Action of $\mathsf{GL}_2(\mathbb{Z})$ on the Drinfeld double of a finite group

Michel Broué (Université Paris-Diderot Paris 7)

"FINITE CHEVALLEY GROUPS, REFLECTION GROUPS AND BRAID GROUPS"

Centre Bernoulli, September 2016

in honour of Jean Michel (and François Digne)

The algebra $D_k G$

Let G be a finite group and let k be a field (at the beginning a commutative ring, at the end a large enough characteristic zero field).

- Let F(G, k) be the k-algebra of functions on G with values in k. Thus
 - $F(G,k) = \bigoplus_{s \in G} k \delta_s$ where $(\delta_s)_{s \in G}$ is a family of orthogonal idempotents .
- G acts on F(G, k) $(g\delta_s g^{-1} = \delta_{gsg^{-1}})$, and we set

$$D_kG:=F(G,k)\rtimes G$$
.

Thus

$$D_kG = igoplus_{s,g \in G} k\delta_s g$$
 with $\delta_s g\delta_t h = egin{cases} \delta_s gh & ext{if } s = gtg^{-1} \\ 0 & ext{if not.} \end{cases}$

and the unity element of $D_k G$ is $1_{D_k G} = \sum_{s \in G} \delta_s$.

The center ZD_kG

- Let $Com(G \times G)$ denote the set of *commuting pairs* in G, and let $\mathcal{C}(G \times G)$ denote the set of *orbits of* $Com(G \times G)$ under conjugation by G.
- For $\Gamma \in \mathcal{C}(G \times G)$, we set $\mathcal{S}_{\Gamma} := \sum_{(s,g) \in \Gamma} \delta_s g$.

Then $(S_{\Gamma})_{\Gamma \in \mathcal{C}(G \times G)}$ is a basis of ZD_kG .

ullet The first projection G imes G o G , $(s,g) \mapsto s$ induces a bijection

$$\mathcal{C}\big(G\times G\big) \overset{\sim}{\longrightarrow} \big\{\big(s,C\big) \bigm| (s{\in}G)(C{\in}\mathsf{Cl}(C_G(s))\big\}\big/G\text{-conjugation}\,,$$

and the k-linear map

$$igoplus_{s\in [Cl(G)]} ZkC_G(s) o ZD_kG \quad , \quad z_s\mapsto {
m Tr}_{C_G(s)}^G(\delta_sz_s)$$

is an isomorphism.

The abelian category $D_k G$ mod

Objects: the *G*-graded kG-modules $X = \bigoplus_{s \in G} {}_s X$. **Morphisms**: the kG-morphisms $X \to Y$ such that ${}_s X \to {}_s Y$.

The following functors define "inverse" equivalences of abelian categories:

$$\begin{cases} D_k G \textbf{mod} \to \bigoplus_{s \in [\mathsf{Cl}(G)]} {}_{kC_G(s)} \textbf{mod} \,, & \bigoplus_{s \in G} {}_{s} X \mapsto \bigoplus_{s \in [\mathsf{Cl}(G)]} {}_{s} X \,, \\ \bigoplus_{s \in [\mathsf{Cl}(G)]} {}_{kC_G(s)} \textbf{mod} \to {}_{D_k G} \textbf{mod} \,, & \bigoplus_{s \in [\mathsf{Cl}(G)]} S_s \mapsto \bigoplus_{s \in [\mathsf{Cl}(G)]} \mathsf{Ind}_{C_G(s)}^G S_s \,. \end{cases}$$

 \Rightarrow D_kG is a symmetric algebra.

Actually,
$$\tau(\delta_s g) = \begin{cases} 0 & \text{if } g \neq 1, \\ 1 & \text{if } g = 1, \end{cases}$$
 is a symmetrizing form.

 \Rightarrow The map $z_s \mapsto \operatorname{Tr}_{C_G(s)}^G(\delta_s z_s)$ induces an algebra isomorphism

$$\bigoplus_{s\in [\mathit{Cl}(G)]} \mathsf{Tr}_{\mathit{C}_G(s)}^{\mathit{G}}(\delta_s \cdot) : \bigoplus_{s\in [\mathit{Cl}(G)]} \mathit{ZkC}_{\mathit{G}}(s) \to \mathit{ZD}_k \mathit{G} \,.$$

$D_k G$ mod as a ribbon category

Tensor product:

$$X \otimes Y = \bigoplus_{s \in G} {}_s(X \otimes Y) \text{ where } {}_s(X \otimes Y) := \bigoplus_{t,u|tu=s} {}_tX \otimes {}_uY.$$

Dual:
$$X^* = \bigoplus_{s \in G} {}_s(X^*)$$
 where ${}_s(X^*) := ({}_{s^{-1}}X)^*$,

with obvious evaluation $X^* \otimes X \to k$ and coevaluation $k \to X \otimes X^*$.

Braiding:
$$c_{X,Y}: X \otimes Y \xrightarrow{\sim} Y \otimes X$$
,
$$\begin{cases} {}_{t}X \otimes {}_{u}Y \to {}_{tut^{-1}}Y \otimes {}_{t}X \\ x \otimes y \mapsto ty \otimes x \end{cases}$$

Twist:
$$\theta_X: X \xrightarrow{\sim} X$$
, $\begin{cases} {}_{s}X \to {}_{s}X \\ x \mapsto sx \end{cases}$

We have
$$\theta_{X \otimes Y} = \theta_X \cdot \theta_Y \cdot c_{Y,X} \cdot c_{X,Y}$$
.

Graded characters and Grothendieck ring

From now on, K is a characteristic zero field, which contains the |G|-th roots of unity.

Graded character:

For X a D_KG -module, we set $\operatorname{grchar}_X:=\sum_{s\in G}\operatorname{tr}(\cdot\mid {}_sX)s$, that is

$$\operatorname{grchar}_X(t) = \sum_{s \in C_G(t)} \operatorname{tr}(t \mid {}_sX)s \in \mathit{ZKC}_G(t)$$

and

$$\operatorname{grchar}_{X \otimes Y}(t) = \operatorname{grchar}_X(t) \operatorname{grchar}_Y(t)$$
 .

If
$$Y = X(t, T)$$
, define

$$\sigma_Y: \begin{cases} \mathsf{Gr}(D_K G) o K \,, \ X \mapsto \sigma(X) = \omega_T(\mathsf{grchar}_X(t)) \end{cases}$$

Then σ_Y is a ring morphism.

$D_K G$ mod as a modular category

The S-matrix:

$$\mathbf{S}_{X,Y} := rac{1}{|G|} \mathrm{tr}(c_{Y,X} \cdot c_{X,Y} \mid X \otimes Y)_{X,Y \in \mathrm{Irr}(D_K G)}.$$

 $_{t}X\otimes _{u}Y$ contributes to the trace of $c_{Y,X}\cdot c_{X,Y}$ only if tu=ut, in which case

$$c_{Y,X} \cdot c_{X,Y} : \begin{cases} {}_tX \otimes {}_uY \to {}_tX \otimes {}_uY \\ x \otimes y \mapsto ux \otimes ty \end{cases}.$$

 $D_K G$ **mod** is a modular category since **S** is nondegenerate.

For $X, Y \in Irr(D_K G)$,

$$\sigma_Y(X) = \frac{|G|}{\chi_Y(1)} \mathbf{S}_{X,Y}.$$

Now just for fun: name, where, when ?

Two bases of $CF(D_KG)$

 $CF(D_KG)$ has two bases, both partitioned according to $s \in [CI(G)]$:

- $(\gamma_{\Gamma})_{\Gamma \in \mathcal{C}(G \times G)}$,
- where $\Gamma = \Gamma(s, C)$ for $s \in [Cl(G)]$ and $C \in Cl(C_G(s))$, and $\gamma_{(s,\mathcal{C})} := \gamma_{\Gamma}$ denotes the characteristic function of $\Gamma,$
- $(\chi_X)_{X \in Irr(D_K G)}$,

where $X = \operatorname{Ind}_{C_G(s)}^G S$ for $s \in [\operatorname{Cl}(G)]$ and $S \in \operatorname{Irr}_K(C_G(s))$, and we set

$$\chi_{(s,S)} := \chi_X.$$

From one basis to the other:
$$\begin{cases} \chi_{s,S} = \sum_{g \in [\text{Cl}(C_G(s)]} \chi_S(g) \gamma_{(s,C_g)} \,, \\ \gamma_{\Gamma(s,g)} = \frac{|\Gamma(s,g)|}{|G|} \sum_{S \in \text{Irr}_K(C_G(s))} \chi_S(g^{-1}) \chi_{(s,S)} \,. \end{cases}$$

Action of $GL_2(\mathbb{Z})$ on $CF(D_KG)$

• Let **S** be the endomorphism of $CF(D_KG)$ such that

$$\mathbf{S}: \chi_X \mapsto \sum_{Y \in \mathsf{Irr}(D_K G)} \mathbf{S}_{X,Y} \cdot \chi_Y \ \text{ for } X \in \mathsf{Irr}(D_K G) \, .$$

• Let Ω be the endomorphism of $CF(D_KG)$ such that

$$\Omega: \chi_X \mapsto \theta_X \cdot \chi_X$$
 for $X \in Irr(D_K G)$.

• Let Δ_n $(n \in (\mathbb{Z}/|G|\mathbb{Z})^{ imes})$ be the endomorphism of $\mathsf{CF}(D_KG)$ such that

$$\Delta_n : \chi_X \mapsto \chi_{n_X} \text{ for } X \in Irr(D_K G).$$

Action of $GL_2(\mathbb{Z})$ on $CF(D_KG)$, continued

• $GL_2(\mathbb{Z})$ acts on the set $Com(G \times G)$ of commuting pairs of elements of G :

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot (s,g) := (s^a g^b, s^c g^d),$$

- \Rightarrow hence on the set $\mathcal{C}(G \times G)$ of its orbits under G,
- \Rightarrow hence on the basis $(\gamma_{\Gamma})_{\Gamma \in \mathcal{C}(G \times G)}$ of $CF(D_K G)$.

Theorem

$$\begin{cases} \mathbf{S}: & \gamma_{(s,g)} \mapsto \gamma_{(g,s^{-1})} & \text{hence acts like } \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \\ \mathbf{\Omega}: & \gamma_{(s,g)} \mapsto \gamma_{(s,gs^{-1})} & \text{hence acts like } \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \\ \mathbf{\Delta}_n: & \gamma_{(s,g)} \mapsto \gamma_{(s,g^n)} & \text{hence acts like } \begin{pmatrix} 1 & 0 \\ 0 & n \end{pmatrix} \end{cases}$$

Action of $GL_2(\mathbb{Z})$ on $CF(D_KG)$, continued

Hence

the group
$$\langle \mathbf{S}, \mathbf{\Omega} \rangle$$
 acts like $\mathsf{SL}_2(\mathbb{Z}/|\mathcal{G}|\mathbb{Z})$,

$$\langle \mathbf{S}, \mathbf{\Omega}, \mathbf{\Delta}_n \rangle$$
 acts like $\operatorname{GL}_2(\mathbb{Z}/|G|\mathbb{Z})$.

• **S**² corresponds to permutation matrices

$$\chi_{(s,S)} \mapsto \chi_{(s^{-1},S^*)}$$
 and $\gamma_{(s,g)} \mapsto \chi_{(s^{-1},g^{-1})}$,

ullet For $\mathbf{Sh}:=\mathbf{S}\mathbf{\Omega}\mathbf{S}^{-1}$, we have

$$\Omega \cdot \mathsf{Sh} \cdot \Omega = \mathsf{Sh} \cdot \Omega \cdot \mathsf{Sh}$$
 .

• Verlinde formula: If $X \otimes Y \simeq \bigoplus_{Z} z^{N_{X,Y}^{Z}}$, then

$$N_{Y,Z}^W = \sum_X rac{\mathbf{S}_{X,Y}\mathbf{S}_{X,Z}\mathbf{S}_{X,W}^{-1}}{\mathbf{S}_{X,1}} \in \mathbb{N}.$$

Again!

