Cyclotomic Root Systems

Michel Broué

Université Paris-Diderot Paris 7

En hommage à Serge Bouc - mais sans catégories ni foncteurs

Variations on an old work of Gabi Nebe

A joint work with Ruth Corran and Jean Michel

Michel Broué Cyclotomic Root Systems

A few words about motivation

Spetses

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

(Gunter Malle, Jean Michel, Michel B., now also Olivier Dudas, Cédric Bonnafé)

回 と く ヨ と く ヨ と

(Gunter Malle, Jean Michel, Michel B., now also Olivier Dudas, Cédric Bonnafé)

A finite reductive group \mathbf{G}^F is determined by the choice of \mathbf{G} and F, and that choice is in turn determined by the choice of a *root datum* (X, R, Y, R^{\vee}) , a finite order automorphism ϕ of the root datum, and the basic field \mathbb{F}_q .

(Gunter Malle, Jean Michel, Michel B., now also Olivier Dudas, Cédric Bonnafé)

A finite reductive group \mathbf{G}^F is determined by the choice of \mathbf{G} and F, and that choice is in turn determined by the choice of a *root datum* (X, R, Y, R^{\vee}) , a finite order automorphism ϕ of the root datum, and the basic field \mathbb{F}_q .

Some data concerning \mathbf{G}^{F} , such as the parametrization of unipotent characters, their generic degrees, Frobenius eigenvalues, and also the families and their Fourier matrices, depend ONLY on the \mathbb{Q} -representation of the Weyl group attached to the root datum, and on the automorphism ϕ .

・ 回 と ・ ヨ と ・ ヨ と

(Gunter Malle, Jean Michel, Michel B., now also Olivier Dudas, Cédric Bonnafé)

A finite reductive group \mathbf{G}^F is determined by the choice of \mathbf{G} and F, and that choice is in turn determined by the choice of a *root datum* (X, R, Y, R^{\vee}) , a finite order automorphism ϕ of the root datum, and the basic field \mathbb{F}_q .

Some data concerning \mathbf{G}^{F} , such as the parametrization of unipotent characters, their generic degrees, Frobenius eigenvalues, and also the families and their Fourier matrices, depend ONLY on the \mathbb{Q} -representation of the Weyl group attached to the root datum, and on the automorphism ϕ .

This may be surprising: think of $Sp_{2r}(q)$ and $SO_{2r+1}(q)$.

・ロト ・回ト ・ヨト ・ヨト

(Gunter Malle, Jean Michel, Michel B., now also Olivier Dudas, Cédric Bonnafé)

A finite reductive group \mathbf{G}^F is determined by the choice of \mathbf{G} and F, and that choice is in turn determined by the choice of a *root datum* (X, R, Y, R^{\vee}) , a finite order automorphism ϕ of the root datum, and the basic field \mathbb{F}_q .

Some data concerning \mathbf{G}^{F} , such as the parametrization of unipotent characters, their generic degrees, Frobenius eigenvalues, and also the families and their Fourier matrices, depend ONLY on the \mathbb{Q} -representation of the Weyl group attached to the root datum, and on the automorphism ϕ .

This may be surprising: think of $Sp_{2r}(q)$ and $SO_{2r+1}(q)$.

More data concerning \mathbf{G}^{F} , such as the parametrization of unipotent classes, the values of unipotent characters on unipotent elements, depend on the entire root datum.

・ロト ・四ト ・ヨト ・ヨト - ヨ

→ Ξ → < Ξ →</p>

A ₽

Let V and W be finite dimensional \mathbb{Q} -vector spaces endowed with a duality $V \times W \to \mathbb{Q}$.

母 と く ヨ と く ヨ と

Let V and W be finite dimensional $\mathbb{Q}\text{-vector}$ spaces endowed with a duality $V\times W\to \mathbb{Q}$.

Let $\mathcal{R} := \{(\alpha, \alpha^{\vee})\} \subset V \times W$ be a family of nonzero vectors.

Let V and W be finite dimensional $\mathbb Q\text{-vector spaces endowed with a duality }V\times W\to \mathbb Q$.

Let $\mathcal{R} := \{(\alpha, \alpha^{\vee})\} \subset V \times W$ be a family of nonzero vectors. We say that \mathcal{R} is a root system if

Let V and W be finite dimensional $\mathbb Q\text{-vector spaces endowed with a duality }V\times W\to \mathbb Q$.

Let $\mathcal{R} := \{(\alpha, \alpha^{\vee})\} \subset V \times W$ be a family of nonzero vectors. We say that \mathcal{R} is a root system if

(RS1) \mathcal{R} is finite and its projection on V generates V,

Let V and W be finite dimensional $\mathbb Q\text{-vector spaces endowed with a duality }V\times W\to \mathbb Q$.

Let $\mathcal{R} := \{(\alpha, \alpha^{\vee})\} \subset V \times W$ be a family of nonzero vectors. We say that \mathcal{R} is a root system if

(RS1) \mathcal{R} is finite and its projection on V generates V, (RS2) for all $(\alpha, \alpha^{\vee}) \in \mathcal{R}$, $\langle \alpha, \alpha^{\vee} \rangle = 2$ and the reflection $s_{\alpha,\alpha^{\vee}} : v \mapsto v - \langle v, \alpha^{\vee} \rangle \alpha$ stabilizes \mathcal{R} ,

白 と く ヨ と く ヨ と …

Let V and W be finite dimensional $\mathbb Q\text{-vector spaces endowed with a duality }V\times W\to \mathbb Q$.

Let $\mathcal{R} := \{(\alpha, \alpha^{\vee})\} \subset V \times W$ be a family of nonzero vectors. We say that \mathcal{R} is a root system if

(RS1) \mathcal{R} is finite and its projection on V generates V, (RS2) for all $(\alpha, \alpha^{\vee}) \in \mathcal{R}$, $\langle \alpha, \alpha^{\vee} \rangle = 2$ and the reflection $s_{\alpha,\alpha^{\vee}} : v \mapsto v - \langle v, \alpha^{\vee} \rangle \alpha$ stabilizes \mathcal{R} , (RS2) for all $(\alpha, \alpha^{\vee}) \in \mathcal{R}$, $(\alpha, \alpha^{\vee}) \in \mathcal{R}$,

(RS3) for all $(\alpha, \alpha^{\vee}), (\beta, \beta^{\vee}) \in \mathcal{R}, \langle \alpha, \beta^{\vee} \rangle \in \mathbb{Z}.$

白 と く ヨ と く ヨ と …

Let V and W be finite dimensional $\mathbb Q\text{-vector spaces endowed with a duality }V\times W\to \mathbb Q$.

Let $\mathcal{R} := \{(\alpha, \alpha^{\vee})\} \subset V \times W$ be a family of nonzero vectors. We say that \mathcal{R} is a root system if

(RS1) *R* is finite and its projection on *V* generates *V*,
(RS2) for all (α, α[∨]) ∈ *R*, ⟨α, α[∨]⟩ = 2 and the reflection s_{α,α[∨]} : v ↦ v - ⟨v, α[∨]⟩α stabilizes *R*,
(RS3) for all (α, α[∨]), (β, β[∨]) ∈ *R*, ⟨α, β[∨]⟩ ∈ Z.

The group generated by all reflections $s_{\alpha,\alpha^{\vee}}$ is the Weyl group $G(\mathcal{R})$.

(本部) (本語) (本語) (語)

Let V and W be finite dimensional $\mathbb Q\text{-vector spaces endowed with a duality }V\times W\to \mathbb Q$.

Let $\mathcal{R} := \{(\alpha, \alpha^{\vee})\} \subset V \times W$ be a family of nonzero vectors. We say that \mathcal{R} is a root system if

(RS1) *R* is finite and its projection on *V* generates *V*,
(RS2) for all (α, α[∨]) ∈ *R*, ⟨α, α[∨]⟩ = 2 and the reflection s_{α,α[∨]} : v ↦ v - ⟨v, α[∨]⟩α stabilizes *R*,
(RS3) for all (α, α[∨]), (β, β[∨]) ∈ *R*, ⟨α, β[∨]⟩ ∈ Z.

The group generated by all reflections $s_{\alpha,\alpha^{\vee}}$ is the Weyl group $G(\mathcal{R})$.

On can classify the root systems \mathcal{R} and then classify the Weyl groups $G(\mathcal{R})$.

(本部)) (本語)) (本語)) (語)

Let V and W be finite dimensional $\mathbb Q\text{-vector spaces endowed with a duality }V\times W\to \mathbb Q$.

Let $\mathcal{R} := \{(\alpha, \alpha^{\vee})\} \subset V \times W$ be a family of nonzero vectors. We say that \mathcal{R} is a root system if

(RS1) *R* is finite and its projection on *V* generates *V*,
(RS2) for all (α, α[∨]) ∈ *R*, ⟨α, α[∨]⟩ = 2 and the reflection s_{α,α[∨]} : v ↦ v - ⟨v, α[∨]⟩α stabilizes *R*,
(RS3) for all (α, α[∨]), (β, β[∨]) ∈ *R*, ⟨α, β[∨]⟩ ∈ Z.

The group generated by all reflections $s_{\alpha,\alpha^{\vee}}$ is the Weyl group $G(\mathcal{R})$.

On can classify the root systems \mathcal{R} and then classify the Weyl groups $G(\mathcal{R})$. Or proceed the opposite way: it's what we did for cyclotomic root systems and their (cyclotomic) Weyl groups.

Let k be a subfield of $\mathbb C$ which is stable under complex conjugation.

Let V and W be finite dimensional k-vector spaces endowed with a hermitian duality $V \times W \to k$.

Let k be a subfield of \mathbb{C} which is stable under complex conjugation.

Let V and W be finite dimensional k-vector spaces endowed with a hermitian duality $V \times W \rightarrow k$.

A reflection s on V is defined by a triple (L_s, M_s, ζ_s) where

Let k be a subfield of $\mathbb C$ which is stable under complex conjugation.

Let V and W be finite dimensional k-vector spaces endowed with a hermitian duality $V \times W \rightarrow k$.

A reflection s on V is defined by a triple (L_s, M_s, ζ_s) where

• $\zeta_s \in \mu(k)$,

コマン くほう くほう

Let k be a subfield of \mathbb{C} which is stable under complex conjugation.

Let V and W be finite dimensional k-vector spaces endowed with a hermitian duality $V \times W \to k$.

A reflection s on V is defined by a triple (L_s, M_s, ζ_s) where

- $\zeta_s \in \mu(k)$,
- L_s is a line in V and M_s is a line in W such that $\langle L_s, M_s \rangle \neq 0$

回 と く ヨ と く ヨ と

Let k be a subfield of \mathbb{C} which is stable under complex conjugation.

Let V and W be finite dimensional k-vector spaces endowed with a hermitian duality $V \times W \to k$.

A reflection s on V is defined by a triple (L_s, M_s, ζ_s) where

•
$$\zeta_s \in \mu(k)$$
,

• L_s is a line in V and M_s is a line in W such that $\langle L_s, M_s \rangle \neq 0$

and s is the automorphism of V defined by

$$s(\mathbf{v}) = \mathbf{v} - \langle \mathbf{v}, \alpha^{\vee} \rangle \alpha$$

whenever $\alpha \in L_s$ and $\alpha^{\vee} \in M_s$ are such that $\langle \alpha, \alpha^{\vee} \rangle = 1 - \zeta_s$.

(日) (日) (日) (日) (日) (日)

Shephard–Todd groups and their fields

IRREDUCIBLE CYCLOTOMIC REFLECTION GROUPS ARE CLASSIFIED.

∢ ≣ →

Shephard–Todd groups and their fields

IRREDUCIBLE CYCLOTOMIC REFLECTION GROUPS ARE CLASSIFIED.

• An infinite series G(de, e, r) for $d, e, r \in \mathbb{N} - \{0\}$, $G(de, e, r) \subset GL_r(\mathbb{Q}(\zeta_{de}))$ is irreducible

• An infinite series G(de, e, r) for $d, e, r \in \mathbb{N} - \{0\}$, $G(de, e, r) \subset GL_r(\mathbb{Q}(\zeta_{de}))$ is irreducible \rightarrow except for d = e = r = 1 or 2.

• An infinite series G(de, e, r) for $d, e, r \in \mathbb{N} - \{0\}$, $G(de, e, r) \subset GL_r(\mathbb{Q}(\zeta_{de}))$ is irreducible \rightarrow except for d = e = r = 1 or 2. Its field of definition is $\mathbb{Q}(\zeta_{de})$,

• An infinite series G(de, e, r) for $d, e, r \in \mathbb{N} - \{0\}$, $G(de, e, r) \subset GL_r(\mathbb{Q}(\zeta_{de}))$ is irreducible \rightarrow except for d = e = r = 1 or 2. Its field of definition is $\mathbb{Q}(\zeta_{de})$,

 \rightarrow except for d = 1 and r = 2 where it is the real field $\mathbb{Q}(\zeta_e + \zeta_e^{-1})$.

An infinite series G(de, e, r) for d, e, r ∈ N - {0}, G(de, e, r) ⊂ GL_r(Q(ζ_{de})) is irreducible
→ except for d = e = r = 1 or 2. Its field of definition is Q(ζ_{de}),
→ except for d = 1 and r = 2 where it is the real field Q(ζ_e + ζ_e⁻¹). The ring of integers of Q(ζ_n) is Z[ζ_n].
In general (for example if n > 90, but also for other values of n between 22 and 90) it is not a principal ideal domain.

• An infinite series G(de, e, r) for $d, e, r \in \mathbb{N} - \{0\}$, $G(de, e, r) \subset \operatorname{GL}_r(\mathbb{Q}(\zeta_{de}))$ is irreducible

 \rightarrow except for d = e = r = 1 or 2.

Its field of definition is $\mathbb{Q}(\zeta_{de})$,

→ except for d = 1 and r = 2 where it is the real field $\mathbb{Q}(\zeta_e + \zeta_e^{-1})$. The ring of integers of $\mathbb{Q}(\zeta_n)$ is $\mathbb{Z}[\zeta_n]$.

In general (for example if n > 90, but also for other values of n between 22 and 90) it is *not* a principal ideal domain.

 34 exceptional irreducible groups in dimension 2 to 8. Their field of definition (all subfields of "small" cyclotomic fields) have the remarkable property that all their rings of integers are principal ideal domains.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Ordinary Root systems

Michel Broué Cyclotomic Root Systems

・ロ・ ・ 日・ ・ 日・ ・ 日・

Let $\mathcal{R} := \{(\alpha, \alpha^{\vee})\} \subset V \times W$ be a family of nonzero vectors.

We say that \mathcal{R} is a root system if

白 と く ヨ と く ヨ と

Let $\mathcal{R} := \{(\alpha, \alpha^{\vee})\} \subset V \times W$ be a family of nonzero vectors.

We say that ${\mathcal R}$ is a root system if

(RS1) \mathcal{R} is finite and its projection on V generates V,

白 と く ヨ と く ヨ と …

Let $\mathcal{R} := \{(\alpha, \alpha^{\vee})\} \subset V \times W$ be a family of nonzero vectors.

We say that \mathcal{R} is a root system if

(RS1) \mathcal{R} is finite and its projection on V generates V, (RS2) for all $(\alpha, \alpha^{\vee}) \in \mathcal{R}$, $\langle \alpha, \alpha^{\vee} \rangle = 2$ and the reflection $s_{\alpha,\alpha^{\vee}} : v \mapsto v - \langle v, \alpha^{\vee} \rangle \alpha$ stabilizes \mathcal{R} ,

白 と く ヨ と く ヨ と …

Let $\mathcal{R} := \{(\alpha, \alpha^{\vee})\} \subset V \times W$ be a family of nonzero vectors.

We say that \mathcal{R} is a root system if

(RS1) \mathcal{R} is finite and its projection on V generates V, (RS2) for all $(\alpha, \alpha^{\vee}) \in \mathcal{R}$, $\langle \alpha, \alpha^{\vee} \rangle = 2$ and the reflection $s_{\alpha, \alpha^{\vee}} : v \mapsto v - \langle v, \alpha^{\vee} \rangle \alpha$ stabilizes \mathcal{R} ,

(RS3) for all $(\alpha, \alpha^{\vee}), (\beta, \beta^{\vee}) \in \mathcal{R}, \langle \alpha, \beta^{\vee} \rangle \in \mathbb{Z}.$

御 と く ヨ と く ヨ と … ヨ

\mathbb{Z}_k –Root Systems

It is a set of triples $\mathcal{R} = \{\mathfrak{r} = (I_{\mathfrak{r}}, J_{\mathfrak{r}}, \zeta_{\mathfrak{r}})\}$ where

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …
It is a set of triples $\mathcal{R} = \{\mathfrak{r} = (I_\mathfrak{r}, J_\mathfrak{r}, \zeta_\mathfrak{r})\}$ where

• $\zeta_{\mathfrak{r}} \in \boldsymbol{\mu}(k)$,

・日・ ・ ヨ・ ・ ヨ・

æ

It is a set of triples $\mathcal{R} = \{\mathfrak{r} = (I_{\mathfrak{r}}, J_{\mathfrak{r}}, \zeta_{\mathfrak{r}})\}$ where

- $\zeta_{\mathfrak{r}}\in \boldsymbol{\mu}(k)$,
- *I*_t is a rank one ℤ_k-submodule of *V*, and *J*_t is a rank one ℤ_k-submodule of *W*,

個 と く ヨ と く ヨ と

It is a set of triples $\mathcal{R} = \{\mathfrak{r} = (I_\mathfrak{r}, J_\mathfrak{r}, \zeta_\mathfrak{r})\}$ where

- $\zeta_{\mathfrak{r}} \in \boldsymbol{\mu}(k)$,
- $I_{\mathfrak{r}}$ is a rank one \mathbb{Z}_k -submodule of V, and $J_{\mathfrak{r}}$ is a rank one \mathbb{Z}_k -submodule of W,

such that

母 と く ヨ と く ヨ と

It is a set of triples $\mathcal{R} = \{\mathfrak{r} = (I_{\mathfrak{r}}, J_{\mathfrak{r}}, \zeta_{\mathfrak{r}})\}$ where

- $\zeta_{\mathfrak{r}} \in \boldsymbol{\mu}(k)$,
- $I_{\mathfrak{r}}$ is a rank one \mathbb{Z}_k -submodule of V, and $J_{\mathfrak{r}}$ is a rank one \mathbb{Z}_k -submodule of W,

such that

```
(RS1) the family (I_t) generates V,
```

It is a set of triples $\mathcal{R} = \{\mathfrak{r} = (I_{\mathfrak{r}}, J_{\mathfrak{r}}, \zeta_{\mathfrak{r}})\}$ where

- $\zeta_{\mathfrak{r}} \in \boldsymbol{\mu}(k)$,
- $I_{\mathfrak{r}}$ is a rank one \mathbb{Z}_k -submodule of V, and $J_{\mathfrak{r}}$ is a rank one \mathbb{Z}_k -submodule of W,

such that

(RS1) the family (I_t) generates V,

(RS2) $\langle I_{\mathfrak{r}}, J_{\mathfrak{r}} \rangle = [1 - \zeta_{\mathfrak{r}}]$ (the principal ideal generated by $1 - \zeta_{\mathfrak{r}}$), and if $\sum_{i} \langle \alpha_{i}, \beta_{i} \rangle = 1 - \zeta_{\mathfrak{r}}$, then the reflection $s_{\mathfrak{r}} : \mathbf{v} \mapsto \mathbf{v} - \sum_{i} \langle \mathbf{v}, \beta_{i} \rangle \alpha_{i}$ stabilizes \mathcal{R} .

・回 ・ ・ ヨ ・ ・ ヨ ・ …

It is a set of triples $\mathcal{R} = \{\mathfrak{r} = (I_\mathfrak{r}, J_\mathfrak{r}, \zeta_\mathfrak{r})\}$ where

- $\zeta_{\mathfrak{r}}\in oldsymbol{\mu}(k)$,
- $I_{\mathfrak{r}}$ is a rank one \mathbb{Z}_k -submodule of V, and $J_{\mathfrak{r}}$ is a rank one \mathbb{Z}_k -submodule of W,

such that

(RS1) the family (I_r) generates V,

(RS2) $\langle I_{\mathfrak{r}}, J_{\mathfrak{r}} \rangle = [1 - \zeta_{\mathfrak{r}}]$ (the principal ideal generated by $1 - \zeta_{\mathfrak{r}}$), and if $\sum_{i} \langle \alpha_{i}, \beta_{i} \rangle = 1 - \zeta_{\mathfrak{r}}$, then the reflection $s_{\mathfrak{r}} : \mathbf{v} \mapsto \mathbf{v} - \sum_{i} \langle \mathbf{v}, \beta_{i} \rangle \alpha_{i}$ stabilizes \mathcal{R} , (RS3) Whenever $\mathfrak{r}, \mathfrak{r}' \in \mathcal{R}$, $\langle I_{\mathfrak{r}}, J_{\mathfrak{r}'} \rangle \subset \mathbb{Z}_{k}$.

イロト イポト イヨト イヨト

・ロト・(四ト・(川下・(日下・(日下)

(1)
$$G(\mathcal{R}) := \langle s_{\mathfrak{r}} \rangle_{\mathfrak{r} \in \mathcal{R}}$$
 is finite and $V^{G(\mathcal{R})} = 0$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の��

- (1) $G(\mathcal{R}) := \langle s_{\mathfrak{r}} \rangle_{\mathfrak{r} \in \mathcal{R}}$ is finite and $V^{G(\mathcal{R})} = 0$.
- (2) Conversely, whenever G is a finite subgroup of GL(V) generated by reflections such that $V^G = 0$, there exists a \mathbb{Z}_k -root system \mathcal{R} such that $G = G(\mathcal{R})$.

A (1) > A (1) > A

- (1) $G(\mathcal{R}) := \langle s_{\mathfrak{r}} \rangle_{\mathfrak{r} \in \mathcal{R}}$ is finite and $V^{G(\mathcal{R})} = 0$.
- (2) Conversely, whenever G is a finite subgroup of GL(V) generated by reflections such that $V^G = 0$, there exists a \mathbb{Z}_k -root system \mathcal{R} such that $G = G(\mathcal{R})$.
- (3) $\operatorname{Arr}(G(\mathcal{R})) = \operatorname{Arr}(\mathcal{R})$.

- 4 回 🕨 - 4 回 🕨 - 4 回 🕨

- (1) $G(\mathcal{R}) := \langle s_t \rangle_{t \in \mathcal{R}}$ is finite and $V^{G(\mathcal{R})} = 0$.
- (2) Conversely, whenever G is a finite subgroup of GL(V) generated by reflections such that $V^G = 0$, there exists a \mathbb{Z}_k -root system \mathcal{R} such that $G = G(\mathcal{R})$.
- (3) $\operatorname{Arr}(G(\mathcal{R})) = \operatorname{Arr}(\mathcal{R})$.

PARABOLIC SUBSYSTEMS

Let F be a face (intersection of reflecting hyperplanes) of \mathcal{R} (or of $G(\mathcal{R})$).

- (1) $G(\mathcal{R}) := \langle s_{\mathfrak{r}} \rangle_{\mathfrak{r} \in \mathcal{R}}$ is finite and $V^{G(\mathcal{R})} = 0$.
- (2) Conversely, whenever G is a finite subgroup of GL(V) generated by reflections such that $V^G = 0$, there exists a \mathbb{Z}_k -root system \mathcal{R} such that $G = G(\mathcal{R})$.
- (3) $\operatorname{Arr}(G(\mathcal{R})) = \operatorname{Arr}(\mathcal{R})$.

PARABOLIC SUBSYSTEMS

Let F be a face (intersection of reflecting hyperplanes) of \mathcal{R} (or of $\mathcal{G}(\mathcal{R})$).

Then the fixator $G(\mathcal{R})_F$ is called a *parabolic subgroup* of $G(\mathcal{R})$.

- (1) $G(\mathcal{R}) := \langle s_{\mathfrak{r}} \rangle_{\mathfrak{r} \in \mathcal{R}}$ is finite and $V^{G(\mathcal{R})} = 0$.
- (2) Conversely, whenever G is a finite subgroup of GL(V) generated by reflections such that $V^G = 0$, there exists a \mathbb{Z}_k -root system \mathcal{R} such that $G = G(\mathcal{R})$.
- (3) $\operatorname{Arr}(G(\mathcal{R})) = \operatorname{Arr}(\mathcal{R})$.

PARABOLIC SUBSYSTEMS

Let F be a face (intersection of reflecting hyperplanes) of \mathcal{R} (or of $\mathcal{G}(\mathcal{R})$).

Then the fixator $G(\mathcal{R})_F$ is called a *parabolic subgroup* of $G(\mathcal{R})$.

If V_F denotes the sum of reflecting lines of $G(\mathcal{R})_F$, we have $V_F^{G(\mathcal{R})_F} = 0$.

イロン イ部ン イヨン イヨン 三日

- (1) $G(\mathcal{R}) := \langle s_t \rangle_{t \in \mathcal{R}}$ is finite and $V^{G(\mathcal{R})} = 0$.
- (2) Conversely, whenever G is a finite subgroup of GL(V) generated by reflections such that $V^G = 0$, there exists a \mathbb{Z}_k -root system \mathcal{R} such that $G = G(\mathcal{R})$.
- (3) $\operatorname{Arr}(G(\mathcal{R})) = \operatorname{Arr}(\mathcal{R})$.

PARABOLIC SUBSYSTEMS

Let F be a face (intersection of reflecting hyperplanes) of \mathcal{R} (or of $\mathcal{G}(\mathcal{R})$).

Then the fixator $G(\mathcal{R})_F$ is called a *parabolic subgroup* of $G(\mathcal{R})$.

If V_F denotes the sum of reflecting lines of $G(\mathcal{R})_F$, we have $V_F^{G(\mathcal{R})_F} = 0$.

Then $\mathcal{R}_F := \{\mathfrak{r} \mid s_\mathfrak{r} \in G(\mathcal{R})_F\}$ is a \mathbb{Z}_k root system in V_F .

(ロ) (同) (E) (E) (E)

GL(V) acts on root systems :

$$g \cdot (I, J, \zeta) := (g(I), g^{\vee}(J), \zeta).$$

回 と く ヨ と く ヨ と

æ

GL(V) acts on root systems :

$$g \cdot (I, J, \zeta) := (g(I), g^{\vee}(J), \zeta).$$

If \mathfrak{a} is a fractional ideal in k, we set

$$\mathfrak{a} \cdot (I, J, \zeta) := (\mathfrak{a} I, \mathfrak{a}^{-*}J, \zeta).$$

∢ ≣⇒

GL(V) acts on root systems :

$$g \cdot (I, J, \zeta) := (g(I), g^{\vee}(J), \zeta).$$

If \mathfrak{a} is a fractional ideal in k, we set

$$\mathfrak{a} \cdot (I, J, \zeta) := (\mathfrak{a} I, \mathfrak{a}^{-*}J, \zeta).$$

ROOT LATTICES, WEIGHT LATTICES:

GL(V) acts on root systems :

$$g \cdot (I, J, \zeta) := (g(I), g^{\vee}(J), \zeta).$$

If \mathfrak{a} is a fractional ideal in k, we set

$$\mathfrak{a} \cdot (I, J, \zeta) := (\mathfrak{a} I, \mathfrak{a}^{-*}J, \zeta).$$

ROOT LATTICES, WEIGHT LATTICES:

$$Q_{\mathcal{R}} := \sum_{\mathfrak{r} \in \mathcal{R}} I_{\mathfrak{r}} \quad \text{and} \quad Q_{\mathcal{R}^{ee}} := \sum_{\mathfrak{r} \in \mathcal{R}} J_{\mathfrak{r}}$$

GL(V) acts on root systems :

$$g \cdot (I, J, \zeta) := (g(I), g^{\vee}(J), \zeta).$$

If \mathfrak{a} is a fractional ideal in k, we set

$$\mathfrak{a} \cdot (I, J, \zeta) := (\mathfrak{a} I, \mathfrak{a}^{-*}J, \zeta).$$

ROOT LATTICES, WEIGHT LATTICES:

$$\begin{split} & Q_{\mathcal{R}} := \sum_{\mathfrak{r} \in \mathcal{R}} I_{\mathfrak{r}} \quad \text{and} \quad Q_{\mathcal{R}^{\vee}} := \sum_{\mathfrak{r} \in \mathcal{R}} J_{\mathfrak{r}} \\ & P_{\mathcal{R}} := \{ x \in V \mid \forall y \in Q_{\mathcal{R}^{\vee}} , \, \langle x, y \rangle \in \mathbb{Z}_k \} \quad \text{and} \quad P_{\mathcal{R}^{\vee}} := \dots \end{split}$$

GL(V) acts on root systems :

$$g \cdot (I, J, \zeta) := (g(I), g^{\vee}(J), \zeta).$$

If \mathfrak{a} is a fractional ideal in k, we set

$$\mathfrak{a} \cdot (I, J, \zeta) := (\mathfrak{a} I, \mathfrak{a}^{-*}J, \zeta).$$

ROOT LATTICES, WEIGHT LATTICES:

$$\begin{aligned} & \mathcal{Q}_{\mathcal{R}} := \sum_{\mathfrak{r} \in \mathcal{R}} I_{\mathfrak{r}} \quad \text{and} \quad \mathcal{Q}_{\mathcal{R}^{\vee}} := \sum_{\mathfrak{r} \in \mathcal{R}} J_{\mathfrak{r}} \\ & \mathcal{P}_{\mathcal{R}} := \{ x \in V \mid \forall y \in \mathcal{Q}_{\mathcal{R}^{\vee}} \,, \, \langle x, y \rangle \in \mathbb{Z}_k \} \quad \text{and} \quad \mathcal{P}_{\mathcal{R}^{\vee}} := \dots \end{aligned}$$

There is a Aut $(\mathcal{R})/G(\mathcal{R})$ -invariant natural pairing

$$(P_{\mathcal{R}}/Q_{\mathcal{R}}) \times (P_{\mathcal{R}^{\vee}}/Q_{\mathcal{R}^{\vee}}) \to k/\mathbb{Z}_k.$$

Classifying root systems

• A root system is *reduced* if the map $\mathfrak{r} \mapsto s_\mathfrak{r}$ is injective. .

白 ト く ヨ ト く ヨ ト

Classifying root systems

- A root system is *reduced* if the map $\mathfrak{r} \mapsto s_{\mathfrak{r}}$ is injective. .
- A root system is *complete* if the map $\mathfrak{r} \mapsto s_{\mathfrak{r}}$ is surjective.

Classifying root systems

- A root system is *reduced* if the map $\mathfrak{r} \mapsto s_{\mathfrak{r}}$ is injective. .
- A root system is *complete* if the map $\mathfrak{r} \mapsto s_{\mathfrak{r}}$ is surjective.
- A root system is *distinguished* if the map $r \mapsto s_r$ induces a bijection with the set of distinguished reflections.

- A root system is *reduced* if the map $\mathfrak{r} \mapsto s_{\mathfrak{r}}$ is injective. .
- A root system is *complete* if the map $\mathfrak{r} \mapsto s_{\mathfrak{r}}$ is surjective.
- A root system is distinguished if the map t → st induces a bijection with the set of distinguished reflections.
 Note that a distinguished root system is reduced, but that it is complete if and only if all reflections have order 2.

- A root system is *reduced* if the map $\mathfrak{r} \mapsto s_{\mathfrak{r}}$ is injective. .
- A root system is *complete* if the map $\mathfrak{r} \mapsto s_{\mathfrak{r}}$ is surjective.
- A root system is *distinguished* if the map t → st induces a bijection with the set of distinguished reflections. Note that a distinguished root system is reduced, but that it is complete if and only if all reflections have order 2.

For each irreducible reflection group G, we provide a classification (up to genera),

over its ring of definition \mathbb{Z}_k ,

・ 同 ト ・ ヨ ト ・ ヨ ト

- A root system is *reduced* if the map $\mathfrak{r} \mapsto s_{\mathfrak{r}}$ is injective. .
- A root system is *complete* if the map $\mathfrak{r} \mapsto s_{\mathfrak{r}}$ is surjective.
- A root system is *distinguished* if the map t → st induces a bijection with the set of distinguished reflections.
 Note that a distinguished root system is reduced, but that it is complete if and only if all reflections have order 2.

For each irreducible reflection group G, we provide a classification (up to genera),

over its ring of definition \mathbb{Z}_k ,

• of reduced complete root systems for G(de, e, r),

- 4 回 ト 4 ヨ ト 4 ヨ ト

- A root system is *reduced* if the map $\mathfrak{r} \mapsto s_{\mathfrak{r}}$ is injective. .
- A root system is *complete* if the map $\mathfrak{r} \mapsto s_{\mathfrak{r}}$ is surjective.
- A root system is *distinguished* if the map t → st induces a bijection with the set of distinguished reflections. Note that a distinguished root system is reduced, but that it is complete if and only if all reflections have order 2.

For each irreducible reflection group G, we provide a classification (up to genera),

over its ring of definition \mathbb{Z}_k ,

- of reduced complete root systems for G(de, e, r),
- of distinguished root systems corresponding to the 34 exceptional groups.

・ロン ・回と ・ヨン・

Michel Broué Cyclotomic Root Systems

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$\bullet~\mbox{For}~\mathfrak{r},\mathfrak{t}\in\mathcal{R},$ we set

$$\mathfrak{n}(\mathfrak{r},\mathfrak{t}):=\langle I_{\mathfrak{r}},J_{\mathfrak{t}}\rangle$$
.

・ロン ・四と ・ヨン ・ヨン

æ

 $\bullet~\mbox{For}~\mathfrak{r},\mathfrak{t}\in\mathcal{R},$ we set

$$\mathfrak{n}(\mathfrak{r},\mathfrak{t}):=\langle I_{\mathfrak{r}},J_{\mathfrak{t}}\rangle$$
.

 For a subset S of R, its Cartan matrix is the S × S-matrix whose entries are the ideals n(r, t).

$$\mathfrak{n}(\mathfrak{r},\mathfrak{t}):=\langle I_{\mathfrak{r}},J_{\mathfrak{t}}\rangle$$
.

 For a subset S of R, its Cartan matrix is the S × S-matrix whose entries are the ideals n(r, t).

Proposition

Assume that the family $(s_{\mathfrak{r}})_{\mathfrak{r}\in\mathcal{S}}$

$$\mathfrak{n}(\mathfrak{r},\mathfrak{t}):=\langle I_{\mathfrak{r}},J_{\mathfrak{t}}\rangle$$
.

 For a subset S of R, its Cartan matrix is the S × S-matrix whose entries are the ideals n(r, t).

Proposition

Assume that the family $(s_{\mathfrak{r}})_{\mathfrak{r}\in\mathcal{S}}$

• generates $G(\mathcal{R})$,

$$\mathfrak{n}(\mathfrak{r},\mathfrak{t}):=\langle I_{\mathfrak{r}},J_{\mathfrak{t}}\rangle.$$

 For a subset S of R, its Cartan matrix is the S × S-matrix whose entries are the ideals n(r, t).

Proposition

Assume that the family $(s_{\mathfrak{r}})_{\mathfrak{r}\in\mathcal{S}}$

- generates $G(\mathcal{R})$,
- contains an element of each conjugacy class of reflections of $G(\mathcal{R})$.

$$\mathfrak{n}(\mathfrak{r},\mathfrak{t}):=\langle I_{\mathfrak{r}},J_{\mathfrak{t}}\rangle$$
.

 For a subset S of R, its Cartan matrix is the S × S-matrix whose entries are the ideals n(r, t).

Proposition

Assume that the family $(s_{\mathfrak{r}})_{\mathfrak{r}\in\mathcal{S}}$

- generates $G(\mathcal{R})$,
- contains an element of each conjugacy class of reflections of $G(\mathcal{R})$.

Then the Cartan matrix of ${\mathcal S}$ determines ${\mathcal R}$ up to genera.

$G_{31} \qquad \bigcirc \qquad \bigvee \qquad \qquad$	$\mathbb{Z}[i]$ 1
$\begin{bmatrix} G_{32} & \underbrace{3}_{s} & \underbrace{-3}_{t} & \underbrace{-3}_{u} & \underbrace{-3}_{v} & \underbrace{-3}_{v} & \underbrace{-1-\zeta_{3}}_{v} & \zeta_{3}^{2} & 0 & 0 \\ -\zeta_{3}^{2} & 1-\zeta_{3} & \zeta_{3}^{2} & 0 \\ 0 & -\zeta_{3}^{2} & 1-\zeta_{3} & \zeta_{3}^{2} \\ 0 & 0 & -\zeta_{3}^{2} & 1-\zeta_{3} \end{bmatrix} s \mathbb{Z}$	
	$\mathbb{Z}[\zeta_3]$ 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathbb{Z}[\zeta_3]$ 2
$G_{34} \qquad \bigcirc \begin{matrix} \bigcirc w \\ & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ &$	$\mathbb{Z}[\zeta_3]$ 1

Michel Broué Cyclotomic Root Systems

・ロト・(四ト・(川下・(日下・(日下)
回 と く ヨ と く ヨ と

Let G = G(2, 1, 2) = G(4, 4, 2) be the dihedral group of order 8.

同 と く ヨ と く ヨ と

Let G = G(2, 1, 2) = G(4, 4, 2) be the dihedral group of order 8.

Set $V = k^2$ written as columns, with canonical orthonormal basis

$$\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

and $W = k^2$ written as rows, with canonical dual basis

 $\left\{ \left(1,0\right) ,\,\left(0,1\right) \right\} .$

回 と く ヨ と く ヨ と

Let G = G(2, 1, 2) = G(4, 4, 2) be the dihedral group of order 8.

Set $V = k^2$ written as columns, with canonical orthonormal basis

$$\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

and $W = k^2$ written as rows, with canonical dual basis

 $\{(1,0), (0,1)\}.$

The group G is generated by $S = \{s, t\}$ where

$$s := \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and $t := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

コマ ヘビマ ヘリ

Let G = G(2, 1, 2) = G(4, 4, 2) be the dihedral group of order 8.

Set $V = k^2$ written as columns, with canonical orthonormal basis

$$\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

and $W = k^2$ written as rows, with canonical dual basis

 $\left\{ \left(1,0\right) ,\,\left(0,1\right) \right\} .$

The group G is generated by $S = \{s, t\}$ where

$$s := \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and $t := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

and the corresponding reflecting lines are

$$L_s = kv_s \text{ with } v_s = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \text{and} \quad L_t = kv_t \text{ with } v_t = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
$$M_s = kv_s^{\vee} \text{ with } v_s^{\vee} = (2,0) \quad \text{and} \quad M_t = kv_t^{\vee} \text{ with } v_t^{\vee} = (-1,1).$$

・ロン ・四 と ・ ヨ と ・ モ と

$$\begin{aligned} \mathcal{R}(B_2) &= \left\{ \left((1)v_s, (1)v_s^{\vee}, -1 \right), \left((1)v_t, (1)v_t^{\vee}, -1 \right) \right\} \\ \mathcal{R}(C_2) &= \left\{ \left((2)v_s, (\frac{1}{2})v_s^{\vee}, -1 \right), \left((1)v_t, (1)v_t^{\vee}, -1 \right) \right\} \end{aligned}$$

・ロン ・四 と ・ ヨ と ・ モ と

$$\begin{aligned} \mathcal{R}(B_2) &= \left\{ \left((1)v_s, (1)v_s^{\vee}, -1 \right), \left((1)v_t, (1)v_t^{\vee}, -1 \right) \right\} \\ \mathcal{R}(C_2) &= \left\{ \left((2)v_s, (\frac{1}{2})v_s^{\vee}, -1 \right), \left((1)v_t, (1)v_t^{\vee}, -1 \right) \right\} \end{aligned}$$

and these are mutually dual root systems.

- 4 回 2 - 4 □ 2 - 4 □

$$\begin{aligned} \mathcal{R}(B_2) &= \left\{ \left((1)v_s, (1)v_s^{\vee}, -1 \right), \left((1)v_t, (1)v_t^{\vee}, -1 \right) \right\} \\ \mathcal{R}(C_2) &= \left\{ \left((2)v_s, (\frac{1}{2})v_s^{\vee}, -1 \right), \left((1)v_t, (1)v_t^{\vee}, -1 \right) \right\} \end{aligned}$$

and these are mutually dual root systems.

Whenever (2) is a square $(\sqrt{2})^2$

- ∢ ⊒ →

$$\begin{aligned} \mathcal{R}(B_2) &= \left\{ \left((1)v_s, (1)v_s^{\vee}, -1 \right), \left((1)v_t, (1)v_t^{\vee}, -1 \right) \right\} \\ \mathcal{R}(C_2) &= \left\{ \left((2)v_s, (\frac{1}{2})v_s^{\vee}, -1 \right), \left((1)v_t, (1)v_t^{\vee}, -1 \right) \right\} \end{aligned}$$

and these are mutually dual root systems.

Whenever (2) is a square $(\sqrt{2})^2$ (for example, if $k = \mathbb{Q}(\sqrt{2})$ or $k = \mathbb{Q}(i)$)

$$\begin{aligned} \mathcal{R}(B_2) &= \left\{ \left((1)v_s, (1)v_s^{\vee}, -1 \right), \left((1)v_t, (1)v_t^{\vee}, -1 \right) \right\} \\ \mathcal{R}(C_2) &= \left\{ \left((2)v_s, (\frac{1}{2})v_s^{\vee}, -1 \right), \left((1)v_t, (1)v_t^{\vee}, -1 \right) \right\} \end{aligned}$$

and these are mutually dual root systems.

Whenever (2) is a square $(\sqrt{2})^2$ (for example, if $k = \mathbb{Q}(\sqrt{2})$ or $k = \mathbb{Q}(i)$) there is another self-dual root system:

$$\begin{aligned} \mathcal{R}(B_2) &= \left\{ \left((1)v_s, (1)v_s^{\vee}, -1 \right), \left((1)v_t, (1)v_t^{\vee}, -1 \right) \right\} \\ \mathcal{R}(C_2) &= \left\{ \left((2)v_s, (\frac{1}{2})v_s^{\vee}, -1 \right), \left((1)v_t, (1)v_t^{\vee}, -1 \right) \right\} \end{aligned}$$

and these are mutually dual root systems.

Whenever (2) is a square $(\sqrt{2})^2$ (for example, if $k = \mathbb{Q}(\sqrt{2})$ or $k = \mathbb{Q}(i)$) there is another self-dual root system:

$$\left\{\left((\sqrt{2})v_s,(\sqrt{2})^{-*}v_s^{\vee},-1\right),\,\left((1)v_t,(1)v_t^{\vee},-1\right)\right\}\,.$$