G ₂	(s-q)(s-1)
ζ3	<i>C</i> ₆	$(s-q^2)(s-q)(s-1)(s^3+q^3)$
ζ6	<i>C</i> ₆	$(s-q^2)(s+q)(s-1)(s^3-q^3)$

For G_4

Michel Broué Pseudo reductive groups over \mathbb{F}_{X} ?

Cyclotomic Hecke algebras

For G_2

Regular ζ	$W(\zeta)$	$\mathcal{H}_W(\zeta)$
1	G ₂	(s-q)(s+1)
-1	G ₂	(s-q)(s-1)
ζ3	<i>C</i> ₆	$(s-q^2)(s-q)(s-1)(s^3+q^3)$
ζ6	<i>C</i> ₆	$(s-q^2)(s+q)(s-1)(s^3-q^3)$

For G_4

Regular ζ	$W(\zeta)$	$\mathcal{H}_{W}(\zeta)$
1	G ₄	(s-q)(s+1)
-1	G ₄	(s-q)(s-1)
ζ3	<i>C</i> ₆	$(s-q^2)(s-1)(s+1)(s+\zeta_3 q)(s-\zeta_3)(s+q)$
ζ4	<i>C</i> ₄	$(s-q^3)(s-1)(s-q)(s+1)$
ζ6	<i>C</i> ₆	$(s-q^2)(s-q)(s-1)(s-\zeta_3^2q)(s-\zeta_3^2)(s+1)$

Unipotent characters for G_4

In red = the Φ'_6 -series. • = the Φ_4 -series.

Character	Degree	FakeDegree	Eigenvalue	Family
• $\phi_{1,0}$	• 1	1	1	C_1
$\phi_{2,1}$	$\frac{3-\sqrt{-3}}{6}q\Phi_3'\Phi_4\Phi_6''$	$q\Phi_4$	1	<i>X</i> ₃ .01
$\phi_{2,3}$	$rac{3+\sqrt{-3}}{6}q\Phi_3''\Phi_4\Phi_6'$	$q^3\Phi_4$	1	<i>X</i> ₃ .02
<i>Z</i> ₃ : 2	$\frac{\sqrt{-3}}{3}q\Phi_1\Phi_2\Phi_4$	0	ζ_3^2	<i>X</i> ₃ .12
•	• <i>q</i> ² Φ ₃ Φ ₆	$q^2\Phi_3\Phi_6$	1	C_1
$\phi_{1,4}$	$\frac{-\sqrt{-3}}{6}q^4\Phi_3''\Phi_4\Phi_6''$	q^4	1	$X_{5}.1$
$\phi_{1,8}$	$\frac{\sqrt{-3}}{6}q^4\Phi_3'\Phi_4\Phi_6'$	q^8	1	<i>X</i> ₅ .2
• <i>\$</i> 2,5	• $\frac{1}{2}q^4\Phi_2^2\Phi_6$	$q^5\Phi_4$	1	<i>X</i> ₅ .3
<i>Z</i> ₃ : 11	$\frac{\sqrt{-3}}{3}q^4\Phi_1\Phi_2\Phi_4$	0	ζ_3^2	<i>X</i> ₅ .4
• G4	• $\frac{1}{2}q^{4}\Phi_{1}^{2}\Phi_{3}$	0	-1	$X_{5}.5$

個 と く ヨ と く ヨ と …

Fourier matrices : G_4

		01	02	12		1	2	3	4	5
	1									
01		$\frac{3-\sqrt{-3}}{6}$	$\frac{3+\sqrt{-3}}{6}$	$\frac{\sqrt{-3}}{3}$						
02		$\frac{3+\sqrt{-3}}{6}$	$\frac{3-\sqrt{-3}}{6}$	$-\frac{\sqrt{-3}}{3}$						
12	.	$\frac{\sqrt{-3}}{3}$	$-\frac{\sqrt{-3}}{3}$	$\frac{\sqrt{-3}}{3}$						
					1					
1						$-\frac{\sqrt{-3}}{6}$	$\frac{\sqrt{-3}}{6}$	$\frac{1}{2}$	$\frac{\sqrt{-3}}{3}$	$\frac{1}{2}$
2						$\frac{\sqrt{-3}}{6}$	$-\frac{\sqrt{-3}}{6}$	$\frac{1}{2}$	$-\frac{\sqrt{-3}}{3}$	$\frac{1}{2}$
3						$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	•	$-\frac{1}{2}$
4	.					$\frac{\sqrt{-3}}{3}$	$-\frac{\sqrt{-3}}{3}$		$\frac{\sqrt{-3}}{3}$	
5		•	•	•		$\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$		$\frac{1}{2}$

(ロ) (四) (注) (注) (注) [

Michel Broué Pseudo reductive groups over \mathbb{F}_{X} ?

◆□ > ◆□ > ◆臣 > ◆臣 > ○

▲圖> ▲屋> ▲屋>

- Let *S* be the Fourier matrix.
 - **()** S is symmetric.

副 🕨 🖉 🖻 🖌 🖉 🖻 👘

- Let *S* be the Fourier matrix.
 - **①** S is symmetric.
 - $S^{-1} = \overline{S}.$

回 と く ヨ と く ヨ と …

Let *S* be the Fourier matrix.

- **0** S is symmetric.
- $S^{-1} = \overline{S}.$
- **3** $S^4 = 1$.

回 と く ヨ と く ヨ と …

- Let *S* be the Fourier matrix.
 - S is symmetric.
 - $S^{-1} = \overline{S}.$
 - **3** $S^4 = 1$.

Let Ω be the diagonal matrix of Frobenius eigenvalues.

個 と く ヨ と く ヨ と …

Let *S* be the Fourier matrix.

- S is symmetric.
- $S^{-1} = \overline{S}.$
- **3** $S^4 = 1$.

Let Ω be the diagonal matrix of Frobenius eigenvalues.

 $S^2 \Omega = \Omega S^2.$

回 と く ヨ と く ヨ と …

- *S* is symmetric.
- $S^{-1} = \overline{S}.$
- **3** $S^4 = 1.$

Let Ω be the diagonal matrix of Frobenius eigenvalues.

- **(** ΩS **)**³ = 1.

御 と く き と く き と

- *S* is symmetric.
- $S^{-1} = \overline{S}.$
- **3** $S^4 = 1.$

Let Ω be the diagonal matrix of Frobenius eigenvalues.

- $S^2 \Omega = \Omega S^2.$
- **5** $(\Omega S)^3 = 1.$

Thus S and Ω define a representation of $SL_2(\mathbb{Z})$.

白 と く ヨ と く ヨ と …

- *S* is symmetric.
- $S^{-1} = \overline{S}.$
- **3** $S^4 = 1.$

Let Ω be the diagonal matrix of Frobenius eigenvalues.

- **5** $(\Omega S)^3 = 1.$

Thus S and Ω define a representation of $SL_2(\mathbb{Z})$.

• If i_0 is a row of S corresponding to a special character of a Rouquier block, then for all i, j, k the sums $\sum_{l} S_{il} S_{jl} \overline{S}_{kl} S_{iol}^{-1}$ are integral.

個人 くほん くほん しほ

- *S* is symmetric.
- $S^{-1} = \overline{S}.$
- **3** $S^4 = 1.$

Let Ω be the diagonal matrix of Frobenius eigenvalues.

- $S^2 \Omega = \Omega S^2.$
- **5** $(\Omega S)^3 = 1.$

Thus S and Ω define a representation of $SL_2(\mathbb{Z})$.

• If i_0 is a row of S corresponding to a special character of a Rouquier block, then for all i, j, k the sums $\sum_{l} S_{il} S_{jl} \overline{S}_{kl} S_{inl}^{-1}$ are integral.

(A <u>special</u> character is one whose fake degree has same valuation as the corresponding generic degree)

イロン イ部ン イヨン イヨン 三日

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

$$\mathsf{UnCh}(G) = \bigcup_{\mathcal{F} \in \mathsf{Fam}(G)}^{\bullet} \mathcal{F}$$

$$\mathsf{UnCh}(G) = \bigcup_{\mathcal{F} \in \mathsf{Fam}(G)} \mathcal{F}$$

(Lusztig families, blocks of Fourier matrix)

・ロト ・回ト ・ヨト ・ヨト

$$\mathsf{UnCh}(G) = \bigcup_{\mathcal{F} \in \mathsf{Fam}(G)}^{\bullet} \mathcal{F}$$

(Lusztig families, blocks of Fourier matrix)

æ

(and for all d)

$$\mathsf{UnCh}(G) = \bigcup_{\mathcal{F}\in\mathsf{Fam}(G)}^{\bullet} \mathcal{F} \quad (\mathsf{Lusztig families, blocks of Fourier matrix})$$
$$(\mathsf{and for all } d) = \bigcup_{(\mathsf{L},\lambda)d-\mathsf{cuspidal}/G}^{\bullet} \mathsf{Irr} \, R^{\mathsf{G}}_{\mathsf{L}}(\lambda)$$

$$\mathsf{UnCh}(G) = \bigcup_{\mathcal{F}\in\mathsf{Fam}(G)}^{\bullet} \mathcal{F} \quad (\mathsf{Lusztig families, blocks of Fourier matrix})$$
$$(\mathsf{and for all } d) = \bigcup_{(\mathbf{L},\lambda)d-\mathsf{cuspidal}/G}^{\bullet} \mathsf{Irr} \, R^{\mathbf{G}}_{\mathbf{L}}(\lambda) = \mathsf{Irr} \, \mathcal{H}_{G}(\mathbf{L},\lambda)$$

$$\mathsf{UnCh}(G) = \bigcup_{\mathcal{F}\in\mathsf{Fam}(G)}^{\bullet} \mathcal{F} \quad (\mathsf{Lusztig families, blocks of Fourier matrix})$$
$$(\mathsf{and for all } d) = \bigcup_{(\mathbf{L},\lambda)d-\mathsf{cuspidal}/G}^{\bullet} \mathsf{Irr} \, R_{\mathbf{L}}^{\mathbf{G}}(\lambda) = \mathsf{Irr} \, \mathcal{H}_{G}(\mathbf{L},\lambda)$$

So what are the sets $\mathcal{F} \cap \operatorname{Irr} \mathcal{H}_{\mathcal{G}}(\mathbf{L}, \lambda)$?

イロン イ部ン イヨン イヨン 三日

$$\mathsf{UnCh}(G) = \bigcup_{\mathcal{F}\in\mathsf{Fam}(G)}^{\bullet} \mathcal{F} \quad (\mathsf{Lusztig families, blocks of Fourier matrix})$$

$$(and for all d) = \bigcup_{(\mathbf{L},\lambda)d-\mathsf{cuspidal}/G}^{\bullet} \mathsf{Irr} R_{\mathsf{L}}^{\mathsf{G}}(\lambda) = \mathsf{Irr} \mathcal{H}_{G}(\mathbf{L},\lambda)$$

So what are the sets $\mathcal{F} \cap \operatorname{Irr} \mathcal{H}_{\mathcal{G}}(\mathbf{L}, \lambda)$?

• Lusztig has described the intersections with the principal series Irr $R_{T_1}^{G}(1)$ using the Kazhdan-Lusztig basis, thus defining families of characters of W.

御 と く ヨ と く ヨ と … ヨ

$$\mathsf{UnCh}(G) = \bigcup_{\mathcal{F}\in\mathsf{Fam}(G)}^{\bullet} \mathcal{F} \quad (\mathsf{Lusztig families, blocks of Fourier matrix})$$
(and for all d) = $\bigcup_{(\mathbf{L},\lambda)d-\mathsf{cuspidal}/G}^{\bullet} \mathsf{Irr} R_{\mathsf{L}}^{\mathsf{G}}(\lambda) = \mathsf{Irr} \mathcal{H}_{G}(\mathbf{L},\lambda)$

So what are the sets $\mathcal{F} \cap \operatorname{Irr} \mathcal{H}_{\mathcal{G}}(\mathbf{L}, \lambda)$?

- Lusztig has described the intersections with the principal series Irr $R_{T_1}^{G}(1)$ using the Kazhdan-Lusztig basis, thus defining families of characters of W.
- In general, the partition

$$\operatorname{Irr} \mathcal{H}_{\mathcal{G}}(\mathsf{L},\lambda) = \bigcup_{\mathcal{F} \in \operatorname{Fam}(\mathcal{G})}^{\bullet} \mathcal{F} \cap \operatorname{Irr} \mathcal{H}_{\mathcal{G}}(\mathsf{L},\lambda)$$

is the partition into Rouquier blocks of the cyclotomic Hecke algebra $\mathcal{H}_{G}(\mathbf{L}, \lambda)$.

Rouquier blocks

Michel Broué Pseudo reductive groups over \mathbb{F}_{X} ?

$$\mathbb{Z}_W\left[q,q^{-1},\left(rac{1}{q^n-1}
ight)_{n\geq 1}
ight]$$

イロン イヨン イヨン イヨン

$$\mathbb{Z}_W\left[q,q^{-1},\left(rac{1}{q^n-1}
ight)_{n\geq 1}
ight]$$

• They are, roughly speaking, the <u>bad primes blocks</u> of the Hecke algebra,

イロト イヨト イヨト イヨト

$$\mathbb{Z}_W\left[q,q^{-1},\left(rac{1}{q^n-1}
ight)_{n\geq 1}
ight]$$

• They are, roughly speaking, the <u>bad primes blocks</u> of the Hecke algebra, where the bad primes are those prime ideals of \mathbb{Z}_W which divide the Schur elements (in other words, the primes in the denominators of the generic degrees).

(《圖》 《문》 《문》 - 문

$$\mathbb{Z}_W\left[q,q^{-1},\left(rac{1}{q^n-1}
ight)_{n\geq 1}
ight]$$

- They are, roughly speaking, the <u>bad primes blocks</u> of the Hecke algebra, where the bad primes are those prime ideals of \mathbb{Z}_W which divide the Schur elements (in other words, the primes in the denominators of the generic degrees).
- All Rouquier blocks of all cyclotomic Hecke algebras of all complex reflection groups have been determined (Malle–Rouquier, Broué–Kim, Kim, Chlouveraki).

(ロ) (四) (注) (注) (注) [

• We call Spets for a spetsial reflection group W a list of

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

- We call Spets for a spetsial reflection group W a list of
 - unipotent degrees,

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

- We call Spets for a spetsial reflection group W a list of
 - unipotent degrees,
 - parameters for relative cylotomic Hecke algebras,

• We call Spets for a spetsial reflection group W a list of

- unipotent degrees,
- parameters for relative cylotomic Hecke algebras,
- eigenvalues of Frobenius,

• We call Spets for a spetsial reflection group W a list of

- unipotent degrees,
- parameters for relative cylotomic Hecke algebras,
- eigenvalues of Frobenius,
- Fourier matrices

• We call Spets for a spetsial reflection group W a list of

- unipotent degrees,
- parameters for relative cylotomic Hecke algebras,
- eigenvalues of Frobenius,
- Fourier matrices

satisfying the above properties... and many other.

イロン イ部ン イヨン イヨン 三日
Spetses

• We call Spets for a spetsial reflection group W a list of

- unipotent degrees,
- parameters for relative cylotomic Hecke algebras,
- eigenvalues of Frobenius,
- Fourier matrices

satisfying the above properties... and many other.

• Lusztig knew already a solution for Coxeter groups which are not Weyl groups (except the Fourier matrix for H_4 which was determined by Malle in 1994).

イロン イ部ン イヨン イヨン 三日

Spetses

• We call Spets for a spetsial reflection group W a list of

- unipotent degrees,
- parameters for relative cylotomic Hecke algebras,
- eigenvalues of Frobenius,
- Fourier matrices

satisfying the above properties... and many other.

- Lusztig knew already a solution for Coxeter groups which are not Weyl groups (except the Fourier matrix for H_4 which was determined by Malle in 1994).
- Malle gave a solution for imprimitive Spetsial complex reflection groups in 1995, and also proposed (unpublished) data for many primitive Spetsial groups.

(ロ) (同) (E) (E) (E)

Spetses

• We call Spets for a spetsial reflection group W a list of

- unipotent degrees,
- parameters for relative cylotomic Hecke algebras,
- eigenvalues of Frobenius,
- Fourier matrices

satisfying the above properties... and many other.

- Lusztig knew already a solution for Coxeter groups which are not Weyl groups (except the Fourier matrix for H_4 which was determined by Malle in 1994).
- Malle gave a solution for imprimitive Spetsial complex reflection groups in 1995, and also proposed (unpublished) data for many primitive Spetsial groups.
- We can now show that there is a unique solution for all primitive spetsial complex reflection groups.

(ロ) (同) (E) (E) (E)