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En hommage à Serge Bouc – mais sans catégories ni foncteurs

—

Variations on an old work of Gabi Nebe

A joint work with Ruth Corran and Jean Michel
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A few words about motivation

Spetses

(Gunter Malle, Jean Michel, Michel B., now also Olivier Dudas, Cédric Bonnafé)

A finite reductive group GF is determined by the choice of G and F , and that
choice is in turn determined by the choice of a root datum (X ,R,Y ,R∨), a finite
order automorphism φ of the root datum, and the basic field Fq.

Some data concerning GF , such as the parametrization of unipotent characters,
their generic degrees, Frobenius eigenvalues, and also the families and their
Fourier matrices, depend ONLY on the Q-representation of the Weyl group
attached to the root datum, and on the automorphism φ.

This may be surprising: think of Sp2r (q) and SO2r+1(q).

More data concerning GF , such as the parametrization of unipotent classes, the
values of unipotent characters on unipotent elements, depend on the entire root
datum.
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Michel Broué Cyclotomic Root Systems



A few words about motivation

Spetses

(Gunter Malle, Jean Michel, Michel B., now also Olivier Dudas, Cédric Bonnafé)
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Root systems and Weyl groups: Bourbaki’s definition

Let V and W be finite dimensional Q-vector spaces endowed with a
duality V ×W → Q .

Let R := {(α, α∨)} ⊂ V ×W be a family of nonzero vectors. We say that
R is a root system if

(RS1) R is finite and its projection on V generates V ,

(RS2) for all (α, α∨) ∈ R, 〈α, α∨〉 = 2 and the reflection
sα,α∨ : v 7→ v − 〈v , α∨〉α stabilizes R,

(RS3) for all (α, α∨), (β, β∨) ∈ R, 〈α, β∨〉 ∈ Z.

The group generated by all reflections sα,α∨ is the Weyl group G (R).

On can classify the root systems R and then classify the Weyl groups
G (R). Or proceed the opposite way: it’s what we did for cyclotomic root
systems and their (cyclotomic) Weyl groups.
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Complex (or, rather, cyclotomic) reflection groups

Let k be a subfield of C which is stable under complex conjugation.

Let V and W be finite dimensional k-vector spaces endowed with a
hermitian duality V ×W → k .

A reflection s on V is defined by a triple (Ls ,Ms , ζs) where

ζs ∈ µ(k),

Ls is a line in V and Ms is a line in W such that 〈Ls ,Ms〉 6= 0

and s is the automorphism of V defined by

s(v) = v − 〈v , α∨〉α

whenever α ∈ Ls and α∨ ∈ Ms are such that 〈α, α∨〉 = 1− ζs .
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Shephard–Todd groups and their fields

Irreducible cyclotomic reflection groups are classified.

An infinite series G (de, e, r) for d , e, r ∈ N− {0},
G (de, e, r) ⊂ GLr (Q(ζde)) is irreducible

→ except for d = e = r = 1 or 2.

Its field of definition is Q(ζde),

→ except for d = 1 and r = 2 where it is the real field Q(ζe + ζ−1
e ).

The ring of integers of Q(ζn) is Z[ζn].
In general (for example if n > 90, but also for other values of n between 22
and 90) it is not a principal ideal domain.

34 exceptional irreducible groups in dimension 2 to 8.
Their field of definition (all subfields of “small” cyclotomic fields) have the

remarkable property that all their rings of integers are principal ideal

domains.
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Ordinary Root systems

Let V and W be finite dimensional Q-vector spaces endowed with a
duality V ×W → Q .

Let R := {(α, α∨)} ⊂ V ×W be a family of nonzero vectors.

We say that R is a root system if

(RS1) R is finite and its projection on V generates V ,

(RS2) for all (α, α∨) ∈ R, 〈α, α∨〉 = 2 and the reflection
sα,α∨ : v 7→ v − 〈v , α∨〉α stabilizes R,

(RS3) for all (α, α∨), (β, β∨) ∈ R, 〈α, β∨〉 ∈ Z.
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Zk–Root Systems

It is a set of triples R = {r = (Ir, Jr, ζr)} where

ζr ∈ µ(k),

Ir is a rank one Zk -submodule of V , and Jr is a rank one
Zk -submodule of W ,

such that

(RS1) the family (Ir) generates V ,

(RS2) 〈Ir, Jr〉 = [1− ζr] (the principal ideal generated by 1− ζr), and if∑
i 〈αi , βi 〉 = 1− ζr, then the reflection

sr : v 7→ v −
∑
i

〈v , βi 〉αi

stabilizes R,

(RS3) Whenever r, r′ ∈ R, 〈Ir, Jr′〉 ⊂ Zk .
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Theorem

(1) G (R) := 〈sr〉r∈R is finite and V G(R) = 0.

(2) Conversely, whenever G is a finite subgroup of GL(V ) generated by
reflections such that V G = 0, there exists a Zk -root system R such
that G = G (R).

(3) Arr(G (R)) = Arr(R) .

Parabolic subsystems

Let F be a face (intersection of reflecting hyperplanes) of R (or of G (R)).

Then the fixator G (R)F is called a parabolic subgroup of G (R).

If VF denotes the sum of reflecting lines of G (R)F , we have V
G(R)F
F = 0.

Then RF := {r | sr ∈ G (R)F} is a Zk root system in VF .
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Genera, Root and Weight Lattices

GL(V ) acts on root systems :

g · (I , J, ζ) := (g(I ), g∨(J), ζ) .

If a is a fractional ideal in k , we set

a · (I , J, ζ) := (aI , a−∗J, ζ) .

Root lattices, weight lattices:

QR :=
∑
r∈R

Ir and QR∨ :=
∑
r∈R

Jr

PR := {x ∈ V | ∀y ∈ QR∨ , 〈x , y〉 ∈ Zk} and PR∨ := ...

There is a Aut(R)/G (R)-invariant natural pairing

(PR/QR)× (PR∨/QR∨)→ k/Zk .
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Classifying root systems

A root system is reduced if the map r 7→ sr is injective. .

A root system is complete if the map r 7→ sr is surjective.

A root system is distinguished if the map r 7→ sr induces a bijection
with the set of distinguished reflections.

Note that a distinguished root system is reduced, but that it is
complete if and only if all reflections have order 2.

For each irreducible reflection group G , we provide a classification (up to
genera),

over its ring of definition Zk ,

of reduced complete root systems for G (de, e, r),

of distinguished root systems corresponding to the 34 exceptional
groups.
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Michel Broué Cyclotomic Root Systems



Cartan matrices

For r, t ∈ R, we set
n(r, t) := 〈Ir, Jt〉 .

For a subset S of R, its Cartan matrix is the S × S-matrix whose
entries are the ideals n(r, t).

Proposition

Assume that the family (sr)r∈S

generates G (R),

contains an element of each conjugacy class of reflections of G (R).

Then the Cartan matrix of S determines R up to genera.
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Name Diagram Cartan matrix Orbits Zk
connection

index

G31 ©
v

�
©
s

©
t

n
©
w

©
u�


2 i + 1 1− i −i 0

1− i 2 1− i −1 −1
i + 1 i + 1 2 0 −1
i −1 0 2 0
0 −1 −1 0 2

 s Z[i ] 1

G32 ©
s
3 ©

t
3 ©

u
3 ©

v
3


1− ζ3 ζ2

3 0 0
−ζ2

3 1− ζ3 ζ2
3 0

0 −ζ2
3 1− ζ3 ζ2

3
0 0 −ζ2

3 1− ζ3

 s Z[ζ3] 1

G33 ©
s
©
t

6←−©
u

�
©w

�
©
v


2 −1 0 0 0
−1 2 −1 −ζ2

3 0
0 −1 2 −1 0
0 −ζ3 −1 2 −1
0 0 0 −1 2

 s Z[ζ3] 2

G34 ©
s
©
t

6←−©
u

�
©w

�
©
v
©
x


2 −1 0 0 0 0
−1 2 −1 −ζ2

3 0 0
0 −1 2 −1 0 0
0 −ζ3 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 2

 s Z[ζ3] 1
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Roots for the dihedral group of order 8

Let G = G (2, 1, 2) = G (4, 4, 2) be the dihedral group of order 8.

Set V = k2 written as columns, with canonical orthonormal basis{(
1
0

)
,

(
0
1

)}
.

and W = k2 written as rows, with canonical dual basis

{(1, 0) , (0, 1)} .

The group G is generated by S = {s, t} where

s :=

(
−1 0
0 1

)
and t :=

(
0 1
1 0

)
and the corresponding reflecting lines are

Ls = kvs with vs =

(
1
0

)
and Lt = kvt with vt =

(
−1
1

)
Ms = kv∨s with v∨s = (2, 0) and Mt = kv∨t with v∨t = (−1, 1) .
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Michel Broué Cyclotomic Root Systems



Roots for the dihedral group of order 8

Let G = G (2, 1, 2) = G (4, 4, 2) be the dihedral group of order 8.

Set V = k2 written as columns, with canonical orthonormal basis{(
1
0

)
,

(
0
1

)}
.

and W = k2 written as rows, with canonical dual basis

{(1, 0) , (0, 1)} .

The group G is generated by S = {s, t} where

s :=

(
−1 0
0 1

)
and t :=

(
0 1
1 0

)
and the corresponding reflecting lines are

Ls = kvs with vs =

(
1
0

)
and Lt = kvt with vt =

(
−1
1

)
Ms = kv∨s with v∨s = (2, 0) and Mt = kv∨t with v∨t = (−1, 1) .
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There are two root systems over Q:

R(B2) =
{(

(1)vs , (1)v∨s ,−1
)
,
(

(1)vt , (1)v∨t ,−1
)}

R(C2) =
{(

(2)vs , (
1
2 )v∨s ,−1

)
,
(

(1)vt , (1)v∨t ,−1
)}

and these are mutually dual root systems.

Whenever (2) is a square (
√

2)
2

(for example, if k = Q(
√

2) or k = Q(i))
there is another self-dual root system:{(

(
√

2)vs , (
√

2)
−∗

v∨s ,−1
)
,
(

(1)vt , (1)v∨t ,−1
)}

.
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