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The algebra DG

Let G be a finite group and let k be a field (at the beginning a commutative
ring, at the end a large enough characteristic zero field).

o Let F(G, k) be the k-algebra of functions on G with values in k. Thus

@ kds where (Js)scg is a family of orthogonal idempotents .
seG

o G acts on F(G, k) (g0sg™! = ge5-1), and we set
DG = F(G,k) % G.

@ Thus
Ssgh if s =gtg™!
DG = @D kisg with b.gsh— {8 T &%
0 if not.
s,8€G
and the unity element of DG is 1p,¢ = > .. Js.
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The center ZD, G

e Let Com(G x G) denote the set of commuting pairs in G, and let
C(G x G) denote the set of orbits of Com(G x G) under conjugation by G.

e The first projection G x G — G, (s,g) + s induces a bijection

C(G x G) = {(s, C) | (seG)(ceCi(Cs(s)}/ G-conjugation,

and the k-linear map

is an isomorphism.
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The abelian category p,gmod

Objects: the G-graded kG-modules X = @ . s X
Morphisms: the kG-morphisms X — Y such that (X —; Y.

The following functors define “inverse” equivalences of abelian categories:

pemod = P i gmod, P X @ X

se[CI(G)] seG se[Cl(G
@ kCs(symod — p,gmod, @ Ss @ Ind(C;G(S)SS'
se[CI(G)] se[CI(G)] se[CI(G)]
= Dy G is a symmetric algebra.
0 ifg#1l, . ..
Actually, 7(0s8) = . is a symmetrizing form.
1 ifg=1,

= The map z; — Trgc(s)(észs) induces an algebra isomorphism

EB TrCG(S)((S . P ZkCo(s) —» ZDiG.
se[c(G s€[CI(G)]
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p,cmod as a ribbon category

Tensor product:

XOY=D(X®Y) where (X@Y):= P X@.,Y.

scG t,u|tu=s
Dual: X* =P s(X*) where o(X*):= (1 X)",
seG

with obvious evaluation X* ® X — k and coevaluation kK — X ® X*.
~ XR,Y = 1Y ®:X
Braiding: cxy: X®@Y - YoX,{ tut ‘
XRQym—ty®x
. ~ X — s X
Twist: Ox : X — X,
X — SX

We have 9X®y = 9)( . 9y Cy X " CX,Y -
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Graded characters and Grothendieck ring

From now on, K is a characteristic zero field, which contains the |G|-th roots of
unity.

Graded character:

For X a Dk G-module, we set grchary := 3 - tr(- | <X)s, that is

grchary oy (t) = greharg(t)grehary (t).

and

If Y = X(t, T), define
Gr(DKG) — K,

Oy .
X =

Then oy is a ring morphism.
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p,cmod as a modular category

The S-matrix:
Sx,y = |G| tr(cy x - cx,v | X @ Y)x ver(Dx6) -

«X ® ,Y contributes to the trace of cy x - cx,y only if tu = ut, in which case

. X @Y 5 X®,Y
xRy XQYy— ux @ ty.

pxemod is a modular category since S is nondegenerate.

For X, Y € Irr(Dk G),
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Now just for fun: name, where, when 7

s
P
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Two bases of CF(DkG)

CF(Dk G) has two bases, both partitioned according to s € [CI(G)] :

i (’Yr)rEC(GxG),

where [ =T (s, C) for s € [CI(G)] and C € CI(Cg(5s)),
and 7, ¢y = 7 denotes the characteristic function of T,
* (Xx)xelr(DxG):

where X = IndgG(S)S for s € [CI(G)] and S € Irr(Cg(s)), and we set
X(s,8) = Xx-

Xs,5s = Z Xs(g)’Y(s,cg) )
_ £€[CI(Co(s)]
From one basis to the other: IN(s, 2)|
) —1
’YF(s,g) = |G| Z Xs(g )X(S,S) .

Selrrk (Cg(s))
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Action of GL,(Z) on CF(DkG)

e Let S be the endomorphism of CF(Dk G) such that

S:xx+ Z Sx.y - xy for X €lrr(DkG).
Yelrr(Dk G)

o Let Q be the endomorphism of CF(Dk G) such that

Q:xx—0x-xx for X €lrr(DkG).

o Let A, (n€ (Z/|G|Z)*) be the endomorphism of CF(Dyk G) such that

D, xx — Xxnx for X €lrr(DkG).
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Action of GLy(Z) on CF(DkG), continued

e GLy(Z) acts on the set Com(G x G) of commuting pairs of elements of

G :
a b 2 c
(C d) '(Sag) = (S gbvs gd)7

= hence on the set C(G x G) of its orbits under G,

= hence on the basis (yr)rec(ox ) of CF(DkG).

Theorem
(

0
S: Yisg) ™ V(g,s—Y) hence acts like <_1

1
Q. Vis.g) ™ V(s.gs—?) hence acts like (_1

1
0
0
1
. 10
Dn: Yisg) ™ Visen hence acts like (O )
\
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Action of GLy(Z) on CF(DkG), continued

H
enee the group (S, Q) acts like SL»(Z/|G|Z),

(S,Q,A,) acts like GL2(Z/|G|Z).

e S? corresponds to permutation matrices

X(5,9) 7 X(s=1,5%) A Y(5g) 7 X(s-1g-1)

e For Sh:=SQS 1, we have
Q.Sh-Q2=Sh-Q-Sh.

e Verlinde formula: If X®@ Y ~ @, Ny , then

Sx.vSx.zSx"
N,'ﬁ‘fz = Z TLTTAEATXW .

S
x X,1
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