Building Cathedrals and Breaking down Reinforced Concrete Walls

Michel Broué
Institut Henri Poincaré
Oslo, May 21st, 2008

A common distinction between great mathematicians

A common distinction between great mathematicians

- Concrete walls breakers

A common distinction between great mathematicians

- Concrete walls breakers
- Cathedrals builders

A common distinction between great mathematicians

- Concrete walls breakers
- Cathedrals builders
- Problems solvers

A common distinction between great mathematicians

- Concrete walls breakers
- Problems solvers
- Cathedrals builders
- Pure theoricians

A common distinction between great mathematicians

- Concrete walls breakers
- Problems solvers
- Cathedrals builders
- Pure theoricians
- Efficient brute force

A common distinction between great mathematicians

- Concrete walls breakers
- Problems solvers
- Efficient brute force
- Cathedrals builders
- Pure theoricians
- Elegance

A common distinction between great mathematicians

- Concrete walls breakers
- Problems solvers
- Efficient brute force
- Cathedrals builders
- Pure theoricians
- Elegance

A common distinction between great mathematicians

- Concrete walls breakers
- Problems solvers
- Efficient brute force
- Cathedrals builders
- Pure theoricians
- Elegance

Thompson is a fantastic wall breaker, with an amazing amount of strength, determination, courage, noble intellectual ambition, tenacity and talent.

A common distinction between great mathematicians

- Concrete walls breakers
- Problems solvers
- Efficient brute force
- Cathedrals builders
- Pure theoricians
- Elegance

GG says that when he took his children to see "Terminator", the character reminded him of John, in his ability to rise again and again from apparent destruction to keep attacking "the problem" ...

A common distinction between great mathematicians

- Concrete walls breakers
- Problems solvers
- Efficient brute force
- Cathedrals builders
- Pure theoricians
- Elegance

Thompson is a fantastic wall
breaker, with an amazing amount
of strength, determination, courage, noble intellectual ambition, tenacity and talent.

A common distinction between great mathematicians

- Concrete walls breakers
- Problems solvers
- Efficient brute force
- Cathedrals builders
- Pure theoricians
- Elegance

Thompson is a fantastic wall breaker, with an amazing amount of strength, determination, courage, noble intellectual ambition, tenacity and talent.

Tits is a builder, a unifier of thought. He has developed the theory of buildings as a central organizing principle and powerful tool for an astonishingly wide range of problems in group theory and geometry

A common distinction between great mathematicians

- Concrete walls breakers
- Problems solvers
- Efficient brute force
- Cathedrals builders
- Pure theoricians
- Elegance

Thompson is a fantastic wall breaker, with an amazing amount of strength, determination, courage, noble intellectual ambition, tenacity and talent.

Etienne Ghys says that he
"algebraized geometry"and "geometrized algebra"

Has certainly some truth.

Has certainly some truth.

But the converse is also true :

Has certainly some truth.
But the converse is also true :

Tits did attack and crack concrete walls,

Has certainly some truth.

Tits did attack and crack concrete walls,

But the converse is also true :

Thompson did build high towers on cathedrals,

Has certainly some truth. But the converse is also true :

Tits did attack and crack concrete walls,

Thompson did build high towers on cathedrals,
and most of all they met, converged, and together they brought lots of new gifts into the big box of mathematical knowledge.

Has certainly some truth.
But the converse is also true :

Tits did attack and crack concrete walls,

Thompson did build high towers on cathedrals,
and most of all they met, converged, and together they brought lots of new gifts into the big box of mathematical knowledge.

First of all, let us examine the role they played in the classification of finite simple groups, this fantastic achievement of twentieth century mathematics.

Two preliminary remarks

Two preliminary remarks

1. Why is it so important to classify finite simple groups ?

Two preliminary remarks

1. Why is it so important to classify finite simple groups ?
$=$ Because they are the bricks which make the finite groups.

Two preliminary remarks

1. Why is it so important to classify finite simple groups ?
$=$ Because they are the bricks which make the finite groups.

Are these bricks piled up like in Jordan-Hölder theorem ?

Two preliminary remarks

1. Why is it so important to classify finite simple groups ?
$=$ Because they are the bricks which make the finite groups.

Are these bricks piled up like in Jordan-Hölder theorem ?
Yes:

Two preliminary remarks

1. Why is it so important to classify finite simple groups?
$=$ Because they are the bricks which make the finite groups.

Are these bricks piled up like in Jordan-Hölder theorem ?
Yes:

But they are more workable as:

Two preliminary remarks

1. Why is it so important to classify finite simple groups ?
$=$ Because they are the bricks which make the finite groups.

Are these bricks piled up like in Jordan-Hölder theorem ?
Yes:

\mathfrak{A}_{8}
$\mathrm{PSL}_{2}(7)$
M
C_{5}

But they are more workable as:

\leadsto blackboard.

2. Why p-local theory of finite groups to classify simple groups?

2. Why p-local theory of finite groups to classify simple groups ?

Feit-Thompson, 1963

If G is a non abelian simple finite group, then $2||G|$.
2. Why p-local theory of finite groups to classify simple groups ?

Feit-Thompson, 1963

If G is a non abelian simple finite group, then $2||G|$.

Cauchy (1789-1857)
 If $p||G|$, there are non trivial p-subgroups in G.

2. Why p-local theory of finite groups to classify simple groups ?

Feit-Thompson, 1963

If G is a non abelian simple finite group, then $2||G|$.

Cauchy (1789-1857)
 If $p||G|$, there are non trivial p-subgroups in G.

Sylow, 1872

The maximal p-subgroups of G are all conjugate under G.

Aschbacher has formulated two fundamental principles underlying the proof of the Classification Theorem.

Aschbacher has formulated two fundamental principles underlying the proof of the Classification Theorem.

Recognition Principle

If the p-local structure of a simple group G is sufficiently rich, then G is determined up to isomorphism by $\left\{N_{G}(P) \mid 1 \neq P \subseteq S\right\}$, where S is a Sylow p-subgroup of G.

Aschbacher has formulated two fundamental principles underlying the proof of the Classification Theorem.

Recognition Principle

If the p-local structure of a simple group G is sufficiently rich, then G is determined up to isomorphism by $\left\{N_{G}(P) \mid 1 \neq P \subseteq S\right\}$, where S is a Sylow p-subgroup of G.

Restriction Principle

If G is a simple group, then the structure of the p-locals $\left\{N_{G}(P) \mid 1 \neq P \subseteq S\right\}$, is highly restricted.

Recognition Principle

If the p-local structure of a simple group G is sufficiently rich, then G is determined up to isomorphism by $\left\{N_{G}(P) \mid 1 \neq P \subseteq S\right\}$, where S is a Sylow p-subgroup of G.

Recognition Principle

If the p-local structure of a simple group G is sufficiently rich, then
G is determined up to isomorphism by $\left\{N_{G}(P) \mid 1 \neq P \subseteq S\right\}$, where S is a Sylow p-subgroup of G.
$=$ The most elegant concrete versions of the Recognition Principle were obtained by Jacques Tits is his classifications of spherical buildings of rank at least 3 and of Moufang polygons (with Weiss), as well as in his work about twin buildings.

Restriction Principle

If G is a simple group, then the structure of the p-locals $\left\{N_{G}(P) \mid 1 \neq P \subseteq S\right\}$, is highly restricted.

Restriction Principle

If G is a simple group, then the structure of the p-locals $\left\{N_{G}(P) \mid 1 \neq P \subseteq S\right\}$, is highly restricted.
$=$ The deepest insights concerning the implementation of the Restriction Principle were achieved by John G. Thompson, most notably in the Odd Order Paper (with Feit) and the N-Group Papers.

Restriction Principle

If G is a simple group, then the structure of the p-locals $\left\{N_{G}(P) \mid 1 \neq P \subseteq S\right\}$, is highly restricted.
$=$ The deepest insights concerning the implementation of the Restriction Principle were achieved by John G. Thompson, most notably in the Odd Order Paper (with Feit) and the N -Group Papers. For example, he showed how to proceed from the hypothesis that G is a simple group of even order (and 2-rank at least 3) all of whose local subgroups are solvable (an N -group) to the conclusion that G is a split BN-pair of rank at most 2, defined over a finite field of characteristic 2...
... hence G is a group of automorphisms of a Moufang polygon, in the sense of Tits.
... hence G is a group of automorphisms of a Moufang polygon, in the sense of Tits.

Indeed, the only example having BN-rank 2 and 2-rank at least 3 is the Tits group.
... hence G is a group of automorphisms of a Moufang polygon, in the sense of Tits.

Indeed, the only example having BN-rank 2 and 2-rank at least 3 is the Tits group.

Anecdote
... hence G is a group of automorphisms of a Moufang polygon, in the sense of Tits.

Indeed, the only example having BN-rank 2 and 2-rank at least 3 is the Tits group.

Anecdote
In a preliminary anouncement of the monumental N-group paper...
... hence G is a group of automorphisms of a Moufang polygon, in the sense of Tits.

Indeed, the only example having BN-rank 2 and 2-rank at least 3 is the Tits group.

Anecdote
In a preliminary anouncement of the monumental N-group paper...
... a prototype of the classification of all finite simple groups...
... hence G is a group of automorphisms of a Moufang polygon, in the sense of Tits.

Indeed, the only example having BN-rank 2 and 2-rank at least 3 is the Tits group.

Anecdote
In a preliminary anouncement of the monumental N-group paper...
... a prototype of the classification of all finite simple groups...
...which had applications which were totally out of reach before:
... hence G is a group of automorphisms of a Moufang polygon, in the sense of Tits.

Indeed, the only example having $B N$-rank 2 and 2-rank at least 3 is the Tits group.

Anecdote
In a preliminary anouncement of the monumental N-group paper...
... a prototype of the classification of all finite simple groups...
...which had applications which were totally out of reach before :
A finite group is solvable if and only if every subgroup generated by two elements is solvable
... hence G is a group of automorphisms of a Moufang polygon, in the sense of Tits.

Indeed, the only example having BN-rank 2 and 2-rank at least 3 is the Tits group.

Anecdote
In a preliminary anouncement of the monumental N-group paper... Thompson missed ... the Tits simple group ${ }^{2} F_{4}(2)^{\prime}$.
... a prototype of the classification of all finite simple groups...
...which had applications which were totally out of reach before :

A finite group is solvable if and only if every subgroup generated by two elements is solvable

Some similarities in their careers.

Some similarities in their careers.

1. They started very young

Some similarities in their careers.

1. They started very young

- Thompson published his first paper at the age of 20 :
"A Method for finding primes", American Mathematical Monthly, 60, (1953), 175-176.

Some similarities in their careers.

1. They started very young

- Thompson published his first paper at the age of 20 :
"A Method for finding primes" , American Mathematical Monthly, 60, (1953), 175-176.
- Tits published his first paper at the age of 19: "Généralisation des groupes projectifs", Acad. Roy. Belg., Bull. CI. Sci. 35 (1949), 197-208.

2. Their thesis were already fundamental contributions, breakthroughs.
3. Their thesis were already fundamental contributions, breakthroughs.

- Thompson's thesis was:
"A Proof that a Finite Group with a Fixed-Point-Free
Automorphism of Prime Order is Nilpotent", solving one of the conjectures of Frobenius which had remained unsolved for around 60 years.

2. Their thesis were already fundamental contributions, breakthroughs.

- Thompson's thesis was:
"A Proof that a Finite Group with a Fixed-Point-Free Automorphism of Prime Order is Nilpotent", solving one of the conjectures of Frobenius which had remained unsolved for around 60 years.
- Tits' thesis was
"Sur certaines classes d'espaces homogènes de groupes de Lie", giving the final word on Helmholz-Lie problem which had been also considered by Kolmogorov.

3. They made many fundamental contributions on a wide spectrum of Mathematics.
4. They made many fundamental contributions on a wide spectrum of Mathematics.

John Thompson

3. They made many fundamental contributions on a wide spectrum of Mathematics.

John Thompson

- Opened the way to "modern" Modular Representation Theory with his short paper "Vertices and Sources" (J. Alg., 1967).

3. They made many fundamental contributions on a wide spectrum of Mathematics.

John Thompson

- Opened the way to "modern" Modular Representation Theory with his short paper "Vertices and Sources" (J. Alg., 1967).
- Opened the way to cracking the question

Which groups are Galois groups over \mathbb{Q} ?
in particular with the notion of rigidity
3. They made many fundamental contributions on a wide spectrum of Mathematics.

John Thompson

- Opened the way to "modern" Modular Representation Theory with his short paper "Vertices and Sources" (J. Alg., 1967).
- Opened the way to cracking the question

Which groups are Galois groups over \mathbb{Q} ?
in particular with the notion of rigidity \rightsquigarrow see below
3. They made many fundamental contributions on a wide spectrum of Mathematics.

John Thompson

- Opened the way to "modern" Modular Representation Theory with his short paper "Vertices and Sources" (J. Alg., 1967).
- Opened the way to cracking the question

Which groups are Galois groups over \mathbb{Q} ?
in particular with the notion of rigidity \rightsquigarrow see below

- Opened the way to the marvellous Moonshine story

3. They made many fundamental contributions on a wide spectrum of Mathematics.

John Thompson

- Opened the way to "modern" Modular Representation Theory with his short paper "Vertices and Sources" (J. Alg., 1967).
- Opened the way to cracking the question

Which groups are Galois groups over \mathbb{Q} ?
in particular with the notion of rigidity \rightsquigarrow see below

- Opened the way to the marvellous Moonshine story \rightsquigarrow see below

3. They made many fundamental contributions on a wide spectrum of Mathematics.

John Thompson

- Opened the way to "modern" Modular Representation Theory with his short paper "Vertices and Sources" (J. Alg., 1967).
- Opened the way to cracking the question

Which groups are Galois groups over \mathbb{Q} ?

in particular with the notion of rigidity \rightsquigarrow see below

- Opened the way to the marvellous Moonshine story \rightsquigarrow see below
- Made possible to prove the Non-existence of Projective planes of order 10

3. They made many fundamental contributions on a wide spectrum of Mathematics.

John Thompson

- Opened the way to "modern" Modular Representation Theory with his short paper "Vertices and Sources" (J. Alg., 1967).
- Opened the way to cracking the question

$$
\text { Which groups are Galois groups over } \mathbb{Q} \text { ? }
$$

in particular with the notion of rigidity \rightsquigarrow see below

- Opened the way to the marvellous Moonshine story \rightsquigarrow see below
- Made possible to prove the Non-existence of Projective planes of order $10 \rightsquigarrow$ see below

3. They made many fundamental contributions on a wide spectrum .

3. They made many fundamental contributions on a wide spectrum .

Jacques Tits

3. They made many fundamental contributions on a wide spectrum .

Jacques Tits

- Defined the Kac-Moody groups and algebras in complete generality.

3. They made many fundamental contributions on a wide spectrum .

Jacques Tits

- Defined the Kac-Moody groups and algebras in complete generality.
- His buildings have been instrumental in many of the most important recent advances in p-adic and arithmetic groups.

3. They made many fundamental contributions on a wide spectrum .

Jacques Tits

- Defined the Kac-Moody groups and algebras in complete generality.
- His buildings have been instrumental in many of the most important recent advances in p-adic and arithmetic groups. Waldspürger : "One of the most quoted paper in Langlands world is "Reductive groups over local fields", Proc. Symp. Pure Math. 33, (1979), 29-69.

3. They made many fundamental contributions on a wide spectrum .

Jacques Tits

- Defined the Kac-Moody groups and algebras in complete generality.
- His buildings have been instrumental in many of the most important recent advances in p-adic and arithmetic groups.
- Was the first to define the Braid Groups attached to Coxeter Groups other than \mathfrak{S}_{n}, called now the Artin-Tits Braid Groups. \leadsto blackboard.

3. They made many fundamental contributions on a wide spectrum .

Jacques Tits

- Defined the Kac-Moody groups and algebras in complete generality.
- His buildings have been instrumental in many of the most important recent advances in p-adic and arithmetic groups.
- Was the first to define the Braid Groups attached to Coxeter Groups other than \mathfrak{S}_{n}, called now the Artin-Tits Braid Groups.
- Tits ideas are now an essential ingredient in the arsenal of every geometer. The famous Tits alternative and its "ping-pong lemma" (J. Alg. 20 (1972)), 250-270) is still stimulating Riemannian geometers and polynomial growth type questions...

Tits alternative

Tits alternative

Let G be a finitely generated subgroup of $G L_{n}(k)$. Then

Tits alternative

Let G be a finitely generated subgroup of $\mathrm{GL}_{n}(k)$. Then

- either G contains a solvable subgroup of finite index,

Tits alternative
Let G be a finitely generated subgroup of $\mathrm{GL}_{n}(k)$. Then

- either G contains a solvable subgroup of finite index,
- or G contains a nonabelian free group.

Tits alternative

Let G be a finitely generated subgroup of $\mathrm{GL}_{n}(k)$. Then

- either G contains a solvable subgroup of finite index,
- or G contains a nonabelian free group.

Rigidity and Galois Groups over \mathbb{Q}

Tits alternative

Let G be a finitely generated subgroup of $G L_{n}(k)$. Then

- either G contains a solvable subgroup of finite index,
- or G contains a nonabelian free group.

Rigidity and Galois Groups over \mathbb{Q}

Let G be a finite group with trivial center.

Tits alternative

Let G be a finitely generated subgroup of $G L_{n}(k)$. Then

- either G contains a solvable subgroup of finite index,
- or G contains a nonabelian free group.

Rigidity and Galois Groups over \mathbb{Q}

Let G be a finite group with trivial center.
(1) Definition: A family $\left(C_{1}, \ldots, C_{n}\right)$ of rational conjugacy classes of G is said to be rigid if the set $\left\{\left(g_{1}, \ldots, g_{n}\right) \mid\left(g_{i} \in C_{i}\right)\left(g_{1} \cdots g_{n}=1\right)\left(G=\left\langle g_{1}, \ldots, g_{n}\right\rangle\right\}\right.$ is nonempty and acted on transitively by G.

Tits alternative

Let G be a finitely generated subgroup of $G L_{n}(k)$. Then

- either G contains a solvable subgroup of finite index,
- or G contains a nonabelian free group.

Rigidity and Galois Groups over \mathbb{Q}

Let G be a finite group with trivial center.
(1) Definition: A family $\left(C_{1}, \ldots, C_{n}\right)$ of rational conjugacy classes of G is said to be rigid if the set $\left\{\left(g_{1}, \ldots, g_{n}\right) \mid\left(g_{i} \in C_{i}\right)\left(g_{1} \cdots g_{n}=1\right)\left(G=\left\langle g_{1}, \ldots, g_{n}\right\rangle\right\}\right.$ is nonempty and acted on transitively by G.
(2) Theorem : If G has a rigid family of rational conjugacy classes, then G is a Galois group over \mathbb{Q}.

They made lots of hard key computations :

They made lots of hard key computations :

- Sometimes forgotten nowadays is John Thompson's truly heroic work toward the characterisation of groups of Ree type ${ }^{2} G_{2}\left(3^{2 n+1}\right)$.

They made lots of hard key computations :

- Sometimes forgotten nowadays is John Thompson's truly heroic work toward the characterisation of groups of Ree type ${ }^{2} G_{2}\left(3^{2 n+1}\right)$.
- Who remembers that the second Janko group J_{2} (of order 604800) was only known to exist through computers, until Jacques Tits gave a construction as the automorphism group of a graph with 100 nodes and 1800 edges ?

They made lots of hard key computations :

- Sometimes forgotten nowadays is John Thompson's truly heroic work toward the characterisation of groups of Ree type ${ }^{2} G_{2}\left(3^{2 n+1}\right)$.
- Who remembers that the second Janko group J_{2} (of order 604800) was only known to exist through computers, until Jacques Tits gave a construction as the automorphism group of a graph with 100 nodes and 1800 edges ?
- ... and so many other examples !

They made lots of hard key computations :

- Sometimes forgotten nowadays is John Thompson's truly heroic work toward the characterisation of groups of Ree type ${ }^{2} G_{2}\left(3^{2 n+1}\right)$.
- Who remembers that the second Janko group J_{2} (of order 604800) was only known to exist through computers, until Jacques Tits gave a construction as the automorphism group of a graph with 100 nodes and 1800 edges ?
- ... and so many other examples !

Both have maintained a degree of productivity over 50 years which is unusual even among exceptional mathematicians.

The Moonshine story

Once, John McKay noticed that

The Moonshine story

Once, John McKay noticed that $196883+1=196884$.
What was so striking there ?

The Moonshine story

Once, John McKay noticed that $196883+1=196884$.
What was so striking there ?
(1) For τ in Poincaré upper halfplane and $q:=\exp (2 \pi i \tau)$,

$$
j(\tau)=\frac{1}{q}+744+196884 q+21493760 q^{2}+864299970 q^{3}+\cdots
$$

is the well known modular function.

The Moonshine story

Once, John McKay noticed that $196883+1=196884$.
What was so striking there?
(1) For τ in Poincaré upper halfplane and $q:=\exp (2 \pi i \tau)$,

$$
j(\tau)=\frac{1}{q}+744+196884 q+21493760 q^{2}+864299970 q^{3}+\cdots
$$ is the well known modular function.

(2) 196883 is the degree of the smallest nontrivial irreducible complex representation of the Monster group M, the largest sporadic simple group, a group of order

$$
|M|=2^{46} \cdot 3^{20} \cdot 5^{9} \cdot 7^{6} \cdot 11^{2} \cdot 13^{3} \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71
$$

Thompson computed

$196884=196883+1$

Thompson computed

$196884=196883+1$
 $21493760=21296876+196883+1$

Thompson computed

$$
\begin{aligned}
196884 & =196883+1 \\
21493760 & =21296876+196883+1 \\
864299970 & =842609326+21296876+2 \cdot 196883+2 \cdot 1
\end{aligned}
$$

Thompson computed

$$
\begin{aligned}
196884 & =196883+1 \\
21493760 & =21296876+196883+1 \\
864299970 & =842609326+21296876+2 \cdot 196883+2 \cdot 1
\end{aligned}
$$

Moreover, as noticed by Andrew Ogg, let $\mathcal{H} / \Gamma_{0}(p)^{+}$be the Riemann surface resulting from taking the quotient of the upper halfplane by $\Gamma_{0}(p)^{+}$. Then

$$
\left(\mathcal{H} / \Gamma_{0}(p)^{+} \text {has genus zero }\right) \Leftrightarrow(p \text { divides }|M|) .
$$

"Moonshine Conjectures" (Thompson, Conway, Norton)

"Moonshine Conjectures" (Thompson, Conway, Norton)

There exists a graded $\mathbb{C} M$-module $V=\bigoplus_{n \in \mathbb{N}} V_{n}$ defining a graded character of M

$$
\operatorname{grchar}_{V}: M \longrightarrow \mathbb{C}[q] \quad, \quad g \mapsto \operatorname{grchar}_{V}(g):=\sum_{n \in \mathbb{N}} \operatorname{tr}\left(g, V_{n}\right) q^{n}
$$

with the following properties:
For all $g \in M$, there is a genus zero subgroup Γ_{g} of $\operatorname{PSL}(2, \mathbb{R})$ commensurable with $\operatorname{PSL}(2, \mathbb{Z})$ such that $\operatorname{grchar}_{V}(q)$ is the normalized main modular function for Γ_{g}.

"Moonshine Conjectures" (Thompson, Conway, Norton)

There exists a graded $\mathbb{C} M$-module $V=\bigoplus_{n \in \mathbb{N}} V_{n}$ defining a graded character of M

$$
\operatorname{grchar}_{V}: M \longrightarrow \mathbb{C}[q] \quad, \quad g \mapsto \operatorname{grchar}_{v}(g):=\sum_{n \in \mathbb{N}} \operatorname{tr}\left(g, V_{n}\right) q^{n}
$$

with the following properties:
For all $g \in M$, there is a genus zero subgroup Γ_{g} of $\operatorname{PSL}(2, \mathbb{R})$ commensurable with $\operatorname{PSL}(2, \mathbb{Z})$ such that $\operatorname{grchar}_{V}(q)$ is the normalized main modular function for Γ_{g}.

Ultimately proved in 1992 by Richard Borcherds using vertex algebras, generalized Kac-Moody algebras ... after key work on the subject by Thompson and Tits.

The Dynkin Diagram is an "aide-mémoire" (Tits)

The Dynkin Diagram is an "aide-mémoire" (Tits)

The Dynkin Diagram is an "aide-mémoire" (Tits)

How Tits knows the center of a Lie Group

The Dynkin Diagram is an "aide-mémoire" (Tits)

How Tits knows the center of a Lie Group
Let us start with $S L_{n}(k)$, i.e., the Dynkin Diagram A_{n-1}.

The Dynkin Diagram is an "aide-mémoire" (Tits)

How Tits knows the center of a Lie Group
Let us start with $S L_{n}(k)$, i.e., the Dynkin Diagram A_{n-1}.

The Dynkin Diagram is an "aide-mémoire" (Tits)

How Tits knows the center of a Lie Group
Let us start with $\mathrm{SL}_{n}(k)$, i.e., the Dynkin Diagram A_{n-1}.

Automorphism group $=C_{2}$

The Dynkin Diagram is an "aide-mémoire" (Tits)

How Tits knows the center of a Lie Group
Let us start with $\mathrm{SL}_{n}(k)$, i.e., the Dynkin Diagram A_{n-1}.

Automorphism group $=C_{2}$
Completed Dynkin diagram :

The Dynkin Diagram is an "aide-mémoire" (Tits)

How Tits knows the center of a Lie Group
Let us start with $\mathrm{SL}_{n}(k)$, i.e., the Dynkin Diagram A_{n-1}.

Automorphism group $=C_{2}$
Completed Dynkin diagram :

viewed as

hence C_{n}-action :

Automorphism group $=C_{n} \rtimes C_{2}$

Automorphism group $=C_{n} \rtimes C_{2}$
\ldots hence the center of $\operatorname{SL}_{n}(k)$ is C_{n}.

The group Spin $_{10}$

Diagram D_{5}

Automorphism group : C_{2}

The group Spin $_{10}$

Diagram D_{5}

Automorphism group : C_{2}

The group Spin_{10}

Completed diagram

The group Spin $_{10}$

Completed diagram

Automorphism group : $C_{4} \rtimes C_{2}$

The group Spin $_{10}$

Completed diagram

Automorphism group : $C_{4} \rtimes C_{2}$
... showing that the center of Spin_{10} is cyclic of order 4 .

Group of type E_{6}

Group of type E_{6}

Group of type E_{6}

Group of type E_{6}

Automorphism group $=C_{2}$

Completed Dynkin diagram of type \tilde{E}_{6}

Completed Dynkin diagram of type \tilde{E}_{6}

Automorphism group $=\mathfrak{S}_{3}=C_{3} \rtimes C_{2}$ hence $Z(G)=C_{3}$.

On Projective Planes

On Projective Planes

Definition

A projective plane of order q is a set of points and lines such that

On Projective Planes

Definition

A projective plane of order q is a set of points and lines such that
(1) Every line has $q+1$ points,

On Projective Planes

Definition

A projective plane of order q is a set of points and lines such that
(1) Every line has $q+1$ points,
(2) Every point belongs to $q+1$ lines,

On Projective Planes

Definition

A projective plane of order q is a set of points and lines such that
(1) Every line has $q+1$ points,
(2) Every point belongs to $q+1$ lines,
(3) Every two lines intersect in one point,

On Projective Planes

Definition

A projective plane of order q is a set of points and lines such that
(1) Every line has $q+1$ points,
(2) Every point belongs to $q+1$ lines,
(3) Every two lines intersect in one point,
(4) Every two points belong to one line.

On Projective Planes

Definition

A projective plane of order q is a set of points and lines such that
(1) Every line has $q+1$ points,
(2) Every point belongs to $q+1$ lines,
(3) Every two lines intersect in one point,
(4) Every two points belong to one line.

There are $q^{2}+q+1$ points and $q^{2}+q+1$ lines.

Examples

Projective Planes of order 1 and 2 :

Examples

Projective Planes of order 1 and 2 :

Whenever q is a prime power, there is a projective plane of order q, namely $\mathbb{P}^{2}\left(\mathbb{F}_{q}\right)$.

Examples

Projective Planes of order 1 and 2 :

Whenever q is a prime power, there is a projective plane of order q, namely $\mathbb{P}^{2}\left(\mathbb{F}_{q}\right)$.
$=$ So there exist projective planes of order $2,3,4,5,7,8,9,11$.

A projective plane of order q provides ($q-1$) orthogonal Latin squares of size q :

A projective plane of order q provides ($q-1$) orthogonal Latin squares of size q :

1	2	3	1	3	2	11	23	32
2	3	1	2	1	3	22	31	13
3	1	2	3	2	1	33	12	21

A projective plane of order q provides $(q-1)$ orthogonal Latin squares of size q :

1	2	3	1	3	2	11	23	32
2	3	1	2	1	3	22	31	13
3	1	2	3	2	1	33	12	21

This is related to " 36 officers problem" considered by Euler :
Is it possible to arrange in a square 36 officers from 6 different regiments and with 6 different ranks in such a way that in each row and each column regiments and ranks are different ?

A projective plane of order q provides $(q-1)$ orthogonal Latin squares of size q :

1	2	3	1	3	2	11	23	32
2	3	1	2	1	3	22	31	13
3	1	2	3	2	1	33	12	21

This is related to " 36 officers problem" considered by Euler :
Is it possible to arrange in a square 36 officers from 6 different regiments and with 6 different ranks in such a way that in each row and each column regiments and ranks are different ?

Answer: No!

A projective plane of order q provides $(q-1)$ orthogonal Latin squares of size q :

1	2	3	1	3	2	11	23	32
2	3	1	2	1	3	22	31	13
3	1	2	3	2	1	33	12	21

This is related to " 36 officers problem" considered by Euler :
Is it possible to arrange in a square 36 officers from 6 different regiments and with 6 different ranks in such a way that in each row and each column regiments and ranks are different ?

Answer : No ! (Gaston Tarry)

A projective plane of order q provides $(q-1)$ orthogonal Latin squares of size q :

1	2	3	1	3	2	11	23	32
2	3	1	2	1	3	22	31	13
3	1	2	3	2	1	33	12	21

This is related to " 36 officers problem" considered by Euler :
Is it possible to arrange in a square 36 officers from 6 different regiments and with 6 different ranks in such a way that in each row and each column regiments and ranks are different ?

Answer : No ! (Gaston Tarry) There is no Projective Plane of order 6 .

Theorem

There is no projective plane of order 10 .

Theorem

There is no projective plane of order 10 .

John Conway commented in these terms the critical reduction proved by Thompson which made possible to computer-prove that theorem :

Theorem

There is no projective plane of order 10 .

John Conway commented in these terms the critical reduction proved by Thompson which made possible to computer-prove that theorem :
"Thompson forced Group Theory into a problem where it had nothing to do. "

TRUTH AND BEAUTY.

