Cyclotomic Root Systems

Michel Broué

Université Paris-Diderot Paris 7

En hommage à Serge Bouc - mais sans catégories ni foncteurs

Variations on an old work of Gabi Nebe
A joint work with Ruth Corran and Jean Michel

A few words about motivation

A few words about motivation

Spetses

A few words about motivation

Spetses

(Gunter Malle, Jean Michel, Michel B., now also Olivier Dudas, Cédric Bonnafé)

A few words about motivation

Spetses

(Gunter Malle, Jean Michel, Michel B., now also Olivier Dudas, Cédric Bonnafé)
A finite reductive group \mathbf{G}^{F} is determined by the choice of \mathbf{G} and F, and that choice is in turn determined by the choice of a root datum $\left(X, R, Y, R^{\vee}\right)$, a finite order automorphism ϕ of the root datum, and the basic field \mathbb{F}_{q}.

A few words about motivation

Spetses

(Gunter Malle, Jean Michel, Michel B., now also Olivier Dudas, Cédric Bonnafé)
A finite reductive group \mathbf{G}^{F} is determined by the choice of \mathbf{G} and F, and that choice is in turn determined by the choice of a root datum $\left(X, R, Y, R^{\vee}\right)$, a finite order automorphism ϕ of the root datum, and the basic field \mathbb{F}_{q}.

Some data concerning \mathbf{G}^{F}, such as the parametrization of unipotent characters, their generic degrees, Frobenius eigenvalues, and also the families and their Fourier matrices, depend ONLY on the \mathbb{Q}-representation of the Weyl group attached to the root datum, and on the automorphism ϕ.

A few words about motivation

Spetses

(Gunter Malle, Jean Michel, Michel B., now also Olivier Dudas, Cédric Bonnafé)
A finite reductive group \mathbf{G}^{F} is determined by the choice of \mathbf{G} and F, and that choice is in turn determined by the choice of a root datum $\left(X, R, Y, R^{\vee}\right)$, a finite order automorphism ϕ of the root datum, and the basic field \mathbb{F}_{q}.

Some data concerning \mathbf{G}^{F}, such as the parametrization of unipotent characters, their generic degrees, Frobenius eigenvalues, and also the families and their Fourier matrices, depend ONLY on the \mathbb{Q}-representation of the Weyl group attached to the root datum, and on the automorphism ϕ.

This may be surprising: think of $\mathrm{Sp}_{2 r}(q)$ and $\mathrm{SO}_{2 r+1}(q)$.

A few words about motivation

Spetses

(Gunter Malle, Jean Michel, Michel B., now also Olivier Dudas, Cédric Bonnafé)
A finite reductive group \mathbf{G}^{F} is determined by the choice of \mathbf{G} and F, and that choice is in turn determined by the choice of a root datum $\left(X, R, Y, R^{\vee}\right)$, a finite order automorphism ϕ of the root datum, and the basic field \mathbb{F}_{q}.

Some data concerning \mathbf{G}^{F}, such as the parametrization of unipotent characters, their generic degrees, Frobenius eigenvalues, and also the families and their Fourier matrices, depend ONLY on the \mathbb{Q}-representation of the Weyl group attached to the root datum, and on the automorphism ϕ.

This may be surprising: think of $\mathrm{Sp}_{2 r}(q)$ and $\mathrm{SO}_{2 r+1}(q)$.
More data concerning \mathbf{G}^{F}, such as the parametrization of unipotent classes, the values of unipotent characters on unipotent elements, depend on the entire root datum.

Root systems and Weyl groups: Bourbaki's definition

Root systems and Weyl groups: Bourbaki's definition

Let V and W be finite dimensional \mathbb{Q}-vector spaces endowed with a duality $V \times W \rightarrow \mathbb{Q}$.

Root systems and Weyl groups: Bourbaki's definition

Let V and W be finite dimensional \mathbb{Q}-vector spaces endowed with a duality $V \times W \rightarrow \mathbb{Q}$.

Let $\mathcal{R}:=\left\{\left(\alpha, \alpha^{\vee}\right)\right\} \subset V \times W$ be a family of nonzero vectors.

Root systems and Weyl groups: Bourbaki's definition

Let V and W be finite dimensional \mathbb{Q}-vector spaces endowed with a duality $V \times W \rightarrow \mathbb{Q}$.

Let $\mathcal{R}:=\left\{\left(\alpha, \alpha^{\vee}\right)\right\} \subset V \times W$ be a family of nonzero vectors. We say that \mathcal{R} is a root system if

Root systems and Weyl groups: Bourbaki's definition

Let V and W be finite dimensional \mathbb{Q}-vector spaces endowed with a duality $V \times W \rightarrow \mathbb{Q}$.

Let $\mathcal{R}:=\left\{\left(\alpha, \alpha^{\vee}\right)\right\} \subset V \times W$ be a family of nonzero vectors. We say that \mathcal{R} is a root system if
(RS1) \mathcal{R} is finite and its projection on V generates V,

Root systems and Weyl groups: Bourbaki's definition

Let V and W be finite dimensional \mathbb{Q}-vector spaces endowed with a duality $V \times W \rightarrow \mathbb{Q}$.

Let $\mathcal{R}:=\left\{\left(\alpha, \alpha^{\vee}\right)\right\} \subset V \times W$ be a family of nonzero vectors. We say that \mathcal{R} is a root system if
(RS1) \mathcal{R} is finite and its projection on V generates V,
(RS2) for all $\left(\alpha, \alpha^{\vee}\right) \in \mathcal{R},\left\langle\alpha, \alpha^{\vee}\right\rangle=2$ and the reflection
$s_{\alpha, \alpha^{\vee}}: v \mapsto v-\left\langle v, \alpha^{\vee}\right\rangle \alpha$ stabilizes \mathcal{R},

Root systems and Weyl groups: Bourbaki's definition

Let V and W be finite dimensional \mathbb{Q}-vector spaces endowed with a duality $V \times W \rightarrow \mathbb{Q}$.

Let $\mathcal{R}:=\left\{\left(\alpha, \alpha^{\vee}\right)\right\} \subset V \times W$ be a family of nonzero vectors. We say that \mathcal{R} is a root system if
(RS1) \mathcal{R} is finite and its projection on V generates V,
(RS2) for all $\left(\alpha, \alpha^{\vee}\right) \in \mathcal{R},\left\langle\alpha, \alpha^{\vee}\right\rangle=2$ and the reflection
$s_{\alpha, \alpha^{\vee}}: v \mapsto v-\left\langle v, \alpha^{\vee}\right\rangle \alpha$ stabilizes \mathcal{R},
(RS3) for all $\left(\alpha, \alpha^{\vee}\right),\left(\beta, \beta^{\vee}\right) \in \mathcal{R},\left\langle\alpha, \beta^{\vee}\right\rangle \in \mathbb{Z}$.

Root systems and Weyl groups: Bourbaki's definition

Let V and W be finite dimensional \mathbb{Q}-vector spaces endowed with a duality $V \times W \rightarrow \mathbb{Q}$.

Let $\mathcal{R}:=\left\{\left(\alpha, \alpha^{\vee}\right)\right\} \subset V \times W$ be a family of nonzero vectors. We say that \mathcal{R} is a root system if
(RS1) \mathcal{R} is finite and its projection on V generates V,
(RS2) for all $\left(\alpha, \alpha^{\vee}\right) \in \mathcal{R},\left\langle\alpha, \alpha^{\vee}\right\rangle=2$ and the reflection
$s_{\alpha, \alpha^{\vee}}: v \mapsto v-\left\langle v, \alpha^{\vee}\right\rangle \alpha$ stabilizes \mathcal{R},
(RS3) for all $\left(\alpha, \alpha^{\vee}\right),\left(\beta, \beta^{\vee}\right) \in \mathcal{R},\left\langle\alpha, \beta^{\vee}\right\rangle \in \mathbb{Z}$.

The group generated by all reflections $s_{\alpha, \alpha^{\vee}}$ is the Weyl group $G(\mathcal{R})$.

Root systems and Weyl groups: Bourbaki's definition

Let V and W be finite dimensional \mathbb{Q}-vector spaces endowed with a duality $V \times W \rightarrow \mathbb{Q}$.

Let $\mathcal{R}:=\left\{\left(\alpha, \alpha^{\vee}\right)\right\} \subset V \times W$ be a family of nonzero vectors. We say that \mathcal{R} is a root system if
(RS1) \mathcal{R} is finite and its projection on V generates V,
(RS2) for all $\left(\alpha, \alpha^{\vee}\right) \in \mathcal{R},\left\langle\alpha, \alpha^{\vee}\right\rangle=2$ and the reflection

$$
s_{\alpha, \alpha^{\vee}}: v \mapsto v-\left\langle v, \alpha^{\vee}\right\rangle \alpha \text { stabilizes } \mathcal{R}
$$

(RS3) for all $\left(\alpha, \alpha^{\vee}\right),\left(\beta, \beta^{\vee}\right) \in \mathcal{R},\left\langle\alpha, \beta^{\vee}\right\rangle \in \mathbb{Z}$.

The group generated by all reflections $s_{\alpha, \alpha^{\vee}}$ is the Weyl group $G(\mathcal{R})$.
On can classify the root systems \mathcal{R} and then classify the Weyl groups $G(\mathcal{R})$.

Root systems and Weyl groups: Bourbaki's definition

Let V and W be finite dimensional \mathbb{Q}-vector spaces endowed with a duality $V \times W \rightarrow \mathbb{Q}$.

Let $\mathcal{R}:=\left\{\left(\alpha, \alpha^{\vee}\right)\right\} \subset V \times W$ be a family of nonzero vectors. We say that \mathcal{R} is a root system if
(RS1) \mathcal{R} is finite and its projection on V generates V,
(RS2) for all $\left(\alpha, \alpha^{\vee}\right) \in \mathcal{R},\left\langle\alpha, \alpha^{\vee}\right\rangle=2$ and the reflection

$$
s_{\alpha, \alpha^{\vee}}: v \mapsto v-\left\langle v, \alpha^{\vee}\right\rangle \alpha \text { stabilizes } \mathcal{R},
$$

(RS3) for all $\left(\alpha, \alpha^{\vee}\right),\left(\beta, \beta^{\vee}\right) \in \mathcal{R},\left\langle\alpha, \beta^{\vee}\right\rangle \in \mathbb{Z}$.

The group generated by all reflections $s_{\alpha, \alpha^{\vee}}$ is the Weyl group $G(\mathcal{R})$.
On can classify the root systems \mathcal{R} and then classify the Weyl groups $G(\mathcal{R})$. Or proceed the opposite way: it's what we did for cyclotomic root systems and their (cyclotomic) Weyl groups.

Complex (or, rather, cyclotomic) reflection groups

Let k be a subfield of \mathbb{C} which is stable under complex conjugation.

Let V and W be finite dimensional k-vector spaces endowed with a hermitian duality $V \times W \rightarrow k$.

Complex (or, rather, cyclotomic) reflection groups

Let k be a subfield of \mathbb{C} which is stable under complex conjugation.

Let V and W be finite dimensional k-vector spaces endowed with a hermitian duality $V \times W \rightarrow k$.

A reflection s on V is defined by a triple $\left(L_{s}, M_{s}, \zeta_{s}\right)$ where

Complex (or, rather, cyclotomic) reflection groups

Let k be a subfield of \mathbb{C} which is stable under complex conjugation.

Let V and W be finite dimensional k-vector spaces endowed with a hermitian duality $V \times W \rightarrow k$.

A reflection s on V is defined by a triple $\left(L_{s}, M_{s}, \zeta_{s}\right)$ where

- $\zeta_{s} \in \boldsymbol{\mu}(k)$,

Complex (or, rather, cyclotomic) reflection groups

Let k be a subfield of \mathbb{C} which is stable under complex conjugation.

Let V and W be finite dimensional k-vector spaces endowed with a hermitian duality $V \times W \rightarrow k$.

A reflection s on V is defined by a triple $\left(L_{s}, M_{s}, \zeta_{s}\right)$ where

- $\zeta_{s} \in \boldsymbol{\mu}(k)$,
- L_{s} is a line in V and M_{s} is a line in W such that $\left\langle L_{s}, M_{s}\right\rangle \neq 0$

Complex (or, rather, cyclotomic) reflection groups

Let k be a subfield of \mathbb{C} which is stable under complex conjugation.

Let V and W be finite dimensional k-vector spaces endowed with a hermitian duality $V \times W \rightarrow k$.

A reflection s on V is defined by a triple $\left(L_{s}, M_{s}, \zeta_{s}\right)$ where

- $\zeta_{s} \in \boldsymbol{\mu}(k)$,
- L_{s} is a line in V and M_{s} is a line in W such that $\left\langle L_{s}, M_{s}\right\rangle \neq 0$
and s is the automorphism of V defined by

$$
s(v)=v-\left\langle v, \alpha^{v}\right\rangle \alpha
$$

whenever $\alpha \in L_{s}$ and $\alpha^{\vee} \in M_{s}$ are such that $\left\langle\alpha, \alpha^{\vee}\right\rangle=1-\zeta_{s}$.

Shephard-Todd groups and their fields

IRREDUCIBLE CYCLOTOMIC REFLECTION GROUPS ARE CLASSIFIED.

Shephard-Todd groups and their fields

IrREDUCIBLE CYCLOTOMIC REFLECTION GROUPS ARE CLASSIFIED.

- An infinite series $G(d e, e, r)$ for $d, e, r \in \mathbb{N}-\{0\}$,

$$
G(d e, e, r) \subset \mathrm{GL}_{r}\left(\mathbb{Q}\left(\zeta_{d e}\right)\right) \text { is irreducible }
$$

Shephard-Todd groups and their fields

IRREDUCIBLE CYCLOTOMIC REFLECTION GROUPS ARE CLASSIFIED.

- An infinite series $G(d e, e, r)$ for $d, e, r \in \mathbb{N}-\{0\}$, $G(d e, e, r) \subset \mathrm{GL}_{r}\left(\mathbb{Q}\left(\zeta_{d e}\right)\right)$ is irreducible \rightarrow except for $d=e=r=1$ or 2 .

Shephard-Todd groups and their fields

IrREDUCIBLE CYCLOTOMIC REFLECTION GROUPS ARE CLASSIFIED.

- An infinite series $G(d e, e, r)$ for $d, e, r \in \mathbb{N}-\{0\}$, $G(d e, e, r) \subset \mathrm{GL}_{r}\left(\mathbb{Q}\left(\zeta_{d e}\right)\right)$ is irreducible \rightarrow except for $d=e=r=1$ or 2 .

Its field of definition is $\mathbb{Q}\left(\zeta_{\text {de }}\right)$,

Shephard-Todd groups and their fields

IrREDUCIBLE CYCLOTOMIC REFLECTION GROUPS ARE CLASSIFIED.

- An infinite series $G(d e, e, r)$ for $d, e, r \in \mathbb{N}-\{0\}$, $G(d e, e, r) \subset \mathrm{GL}_{r}\left(\mathbb{Q}\left(\zeta_{d e}\right)\right)$ is irreducible
\rightarrow except for $d=e=r=1$ or 2 .
Its field of definition is $\mathbb{Q}\left(\zeta_{\text {de }}\right)$,
\rightarrow except for $d=1$ and $r=2$ where it is the real field $\mathbb{Q}\left(\zeta_{e}+\zeta_{e}^{-1}\right)$.

Shephard-Todd groups and their fields

IrREDUCIBLE CYCLOTOMIC REFLECTION GROUPS ARE CLASSIFIED.

- An infinite series $G(d e, e, r)$ for $d, e, r \in \mathbb{N}-\{0\}$, $G(d e, e, r) \subset \mathrm{GL}_{r}\left(\mathbb{Q}\left(\zeta_{d e}\right)\right)$ is irreducible
\rightarrow except for $d=e=r=1$ or 2 .
Its field of definition is $\mathbb{Q}\left(\zeta_{\text {de }}\right)$,
\rightarrow except for $d=1$ and $r=2$ where it is the real field $\mathbb{Q}\left(\zeta_{e}+\zeta_{e}^{-1}\right)$.
The ring of integers of $\mathbb{Q}\left(\zeta_{n}\right)$ is $\mathbb{Z}\left[\zeta_{n}\right]$.
In general (for example if $n>90$, but also for other values of n between 22 and 90) it is not a principal ideal domain.

Shephard-Todd groups and their fields

IrREDUCIBLE CYCLOTOMIC REFLECTION GROUPS ARE CLASSIFIED.

- An infinite series $G(d e, e, r)$ for $d, e, r \in \mathbb{N}-\{0\}$, $G(d e, e, r) \subset \mathrm{GL}_{r}\left(\mathbb{Q}\left(\zeta_{\text {de }}\right)\right)$ is irreducible \rightarrow except for $d=e=r=1$ or 2 .

Its field of definition is $\mathbb{Q}\left(\zeta_{\text {de }}\right)$,
\rightarrow except for $d=1$ and $r=2$ where it is the real field $\mathbb{Q}\left(\zeta_{e}+\zeta_{e}^{-1}\right)$.
The ring of integers of $\mathbb{Q}\left(\zeta_{n}\right)$ is $\mathbb{Z}\left[\zeta_{n}\right]$.
In general (for example if $n>90$, but also for other values of n between 22 and 90) it is not a principal ideal domain.

- 34 exceptional irreducible groups in dimension 2 to 8 . Their field of definition (all subfields of "small" cyclotomic fields) have the remarkable property that all their rings of integers are principal ideal domains.

Ordinary Root systems

Ordinary Root systems

Let V and W be finite dimensional \mathbb{Q}-vector spaces endowed with a duality $V \times W \rightarrow \mathbb{Q}$.

Let $\mathcal{R}:=\left\{\left(\alpha, \alpha^{\vee}\right)\right\} \subset V \times W$ be a family of nonzero vectors.

We say that \mathcal{R} is a root system if

Ordinary Root systems

Let V and W be finite dimensional \mathbb{Q}-vector spaces endowed with a duality $V \times W \rightarrow \mathbb{Q}$.

Let $\mathcal{R}:=\left\{\left(\alpha, \alpha^{\vee}\right)\right\} \subset V \times W$ be a family of nonzero vectors.

We say that \mathcal{R} is a root system if
(RS1) \mathcal{R} is finite and its projection on V generates V,

Ordinary Root systems

Let V and W be finite dimensional \mathbb{Q}-vector spaces endowed with a duality $V \times W \rightarrow \mathbb{Q}$.

Let $\mathcal{R}:=\left\{\left(\alpha, \alpha^{\vee}\right)\right\} \subset V \times W$ be a family of nonzero vectors.

We say that \mathcal{R} is a root system if
(RS1) \mathcal{R} is finite and its projection on V generates V,
(RS2) for all $\left(\alpha, \alpha^{\vee}\right) \in \mathcal{R},\left\langle\alpha, \alpha^{\vee}\right\rangle=2$ and the reflection $s_{\alpha, \alpha^{\vee}}: v \mapsto v-\left\langle v, \alpha^{\vee}\right\rangle \alpha$ stabilizes \mathcal{R},

Ordinary Root systems

Let V and W be finite dimensional \mathbb{Q}-vector spaces endowed with a duality $V \times W \rightarrow \mathbb{Q}$.

Let $\mathcal{R}:=\left\{\left(\alpha, \alpha^{\vee}\right)\right\} \subset V \times W$ be a family of nonzero vectors.

We say that \mathcal{R} is a root system if
(RS1) \mathcal{R} is finite and its projection on V generates V,
(RS2) for all $\left(\alpha, \alpha^{\vee}\right) \in \mathcal{R},\left\langle\alpha, \alpha^{\vee}\right\rangle=2$ and the reflection $s_{\alpha, \alpha^{\vee}}: v \mapsto v-\left\langle v, \alpha^{\vee}\right\rangle \alpha$ stabilizes \mathcal{R},
$(\mathrm{RS} 3)$ for all $\left(\alpha, \alpha^{\vee}\right),\left(\beta, \beta^{\vee}\right) \in \mathcal{R},\left\langle\alpha, \beta^{\vee}\right\rangle \in \mathbb{Z}$.

\mathbb{Z}_{k}-Root Systems

It is a set of triples $\mathcal{R}=\left\{\mathfrak{r}=\left(I_{\mathfrak{r}}, J_{\mathfrak{r}}, \zeta_{\mathfrak{r}}\right)\right\}$ where

\mathbb{Z}_{k}-Root Systems

It is a set of triples $\mathcal{R}=\left\{\mathfrak{r}=\left(I_{\mathfrak{r}}, J_{\mathfrak{r}}, \zeta_{\mathfrak{r}}\right)\right\}$ where

- $\zeta_{\mathfrak{r}} \in \boldsymbol{\mu}(k)$,

\mathbb{Z}_{k}-Root Systems

It is a set of triples $\mathcal{R}=\left\{\mathfrak{r}=\left(I_{\mathfrak{r}}, J_{\mathfrak{r}}, \zeta_{\mathfrak{r}}\right)\right\}$ where

- $\zeta_{\mathfrak{r}} \in \boldsymbol{\mu}(k)$,
- I_{r} is a rank one \mathbb{Z}_{k}-submodule of V, and J_{r} is a rank one \mathbb{Z}_{k}-submodule of W,

\mathbb{Z}_{k}-Root Systems

It is a set of triples $\mathcal{R}=\left\{\mathfrak{r}=\left(I_{\mathfrak{r}}, J_{\mathfrak{r}}, \zeta_{\mathfrak{r}}\right)\right\}$ where

- $\zeta_{\mathfrak{r}} \in \boldsymbol{\mu}(k)$,
- I_{r} is a rank one \mathbb{Z}_{k}-submodule of V, and J_{r} is a rank one \mathbb{Z}_{k}-submodule of W,
such that

\mathbb{Z}_{k}-Root Systems

It is a set of triples $\mathcal{R}=\left\{\mathfrak{r}=\left(I_{\mathfrak{r}}, J_{\mathfrak{r}}, \zeta_{\mathfrak{r}}\right)\right\}$ where

- $\zeta_{\mathfrak{r}} \in \boldsymbol{\mu}(k)$,
- I_{r} is a rank one \mathbb{Z}_{k}-submodule of V, and J_{r} is a rank one \mathbb{Z}_{k}-submodule of W,
such that
(RS1) the family (I_{r}) generates V,

\mathbb{Z}_{k}-Root Systems

It is a set of triples $\mathcal{R}=\left\{\mathfrak{r}=\left(I_{\mathfrak{r}}, J_{\mathfrak{r}}, \zeta_{\mathfrak{r}}\right)\right\}$ where

- $\zeta_{\mathfrak{r}} \in \boldsymbol{\mu}(k)$,
- I_{r} is a rank one \mathbb{Z}_{k}-submodule of V, and J_{r} is a rank one \mathbb{Z}_{k}-submodule of W,
such that
(RS1) the family (I_{r}) generates V,
$(\mathrm{RS} 2)\left\langle I_{\mathfrak{r}}, J_{\mathfrak{r}}\right\rangle=\left[1-\zeta_{\mathfrak{r}}\right]$ (the principal ideal generated by $1-\zeta_{\mathfrak{r}}$), and if $\sum_{i}\left\langle\alpha_{i}, \beta_{i}\right\rangle=1-\zeta_{\mathfrak{r}}$, then the reflection

$$
s_{\mathrm{r}}: v \mapsto v-\sum_{i}\left\langle v, \beta_{i}\right\rangle \alpha_{i}
$$

stabilizes \mathcal{R},

\mathbb{Z}_{k}-Root Systems

It is a set of triples $\mathcal{R}=\left\{\mathfrak{r}=\left(I_{\mathfrak{r}}, J_{\mathfrak{r}}, \zeta_{\mathfrak{r}}\right)\right\}$ where

- $\zeta_{\mathfrak{r}} \in \boldsymbol{\mu}(k)$,
- I_{r} is a rank one \mathbb{Z}_{k}-submodule of V, and J_{r} is a rank one \mathbb{Z}_{k}-submodule of W,
such that
(RS1) the family (I_{r}) generates V,
$(\mathrm{RS} 2)\left\langle I_{\mathfrak{r}}, J_{\mathfrak{r}}\right\rangle=\left[1-\zeta_{\mathfrak{r}}\right]$ (the principal ideal generated by $1-\zeta_{\mathfrak{r}}$), and if $\sum_{i}\left\langle\alpha_{i}, \beta_{i}\right\rangle=1-\zeta_{\mathfrak{r}}$, then the reflection

$$
s_{\mathrm{r}}: v \mapsto v-\sum_{i}\left\langle v, \beta_{i}\right\rangle \alpha_{i}
$$

stabilizes \mathcal{R},
(RS3) Whenever $\mathfrak{r}, \mathfrak{r}^{\prime} \in \mathcal{R},\left\langle I_{\mathfrak{r}}, J_{\mathfrak{r}^{\prime}}\right\rangle \subset \mathbb{Z}_{k}$.

Theorem
(1) $G(\mathcal{R}):=\left\langle s_{\mathfrak{r}}\right\rangle_{\mathbf{r} \in \mathcal{R}}$ is finite and $V^{G(\mathcal{R})}=0$.

Theorem

(1) $G(\mathcal{R}):=\left\langle s_{r_{r}}\right\rangle_{\mathrm{r} \in \mathcal{R}}$ is finite and $V^{G(\mathcal{R})}=0$.
(2) Conversely, whenever G is a finite subgroup of $\mathrm{GL}(V)$ generated by reflections such that $V^{G}=0$, there exists a \mathbb{Z}_{k}-root system \mathcal{R} such that $G=G(\mathcal{R})$.

Theorem

(1) $G(\mathcal{R}):=\left\langle s_{\mathrm{r}_{\mathrm{r}}}\right\rangle_{\mathrm{r} \in \mathcal{R}}$ is finite and $V^{G(\mathcal{R})}=0$.
(2) Conversely, whenever G is a finite subgroup of $\mathrm{GL}(V)$ generated by reflections such that $V^{G}=0$, there exists a \mathbb{Z}_{k}-root system \mathcal{R} such that $G=G(\mathcal{R})$.
(3) $\operatorname{Arr}(G(\mathcal{R}))=\operatorname{Arr}(\mathcal{R})$.

Theorem

(1) $G(\mathcal{R}):=\left\langle s_{\tau_{\mathrm{r}}}\right\rangle_{\mathrm{r} \in \mathcal{R}}$ is finite and $V^{G(\mathcal{R})}=0$.
(2) Conversely, whenever G is a finite subgroup of $\mathrm{GL}(V)$ generated by reflections such that $V^{G}=0$, there exists a \mathbb{Z}_{k}-root system \mathcal{R} such that $G=G(\mathcal{R})$.
(3) $\operatorname{Arr}(G(\mathcal{R}))=\operatorname{Arr}(\mathcal{R})$.

Parabolic subsystems
Let F be a face (intersection of reflecting hyperplanes) of \mathcal{R} (or of $G(\mathcal{R})$).

Theorem

(1) $G(\mathcal{R}):=\left\langle s_{\tau_{\mathrm{r}}}\right\rangle_{\mathrm{r} \in \mathcal{R}}$ is finite and $V^{G(\mathcal{R})}=0$.
(2) Conversely, whenever G is a finite subgroup of $\mathrm{GL}(V)$ generated by reflections such that $V^{G}=0$, there exists a \mathbb{Z}_{k}-root system \mathcal{R} such that $G=G(\mathcal{R})$.
(3) $\operatorname{Arr}(G(\mathcal{R}))=\operatorname{Arr}(\mathcal{R})$.

Parabolic subsystems
Let F be a face (intersection of reflecting hyperplanes) of \mathcal{R} (or of $G(\mathcal{R})$).
Then the fixator $G(\mathcal{R})_{F}$ is called a parabolic subgroup of $G(\mathcal{R})$.

Theorem

(1) $G(\mathcal{R}):=\left\langle s_{r_{r}}\right\rangle_{\mathrm{r} \in \mathcal{R}}$ is finite and $V^{G(\mathcal{R})}=0$.
(2) Conversely, whenever G is a finite subgroup of $\mathrm{GL}(V)$ generated by reflections such that $V^{G}=0$, there exists a \mathbb{Z}_{k}-root system \mathcal{R} such that $G=G(\mathcal{R})$.
(3) $\operatorname{Arr}(G(\mathcal{R}))=\operatorname{Arr}(\mathcal{R})$.

Parabolic subsystems
Let F be a face (intersection of reflecting hyperplanes) of \mathcal{R} (or of $G(\mathcal{R})$).
Then the fixator $G(\mathcal{R})_{F}$ is called a parabolic subgroup of $G(\mathcal{R})$.
If V_{F} denotes the sum of reflecting lines of $G(\mathcal{R})_{F}$, we have $V_{F}^{G(\mathcal{R})_{F}}=0$.

Theorem

(1) $G(\mathcal{R}):=\left\langle s_{\tau_{\mathrm{r}}}\right\rangle_{\mathrm{r} \in \mathcal{R}}$ is finite and $V^{G(\mathcal{R})}=0$.
(2) Conversely, whenever G is a finite subgroup of $\mathrm{GL}(V)$ generated by reflections such that $V^{G}=0$, there exists a \mathbb{Z}_{k}-root system \mathcal{R} such that $G=G(\mathcal{R})$.
(3) $\operatorname{Arr}(G(\mathcal{R}))=\operatorname{Arr}(\mathcal{R})$.

Parabolic subsystems

Let F be a face (intersection of reflecting hyperplanes) of \mathcal{R} (or of $G(\mathcal{R})$).
Then the fixator $G(\mathcal{R})_{F}$ is called a parabolic subgroup of $G(\mathcal{R})$.
If V_{F} denotes the sum of reflecting lines of $G(\mathcal{R})_{F}$, we have $V_{F}^{G(\mathcal{R})_{F}}=0$.
Then $\mathcal{R}_{F}:=\left\{\mathfrak{r} \mid s_{\mathfrak{r}} \in G(\mathcal{R})_{F}\right\}$ is a \mathbb{Z}_{k} root system in V_{F}.

Genera, Root and Weight Lattices

$G L(V)$ acts on root systems :

$$
g \cdot(I, J, \zeta):=\left(g(I), g^{\vee}(J), \zeta\right)
$$

Genera, Root and Weight Lattices

$G L(V)$ acts on root systems :

$$
g \cdot(I, J, \zeta):=\left(g(I), g^{\vee}(J), \zeta\right)
$$

If \mathfrak{a} is a fractional ideal in k, we set

$$
\mathfrak{a} \cdot(I, J, \zeta):=\left(\mathfrak{a} I, \mathfrak{a}^{-*} J, \zeta\right)
$$

Genera, Root and Weight Lattices

$\mathrm{GL}(V)$ acts on root systems :

$$
g \cdot(I, J, \zeta):=\left(g(I), g^{\vee}(J), \zeta\right)
$$

If \mathfrak{a} is a fractional ideal in k, we set

$$
\mathfrak{a} \cdot(I, J, \zeta):=\left(\mathfrak{a} I, \mathfrak{a}^{-*} J, \zeta\right)
$$

Root lattices, weight lattices:

Genera, Root and Weight Lattices

$\mathrm{GL}(V)$ acts on root systems :

$$
g \cdot(I, J, \zeta):=\left(g(I), g^{\vee}(J), \zeta\right)
$$

If \mathfrak{a} is a fractional ideal in k, we set

$$
\mathfrak{a} \cdot(I, J, \zeta):=\left(\mathfrak{a} I, \mathfrak{a}^{-*} J, \zeta\right)
$$

Root lattices, weight lattices:

$$
Q_{\mathcal{R}}:=\sum_{\mathfrak{r} \in \mathcal{R}} I_{\mathfrak{r}} \quad \text { and } \quad Q_{\mathcal{R}} \vee:=\sum_{\mathfrak{r} \in \mathcal{R}} J_{\mathfrak{r}}
$$

Genera, Root and Weight Lattices

$\mathrm{GL}(V)$ acts on root systems :

$$
g \cdot(I, J, \zeta):=\left(g(I), g^{\vee}(J), \zeta\right)
$$

If \mathfrak{a} is a fractional ideal in k, we set

$$
\mathfrak{a} \cdot(I, J, \zeta):=\left(\mathfrak{a} l, \mathfrak{a}^{-*} J, \zeta\right)
$$

Root lattices, weight lattices:

$$
\begin{aligned}
& Q_{\mathcal{R}}:=\sum_{\mathfrak{r} \in \mathcal{R}} I_{\mathfrak{r}} \quad \text { and } \quad Q_{\mathcal{R}^{\vee}}:=\sum_{\mathfrak{r} \in \mathcal{R}} J_{\mathfrak{r}} \\
& P_{\mathcal{R}}:=\left\{x \in V \mid \forall y \in Q_{\mathcal{R}^{\vee}},\langle x, y\rangle \in \mathbb{Z}_{k}\right\} \quad \text { and } \quad P_{\mathcal{R}^{\vee}}:=\ldots
\end{aligned}
$$

Genera, Root and Weight Lattices

$\mathrm{GL}(V)$ acts on root systems :

$$
g \cdot(I, J, \zeta):=\left(g(I), g^{\vee}(J), \zeta\right)
$$

If \mathfrak{a} is a fractional ideal in k, we set

$$
\mathfrak{a} \cdot(I, J, \zeta):=\left(\mathfrak{a} I, \mathfrak{a}^{-*} J, \zeta\right)
$$

Root lattices, weight lattices:

$$
\begin{aligned}
& Q_{\mathcal{R}}:=\sum_{\mathfrak{r} \in \mathcal{R}} I_{\mathfrak{r}} \quad \text { and } \quad Q_{\mathcal{R}^{\vee}}:=\sum_{\mathfrak{r} \in \mathcal{R}} J_{\mathfrak{r}} \\
& P_{\mathcal{R}}:=\left\{x \in V \mid \forall y \in Q_{\mathcal{R}^{\vee}},\langle x, y\rangle \in \mathbb{Z}_{k}\right\} \quad \text { and } \quad P_{\mathcal{R}^{\vee}}:=\ldots
\end{aligned}
$$

There is a $\operatorname{Aut}(\mathcal{R}) / G(\mathcal{R})$-invariant natural pairing

$$
\left(P_{\mathcal{R}} / Q_{\mathcal{R}}\right) \times\left(P_{\mathcal{R}^{\vee}} / Q_{\mathcal{R}^{\vee}}\right) \rightarrow k / \mathbb{Z}_{k}
$$

Classifying root systems

- A root system is reduced if the map $\mathfrak{r} \mapsto s_{\mathfrak{r}}$ is injective. .

Classifying root systems

- A root system is reduced if the map $\mathfrak{r} \mapsto s_{\mathfrak{r}}$ is injective. .
- A root system is complete if the map $\mathfrak{r} \mapsto s_{\mathfrak{r}}$ is surjective.

Classifying root systems

- A root system is reduced if the map $\mathfrak{r} \mapsto s_{\mathrm{r}}$ is injective. .
- A root system is complete if the map $\mathfrak{r} \mapsto s_{\mathfrak{r}}$ is surjective.
- A root system is distinguished if the map $\mathfrak{r} \mapsto s_{\mathrm{r}}$ induces a bijection with the set of distinguished reflections.

Classifying root systems

- A root system is reduced if the map $\mathfrak{r} \mapsto s_{\mathfrak{r}}$ is injective. .
- A root system is complete if the map $\mathfrak{r} \mapsto s_{\mathfrak{r}}$ is surjective.
- A root system is distinguished if the map $\mathfrak{r} \mapsto s_{\mathfrak{r}}$ induces a bijection with the set of distinguished reflections. Note that a distinguished root system is reduced, but that it is complete if and only if all reflections have order 2.

Classifying root systems

- A root system is reduced if the map $\mathfrak{r} \mapsto s_{\mathrm{r}}$ is injective. .
- A root system is complete if the map $\mathfrak{r} \mapsto s_{\mathfrak{r}}$ is surjective.
- A root system is distinguished if the map $\mathfrak{r} \mapsto s_{\mathrm{r}}$ induces a bijection with the set of distinguished reflections. Note that a distinguished root system is reduced, but that it is complete if and only if all reflections have order 2 .

For each irreducible reflection group G, we provide a classification (up to genera),

$$
\text { over its ring of definition } \mathbb{Z}_{k} \text {, }
$$

Classifying root systems

- A root system is reduced if the map $\mathfrak{r} \mapsto s_{\mathrm{r}}$ is injective. .
- A root system is complete if the map $\mathfrak{r} \mapsto s_{\mathfrak{r}}$ is surjective.
- A root system is distinguished if the map $\mathfrak{r} \mapsto s_{\mathrm{r}}$ induces a bijection with the set of distinguished reflections.
Note that a distinguished root system is reduced, but that it is complete if and only if all reflections have order 2 .

For each irreducible reflection group G, we provide a classification (up to genera),

$$
\text { over its ring of definition } \mathbb{Z}_{k} \text {, }
$$

- of reduced complete root systems for $G(d e, e, r)$,

Classifying root systems

- A root system is reduced if the map $\mathfrak{r} \mapsto s_{\mathrm{r}}$ is injective. .
- A root system is complete if the map $\mathfrak{r} \mapsto s_{\mathfrak{r}}$ is surjective.
- A root system is distinguished if the map $\mathfrak{r} \mapsto s_{\mathrm{r}}$ induces a bijection with the set of distinguished reflections.
Note that a distinguished root system is reduced, but that it is complete if and only if all reflections have order 2.

For each irreducible reflection group G, we provide a classification (up to genera),

$$
\text { over its ring of definition } \mathbb{Z}_{k} \text {, }
$$

- of reduced complete root systems for $G(d e, e, r)$,
- of distinguished root systems corresponding to the 34 exceptional groups.

Cartan matrices

Cartan matrices

- For $\mathfrak{r}, \mathfrak{t} \in \mathcal{R}$, we set

$$
\mathfrak{n}(\mathfrak{r}, \mathfrak{t}):=\left\langle I_{\mathfrak{r}}, J_{\mathfrak{t}}\right\rangle .
$$

Cartan matrices

- For $\mathfrak{r}, \mathfrak{t} \in \mathcal{R}$, we set

$$
\mathfrak{n}(\mathfrak{r}, \mathfrak{t}):=\left\langle\mathfrak{I}_{\mathfrak{r}}, J_{\mathfrak{t}}\right\rangle .
$$

- For a subset \mathcal{S} of \mathcal{R}, its Cartan matrix is the $\mathcal{S} \times \mathcal{S}$-matrix whose entries are the ideals $\mathfrak{n}(\mathfrak{r}, \mathfrak{t})$.

Cartan matrices

- For $\mathfrak{r}, \mathfrak{t} \in \mathcal{R}$, we set

$$
\mathfrak{n}(\mathfrak{r}, \mathfrak{t}):=\left\langle\mathfrak{I}_{\mathfrak{r}}, J_{\mathfrak{t}}\right\rangle .
$$

- For a subset \mathcal{S} of \mathcal{R}, its Cartan matrix is the $\mathcal{S} \times \mathcal{S}$-matrix whose entries are the ideals $\mathfrak{n}(\mathfrak{r}, \mathfrak{t})$.

Proposition

Assume that the family $\left(s_{\mathfrak{r}}\right)_{\mathfrak{r} \in \mathcal{S}}$

Cartan matrices

- For $\mathfrak{r}, \mathfrak{t} \in \mathcal{R}$, we set

$$
\mathfrak{n}(\mathfrak{r}, \mathfrak{t}):=\left\langle\mathfrak{I}_{\mathfrak{r}}, J_{\mathfrak{t}}\right\rangle .
$$

- For a subset \mathcal{S} of \mathcal{R}, its Cartan matrix is the $\mathcal{S} \times \mathcal{S}$-matrix whose entries are the ideals $\mathfrak{n}(\mathfrak{r}, \mathfrak{t})$.

Proposition

Assume that the family $\left(s_{\mathfrak{r}}\right)_{\mathfrak{r} \in \mathcal{S}}$

- generates $G(\mathcal{R})$,

Cartan matrices

- For $\mathfrak{r}, \mathfrak{t} \in \mathcal{R}$, we set

$$
\mathfrak{n}(\mathfrak{r}, \mathfrak{t}):=\left\langle\mathfrak{I}_{\mathfrak{r}}, J_{\mathfrak{t}}\right\rangle .
$$

- For a subset \mathcal{S} of \mathcal{R}, its Cartan matrix is the $\mathcal{S} \times \mathcal{S}$-matrix whose entries are the ideals $\mathfrak{n}(\mathfrak{r}, \mathfrak{t})$.

Proposition

Assume that the family $\left(s_{\mathfrak{r}}\right)_{\mathfrak{r} \in \mathcal{S}}$

- generates $G(\mathcal{R})$,
- contains an element of each conjugacy class of reflections of $G(\mathcal{R})$.

Cartan matrices

- For $\mathfrak{r}, \mathfrak{t} \in \mathcal{R}$, we set

$$
\mathfrak{n}(\mathfrak{r}, \mathfrak{t}):=\left\langle\mathfrak{I}_{\mathfrak{r}}, J_{\mathfrak{t}}\right\rangle .
$$

- For a subset \mathcal{S} of \mathcal{R}, its Cartan matrix is the $\mathcal{S} \times \mathcal{S}$-matrix whose entries are the ideals $\mathfrak{n}(\mathfrak{r}, \mathfrak{t})$.

Proposition

Assume that the family $\left(s_{\mathfrak{r}}\right)_{\mathfrak{r} \in \mathcal{S}}$

- generates $G(\mathcal{R})$,
- contains an element of each conjugacy class of reflections of $G(\mathcal{R})$.

Then the Cartan matrix of \mathcal{S} determines \mathcal{R} up to genera.

Name	Diagram	Cartan matrix	Orbits	\mathbb{Z}_{k}	connection index
G_{31}		$\left(\begin{array}{ccccc}2 & i+1 & 1-i & -i & 0 \\ 1-i & 2 & 1-i & -1 & -1 \\ i+1 & i+1 & 2 & 0 & -1 \\ i & -1 & 0 & 2 & 0 \\ 0 & -1 & -1 & 0 & 2\end{array}\right)$	s	$\mathbb{Z}[i]$	1
G_{32}	$\underset{s}{(3)-(3)-(3)-3}$	$\left(\begin{array}{cccc}1-\zeta_{3} & \zeta_{3}^{2} & 0 & 0 \\ -\zeta_{3}^{2} & 1-\zeta_{3} & \zeta_{3}^{2} & 0 \\ 0 & -\zeta_{3}^{2} & 1-\zeta_{3} & \zeta_{3}^{2} \\ 0 & 0 & -\zeta_{3}^{2} & 1-\zeta_{3}\end{array}\right)$	s	$\mathbb{Z}\left[\zeta_{3}\right]$	1
G_{33}		$\left(\begin{array}{ccccc}2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & -\zeta_{3}^{2} & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & -\zeta_{3} & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 2\end{array}\right)$	s	$\mathbb{Z}\left[\zeta_{3}\right]$	2
G_{34}		$\left(\begin{array}{cccccc}2 & -1 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & -\zeta_{3}^{2} & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & -\zeta_{3} & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & -1 & 2\end{array}\right)$	s	$\mathbb{Z}\left[\zeta_{3}\right]$	1

Michel Broué

Roots for the dihedral group of order 8

Roots for the dihedral group of order 8

Let $G=G(2,1,2)=G(4,4,2)$ be the dihedral group of order 8 .

Roots for the dihedral group of order 8

Let $G=G(2,1,2)=G(4,4,2)$ be the dihedral group of order 8 .
Set $V=k^{2}$ written as columns, with canonical orthonormal basis

$$
\left\{\binom{1}{0},\binom{0}{1}\right\} .
$$

and $W=k^{2}$ written as rows, with canonical dual basis

$$
\{(1,0),(0,1)\} .
$$

Roots for the dihedral group of order 8

Let $G=G(2,1,2)=G(4,4,2)$ be the dihedral group of order 8 .
Set $V=k^{2}$ written as columns, with canonical orthonormal basis

$$
\left\{\binom{1}{0},\binom{0}{1}\right\} .
$$

and $W=k^{2}$ written as rows, with canonical dual basis

$$
\{(1,0),(0,1)\} .
$$

The group G is generated by $S=\{s, t\}$ where

$$
s:=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad t:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Roots for the dihedral group of order 8

Let $G=G(2,1,2)=G(4,4,2)$ be the dihedral group of order 8 .
Set $V=k^{2}$ written as columns, with canonical orthonormal basis

$$
\left\{\binom{1}{0},\binom{0}{1}\right\} .
$$

and $W=k^{2}$ written as rows, with canonical dual basis

$$
\{(1,0),(0,1)\} .
$$

The group G is generated by $S=\{s, t\}$ where

$$
s:=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad t:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

and the corresponding reflecting lines are

$$
\begin{array}{lll}
L_{s}=k v_{s} \text { with } v_{s}=\binom{1}{0} & \text { and } & L_{t}=k v_{t} \text { with } v_{t}=\binom{-1}{1} \\
M_{s}=k v_{s}^{\vee} \text { with } v_{s}^{\vee}=(2,0) & \text { and } & M_{t}=k v_{t}^{\vee} \text { with } v_{t}^{\vee}=(-1,1) .
\end{array}
$$

There are two root systems over \mathbb{Q} :

There are two root systems over \mathbb{Q} :

$$
\begin{aligned}
& \mathcal{R}\left(B_{2}\right)=\left\{\left((1) v_{s},(1) v_{s}^{\vee},-1\right),\left((1) v_{t},(1) v_{t}^{\vee},-1\right)\right\} \\
& \mathcal{R}\left(C_{2}\right)=\left\{\left((2) v_{s},\left(\frac{1}{2}\right) v_{s}^{\vee},-1\right),\left((1) v_{t},(1) v_{t}^{\vee},-1\right)\right\}
\end{aligned}
$$

There are two root systems over \mathbb{Q} :

$$
\begin{aligned}
& \mathcal{R}\left(B_{2}\right)=\left\{\left((1) v_{s},(1) v_{s}^{\vee},-1\right),\left((1) v_{t},(1) v_{t}^{\vee},-1\right)\right\} \\
& \mathcal{R}\left(C_{2}\right)=\left\{\left((2) v_{s},\left(\frac{1}{2}\right) v_{s}^{\vee},-1\right),\left((1) v_{t},(1) v_{t}^{\vee},-1\right)\right\}
\end{aligned}
$$

and these are mutually dual root systems.

There are two root systems over \mathbb{Q} :

$$
\begin{aligned}
& \mathcal{R}\left(B_{2}\right)=\left\{\left((1) v_{s},(1) v_{s}^{\vee},-1\right),\left((1) v_{t},(1) v_{t}^{\vee},-1\right)\right\} \\
& \mathcal{R}\left(C_{2}\right)=\left\{\left((2) v_{s},\left(\frac{1}{2}\right) v_{s}^{\vee},-1\right),\left((1) v_{t},(1) v_{t}^{\vee},-1\right)\right\}
\end{aligned}
$$

and these are mutually dual root systems.

Whenever (2) is a square $(\sqrt{\mathbf{2}})^{2}$

There are two root systems over \mathbb{Q} :

$$
\begin{aligned}
& \mathcal{R}\left(B_{2}\right)=\left\{\left((1) v_{s},(1) v_{s}^{\vee},-1\right),\left((1) v_{t},(1) v_{t}^{\vee},-1\right)\right\} \\
& \mathcal{R}\left(C_{2}\right)=\left\{\left((2) v_{s},\left(\frac{1}{2}\right) v_{s}^{\vee},-1\right),\left((1) v_{t},(1) v_{t}^{\vee},-1\right)\right\}
\end{aligned}
$$

and these are mutually dual root systems.

Whenever (2) is a square $(\sqrt{\mathbf{2}})^{2}$ (for example, if $k=\mathbb{Q}(\sqrt{2})$ or $k=\mathbb{Q}(i)$)

There are two root systems over \mathbb{Q} :

$$
\begin{aligned}
& \mathcal{R}\left(B_{2}\right)=\left\{\left((1) v_{s},(1) v_{s}^{\vee},-1\right),\left((1) v_{t},(1) v_{t}^{\vee},-1\right)\right\} \\
& \mathcal{R}\left(C_{2}\right)=\left\{\left((2) v_{s},\left(\frac{1}{2}\right) v_{s}^{\vee},-1\right),\left((1) v_{t},(1) v_{t}^{\vee},-1\right)\right\}
\end{aligned}
$$

and these are mutually dual root systems.

Whenever (2) is a square $(\sqrt{\mathbf{2}})^{2}$ (for example, if $k=\mathbb{Q}(\sqrt{2})$ or $k=\mathbb{Q}(i)$) there is another self-dual root system:

There are two root systems over \mathbb{Q} :

$$
\begin{aligned}
& \mathcal{R}\left(B_{2}\right)=\left\{\left((1) v_{s},(1) v_{s}^{\vee},-1\right),\left((1) v_{t},(1) v_{t}^{\vee},-1\right)\right\} \\
& \mathcal{R}\left(C_{2}\right)=\left\{\left((2) v_{s},\left(\frac{1}{2}\right) v_{s}^{\vee},-1\right),\left((1) v_{t},(1) v_{t}^{\vee},-1\right)\right\}
\end{aligned}
$$

and these are mutually dual root systems.

Whenever (2) is a square $(\sqrt{\mathbf{2}})^{2}$ (for example, if $k=\mathbb{Q}(\sqrt{2})$ or $k=\mathbb{Q}(i)$) there is another self-dual root system:

$$
\left\{\left((\sqrt{2}) v_{s},(\sqrt{2})^{-*} v_{s}^{\vee},-1\right),\left((1) v_{t},(1) v_{t}^{\vee},-1\right)\right\} .
$$

