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Finite Reductive Groups

Let q be a prime power. There is (up to non unique isomorphism) a
single field with q elements, denoted Fq.

Since Chevalley (1955), one knows how to construct Lie groups over
Fq, analog of the usual complex reductive Lie groups :

GLn(Fq) , On(Fq) , Spn(Fq) , Un(Fq) , . . .

denoted respectively

GLn(q) , On(q) , Spn(q) , Un(q) , . . .

For example

Un(q) :=
{

U ∈ Matn(Fq2) | U.tU∗ = 1
}
.

There are also groups of exceptional types G2, F4, E6, E7, E8 over Fq.

They can be viewed from the algebraic groups point of view, as
follows.

Michel Broué GLn(x) for x an indeterminate ?



Finite Reductive Groups

Let q be a prime power. There is (up to non unique isomorphism) a
single field with q elements, denoted Fq.

Since Chevalley (1955), one knows how to construct Lie groups over
Fq, analog of the usual complex reductive Lie groups :

GLn(Fq) , On(Fq) , Spn(Fq) , Un(Fq) , . . .

denoted respectively

GLn(q) , On(q) , Spn(q) , Un(q) , . . .

For example

Un(q) :=
{

U ∈ Matn(Fq2) | U.tU∗ = 1
}
.

There are also groups of exceptional types G2, F4, E6, E7, E8 over Fq.

They can be viewed from the algebraic groups point of view, as
follows.
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Michel Broué GLn(x) for x an indeterminate ?



Finite Reductive Groups

Let q be a prime power. There is (up to non unique isomorphism) a
single field with q elements, denoted Fq.

Since Chevalley (1955), one knows how to construct Lie groups over
Fq, analog of the usual complex reductive Lie groups :

GLn(Fq) , On(Fq) , Spn(Fq) , Un(Fq) , . . .

denoted respectively

GLn(q) , On(q) , Spn(q) , Un(q) , . . .

For example

Un(q) :=
{

U ∈ Matn(Fq2) | U.tU∗ = 1
}
.

There are also groups of exceptional types G2, F4, E6, E7, E8 over Fq.

They can be viewed from the algebraic groups point of view, as
follows.
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Let G be a connected reductive algebraic group over Fq, endowed with
a Frobenius endomorphism F which defines an Fq-rational structure.

Then the group G := G(q) := GF is a finite reductive group over
Fq.

Example:

Assume G = GLn(Fq) .

I For F : (ai,j) 7→ (aqi,j) , G = GLn(q) .

I For F : (ai,j) 7→ t(aqi,j), G = Un(q) .

Let T ∼= F×q × · · · × F×q be an F -stable maximal torus of G.

The Weyl group of G is W := NG(T)/T.

Example:

For G = GLn(Fq) , T =

 F×q · · · 0
...

. . .
...

0 · · · F×q

 and W = Sn .
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Michel Broué GLn(x) for x an indeterminate ?



Let G be a connected reductive algebraic group over Fq, endowed with
a Frobenius endomorphism F which defines an Fq-rational structure.

Then the group G := G(q) := GF is a finite reductive group over
Fq.

Example:

Assume G = GLn(Fq) .

I For F : (ai,j) 7→ (aqi,j) ,

G = GLn(q) .

I For F : (ai,j) 7→ t(aqi,j), G = Un(q) .

Let T ∼= F×q × · · · × F×q be an F -stable maximal torus of G.

The Weyl group of G is W := NG(T)/T.

Example:

For G = GLn(Fq) , T =

 F×q · · · 0
...

. . .
...

0 · · · F×q

 and W = Sn .
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Michel Broué GLn(x) for x an indeterminate ?



Let G be a connected reductive algebraic group over Fq, endowed with
a Frobenius endomorphism F which defines an Fq-rational structure.

Then the group G := G(q) := GF is a finite reductive group over
Fq.

Example:

Assume G = GLn(Fq) .
I For F : (ai,j) 7→ (aqi,j) , G = GLn(q) .

I For F : (ai,j) 7→ t(aqi,j), G = Un(q) .

Let T ∼= F×q × · · · × F×q be an F -stable maximal torus of G.

The Weyl group of G is W := NG(T)/T.

Example:

For G = GLn(Fq) , T =

 F×q · · · 0
...

. . .
...

0 · · · F×q

 and W = Sn .
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Let Y (T) := Hom(F×q ,T) be the group of co-characters of T, a free
Z-module of finite rank.

Set V := C⊗Z Y (T), a finite dimensional complex vector space.

Then W acts on V as a reflection group, and the Frobenius
endomorphism F acts on V as qϕ, where ϕ is a finite order element
of NGL(V )(W ).

The type of G is G := (V ,Wϕ).

Example:

I For G = GLn(q), its type is G = GLn := (Cn,Sn) .

I For G = Un(q), its type is G = Un := (Cn,−Sn) .

Main fact

Lots of data about G = G(q) are values at x = q of polynomials in x
which depend only on the type G.

As if there were an object G(x) such that G(x)|x=q = G(q).
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Michel Broué GLn(x) for x an indeterminate ?



Let Y (T) := Hom(F×q ,T) be the group of co-characters of T, a free
Z-module of finite rank.

Set V := C⊗Z Y (T), a finite dimensional complex vector space.

Then W acts on V as a reflection group, and the Frobenius
endomorphism F acts on V as qϕ, where ϕ is a finite order element
of NGL(V )(W ).

The type of G is G := (V ,Wϕ).

Example:

I For G = GLn(q), its type is G = GLn := (Cn,Sn) .

I For G = Un(q), its type is G = Un := (Cn,−Sn) .

Main fact

Lots of data about G = G(q) are values at x = q of polynomials in x
which depend only on the type G.

As if there were an object G(x) such that G(x)|x=q = G(q).
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Michel Broué GLn(x) for x an indeterminate ?



Polynomial order

Let G = (V ,Wϕ) .

R. Steinberg (1967) : There is a polynomial (element of Z[x ])

|G|(x) = xN
∏
d

Φd(x)a(d)

such that |G|(q) = |G(q)| = |G | .

Example

|GLn|(x) = x(n2)
∏d=n

d=1(xd − 1) = x(n2)
∏d=n

d=1 Φd(x)[n/d ]

|Un|(x) = ±|GLn|(−x) (well, precisely (−1)

(
n
2

)
|GLn|(−x) ).
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Remarks

I The prime divisors of |G|(x) are x and cyclotomic polynomials Φd(x).

I N is the number of reflecting hyperplanes of the Weyl group of G.

Hence G has a trivial Weyl group, i.e., G is a torus

G ∼= F×q × · · · × F×q

if and only if its (polynomial) order is not divisible by x .
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Michel Broué GLn(x) for x an indeterminate ?



Remarks

I The prime divisors of |G|(x) are x and cyclotomic polynomials Φd(x).

I N is the number of reflecting hyperplanes of the Weyl group of G.

Hence G has a trivial Weyl group, i.e., G is a torus

G ∼= F×q × · · · × F×q

if and only if its (polynomial) order is not divisible by x .

Michel Broué GLn(x) for x an indeterminate ?



Remarks

I The prime divisors of |G|(x) are x and cyclotomic polynomials Φd(x).

I N is the number of reflecting hyperplanes of the Weyl group of G.

Hence G has a trivial Weyl group, i.e., G is a torus

G ∼= F×q × · · · × F×q

if and only if its (polynomial) order is not divisible by x .
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Admissible subgroups

The tori of G are the subgroups of the shape T = T(q) = TF where

T ∼= F×q × · · · × F×q is an F –stable torus of G.

The Levi subgroups of G are the subgroups of the shape
L = L(q) = LF where L = CG(T) is the centralizer of an F –stable
torus in G.

Examples for GLn(q)

I The split maximal torus T1 = (F×q )
n

of order (q − 1)n

T1 =


F×
q · · · 0
...

. . .
...

0 · · · F×
q


I The Coxeter torus Tc = GL1(Fqn) of order qn − 1 .

I Levi subgroups have shape GLn1 (qa1 )× · · · × GLns (qas )
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Lagrange theorem, generic p-groups

Lagrange theorem

The (polynomial) order of an admissible subgroup (torus or Levi subgroup)
divides the (polynomial) order of the group.

The following definition is the generic version of p-subgroups of G .

Φd(x)–groups

For Φd(x) a cyclotomic polynomial, a Φd(x)–group is a finite reductive
group whose (polynomial) order is a power of Φd(x). A Φd(x)–group is a
torus.

Examples for GLn

The split torus T1 is a Φ1(x)-subgroup.

The Coxeter torus Tc (a cyclic group of order qn − 1) contains a
Φn(x)-subgroup.
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Sylow theorems

1 Maximal Φd(x)–subgroups (“Sylow Φd(x)–subgroups”) Sd of G have
as (polynomial) order the contribution of Φd(x) to the (polynomial)
order of G :

|Sd | = |Sd(q)| = Φd(q)a(d) .

Notation : Set Ld := CG (Sd) and Nd := NG (Sd) = NG (Ld)

2 Sylow Φd(x)–subgroups are all conjugate by G .

3 The (polynomial) index |G : Nd | is congruent to 1 modulo Φd(x).

4 Wd := Nd/Ld is a true finite group, a complex reflection group in its
action on Vd := C⊗ Y (Sd).

= The group Wd is the d–cyclotomic Weyl group of the finite reductive
group G .

Note that, for d = 1 and ϕ = ±1, one has W1 = W .

Michel Broué GLn(x) for x an indeterminate ?



Sylow theorems

1 Maximal Φd(x)–subgroups (“Sylow Φd(x)–subgroups”) Sd of G have
as (polynomial) order the contribution of Φd(x) to the (polynomial)
order of G :

|Sd | = |Sd(q)| = Φd(q)a(d) .

Notation : Set Ld := CG (Sd) and Nd := NG (Sd) = NG (Ld)

2 Sylow Φd(x)–subgroups are all conjugate by G .

3 The (polynomial) index |G : Nd | is congruent to 1 modulo Φd(x).

4 Wd := Nd/Ld is a true finite group, a complex reflection group in its
action on Vd := C⊗ Y (Sd).

= The group Wd is the d–cyclotomic Weyl group of the finite reductive
group G .

Note that, for d = 1 and ϕ = ±1, one has W1 = W .
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Michel Broué GLn(x) for x an indeterminate ?



Sylow theorems

1 Maximal Φd(x)–subgroups (“Sylow Φd(x)–subgroups”) Sd of G have
as (polynomial) order the contribution of Φd(x) to the (polynomial)
order of G :

|Sd | = |Sd(q)| = Φd(q)a(d) .

Notation : Set Ld := CG (Sd) and Nd := NG (Sd) = NG (Ld)

2 Sylow Φd(x)–subgroups are all conjugate by G .

3 The (polynomial) index |G : Nd | is congruent to 1 modulo Φd(x).

4 Wd := Nd/Ld is a true finite group, a complex reflection group in its
action on Vd := C⊗ Y (Sd).

= The group Wd is the d–cyclotomic Weyl group of the finite reductive
group G .

Note that, for d = 1 and ϕ = ±1, one has W1 = W .
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Example for GLn

Recall that

|GLn|(x) = x(n2)
d=n∏
d=1

Φd(x)[n/d ]

For each d (1 ≤ d ≤ n), GLn(q) contains
a subtorus of (polynomial) order Φd(x)[ n

d
]

Assume n = md + r with r < d . Then

Ld = GL1(qd)m × GLr (q) and Wd = µd oSm

where µd denotes the cyclic group of all d-th roots of unity.
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Generic and ordinary Sylow subgroups

Let ` be a prime number.

If ` divides |G | = |G|(q), let d be the order of q modulo ` (so `
divides Φd(q)).

Let Sd be a Sylow Φd(x)–subgroup of G, and let S` be the Sylow
`–subgroup of Sd(q).

Let W` be a Sylow `-subgroup of the d-cyclotomic Weyl group Wd .

(M. Enguehard)

1 A Sylow `-subgroup of Nd = NG (Sd) is a Sylow `-subgroup of G .

2 In general, such a Sylow is an extension of S` by W`.

If “not general”, then a Sylow `-subgroup of G an extension of Z0(Ld )` by W`.
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Unipotent characters, generic degrees

1 The set Un(G ) of unipotent characters of G is parametrized by a
“generic” (i.e., independant of q) set Un(G). We denote by

Un(G)→ Un(G ) , ρ 7→ ρq

that parametrization.

Example for GLn : Un(GLn) is the set of all partitions of n.

2 Generic degree : For ρ ∈ Un(G), there exists Degρ(x) ∈ Q[x ] such
that

Degρ(x) |x=q = ρq(1) .

Example for GLn : For λ = (λ1 ≤ · · · ≤ λm) a partition of n, let βi : λi + i − 1 . Then

Degλ(x) =
(x − 1) · · · (xn − 1)

∏
j>i (x

βj − xβi )

x(
m−1

2 )+(m−2
2 )+··· ∏

i

∏βi
j=1(x

j − 1)
.
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3 The (polynomial) degree Degρ(x) of a unipotent character divides the
(polynomial) order |G|(x).

4 More : character values !

In GLn(q), unipotent classes are also
parametrized by partitions of n. For λ and µ partitions of n, let λq be
the corresponding unipotent character of GLn(q), and let uµq be a
unipotent element of GLn(q) of type µ.

There exists a polynomial Vλ,µ(x) such that λq(uµq ) = Vλ,µ(x)|x=q .

5 More : Un(q) = GLn(−q) ! In Un(q), unipotent classes and unipotent
characters are parametrized by partitions of n as well. For λ and µ
partitions of n, let λUn(q) be the corresponding unipotent character,
and let uµUn(q) be a unipotent element of type µ.

Ennola : λUn(q)(uµUn(q)) = ±Vλ,µ(x)|x=−q .
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More generic evidence

Lots of other behaviors or data for GLn(q) may be viewed as obtained
from its type GLn evaluated at x = q.

The `–modular representation theory of G (here for simplicity we only
consider the type GLn).

One may define a notion of Φd(x)–blocks of characters of GLn (the
so-called Φd(x)–Harish-Chandra theory). Now, given ` which divides
Φd(q), in order to find the `–blocks :

I for GLn(q), set x = q,

I for Un(q), set x = −q.

For each element w ∈W , one may define the Deligne–Lusztig variety
Xw , a subvariety of G/B, acted on by G .

Then, for ` - q, the `-adic cohomology Q`G –modules Hi
c(Xw ,Q`) should

also come from a generic... ?? Hi
c(Xw )(x) ??

Michel Broué GLn(x) for x an indeterminate ?
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Michel Broué GLn(x) for x an indeterminate ?



Complex reflection groups

A finite reflection group on a field K is a finite subgroup of GLK (V )
(V a finite dimensional K –vector space) generated by reflections, i.e.,
linear maps represented by

ζ 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1



A finite reflection group on R is called a Coxeter group.

A finite reflection group on Q is called a Weyl group.

Irreducible finite reflection groups over C have been classified
(Shephard–Todd, 1954).
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The Spetses dream (M. B. – G. Malle – J. Michel)

Try to treat a complex reflection group as a Weyl group: try to build
a family of objects providing polynomials depending only on the type
G associated with a complex reflection group... “like” the finite
reductive groups are associated with their Weyl group.

Try at least to build unipotent characters of G, or at least to build
their degrees (polynomials in x), satisfying all the machinery of
Harish-Chandra series, families, Frobenius eigenvalues, Fourier
matrices...

I Lusztig knew already a solution for Coxeter groups which are not Weyl
groups (except the Fourier matrix for H4 which was determined by
Malle in 1994).

I Malle gave a solution for imprimitive spetsial complex reflection groups
in 1995.

I Stating now a long series of precise axioms — many of technical nature
— we can now show that there is a unique solution for all primitive
spetsial complex reflection groups.
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Spetsial groups

Spetsial groups in red.

G (e, 1, r),G (e, e, r) , and

Group Gn 4 5 6 7 8 9 10 11 12 13 14 15 16
Rank 2 2 2 2 2 2 2 2 2 2 2 2 2

Group Gn 17 18 19 20 21 22 23 24 25 26 27
Rank 2 2 2 2 2 2 3 3 3 3 3

Remark H3

Group Gn 28 29 30 31 32 33 34 35 36 37
Rank 4 4 4 4 4 5 6 6 7 8

Remark F4 H4 E6 E7 E8
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The case of the cyclic group of order 3 : {1, ζ, ζ2}

Unipotent degrees and Frobenius eigenvalues

ρ Deg(ρ) Fr(ρ)

χa 1 1

χb
1

1− ζ2
x(x − ζ2) 1

χc
1

1− ζ
x(x − ζ) 1

γ
ζ

1− ζ2
x(x − 1) ζ2

Two families : {χa} , {χb, χc , γ}

Where is the Steinberg character ?
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Unipotent characters for G4 3© 3©

In red = the Φ′6–series.
• = the Φ4–series.

Character Degree FakeDegree Eigenvalue Family

• φ1,0 • 1 1 1 C1

φ2,1
3−
√
−3

6 qΦ′3Φ4Φ′′6 qΦ4 1 X3.01

φ2,3
3+
√
−3

6 qΦ′′3Φ4Φ′6 q3Φ4 1 X3.02

Z3 : 2
√
−3
3 qΦ1Φ2Φ4 0 ζ2

3 X3.12
• φ3,2 • q2Φ3Φ6 q2Φ3Φ6 1 C1

φ1,4
−
√
−3

6 q4Φ′′3Φ4Φ′′6 q4 1 X5.1

φ1,8

√
−3
6 q4Φ′3Φ4Φ′6 q8 1 X5.2

• φ2,5 • 1
2 q4Φ2

2Φ6 q5Φ4 1 X5.3

Z3 : 11
√
−3
3 q4Φ1Φ2Φ4 0 ζ2

3 X5.4
• G4 • 1

2 q4Φ2
1Φ3 0 −1 X5.5

Φ′3,Φ
′′
3 (resp. Φ′6,Φ

′′
6 ) are factors of Φ3 (resp Φ6) in Q(ζ3)
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