Rouquier Blocks for Cyclotomic Hecke Algebras

Michel Broué

Institut Henri-Poincaré

July 2007

After work of
Raphaël Rouquier, Gunter Malle, Michel B., Sungsoon Kim, \& Maria Chlouveraki

HECKE ALGEBRAS OF COMPLEX REFLECTION GROUPS

HECKE ALGEBRAS OF COMPLEX REFLECTION GROUPS

- Every complex reflection group G has a nice presentation "à la Coxeter" :

$$
G_{2}: \underset{s}{(2)} \overline{=}=(2) \quad, \quad G_{t}: \underset{s}{(3)-\underbrace{3}_{t}}
$$

HECKE ALGEBRAS OF COMPLEX REFLECTION GROUPS

- Every complex reflection group G has a nice presentation "à la Coxeter" :

and a field of realisation \mathbb{Q}_{G} (ring of integers \mathbb{Z}_{G}):

$$
\mathbb{Q}_{G_{2}}=\mathbb{Q} \quad \text { and } \quad \mathbb{Q}_{G_{4}}=\mathbb{Q}\left(\zeta_{3}\right) .
$$

HECKE ALGEBRAS OF COMPLEX REFLECTION GROUPS

- Every complex reflection group G has a nice presentation "à la Coxeter" :

and a field of realisation \mathbb{Q}_{G} (ring of integers \mathbb{Z}_{G}):

$$
\mathbb{Q}_{G_{2}}=\mathbb{Q} \quad \text { and } \quad \mathbb{Q}_{G_{4}}=\mathbb{Q}\left(\zeta_{3}\right) .
$$

- The associated generic Hecke algebra is defined from such a presentation :

$$
\begin{aligned}
& \mathcal{H}\left(G_{2}\right):=<S, T ;\left\{\begin{array}{l}
S T S T S T=T S T S T S \\
\left(S-u_{0}\right)\left(S-u_{1}\right)=0 \\
\left(T-v_{0}\right)\left(T-v_{1}\right)=0
\end{array}\right. \\
& \mathcal{H}\left(G_{4}\right):=<S, T ;\left\{\begin{array}{l}
S T S=T S T \\
\left(S-u_{0}\right)\left(S-u_{1}\right)\left(S-u_{2}\right)=0
\end{array}\right.
\end{aligned}
$$

(1) The generic Hecke algebra $\mathcal{H}(G)$ is free of rank $|G|$ over the corresponding Laurent polynomial ring $\mathbb{Z}\left[\left(u_{i}^{ \pm 1}\right),\left(v_{j}^{ \pm 1}\right), \ldots\right]$.
(1) The generic Hecke algebra $\mathcal{H}(G)$ is free of rank $|G|$ over the corresponding Laurent polynomial ring $\mathbb{Z}\left[\left(u_{i}^{ \pm 1}\right),\left(v_{j}^{ \pm 1}\right), \ldots\right]$.
(2) It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates:

$$
\text { if } G=\underset{s}{(d)} \frac{m}{t} \underset{t}{(e)}-\cdots,
$$

then for

$$
\left(x_{i}^{\left|\mu\left(\mathbb{Q}_{G}\right)\right|}=\zeta_{d}^{-i} u_{i}\right)_{i=0,1, \ldots, d-1} \quad, \quad\left(y_{j}^{\left|\mu\left(\mathbb{Q}_{G}\right)\right|}=\zeta_{e}^{-j} v_{j}\right)_{j=0,1, \ldots, e-1}
$$

(1) The generic Hecke algebra $\mathcal{H}(G)$ is free of rank $|G|$ over the corresponding Laurent polynomial ring $\mathbb{Z}\left[\left(u_{i}^{ \pm 1}\right),\left(v_{j}^{ \pm 1}\right), \ldots\right]$.
(2) It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates:

$$
\text { if } G=\underset{s}{(d)} \frac{m}{e} e_{t}^{(}-\cdots,
$$

then for

$$
\left(x_{i}^{\left|\mu\left(\mathbb{Q}_{G}\right)\right|}=\zeta_{d}^{-i} u_{i}\right)_{i=0,1, \ldots, d-1} \quad, \quad\left(y_{j}^{\left|\mu\left(\mathbb{Q}_{G}\right)\right|}=\zeta_{e}^{-j} v_{j}\right)_{j=0,1, \ldots, e-1}
$$

- the algebra $\left.\mathbb{Q}_{G}\left(\left(x_{i}\right),\left(y_{j}\right), \ldots\right)\right) \mathcal{H}(G)$ is split semisimple,
(1) The generic Hecke algebra $\mathcal{H}(G)$ is free of rank $|G|$ over the corresponding Laurent polynomial ring $\mathbb{Z}\left[\left(u_{i}^{ \pm 1}\right),\left(v_{j}^{ \pm 1}\right), \ldots\right]$.
(2) It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates:

$$
\text { if } G=\underset{s}{\text { (d) }} \frac{m}{t}-\cdots
$$

then for

$$
\left(x_{i}^{\left|\mu\left(\mathbb{Q}_{G}\right)\right|}=\zeta_{d}^{-i} u_{i}\right)_{i=0,1, \ldots, d-1} \quad, \quad\left(y_{j}^{\left|\mu\left(\mathbb{Q}_{G}\right)\right|}=\zeta_{e}^{-j} v_{j}\right)_{j=0,1, \ldots, e-1}
$$

- the algebra $\left.\mathbb{Q}_{G}\left(\left(x_{i}\right),\left(y_{j}\right), \ldots\right)\right) \mathcal{H}(G)$ is split semisimple,
- through the specialisation $x_{i} \mapsto 1 \quad y_{j} \mapsto 1, \ldots$, that algebra becomes the group algebra of G over \mathbb{Q}_{G}.
(1) The generic Hecke algebra $\mathcal{H}(G)$ is free of rank $|G|$ over the corresponding Laurent polynomial ring $\mathbb{Z}\left[\left(u_{i}^{ \pm 1}\right),\left(v_{j}^{ \pm 1}\right), \ldots\right]$.
(2) It becomes a split semisimple algebra over a field obtained by extracting suitable roots of the indeterminates:

$$
\text { if } G=\underset{s}{\text { (d) }} \frac{m}{t}-\cdots
$$

then for

$$
\left(x_{i}^{\left|\mu\left(\mathbb{Q}_{G}\right)\right|}=\zeta_{d}^{-i} u_{i}\right)_{i=0,1, \ldots, d-1} \quad, \quad\left(y_{j}^{\left|\mu\left(\mathbb{Q}_{G}\right)\right|}=\zeta_{e}^{-j} v_{j}\right)_{j=0,1, \ldots, e-1}
$$

- the algebra $\left.\mathbb{Q}_{G}\left(\left(x_{i}\right),\left(y_{j}\right), \ldots\right)\right) \mathcal{H}(G)$ is split semisimple,
- through the specialisation $x_{i} \mapsto 1 \quad y_{j} \mapsto 1, \ldots$, that algebra becomes the group algebra of G over \mathbb{Q}_{G}.
The above specialisation defines a bijection

$$
\operatorname{lrr}(G) \xrightarrow{\sim} \operatorname{Irr}(\mathcal{H}(G)) \quad, \quad \chi \mapsto \chi_{\mathcal{H}} .
$$

(9) The generic Hecke algebra $\mathcal{H}(G)$ is endowed with a canonical symmetrizing form $t: \mathcal{H}(G) \rightarrow \mathbb{Z}\left[\left(u_{i}^{ \pm 1}\right),\left(v_{j}^{ \pm 1}\right), \ldots\right]$
(9) The generic Hecke algebra $\mathcal{H}(G)$ is endowed with a canonical symmetrizing form $t: \mathcal{H}(G) \rightarrow \mathbb{Z}\left[\left(u_{i}^{ \pm 1}\right),\left(v_{j}^{ \pm 1}\right), \ldots\right]$

- which specialises to the canonical form of the group algebra $\mathbb{Q}_{G} G$,
(9) The generic Hecke algebra $\mathcal{H}(G)$ is endowed with a canonical symmetrizing form $t: \mathcal{H}(G) \rightarrow \mathbb{Z}\left[\left(u_{i}^{ \pm 1}\right),\left(v_{j}^{ \pm 1}\right), \ldots\right]$
- which specialises to the canonical form of the group algebra $\mathbb{Q}_{G} G$,
- and satisfies some other condition.
(4) The generic Hecke algebra $\mathcal{H}(G)$ is endowed with a canonical symmetrizing form $t: \mathcal{H}(G) \rightarrow \mathbb{Z}\left[\left(u_{i}^{ \pm 1}\right),\left(v_{j}^{ \pm 1}\right), \ldots\right]$
- which specialises to the canonical form of the group algebra $\mathbb{Q}_{G} G$,
- and satisfies some other condition.
(3) The Schur elements of the irreducible characters of G are the elements $s_{\chi} \in \mathbb{Z}_{G}\left[\left(x_{i}^{ \pm 1}\right),\left(y_{j}^{ \pm 1}\right), \ldots\right]$ defined by

$$
t=\sum_{\chi \in \operatorname{lrr}(G)} \frac{1}{s_{\chi}} \chi_{\mathcal{H}} .
$$

Theorem (M. Chlouveraki)

We have

$$
s_{\chi}(\mathbf{x})=\xi_{\chi} N_{\chi} \prod_{i \in I_{\chi}} \Psi_{\chi, i}\left(M_{\chi, i}\right)^{n_{\chi, i}}
$$

where

- $\xi_{\chi} \in \mathbb{Z}_{G}, N_{\chi}$ is a degree zero monomial in $\mathbb{Z}_{G}\left[\mathbf{x}, \mathbf{x}^{-1}\right],\left(n_{\chi, i}\right)_{i \in I_{\chi}}$ are integers,
- $\left(\Psi_{\chi, i}\right)_{i \in I_{\chi}}$ is a family of K-cyclotomic polynomials,
- $\left(M_{\chi, i}\right)_{i \in I_{\chi}}$ is a family of degree zero primitive monomials in $\mathbb{Z}_{G}\left[\mathbf{x}, \mathbf{x}^{-1}\right]$.
That factorisation is unique in $K\left[\mathbf{x}, \mathbf{x}^{-1}\right]$ and the monomials $\left(M_{\chi, i}\right)_{i \in I_{\chi}}$ are unique (up to inversion).

Schur elements of G_{2}

Schur elements of G_{2}

$$
\left\{\begin{array}{l}
x_{0}^{2}=u_{0}, x_{1}^{2}=-u_{1} \\
y_{0}^{2}=v_{0}, y_{1}^{2}=-v_{1}
\end{array}\right.
$$

Schur elements of G_{2}

$$
\left\{\begin{array}{l}
x_{0}^{2}=u_{0}, x_{1}^{2}=-u_{1} \\
y_{0}^{2}=v_{0}, y_{1}^{2}=-v_{1}
\end{array}\right.
$$

Elements of the orbit under $\mathfrak{S}\left(x_{0}, x_{1}\right) \times \mathfrak{S}\left(y_{0}, y_{1}\right)$ of

$$
\left\{\begin{array}{c}
\left.s_{1}:=\Phi_{2}\left(x_{0} x_{1}^{-1}\right) \Phi_{2}\left(y_{0} y_{1}^{-1}\right) \Phi_{3}\left(x_{0} y_{0} x_{1}^{-1} y_{1}^{-1}\right) \Phi_{6}\left(x_{0} y_{0} x_{1}^{-1} y_{1}^{-1}\right)\right) \\
\quad \text { (corresponding to the four degree } 1 \text { irreducible characters) } \\
s_{2}:=2 \Phi_{6}\left(x_{0} y_{0} x_{1}^{-1} y_{1}^{-1}\right) \Phi_{3}\left(x_{0} y_{1} x_{1}^{-1} y_{0}^{-1}\right) \\
\quad(\text { corresponding to the two degree } 2 \text { irreducible characters) }
\end{array}\right.
$$

Schur elements of $G_{4}: \quad x_{0}^{6}:=u_{9}, x_{1}^{6}:=\zeta_{3}^{-1} u_{1}, x_{2}^{6}:=\zeta_{3} u_{2}$

Schur elements of $G_{4}: \quad x_{0}^{6}:=u_{9}, x_{1}^{6}:=\zeta_{3}^{-1} u_{1}, x_{2}^{6}:=\zeta_{3} u_{2}$
Obtained by permutations of the parameters from

$$
\left\{\begin{aligned}
s_{1}= & \Phi_{9}^{\prime \prime}\left(x_{0} x_{1}^{-1}\right) \Phi_{18}^{\prime}\left(x_{0} x_{1}^{-1}\right) \Phi_{4}\left(x_{0} x_{1}^{-1}\right) \Phi_{12}^{\prime}\left(x_{0} x_{1}^{-1}\right) \Phi_{12}^{\prime \prime}\left(x_{0} x_{1}^{-1}\right) \Phi_{36}^{\prime}\left(x_{0} x_{1}^{-1}\right) \\
& \Phi_{9}^{\prime}\left(x_{0} x_{2}^{-1}\right) \Phi_{18}^{\prime \prime}\left(x_{0} x_{2}^{-1}\right) \Phi_{4}\left(x_{0} x_{2}^{-1}\right) \Phi_{12}^{\prime}\left(x_{0} x_{2}^{-1}\right) \Phi_{12}^{\prime \prime}\left(x_{0} x_{2}^{-1}\right) \Phi_{36}^{\prime \prime}\left(x_{0} x_{2}^{-1}\right) \\
& \Phi_{4}\left(x_{0}^{2} x_{1}^{-1} x_{2}^{-1}\right) \Phi_{12}^{\prime}\left(x_{0}^{2} x_{1}^{-1} x_{2}^{-1}\right) \Phi_{12}^{\prime \prime}\left(x_{0}^{2} x_{1}^{-1} x_{2}^{-1}\right) \\
& (\text { corresponding to the three characters of degree } 1) \\
s_{2}= & -\zeta_{3}^{2} x_{2}^{6} x_{1}^{-6} \\
& \Phi_{9}^{\prime}\left(x_{1} x_{0}^{-1}\right) \Phi_{18}^{\prime \prime}\left(x_{1} x_{0}^{-1}\right) \Phi_{9}^{\prime \prime}\left(x_{2} x_{0}^{-1}\right) \Phi_{18}^{\prime}\left(x_{2} x_{0}^{-1}\right) \\
& \Phi_{4}\left(x_{1} x_{2}^{-1}\right) \Phi_{12}^{\prime}\left(x_{1} x_{2}^{-1}\right) \Phi_{12}^{\prime \prime}\left(x_{1} x_{2}^{-1}\right) \Phi_{36}^{\prime}\left(x_{1} x_{2}^{-1}\right) \\
& \Phi_{4}\left(x_{0}^{-2} x_{1} x_{2}\right) \Phi_{12}^{\prime}\left(x_{0}^{-2} x_{1} x_{2}\right) \Phi_{12}^{\prime \prime}\left(x_{0}^{-2} x_{1} x_{2}\right) \\
& (\operatorname{corresponding~to~the~three~characters~of~degree~2)} \\
& \\
s_{3}= & \Phi_{4}\left(x_{0}^{2} x_{1}^{-1} x_{2}^{-1}\right) \Phi_{12}^{\prime}\left(x_{0}^{2} x_{1}^{-1} x_{2}^{-1}\right) \Phi_{12}^{\prime \prime}\left(x_{0}^{2} x_{1}^{-1} x_{2}^{-1}\right) \\
& \Phi_{4}\left(x_{1}^{2} x_{2}^{-1} x_{0}^{-1}\right) \Phi_{12}^{\prime}\left(x_{1}^{2} x_{2}^{-1} x_{0}^{-1}\right) \Phi_{12}^{\prime \prime}\left(x_{1}^{2} x_{2}^{-1} x_{0}^{-1}\right) \\
& \Phi_{4}\left(x_{2}^{2} x_{0}^{-1} x_{1}^{-1}\right) \Phi_{12}^{\prime}\left(x_{2}^{2} x_{0}^{-1} x_{1}^{-1}\right) \Phi_{12}^{\prime \prime}\left(x_{2}^{2} x_{0}^{-1} x_{1}^{-1}\right) \\
& (\operatorname{corresponding} \text { to the unique character of degree 3)}
\end{aligned}\right.
$$

Cyclotomic algebras

Let ζ be a root of unity. A ζ-cyclotomic specialisation of the generic Hecke algebra is a morphism

$$
\varphi: x_{i} \mapsto\left(\zeta^{-1} q\right)^{m_{i}}, y_{j} \mapsto\left(\zeta^{-1} q\right)^{n_{j}}, \ldots \quad\left(m_{i}, n_{j} \in \mathbb{Z}\right)
$$

which gives rise to a ζ-cyclotomic Hecke algebra $\mathcal{H}_{\varphi}(G)$.

Cyclotomic algebras

Let ζ be a root of unity. A ζ-cyclotomic specialisation of the generic Hecke algebra is a morphism

$$
\varphi: x_{i} \mapsto\left(\zeta^{-1} q\right)^{m_{i}}, y_{j} \mapsto\left(\zeta^{-1} q\right)^{n_{j}}, \ldots \quad\left(m_{i}, n_{j} \in \mathbb{Z}\right)
$$

which gives rise to a ζ-cyclotomic Hecke algebra $\mathcal{H}_{\varphi}(G)$.
A 1-cyclotomic Hecke algebra for $G_{2}=\underset{s}{(2)} \overline{\overline{(2)}}{ }_{t}^{2}$:

$$
<S, T ;\left\{\begin{array}{l}
S T S T S T=T S T S T S \\
\left(S-q^{2}\right)(S+1)=0 \\
(T-q)(T+1)=0
\end{array}\right\}>
$$

A ζ_{3}-cyclotomic Hecke algebra for $B_{2}(3)=\underset{s}{(d)}=\underset{t}{2}$:

$$
<S, T ;\left\{\begin{array}{l}
S T S T=T S T S \\
(S-1)(S-q)\left(S-q^{2}\right)=0 \\
\left(T-q^{3}\right)(T+1)=0
\end{array}\right\}>
$$

A ζ_{3}-cyclotomic Hecke algebra for $B_{2}(3)=\underset{s}{(d)}=\underset{t}{2}$:

$$
<S, T ;\left\{\begin{array}{l}
S T S T=T S T S \\
(S-1)(S-q)\left(S-q^{2}\right)=0 \\
\left(T-q^{3}\right)(T+1)=0
\end{array}\right\}>
$$

Relevance to character theory of finite reductive groups
The unipotent characters in a given d-Harish-Chandra series $\mathrm{UnCh}\left(\mathbf{G}^{F} ;(\mathbf{L}, \lambda)\right)$ are described by a suitable ζ_{d}-cyclotomic Hecke algebra $\left.\mathcal{H}_{\mathbf{G}^{F}}(\mathbf{L}, \lambda)\right)$ for the corresponding d-cyclotomic Weyl group $\left.W_{\mathbf{G}^{F}}(\mathbf{L}, \lambda)\right)$:

$$
\left.\operatorname{UnCh}\left(\mathbf{G}^{F} ;(\mathbf{L}, \lambda)\right) \longleftrightarrow \operatorname{Irr}\left(\mathcal{H}_{\mathbf{G}^{F}}(\mathbf{L}, \lambda)\right)\right)
$$

ROUQUIER BLOCKS OF CYCLOTOMIC ALGEBRAS

ROUQUIER BLOCKS OF CYCLOTOMIC ALGEBRAS

- The Rouquier ring $R_{G}(q)$ is

$$
R_{G}(q):=\mathbb{Z}_{G}\left[q, q^{-1},\left(\left(q^{n}-1\right)^{-1}\right)_{n \geq 1}\right] .
$$

The Rouquier ring is a Dedekind domain.

ROUQUIER BLOCKS OF CYCLOTOMIC ALGEBRAS

- The Rouquier ring $R_{G}(q)$ is

$$
R_{G}(q):=\mathbb{Z}_{G}\left[q, q^{-1},\left(\left(q^{n}-1\right)^{-1}\right)_{n \geq 1}\right] .
$$

The Rouquier ring is a Dedekind domain.

- The Rouquier blocks of a cyclotomic algebra $\mathcal{H}_{\varphi}(G)$ are the blocks (primitive central idempotents) of the algebra $R_{G}(q) \mathcal{H}_{\varphi}(G)$.

ROUQUIER BLOCKS OF CYCLOTOMIC ALGEBRAS

- The Rouquier ring $R_{G}(q)$ is

$$
R_{G}(q):=\mathbb{Z}_{G}\left[q, q^{-1},\left(\left(q^{n}-1\right)^{-1}\right)_{n \geq 1}\right] .
$$

The Rouquier ring is a Dedekind domain.

- The Rouquier blocks of a cyclotomic algebra $\mathcal{H}_{\varphi}(G)$ are the blocks (primitive central idempotents) of the algebra $R_{G}(q) \mathcal{H}_{\varphi}(G)$.

Let $\left(e_{k}\right),\left(e_{k}^{\prime}\right)_{k=1,2, \ldots,|G|}$ be a pair of dual basis of $\mathcal{H}_{\varphi}(G)$ relative to the canonical trace form t.
Then a Rouquier block b has the form

$$
b=\sum_{k}\left(\sum_{\chi \in b} \frac{\chi_{\mathcal{H}_{\varphi}}\left(e_{k}^{\prime}\right)}{s_{\chi_{\varphi}}}\right) e_{k} \quad \text { where } \quad \sum_{\chi \in b} \frac{\chi_{\mathcal{H}_{\varphi}}\left(e_{k}^{\prime}\right)}{s_{\chi_{\varphi}}} \in R_{G}(q)
$$

Relevance to character theory of finite reductive groups

Relevance to character theory of finite reductive groups
For each integer d and each d-cuspidal pair (\mathbf{L}, λ), let us identify

$$
\operatorname{UnCh}\left(\mathbf{G}^{F},(\mathbf{L}, \lambda)\right)=\operatorname{Irr}\left(\mathcal{H}_{\mathbf{G}^{F}}(\mathbf{L}, \lambda)\right) .
$$

Relevance to character theory of finite reductive groups
For each integer d and each d-cuspidal pair (\mathbf{L}, λ), let us identify

$$
\operatorname{UnCh}\left(\mathbf{G}^{F},(\mathbf{L}, \lambda)\right)=\operatorname{Irr}\left(\mathcal{H}_{\mathbf{G}^{F}}(\mathbf{L}, \lambda)\right) .
$$

Then the trace of the Lusztig family partition

$$
\operatorname{UnCh}\left(\mathbf{G}^{F}\right)=\bigcup_{\mathcal{F} \in \operatorname{Fam}\left(\mathbf{G}^{F}\right)} \mathcal{F}
$$

Relevance to character theory of finite reductive groups
For each integer d and each d-cuspidal pair (\mathbf{L}, λ), let us identify

$$
\operatorname{UnCh}\left(\mathbf{G}^{F},(\mathbf{L}, \lambda)\right)=\operatorname{Irr}\left(\mathcal{H}_{\mathbf{G}^{F}}(\mathbf{L}, \lambda)\right) .
$$

Then the trace of the Lusztig family partition

$$
\operatorname{UnCh}\left(\mathbf{G}^{F}\right)=\bigcup_{\mathcal{F} \in \operatorname{Fam}\left(\mathbf{G}^{F}\right)} \mathcal{F}
$$

on the d-Harish-Chandra series $\operatorname{UnCh}\left(\mathbf{G}^{F},(\mathbf{L}, \lambda)\right)$ is the partition into Rouquier blocks of $\operatorname{Irr}\left(\mathcal{H}_{\mathbf{G}^{F}}(\mathbf{L}, \lambda)\right)$:

$$
\operatorname{Irr}\left(\mathcal{H}\left(\mathbf{G}^{F},(\mathbf{L}, \lambda)\right)\right)=\bigcup_{\mathcal{F} \in \operatorname{Fam}\left(\mathbf{G}^{F}\right)} \underbrace{\mathcal{F} \cap \operatorname{Irr}\left(\mathcal{H}_{\mathbf{G}^{F}}(\mathbf{L}, \lambda)\right)}_{\text {Rouquier Block or } \emptyset}
$$

Computation of Rouquier Blocks

Computation of Rouquier Blocks

\mathfrak{p}-Blocks and Bad primes

Computation of Rouquier Blocks

\mathfrak{p}-Blocks and Bad primes

- For \mathfrak{p} a prime ideal of \mathbb{Z}_{G}, the blocks of the localised algebra $\mathcal{H}(G)_{\mathfrak{p}}$ (resp. $\mathcal{H}_{\varphi}(G)_{\mathfrak{p}}$) are called \mathfrak{p}-blocks of $\mathcal{H}(G)$ (resp. $\mathcal{H}_{\varphi}(G)$).

Computation of Rouquier Blocks

\mathfrak{p}-Blocks and Bad primes

- For \mathfrak{p} a prime ideal of \mathbb{Z}_{G}, the blocks of the localised algebra $\mathcal{H}(G)_{\mathfrak{p}}$ (resp. $\left.\mathcal{H}_{\varphi}(G)_{\mathfrak{p}}\right)$ are called \mathfrak{p}-blocks of $\mathcal{H}(G)\left(\right.$ resp. $\left.\mathcal{H}_{\varphi}(G)\right)$.
- A bad prime for $\mathcal{H}_{\varphi}(G)$ is a prime ideal of \mathbb{Z}_{G} which divides some Schur element $s_{\chi_{\varphi}}$.

Computation of Rouquier Blocks

\mathfrak{p}-Blocks and Bad primes

- For \mathfrak{p} a prime ideal of \mathbb{Z}_{G}, the blocks of the localised algebra $\mathcal{H}(G)_{\mathfrak{p}}$ (resp. $\left.\mathcal{H}_{\varphi}(G)_{\mathfrak{p}}\right)$ are called \mathfrak{p}-blocks of $\mathcal{H}(G)\left(\right.$ resp. $\mathcal{H}_{\varphi}(G)$).
- A bad prime for $\mathcal{H}_{\varphi}(G)$ is a prime ideal of \mathbb{Z}_{G} which divides some Schur element $s_{\chi_{\varphi}}$.

A prime \mathfrak{p} is bad if and only if there is at least one \mathfrak{p}-block which is nontrivial.

Computation of Rouquier Blocks

\mathfrak{p}-Blocks and Bad primes

- For \mathfrak{p} a prime ideal of \mathbb{Z}_{G}, the blocks of the localised algebra $\mathcal{H}(G)_{\mathfrak{p}}$ (resp. $\left.\mathcal{H}_{\varphi}(G)_{\mathfrak{p}}\right)$ are called \mathfrak{p}-blocks of $\mathcal{H}(G)$ (resp. $\mathcal{H}_{\varphi}(G)$).
- A bad prime for $\mathcal{H}_{\varphi}(G)$ is a prime ideal of \mathbb{Z}_{G} which divides some Schur element $s_{\chi_{\varphi}}$.

A prime \mathfrak{p} is bad if and only if there is at least one \mathfrak{p}-block which is nontrivial.

Proposition

The Rouquier blocks of $\mathcal{H}_{\varphi}(G)$ are the union of the \mathfrak{p}-blocks of $\mathcal{H}_{\varphi}(G)$ for \mathfrak{p} running over the set $\operatorname{bad}\left(\mathcal{H}_{\varphi}(G)\right)$ of bad primes.

\mathfrak{p}-Blocks and \mathfrak{p}-essential monomials

\mathfrak{p}-Blocks and \mathfrak{p}-essential monomials

Definition

Let $M=\prod_{i} x_{i}^{a_{i}} y_{j}^{b_{j}} \cdots$ be a monomial.
\mathfrak{p}-Blocks and \mathfrak{p}-essential monomials

Definition

Let $M=\prod_{i} x_{i}^{a_{i}} y_{j}^{b_{j}} \cdots$ be a monomial.

- We say that M is \mathfrak{p}-essential if there exist a \mathbb{Q}_{G}-cyclotomic polynomial Ψ and an irreducible character χ of G such that

\mathfrak{p}-Blocks and \mathfrak{p}-essential monomials

Definition

Let $M=\prod_{i} x_{i}^{a_{i}} y_{j}^{b_{j}} \cdots$ be a monomial.

- We say that M is \mathfrak{p}-essential if there exist a \mathbb{Q}_{G}-cyclotomic polynomial Ψ and an irreducible character χ of G such that
(1) $\Psi(M)$ divides $s_{\chi \mathcal{H}}$,

\mathfrak{p}-Blocks and \mathfrak{p}-essential monomials

Definition

Let $M=\prod_{i} x_{i}^{a_{i}} y_{j}^{b_{j}} \cdots$ be a monomial.

- We say that M is \mathfrak{p}-essential if there exist a \mathbb{Q}_{G}-cyclotomic polynomial Ψ and an irreducible character χ of G such that
(1) $\Psi(M)$ divides $s_{\chi \mathcal{H}}$,
(2) \mathfrak{p} divides $\Psi(1)$.

\mathfrak{p}-Blocks and \mathfrak{p}-essential monomials

Definition

Let $M=\prod_{i} x_{i}^{a_{i}} y_{j}^{b_{j}} \ldots$ be a monomial.

- We say that M is \mathfrak{p}-essential if there exist a \mathbb{Q}_{G}-cyclotomic polynomial Ψ and an irreducible character χ of G such that
(1) $\Psi(M)$ divides $s_{\chi \mathcal{H}}$,
(2) \mathfrak{p} divides $\Psi(1)$.

A character χ as above is then said to be \mathfrak{p}-singular at M.

\mathfrak{p}-Blocks and \mathfrak{p}-essential monomials

Definition

Let $M=\prod_{i} x_{i}^{a_{i}} y_{j}^{b_{j}} \cdots$ be a monomial.

- We say that M is \mathfrak{p}-essential if there exist a \mathbb{Q}_{G}-cyclotomic polynomial Ψ and an irreducible character χ of G such that
(1) $\Psi(M)$ divides $s_{\chi_{\mathcal{H}}}$,
(2) \mathfrak{p} divides $\Psi(1)$.

A character χ as above is then said to be \mathfrak{p}-singular at M.

- If M is \mathfrak{p}-essential, the hyperplane H_{M} defined by $\log (M)$, i.e., $\sum_{i} a_{i} X_{i}+\sum_{j} b_{j} Y_{j}+\cdots=0$, is called a \mathfrak{p}-essential hyperplane.

\mathfrak{p}-Blocks and \mathfrak{p}-essential monomials

Definition

Let $M=\prod_{i} x_{i}^{a_{i}} y_{j}^{b_{j}} \cdots$ be a monomial.

- We say that M is \mathfrak{p}-essential if there exist a \mathbb{Q}_{G}-cyclotomic polynomial Ψ and an irreducible character χ of G such that
(1) $\Psi(M)$ divides $s_{\chi_{\mathcal{H}}}$,
(2) \mathfrak{p} divides $\Psi(1)$.

A character χ as above is then said to be \mathfrak{p}-singular at M.

- If M is \mathfrak{p}-essential, the hyperplane H_{M} defined by $\log (M)$, i.e., $\sum_{i} a_{i} X_{i}+\sum_{j} b_{j} Y_{j}+\cdots=0$, is called a \mathfrak{p}-essential hyperplane.

Cyclotomic specialisation and \mathfrak{p}-singularity

Cyclotomic specialisation and \mathfrak{p}-singularity

Definition

Let φ be a cyclotomic specialisation of $\mathcal{H}(G)$, defined by the family of integers $\left(m_{i}\right),\left(n_{j}\right), \ldots$ Let M be a \mathfrak{p}-essential monomial.
We say that φ is \mathfrak{p}-singular at M (or at H_{M}) if

$$
\varphi(M)=1
$$

i.e., if the parameters of φ belong to the \mathfrak{p}-essential hyperplane H_{M} :

$$
\sum_{i} a_{i} m_{i}+\sum_{j} b_{j} n_{j}+\cdots=0
$$

$G_{2}:$ 2-essentiel in purple, 3-essentials in green

$$
\left\{\begin{array}{l}
\left.s_{1}:=\Phi_{2}\left(x_{0} x_{1}^{-1}\right) \Phi_{2}\left(y_{0} y_{1}^{-1}\right) \Phi_{3}\left(x_{0} y_{0} x_{1}^{-1} y_{1}^{-1}\right) \Phi_{6}\left(x_{0} y_{0} x_{1}^{-1} y_{1}^{-1}\right)\right) \\
s_{2}:=2 \Phi_{6}\left(x_{0} y_{0} x_{1}^{-1} y_{1}^{-1}\right) \Phi_{3}\left(x_{0} y_{1} x_{1}^{-1} y_{0}^{-1}\right)
\end{array}\right.
$$

$G_{2}:$ 2-essentiel in purple, 3-essentials in green

$$
\left\{\begin{array}{l}
\left.s_{1}:=\Phi_{2}\left(x_{0} x_{1}^{-1}\right) \Phi_{2}\left(y_{0} y_{1}^{-1}\right) \Phi_{3}\left(x_{0} y_{0} x_{1}^{-1} y_{1}^{-1}\right) \Phi_{6}\left(x_{0} y_{0} x_{1}^{-1} y_{1}^{-1}\right)\right) \\
s_{2}:=2 \Phi_{6}\left(x_{0} y_{0} x_{1}^{-1} y_{1}^{-1}\right) \Phi_{3}\left(x_{0} y_{1} x_{1}^{-1} y_{0}^{-1}\right)
\end{array}\right.
$$

$G_{4}:$ 2-essentiel in purple, 3-essentials in green

$$
\left\{\begin{aligned}
s_{1}= & \Phi_{9}^{\prime \prime}\left(x_{0} x_{1}^{-1}\right) \Phi_{18}^{\prime}\left(x_{0} x_{1}^{-1}\right) \Phi_{4}\left(x_{0} x_{1}^{-1}\right) \Phi_{12}^{\prime}\left(x_{0} x_{1}^{-1}\right) \Phi_{12}^{\prime \prime}\left(x_{0} x_{1}^{-1}\right) \Phi_{36}^{\prime}\left(x_{0} x_{1}^{-1}\right) \\
& \Phi_{9}^{\prime}\left(x_{0} x_{2}^{-1}\right) \Phi_{18}^{\prime \prime}\left(x_{0} x_{2}^{-1}\right) \Phi_{4}\left(x_{0} x_{2}^{-1}\right) \Phi_{12}^{\prime}\left(x_{0} x_{2}^{-1}\right) \Phi_{12}^{\prime \prime}\left(x_{0} x_{2}^{-1}\right) \Phi_{36}^{\prime \prime}\left(x_{0} x_{2}^{-1}\right) \\
& \Phi_{4}\left(x_{0}^{2} x_{1}^{-1} x_{2}^{-1}\right) \Phi_{12}^{\prime}\left(x_{0}^{2} x_{1}^{-1} x_{2}^{-1}\right) \Phi_{12}^{\prime \prime}\left(x_{0}^{2} x_{1}^{-1} x_{2}^{-1}\right) \\
s_{2}= & -\zeta_{3}^{2} x_{2}^{6} x_{1}^{-6} \\
& \Phi_{9}^{\prime}\left(x_{1} x_{0}^{-1}\right) \Phi_{18}^{\prime \prime}\left(x_{1} x_{0}^{-1}\right) \Phi_{9}^{\prime \prime}\left(x_{2} x_{0}^{-1}\right) \Phi_{18}^{\prime}\left(x_{2} x_{0}^{-1}\right) \\
& \Phi_{4}\left(x_{1} x_{2}^{-1}\right) \Phi_{12}^{\prime}\left(x_{1} x_{2}^{-1}\right) \Phi_{12}^{\prime \prime}\left(x_{1} x_{2}^{-1}\right) \Phi_{36}^{\prime}\left(x_{1} x_{2}^{-1}\right) \\
& \Phi_{4}\left(x_{0}^{-2} x_{1} x_{2}\right) \Phi_{12}^{\prime}\left(x_{0}^{-2} x_{1} x_{2}\right) \Phi_{12}^{\prime \prime}\left(x_{0}^{-2} x_{1} x_{2}\right) \\
s_{3}= & \Phi_{4}\left(x_{0}^{2} x_{1}^{-1} x_{2}^{-1}\right) \Phi_{12}^{\prime}\left(x_{0}^{2} x_{1}^{-1} x_{2}^{-1}\right) \Phi_{12}^{\prime \prime}\left(x_{0}^{2} x_{1}^{-1} x_{2}^{-1}\right) \\
& \Phi_{4}\left(x_{1}^{2} x_{2}^{-1} x_{0}^{-1}\right) \Phi_{12}^{\prime}\left(x_{1}^{2} x_{2}^{-1} x_{0}^{-1}\right) \Phi_{12}^{\prime \prime}\left(x_{1}^{2} x_{2}^{-1} x_{0}^{-1}\right) \\
& \Phi_{4}\left(x_{2}^{2} x_{0}^{-1} x_{1}^{-1}\right) \Phi_{12}^{\prime}\left(x_{2}^{2} x_{0}^{-1} x_{1}^{-1}\right) \Phi_{12}^{\prime \prime}\left(x_{2}^{2} x_{0}^{-1} x_{1}^{-1}\right)
\end{aligned}\right.
$$

- Let $\mathcal{H}_{\varphi}\left(G_{2}\right)$ be a cyclotomic algebra for G_{2} defined by

$$
\left(S-\left(\zeta^{-1} q\right)^{m_{0}}\right)\left(S-\left(\zeta^{-1} q\right)^{m_{1}}\right)=\left(T-\left(\zeta^{-1} q\right)^{n_{0}}\right)\left(T-\left(\zeta^{-1} q\right)^{n_{1}}\right)=0 .
$$

- Let $\mathcal{H}_{\varphi}\left(G_{2}\right)$ be a cyclotomic algebra for G_{2} defined by $\left(S-\left(\zeta^{-1} q\right)^{m_{0}}\right)\left(S-\left(\zeta^{-1} q\right)^{m_{1}}\right)=\left(T-\left(\zeta^{-1} q\right)^{n_{0}}\right)\left(T-\left(\zeta^{-1} q\right)^{n_{1}}\right)=0$.
- 2 is always bad, and $\mathcal{H}_{\varphi}\left(G_{2}\right)$ is 2-singular at $m_{0}=m_{1}$ or $n_{0}=n_{1}$.
- Let $\mathcal{H}_{\varphi}\left(G_{2}\right)$ be a cyclotomic algebra for G_{2} defined by
$\left(S-\left(\zeta^{-1} q\right)^{m_{0}}\right)\left(S-\left(\zeta^{-1} q\right)^{m_{1}}\right)=\left(T-\left(\zeta^{-1} q\right)^{n_{0}}\right)\left(T-\left(\zeta^{-1} q\right)^{n_{1}}\right)=0$.
- 2 is always bad, and $\mathcal{H}_{\varphi}\left(G_{2}\right)$ is 2-singular at $m_{0}=m_{1}$ or $n_{0}=n_{1}$.
- $\mathcal{H}_{\varphi}\left(G_{2}\right)$ is 3 -singular at $m_{0}+n_{0}=m_{1}+n_{1}$ or $m_{0}+n_{1}=m_{1}+n_{0}$.
- Let $\mathcal{H}_{\varphi}\left(G_{2}\right)$ be a cyclotomic algebra for G_{2} defined by

$$
\left(S-\left(\zeta^{-1} q\right)^{m_{0}}\right)\left(S-\left(\zeta^{-1} q\right)^{m_{1}}\right)=\left(T-\left(\zeta^{-1} q\right)^{n_{0}}\right)\left(T-\left(\zeta^{-1} q\right)^{n_{1}}\right)=0
$$

- 2 is always bad, and $\mathcal{H}_{\varphi}\left(G_{2}\right)$ is 2-singular at $m_{0}=m_{1}$ or $n_{0}=n_{1}$.
- $\mathcal{H}_{\varphi}\left(G_{2}\right)$ is 3 -singular at $m_{0}+n_{0}=m_{1}+n_{1}$ or $m_{0}+n_{1}=m_{1}+n_{0}$.
- Let $\mathcal{H}_{\varphi}\left(G_{4}\right)$ be a cyclotomic algebra for G_{4} defined by

$$
\left(S-\left(\zeta^{-1} q\right)^{m_{0}}\right)\left(S-\left(\zeta^{-1} q\right)^{m_{1}}\right)\left(S-\left(\zeta^{-1} q\right)^{m_{2}}\right)=0
$$

- Let $\mathcal{H}_{\varphi}\left(G_{2}\right)$ be a cyclotomic algebra for G_{2} defined by

$$
\left(S-\left(\zeta^{-1} q\right)^{m_{0}}\right)\left(S-\left(\zeta^{-1} q\right)^{m_{1}}\right)=\left(T-\left(\zeta^{-1} q\right)^{n_{0}}\right)\left(T-\left(\zeta^{-1} q\right)^{n_{1}}\right)=0
$$

- 2 is always bad, and $\mathcal{H}_{\varphi}\left(G_{2}\right)$ is 2-singular at $m_{0}=m_{1}$ or $n_{0}=n_{1}$.
- $\mathcal{H}_{\varphi}\left(G_{2}\right)$ is 3 -singular at $m_{0}+n_{0}=m_{1}+n_{1}$ or $m_{0}+n_{1}=m_{1}+n_{0}$.
- Let $\mathcal{H}_{\varphi}\left(G_{4}\right)$ be a cyclotomic algebra for G_{4} defined by

$$
\left(S-\left(\zeta^{-1} q\right)^{m_{0}}\right)\left(S-\left(\zeta^{-1} q\right)^{m_{1}}\right)\left(S-\left(\zeta^{-1} q\right)^{m_{2}}\right)=0
$$

- $\mathcal{H}_{\varphi}\left(G_{4}\right)$ is 2-singular at (up to permutations of indices) $m_{0}=m_{1}$ or $2 m_{0}=m_{1}+m_{2}$.
- Let $\mathcal{H}_{\varphi}\left(G_{2}\right)$ be a cyclotomic algebra for G_{2} defined by

$$
\left(S-\left(\zeta^{-1} q\right)^{m_{0}}\right)\left(S-\left(\zeta^{-1} q\right)^{m_{1}}\right)=\left(T-\left(\zeta^{-1} q\right)^{n_{0}}\right)\left(T-\left(\zeta^{-1} q\right)^{n_{1}}\right)=0
$$

- 2 is always bad, and $\mathcal{H}_{\varphi}\left(G_{2}\right)$ is 2-singular at $m_{0}=m_{1}$ or $n_{0}=n_{1}$.
- $\mathcal{H}_{\varphi}\left(G_{2}\right)$ is 3 -singular at $m_{0}+n_{0}=m_{1}+n_{1}$ or $m_{0}+n_{1}=m_{1}+n_{0}$.
- Let $\mathcal{H}_{\varphi}\left(G_{4}\right)$ be a cyclotomic algebra for G_{4} defined by

$$
\left(S-\left(\zeta^{-1} q\right)^{m_{0}}\right)\left(S-\left(\zeta^{-1} q\right)^{m_{1}}\right)\left(S-\left(\zeta^{-1} q\right)^{m_{2}}\right)=0
$$

- $\mathcal{H}_{\varphi}\left(G_{4}\right)$ is 2 -singular at (up to permutations of indices) $m_{0}=m_{1}$ or $2 m_{0}=m_{1}+m_{2}$.
- $\mathcal{H}_{\varphi}\left(G_{4}\right)$ is 3-singular at (up to permutations of indices) $m_{0}=m_{1}$.

Theorem (Maria Chlouveraki)

Assume that G is an irreducible complex reflection group.
Let $\mathcal{B} \ell_{\mathfrak{p}}(\mathcal{H}(G))$ (resp. $\mathcal{B} \ell_{\mathfrak{p}}\left(\mathcal{H}_{\varphi}(G)\right)$ be the partition of $\operatorname{Irr}(G)$ (identified with $\operatorname{lrr}(\mathcal{H}(G)))$ into \mathfrak{p}-blocks of $\mathcal{H}(G)\left(\right.$ resp. $\left.\mathcal{H}_{\varphi}(G)\right)$.

Whenever M is a \mathfrak{p}-essential monomial, there exists a partition $\mathcal{B} \ell_{\mathfrak{p}}^{M}(\mathcal{H}(G))$ of $\operatorname{Irr}(G)$ with the following properties.

It is believed that the condition in 1 is an equivalence. That has been checked for G exceptional.

Theorem (Maria Chlouveraki)

Assume that G is an irreducible complex reflection group.
Let $\mathcal{B} \ell_{\mathfrak{p}}(\mathcal{H}(G))$ (resp. $\mathcal{B} \ell_{\mathfrak{p}}\left(\mathcal{H}_{\varphi}(G)\right)$ be the partition of $\operatorname{Irr}(G)$ (identified with $\operatorname{Irr}(\mathcal{H}(G))$) into \mathfrak{p}-blocks of $\mathcal{H}(G)\left(\right.$ resp. $\left.\mathcal{H}_{\varphi}(G)\right)$.

Whenever M is a \mathfrak{p}-essential monomial, there exists a partition $\mathcal{B} \ell_{\mathfrak{p}}^{M}(\mathcal{H}(G))$ of $\operatorname{Irr}(G)$ with the following properties.
(1) Blocks of $\mathcal{B} \ell_{\mathfrak{p}}^{M}(\mathcal{H}(G))$ are unions of blocks of $\mathcal{B} \ell_{\mathfrak{p}}(\mathcal{H}(G))$. More precisely, if a block of $\mathcal{B} \ell_{\mathfrak{p}}(\mathcal{H}(G))$ does not contain a character which is \mathfrak{p}-singular at M, then it coincides with a block of $\mathcal{B} \ell_{\mathfrak{p}}^{M}(\mathcal{H}(G))$.

It is believed that the condition in 1 is an equivalence. That has been checked for G exceptional.

Theorem (Maria Chlouveraki)

Assume that G is an irreducible complex reflection group.
Let $\mathcal{B} \ell_{\mathfrak{p}}(\mathcal{H}(G))$ (resp. $\mathcal{B} \ell_{\mathfrak{p}}\left(\mathcal{H}_{\varphi}(G)\right)$ be the partition of $\operatorname{Irr}(G)$ (identified with $\operatorname{Irr}(\mathcal{H}(G))$) into \mathfrak{p}-blocks of $\mathcal{H}(G)\left(\right.$ resp. $\left.\mathcal{H}_{\varphi}(G)\right)$.

Whenever M is a \mathfrak{p}-essential monomial, there exists a partition $\mathcal{B} \ell_{\mathfrak{p}}^{M}(\mathcal{H}(G))$ of $\operatorname{Irr}(G)$ with the following properties.
(1) Blocks of $\mathcal{B} \ell_{\mathfrak{p}}^{M}(\mathcal{H}(G))$ are unions of blocks of $\mathcal{B} \ell_{\mathfrak{p}}(\mathcal{H}(G))$. More precisely, if a block of $\mathcal{B} \ell_{\mathfrak{p}}(\mathcal{H}(G))$ does not contain a character which is \mathfrak{p}-singular at M, then it coincides with a block of $\mathcal{B} \ell_{\mathfrak{p}}^{M}(\mathcal{H}(G))$.
(2) The partition $\mathcal{B} \ell_{\mathfrak{p}}\left(\mathcal{H}_{\varphi}(G)\right)$ is the partition generated by the family of partitions $\mathcal{B} \ell_{\mathfrak{p}}^{M}(\mathcal{H}(G))$ where M runs over the set of all \mathfrak{p}-essential monomial at which φ is singular.

It is believed that the condition in 1 is an equivalence. That has been checked for G exceptional.

Characters of G_{4} are denoted $\chi_{d, b}$, where

- d is its degree $\chi(1)$,
- b is the valuation of its fake degree.

Characters of G_{4} are denoted $\chi_{d, b}$, where

- d is its degree $\chi(1)$,
- b is the valuation of its fake degree.

The cycle ($x_{0} x_{1} x_{2}$) acts as follows on $\operatorname{Irr}(G)$:

$$
\left\{\begin{array}{l}
\chi_{1,0} \mapsto \chi_{1,4} \mapsto \chi_{1,8} \\
\chi_{2,1} \mapsto \chi_{2,5} \mapsto \chi_{2,3}
\end{array} \quad \text { and fixes } \chi_{3,2}\right.
$$

The partitions associated with the 2 -essential monomials are (up to permutation)

$$
\begin{aligned}
& \mathcal{B} \ell_{2}^{\left(m_{0}=m_{1}\right)}\left(\mathcal{H}\left(G_{4}\right)\right)=\left\{\chi_{1,0}, \chi_{1,4}, \chi_{2,1}\right\} \bigcup \text { (singletons) } \\
& \mathcal{B} \ell_{2}^{\left(2 m_{0}=m_{1}+m_{2}\right)}\left(\mathcal{H}\left(G_{4}\right)\right)=\left\{\chi_{1,0}, \chi_{2,5}, \chi_{3,2}\right\} \bigcup \text { (singletons) }
\end{aligned}
$$

