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A common distinction between great mathematicians

Concrete walls breakers

Problems solvers

Efficient brute force

Cathedrals builders

Pure theoricians

Elegance

Thompson is a fantastic wall

breaker, with an amazing amount

of strength, determination,

courage, noble intellectual

ambition, tenacity and talent.
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A common distinction between great mathematicians

Concrete walls breakers

Problems solvers

Efficient brute force

Cathedrals builders

Pure theoricians

Elegance

GG says that when he took his

children to see “Terminator”, the

character reminded him of John,

in his ability to rise again and

again from apparent destruction to

keep attacking ”the problem”...

Thompson is a fantastic wall

breaker, with an amazing amount

of strength, determination,

courage, noble intellectual

ambition, tenacity and talent.
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A common distinction between great mathematicians

Concrete walls breakers

Problems solvers

Efficient brute force

Cathedrals builders

Pure theoricians

Elegance

Thompson is a fantastic wall

breaker, with an amazing amount

of strength, determination,

courage, noble intellectual

ambition, tenacity and talent.

Tits is a builder, a unifier of

thought. He has developed the

theory of buildings as a central

organizing principle and powerful

tool for an astonishingly wide

range of problems in group theory

and geometry
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A common distinction between great mathematicians

Concrete walls breakers

Problems solvers

Efficient brute force

Cathedrals builders

Pure theoricians

Elegance

Thompson is a fantastic wall

breaker, with an amazing amount

of strength, determination,

courage, noble intellectual

ambition, tenacity and talent.

Etienne Ghys says that he

“algebraized geometry”and

“geometrized algebra”
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Has certainly some truth.

But the converse is also true :

Tits did attack and crack concrete

walls,

Thompson did build high towers

on cathedrals,

and most of all they met, converged, and together they brought lots

of new gifts into the big box of mathematical knowledge.

First of all, let us examine the role they played in

the classification of finite simple groups,

this fantastic achievement of twentieth century mathematics.
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Two preliminary remarks

1. Why is it so important to classify finite simple groups ?

= Because they are the bricks which make the finite groups.

Are these bricks piled up like in Jordan–Hölder theorem ?

Yes :

A8

PSL2(7)

M

C5

But they are more workable as :

A8 PSL2(7) M C5
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Yes :

A8

PSL2(7)

M

C5

But they are more workable as :

A8 PSL2(7) M C5
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 blackboard.
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2. Why p–local theory of finite groups to classify simple groups ?

Feit–Thompson, 1963

If G is a non abelian simple finite group, then 2 j jG j :

Cauchy (1789–1857)

If p j jG j ; there are non trivial p–subgroups in G .

Sylow, 1872
The maximal p–subgroups of G are all conjugate under G .
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Aschbacher has formulated two fundamental principles underlying the

proof of the Classification Theorem.

Recognition Principle
If the p–local structure of a simple group G is sufficiently rich, then

G is determined up to isomorphism by fNG (P) j 1 6= P � Sg ; where

S is a Sylow p–subgroup of G .

Restriction Principle
If G is a simple group, then the structure of the p-locals

fNG (P) j 1 6= P � Sg ; is highly restricted.
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Recognition Principle
If the p–local structure of a simple group G is sufficiently rich, then

G is determined up to isomorphism by fNG (P) j 1 6= P � Sg ; where

S is a Sylow p–subgroup of G .

= The most elegant concrete versions of the Recognition Principle

were obtained by Jacques Tits is his classifications of spherical

buildings of rank at least 3 and of Moufang polygons (with Weiss), as

well as in his work about twin buildings.
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Restriction Principle
If G is a simple group, then the structure of the p-locals

fNG (P) j 1 6= P � Sg ; is highly restricted.

= The deepest insights concerning the implementation of the

Restriction Principle were achieved by John G. Thompson, most

notably in the Odd Order Paper (with Feit) and the N-Group Papers.

For example, he showed how to proceed from the hypothesis that G

is a simple group of even order (and 2–rank at least 3) all of whose

local subgroups are solvable (an N-group) to the conclusion that G is

a split BN–pair of rank at most 2, defined over a finite field of

characteristic 2...
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... hence G is a group of automorphisms of a Moufang polygon, in

the sense of Tits.

Indeed, the only example having BN–rank 2 and 2-rank at least 3 is

the Tits group.

Anecdote

In a preliminary anouncement of the monumental N–group paper...

Thompson missed ... the Tits simple group 2F4(2)0.

... a prototype of the classification of all finite simple groups...

...which had applications which were totally out of reach before :

A finite group is solvable if and only if every subgroup generated by

two elements is solvable
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Some similarities in their careers.

1. They started very young

Thompson published his first paper at the age of 20 :

“A Method for finding primes” , American Mathematical

Monthly, 60, (1953), 175–176.

Tits published his first paper at the age of 19 : ”Généralisation

des groupes projectifs”, Acad. Roy. Belg., Bull. Cl. Sci. 35

(1949), 197–208.
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2. Their thesis were already fundamental contributions, breakthroughs.

Thompson’s thesis was :

“A Proof that a Finite Group with a Fixed-Point-Free

Automorphism of Prime Order is Nilpotent”,

solving one of the conjectures of Frobenius which had remained

unsolved for around 60 years.

Tits’ thesis was

“Sur certaines classes d’espaces homogènes de groupes de Lie”,

giving the final word on Helmholz-Lie problem which had been

also considered by Kolmogorov.
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Michel Broué (Institut Henri Poincaré) John Thompson and Jacques Tits Oslo, May 21st, 2008 11 / 28



3. They made many fundamental contributions on a wide spectrum of

Mathematics.

John Thompson

Opened the way to “modern” Modular Representation Theory

with his short paper “Vertices and Sources” (J. Alg., 1967).

Opened the way to cracking the question

Which groups are Galois groups over Q ?

in particular with the notion of rigidity  see below

Opened the way to the marvellous Moonshine story  see below

Made possible to prove the Non–existence of Projective planes

of order 10  see below
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Michel Broué (Institut Henri Poincaré) John Thompson and Jacques Tits Oslo, May 21st, 2008 12 / 28



3. They made many fundamental contributions on a wide spectrum of

Mathematics.

John Thompson
Opened the way to “modern” Modular Representation Theory

with his short paper “Vertices and Sources” (J. Alg., 1967).

Opened the way to cracking the question

Which groups are Galois groups over Q ?

in particular with the notion of rigidity  see below

Opened the way to the marvellous Moonshine story

 see below

Made possible to prove the Non–existence of Projective planes

of order 10  see below
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3. They made many fundamental contributions on a wide spectrum .

Jacques Tits

Defined the Kac–Moody groups and algebras in complete

generality.

His buildings have been instrumental in many of the most

important recent advances in p–adic and arithmetic groups.

Was the first to define the Braid Groups attached to Coxeter

Groups other than Sn, called now the Artin–Tits Braid Groups.

Tits ideas are now an essential ingredient in the arsenal of every

geometer. The famous Tits alternative and its “ping–pong

lemma” (J. Alg. 20 (1972)), 250–270) is still stimulating

Riemannian geometers and polynomial growth type questions...
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Tits alternative

Let G be a finitely generated subgroup of GLn(k). Then

either G contains a solvable subgroup of finite index,

or G contains a nonabelian free group.

Rigidity and Galois Groups over Q
Let G be a finite group with trivial center.

1 Definition : A family (C1; : : : ; Cn) of rational conjugacy classes

of G is said to be rigid if the set

f(g1; : : : ; gn) j (gi 2 Ci)(g1 � � � gn = 1)(G = hg1; : : : ; gnig is

nonempty and acted on transitively by G .

2 Theorem : If G has a rigid family of rational conjugacy classes,

then G is a Galois group over Q.
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They made lots of hard key computations :

Sometimes forgotten nowadays is John Thompson’s truly heroic

work toward the characterisation of groups of Ree type
2G2(32n+1).

Who remembers that the second Janko group J2 (of order

604800) was only known to exist through computers, until

Jacques Tits gave a construction as the automorphism group of

a graph with 100 nodes and 1800 edges ?

... and so many other examples !

Both have maintained a degree of productivity over 50 years which is

unusual even among exceptional mathematicians.
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The Moonshine story

Once, John McKay noticed that

196883 + 1 = 196884 :

What was so striking there ?

1 For � in Poincaré upper halfplane and q := exp(2�i� ),

j(� ) =
1

q
+ 744 + 196884 q + 21493760 q2 + 864299970 q3 + � � �

is the well known modular function.

2 196883 is the degree of the smallest nontrivial irreducible

complex representation of the Monster group M , the largest

sporadic simple group, a group of order

jM j = 246 �320 �59 �76 �112 �133 �17 �19 �23 �29 �31 �41 �47 �59 �71
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Thompson computed

196884 = 196883 + 1

21493760 = 21296876 + 196883 + 1

864299970 = 842609326 + 21296876 + 2 � 196883 + 2 � 1

Moreover, as noticed by Andrew Ogg, let H=Γ0(p)+ be the Riemann

surface resulting from taking the quotient of the upper halfplane by

Γ0(p)+. Then

(H=Γ0(p)+ has genus zero ) , (p divides jM j) :
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“Moonshine Conjectures” (Thompson, Conway, Norton)

There exists a graded CM–module V =
L

n2N Vn defining a graded

character of M

grcharV : M �! C[q] ; g 7! grcharV (g) :=
X
n2N

tr(g ; Vn)qn

with the following properties :

For all g 2 M , there is a genus zero subgroup Γg of PSL(2;R)

commensurable with PSL(2;Z) such that grcharV (q) is the

normalized main modular function for Γg .

Ultimately proved in 1992 by Richard Borcherds using vertex

algebras, generalized Kac–Moody algebras ... after key work on the

subject by Thompson and Tits.
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The Dynkin Diagram is an “aide–mémoire” (Tits)

How Tits knows the center of a Lie Group

Let us start with SLn(k), i.e., the Dynkin Diagram An�1.

� � � � � � � � �
s1 s2 s3 s4 s5 s6 s7 s8 s9

xx &&o
m

j h f d a _ ] [ X V T
R

O

Automorphism group = C2

Completed Dynkin diagram :

eAn�1 =

�

� � � � � � � � �

s0

s1 s2 s3 s4 s5 s6 s7 s8 s9

eeeeeeeeeeeeeeeeeeeeeeee

YYYYYYYYYYYYYYYYYYYYYYYY

viewed as
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Automorphism group = Cn o C2

: : : hence the center of SLn(k) is Cn.
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Michel Broué (Institut Henri Poincaré) John Thompson and Jacques Tits Oslo, May 21st, 2008 20 / 28



The group Spin10
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@t��t t t
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Diagram D5

Completed diagram

Automorphism group : C2

Automorphism group : C4 o C2

: : : showing that the center of Spin10 is cyclic of order 4.
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Group of type E6
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s4 s3 s2 s 03

s1
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s1 s2

s3 s4

s 03 s 04
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NNNNNNNNNN

``
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Automorphism group = C2
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Completed Dynkin diagram of type eE6

� � �
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s0 s1 s2

s3

s4

s 03

s 04

ttttttttttt

ttttttttttt

JJJJJJJJJJJ

JJJJJJJJJJJ

WW

��

]]

��

Automorphism group = S3 = C3 o C2 hence Z (G ) = C3.
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On Projective Planes

Definition
A projective plane of order q is a set of points and lines such that

1 Every line has q + 1 points,

2 Every point belongs to q + 1 lines,

3 Every two lines intersect in one point,

4 Every two points belong to one line.

There are q2 + q + 1 points and q2 + q + 1 lines.
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Examples

Projective Planes of order 1 and 2 :

t t

t

�
�
�
�
�
�

A
A
A
A
A
A

Whenever q is a prime power, there is a projective plane of order q,

namely P2(Fq).

= So there exist projective planes of order 2,3,4,5, ,7,8,9, ,11.
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A projective plane of order q provides (q � 1) orthogonal Latin

squares of size q :

1 2 3

2 3 1

3 1 2

1 3 2

2 1 3

3 2 1

11 23 32

22 31 13

33 12 21

This is related to “36 officers problem” considered by Euler :

Is it possible to arrange in a square 36 officers from 6 different

regiments and with 6 different ranks in such a way that in each row

and each column regiments and ranks are different ?

Answer : No ! (Gaston Tarry) There is no Projective Plane of order 6.
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Theorem
There is no projective plane of order 10.

John Conway commented in these terms the critical reduction proved

by Thompson which made possible to computer–prove that theorem :

“Thompson forced Group Theory into a problem where

it had nothing to do. ”
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TRUTH AND BEAUTY.
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