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HECKE ALGEBRAS OF COMPLEX REFLECTION GROUPS

@ Every complex reflection group G has a nice presentation “a la
Coxeter” :

G:@=0 . G:0—0
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HECKE ALGEBRAS OF COMPLEX REFLECTION GROUPS

@ Every complex reflection group G has a nice presentation “a la
Coxeter” :

G:@=0 . G:0—0

and a field of realisation Q¢ (ring of integers Zg) :

Qg =Q and Qg, =Q(¢3).
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HECKE ALGEBRAS OF COMPLEX REFLECTION GROUPS

@ Every complex reflection group G has a nice presentation “a la
Coxeter” :

G:@=0 . G:0—0

and a field of realisation Q¢ (ring of integers Zg) :
Q6 =Q and Qg, = Q(¢)-

@ The associated generic Hecke algebra is defined from such a
presentation :

STSTST = TSTSTS
H(G) =< S, T (S—uw)(S—wv1)=0 >
(T—w)(T—-w)=0
STS = TST
(S — t)(S — tn)(S— ) =0
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@ The generic Hecke algebra H(G) is free of rank |G ] over the
corresponding Laurent polynomial ring Z[(uF1), (v; .
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@ The generic Hecke algebra H(G) is free of rank |G| over the
corresponding Laurent polynomial ring Z[(uiﬂ), (vjil), o

@ It becomes a split semisimple algebra over a field obtained by
extracting suitable roots of the indeterminates :

if G=@-"(—- -,
s t
then for
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@ The generic Hecke algebra H(G) is free of rank |G| over the
corresponding Laurent polynomial ring Z[(uiﬂ), (vjil), o

@ It becomes a split semisimple algebra over a field obtained by
extracting suitable roots of the indeterminates :

if G=@-"(—- -,
s t
then for

|1(Qg

> the algebra Q¢((xi), (¥}),-..))H(G) is split semisimple,
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@ The generic Hecke algebra H(G) is free of rank |G| over the
corresponding Laurent polynomial ring Z[(uiﬂ), (vjil), o

@ It becomes a split semisimple algebra over a field obtained by
extracting suitable roots of the indeterminates :

if G=@-"(—- -,
s t
then for

> the algebra Q¢((xi), (¥}),-..))H(G) is split semisimple,
» through the specialisation x; — 1 y; + 1,..., that algebra becomes
the group algebra of G over Qg.
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@ The generic Hecke algebra H(G) is free of rank |G| over the
corresponding Laurent polynomial ring Z[(uiﬂ), (vjil), o

@ It becomes a split semisimple algebra over a field obtained by
extracting suitable roots of the indeterminates :

if G=0Q-"(@—:-,
s t
then for
(x1@e) = Clui)iz01,d-1 ()/J-W(QG)| = (7v))j=01.. e 1

> the algebra Q¢((xi), (¥}),-..))H(G) is split semisimple,
» through the specialisation x; — 1 y; + 1,..., that algebra becomes
the group algebra of G over Qg.

The above specialisation defines a bijection

Irr(G) = Irr(H(G)) , X xn-
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© The generic Hecke algebra H(G) is endowed with a canonical

symmetrizing form t : H(G) — Z[(uF), (vjﬂ), o]
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© The generic Hecke algebra H(G) is endowed with a canonical
symmetrizing form t : H(G) — Z[(uF), (vjﬂ), o]
» which specialises to the canonical form of the group algebra Q¢ G,
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© The generic Hecke algebra H(G) is endowed with a canonical

symmetrizing form t : H(G) — Z[(uF), (vjﬂ), o]
» which specialises to the canonical form of the group algebra Q¢ G,

» and satisfies some other condition.
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© The generic Hecke algebra H(G) is endowed with a canonical
symmetrizing form t : H(G) — Z[(uF), (vjﬂ), o]
» which specialises to the canonical form of the group algebra Q¢ G,

» and satisfies some other condition.

@ The Schur elements of the irreducible characters of G are the
elements s, € Z(;[(X,-:tl), (yjil), ...] defined by

t = Z SLXH'

x€Elrr(G) X

Michel Broué Rouquier Blocks for Cyclotomic Hecke Algebras



Theorem (M. Chlouveraki)

We have
sy (%) = &Ny [ ] Wi (M )™
icl,
where

o & € Zg, N, is a degree zero monomial in Zg[x,x ], (ny,i)ics, are
integers,
o (V,.i)ict, is a family of K-cyclotomic polynomials,
o (My,i)ict, is a family of degree zero primitive monomials in
Zg[x, x71].
That factorisation is unique in K[x,x~*] and the monomials (M, ;)c), are
unique (up to inversion).
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Schur elements of G
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Schur elements of G

2 2
Xg = Up, Xy = —u1
2 2

Yo=V,Yy1 =W
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Schur elements of G»

2 2
Xg = Up, Xy = —u1
2 2

Yo=V,Yy1 =W

Elements of the orbit under &(xp, x1) x &(yo, y1) of
s1:= Ga(x0x; ) P2(yoys ) Po(x0y0x1 17 1))

(corresponding to the four degree 1 irreducible characters)

s = 20 (x0y0xq "y1 )

(corresponding to the two degree 2 irreducible characters)

\

Michel Broué Rouquier Blocks for Cyclotomic Hecke Algebras



Schur elements of Gy :
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Schur elements of Gg : x§ =g, x{ := (T w1, X == Gun
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Schur elements of Gz : x§ :=wo, x¥ := C3_1u1 L xS =G
Obtained by permutations of the parameters from

5= D1s(x0x; 1) Pa(x0x; 1) Dra(x0xqg ) D1 (x0x7 ) P (x0x; 1)
¢i§(xox{1) ¢4(X0X;1) ¢12(X0X;1) ¢1’2(X0X;1) ¢§’6(Xox;1)
¢4(X§xf1x{1) ¢/12(x§x1_1x2_1) ¢'/1/2(x§x1_1x2_1)

(corresponding to the three characters of degree 1)

2. 6_—6
S = —(3Xx

dla(xxg ') dls(xex; ')
¢4(x1x{1) ¢/12(x1x2_1) ¢/1/2(x1x2_1) ¢/36(x1x2_1)
D4 (x5 2x100) Pl (xX0 2x130) Pra(xg “x1%2)

(corresponding to the three characters of degree 2)

3= ¢4(X§Xf1X;1) ¢/12(X§X171X271) ¢/1/2(X§Xflxgl)
¢4(X12x;1x(;1) ¢'12(x12x2_1x0_1) <|>/1/2(x12x2_1x0_1)
Sa(xx5 g ) P06 X1 ) (X 4 )

(corresponding to the unique character of degree 3)
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Cyclotomic algebras

Let ¢ be a root of unity. A (—cyclotomic specialisation of the generic
Hecke algebra is a morphism

o xi—= ()™ Y= ()Y L. (minj € Z),

which gives rise to a (—cyclotomic Hecke algebra H,(G).
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Cyclotomic algebras

Let ¢ be a root of unity. A (—cyclotomic specialisation of the generic
Hecke algebra is a morphism

o x> ()™, v ()Y, (minj € Z),
which gives rise to a (—cyclotomic Hecke algebra H,(G).

A l—cyclotomic Hecke algebra for G, = Q=2 :
s t

STSTST = TSTSTS
< S T;{(S=¢*)(S+1)=0 p >
(T~ a)(T+1)=0
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A (3—cyclotomic Hecke algebra for B>(3) = @=0 :
s t

STST = TSTS
< ST {(S-1)(S—q)(S—¢*)=0p >
(T—¢*)(T+1)=0
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A (3—cyclotomic Hecke algebra for B>(3) = @=0 :
s t

STST = TSTS
< ST {(S-1)(S—q)(S—¢*)=0p >
(T—¢*)(T+1)=0

Relevance to character theory of finite reductive groups

The unipotent characters in a given d—Harish—Chandra series
UnCh(GF; (L, )\)) are described by a suitable (y—cyclotomic Hecke algebra
Hgr (L, \)) for the corresponding d—cyclotomic Weyl group Wgr(L, \)) :

UnCh(GF; (L, \)) « Irr(Hgr (L, \))) . |
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ROUQUIER BLOCKS OF CYCLOTOMIC ALGEBRAS
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ROUQUIER BLOCKS OF CYCLOTOMIC ALGEBRAS

e The Rouquier ring Rs(q) is

Re(q) == Zgla,q . ((q" — 1) M)nz1].

The Rouquier ring is a Dedekind domain.
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ROUQUIER BLOCKS OF CYCLOTOMIC ALGEBRAS

e The Rouquier ring Rs(q) is

Re(q) == Zgla,q . ((q" — 1) M)nz1].

The Rouquier ring is a Dedekind domain.

e The Rouquier blocks of a cyclotomic algebra H,(G) are the blocks
(primitive central idempotents) of the algebra Rg(q)H,(G).
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ROUQUIER BLOCKS OF CYCLOTOMIC ALGEBRAS

e The Rouquier ring Rs(q) is

Re(q) == Zgla,q . ((q" — 1) M)nz1].

The Rouquier ring is a Dedekind domain.

e The Rouquier blocks of a cyclotomic algebra H,(G) are the blocks
(primitive central idempotents) of the algebra Rg(q)H,(G).

Let (ex), (€ )k=1.2,...,|6| be a pair of dual basis of H,(G) relative to the
canonical trace form t.

Then a Rouquier block b has the form

b= zk: (Z XH;’(eL)> ex where Z 7XH”(6’I‘) € R¢(q)

S
X€Eb Xe XEb Xe
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Relevance to character theory of finite reductive groups
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Relevance to character theory of finite reductive groups

For each integer d and each d—cuspidal pair (L, \), let us identify

UnCh(GF, (L, \)) = Irr(Hgr (L, ).
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Relevance to character theory of finite reductive groups

For each integer d and each d—cuspidal pair (L, \), let us identify
UnCh(GF, (L, \)) = Irr(Hgr (L, ).

Then the trace of the Lusztig family partition

UnCh(G™) = UfeFam(GF)
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Relevance to character theory of finite reductive groups
For each integer d and each d—cuspidal pair (L, \), let us identify

UnCh(GF, (L, \)) = Irr(Hgr (L, ).

Then the trace of the Lusztig family partition

UnCh(G™) = UfeFam(GF)

on the d-Harish-Chandra series UnCh(G*, (L, )\)) is the partition into
Rouquier blocks of Irr(Hgr(L, A)) :

Ir(H(GF, (L, \)) =

F N lrr(Hgr(L, ) -

Rouquier Block or ()

FeFam(GF)
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Computation of Rouquier Blocks
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Computation of Rouquier Blocks

p—Blocks and Bad primes
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Computation of Rouquier Blocks

p—Blocks and Bad primes

o For p a prime ideal of Zg, the blocks of the localised algebra H(G),
(resp. Hy(G)p) are called p—blocks of H(G) (resp. H,(G)).
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Computation of Rouquier Blocks

p—Blocks and Bad primes

o For p a prime ideal of Zg, the blocks of the localised algebra H(G),
(resp. Hy(G)p) are called p—blocks of H(G) (resp. H,(G)).

@ A bad prime for H,(G) is a prime ideal of Zg which divides some
Schur element s, .
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Computation of Rouquier Blocks

p—Blocks and Bad primes
o For p a prime ideal of Zg, the blocks of the localised algebra H(G),
(resp. Hy(G)p) are called p—blocks of H(G) (resp. H,(G)).

@ A bad prime for H,(G) is a prime ideal of Zg which divides some
Schur element s, .

A prime p is bad if and only if there is at least one p—block which
is nontrivial.
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Computation of Rouquier Blocks

p—Blocks and Bad primes

o For p a prime ideal of Zg, the blocks of the localised algebra H(G),
(resp. Hy(G)p) are called p—blocks of H(G) (resp. H,(G)).

@ A bad prime for H,(G) is a prime ideal of Zg which divides some
Schur element s, .

A prime p is bad if and only if there is at least one p—block which
is nontrivial.

Proposition

The Rouquier blocks of H,(G) are the union of the p—blocks of H,(G)
for p running over the set bad(H,(G)) of bad primes.
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p—Blocks and p—essential monomials

Michel Broué Rouquier Blocks for Cyclotomic Hecke Algebras



p—Blocks and p—essential monomials
Definition

- b :
Let M =T[;x"y;”--- be a monomial.
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p—Blocks and p—essential monomials
Definition

. b :
Let M =T[;x"y;”--- be a monomial.

@ We say that M is p—essential if there exist a Q¢ —cyclotomic
polynomial W and an irreducible character x of G such that
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p—Blocks and p—essential monomials
Definition

. b :
Let M =T[;x"y;”--- be a monomial.

@ We say that M is p—essential if there exist a Q¢ —cyclotomic
polynomial W and an irreducible character x of G such that

Q V(M) divides s,,,,
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p—Blocks and p—essential monomials
Definition

. b :
Let M =T[;x"y;”--- be a monomial.

@ We say that M is p—essential if there exist a Q¢ —cyclotomic
polynomial W and an irreducible character x of G such that
Q V(M) divides s,,,,
@ p divides W(1).
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p—Blocks and p—essential monomials
Definition

. b :
Let M =T[;x"y;”--- be a monomial.

@ We say that M is p—essential if there exist a Q¢ —cyclotomic
polynomial W and an irreducible character x of G such that

Q V(M) divides s,,,,
@ p divides W(1).

A character y as above is then said to be p—singular at M.
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p—Blocks and p—essential monomials
Definition

. b :
Let M =T[;x"y;”--- be a monomial.

@ We say that M is p—essential if there exist a Q¢ —cyclotomic
polynomial W and an irreducible character x of G such that

Q V(M) divides s,,,,
@ p divides W(1).
A character y as above is then said to be p—singular at M.

e If M is p—essential, the hyperplane Hy, defined by Log(M), i.e.,
>oiaiXi+ Zj bjY;+--- =0, is called a p—essential hyperplane.
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p—Blocks and p—essential monomials
Definition

. b :
Let M =T[;x"y;”--- be a monomial.

@ We say that M is p—essential if there exist a Q¢ —cyclotomic
polynomial W and an irreducible character x of G such that

Q V(M) divides s,,,,
@ p divides W(1).
A character y as above is then said to be p—singular at M.

e If M is p—essential, the hyperplane Hy, defined by Log(M), i.e.,
>oiaiXi+ Zj bjY;+--- =0, is called a p—essential hyperplane.
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Cyclotomic specialisation and p—singularity
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Cyclotomic specialisation and p—singularity

Definition
Let ¢ be a cyclotomic specialisation of H(G), defined by the family of
integers (m;), (nj),.... Let M be a p—essential monomial.

We say that ¢ is p—singular at M (or at Hy) if

i.e., if the parameters of ¢ belong to the p—essential hyperplane Hy, :

Za;m;+2bjnj+---:0.
i J
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G, : 2—essentiel in purple, 3—essentials in

51 = ¢2(X0X;1)¢2(y0yf1) ¢6(XOYOXf1Yf1))

52 1= 206 (x0y0x1 "y1 1Y)
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G, : 2—essentiel in purple, 3—essentials in

s1:= ®a(xoxg D Pa(yoyy b)

D6 (x0y0x7 'y7 1))
52 1= 206 (x0y0x1 "y1 1Y)

G4 : 2—essentiel in purple, 3—essentials in

s = ¢'18(xoxf1) ¢4(xoxf1) ¢'12(x0xf1) <|>'1'2(x0xf1) <|>gﬁ(xoxf1)
Sla(x0x 1) Pa(x0x 1) Pha(xoxz ) Pa(x0xz 1) Ps(x0x5 1)
¢4(X§Xflxgl) ¢/12(X§X171X271) ¢/1/2(X§xflel)
2.6_—6
2= —Gxx

Ols(xaxg 1) ®15(32x 1)
(
D40 xax) P ) P2 (x5 Sxaxz)
s3= D05 x x ) DX x ) Ph(x5x T )
(
(

d, X1X2_1X0 )¢'12(x12x2_1x0_1) ¢'/1/2(x12x2_1x0_1)

xfx(flel) ¢’12(x22X(;1Xf1) ¢/1/2(X22X(;1Xf1)
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@ Let H,(Gz) be a cyclotomic algebra for G, defined by

(S—(¢Tr)™NS—(¢Tt)™) = (T = (') ) (T~ (¢Trg)™) = 0.
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@ Let H,(Gz) be a cyclotomic algebra for G, defined by
(S— (™S = ()™ = (T = ()™ )T~ (¢tg)™) =0.

» 2 is always bad, and H,(G,) is 2-singular at mg = my or ng = ny .
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@ Let H,(Gz) be a cyclotomic algebra for G, defined by
(S— (™S = ()™ = (T = ()™ )T~ (¢tg)™) =0.

» 2 is always bad, and H,(G,) is 2-singular at mg = my or ng = ny .

» H,(Gy) is 3—singular at mo + ng = my + ny or mg+ny = my + ng .
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@ Let H,(Gz) be a cyclotomic algebra for G, defined by
(S— (™S = ()™ = (T = ()™ )T~ (¢tg)™) =0.

» 2 is always bad, and H,(G,) is 2-singular at mg = my or ng = ny .

» H,(Gy) is 3—singular at mo + ng = my + ny or mg+ny = my + ng .

o Let H,(Gs) be a cyclotomic algebra for G4 defined by

(S= (¢ ') ™)(S = (Cra)™)N(S - (¢TTq)™) = 0.
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@ Let H,(Gz) be a cyclotomic algebra for G, defined by
(S— (™S = ()™ = (T = ()™ )T~ (¢tg)™) =0.

» 2 is always bad, and H,(G,) is 2-singular at mg = my or ng = ny .

» H,(Gy) is 3—singular at mo + ng = my + ny or mg+ny = my + ng .

o Let H,(Gs) be a cyclotomic algebra for G4 defined by
(S— ()™ = (¢CT)™)(S - (¢Ttg)™) = 0.

» H,(Gs) is 2—singular at (up to permutations of indices)
mg = my or2mg = my + my.
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@ Let H,(Gz) be a cyclotomic algebra for G, defined by
(S— (™S = ()™ = (T = ()™ )T~ (¢tg)™) =0.

» 2 is always bad, and H,(G,) is 2-singular at mg = my or ng = ny .

» H,(Gy) is 3—singular at mo + ng = my + ny or mg+ny = my + ng .
o Let H,(Gs) be a cyclotomic algebra for G4 defined by
(S— ()™ = (¢CT)™)(S - (¢Ttg)™) = 0.
» H,(Gs) is 2—singular at (up to permutations of indices)

mo = my or 2mg = my + m>.

» H,(Gs) is 3-singular at (up to permutations of indices) my = m; .
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Theorem (Maria Chlouveraki)

Assume that G is an irreducible complex reflection group.

Let Bl (H(G)) (resp. Bly(H,(G)) be the partition of Irr(G) (identified
with Irr(H(G))) into p-blocks of H(G) (resp. Hy(G)).

Whenever M is a p-essential monomial, there exists a partition
BEQ”(H(G)) of Irr(G) with the following properties.

It is believed that the condition in 1 is an equivalence. That has been
checked for G exceptional.
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Theorem (Maria Chlouveraki)

Assume that G is an irreducible complex reflection group.

Let Bl (H(G)) (resp. Bly(H,(G)) be the partition of Irr(G) (identified
with Irr(H(G))) into p-blocks of H(G) (resp. Hy(G)).

Whenever M is a p-essential monomial, there exists a partition
BEQ”(H(G)) of Irr(G) with the following properties.

O Blocks of BEQ/’(H(G)) are unions of blocks of B¢,(H(G)). More
precisely, if a block of B¢,(H(G)) does not contain a character which
is p—singular at M, then it coincides with a block of Z%Q/’(H(G)).

It is believed that the condition in 1 is an equivalence. That has been
checked for G exceptional.
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Theorem (Maria Chlouveraki)
Assume that G is an irreducible complex reflection group.

Let Bl (H(G)) (resp. Bly(H,(G)) be the partition of Irr(G) (identified
with Irr(H(G))) into p-blocks of H(G) (resp. Hy(G)).

Whenever M is a p-essential monomial, there exists a partition
BEQ”(H(G)) of Irr(G) with the following properties.

O Blocks of BEQ/’(H(G)) are unions of blocks of B¢,(H(G)). More
precisely, if a block of B¢,(H(G)) does not contain a character which
is p—singular at M, then it coincides with a block of Bﬁg/’(H(G)).

@ The partition Bl,(H,(G)) is the partition generated by the family of
partitions BEQ”(H(G)) where M runs over the set of all p—essential
monomial at which ¢ is singular.

It is believed that the condition in 1 is an equivalence. That has been
checked for G exceptional.
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Characters of G4 are denoted x4, Where
e dis its degree x(1),
@ b is the valuation of its fake degree.
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Characters of G4 are denoted x4, Where
e dis its degree x(1),
@ b is the valuation of its fake degree.

The cycle (xp x1 x2) acts as follows on Irr(G) :

X1,0 — X1,4 — X1,8 .
and fixes x3

X2,1 — X255 X2,3

The partitions associated with the 2—essential monomials are (up to
permutation)

B™=™) (H(Ga)) = {x1.0, X1.4» X21} | (singletons)

BO2mO=mMEm) (316G = {x1.0, X2.5: X3.2} |J (singletons)
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