$G L_{n}(x)$ for x an indeterminate ?

Michel Broué

Institut universitaire de France
Université Paris-Diderot Paris 7
CNRS-Institut de Mathématiques de Jussieu

February 2012

Finite Reductive Groups

Let q be a prime power. There is (up to non unique isomorphism) a single field with q elements, denoted \mathbb{F}_{q}.

Finite Reductive Groups

Let q be a prime power. There is (up to non unique isomorphism) a single field with q elements, denoted \mathbb{F}_{q}.

Since Chevalley (1955), one knows how to construct Lie groups over \mathbb{F}_{q}, analog of the usual complex reductive Lie groups :

Finite Reductive Groups

Let q be a prime power. There is (up to non unique isomorphism) a single field with q elements, denoted \mathbb{F}_{q}.

Since Chevalley (1955), one knows how to construct Lie groups over \mathbb{F}_{q}, analog of the usual complex reductive Lie groups:

$$
\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right), \mathrm{O}_{n}\left(\mathbb{F}_{q}\right), \mathrm{Sp}_{n}\left(\mathbb{F}_{q}\right), \mathrm{U}_{n}\left(\mathbb{F}_{q}\right), \ldots
$$

Finite Reductive Groups

Let q be a prime power. There is (up to non unique isomorphism) a single field with q elements, denoted \mathbb{F}_{q}.

Since Chevalley (1955), one knows how to construct Lie groups over \mathbb{F}_{q}, analog of the usual complex reductive Lie groups:

$$
\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right), \mathrm{O}_{n}\left(\mathbb{F}_{q}\right), \mathrm{Sp}_{n}\left(\mathbb{F}_{q}\right), \mathrm{U}_{n}\left(\mathbb{F}_{q}\right), \ldots
$$

denoted respectively

$$
\mathrm{GL}_{n}(q), \mathrm{O}_{n}(q), \mathrm{Sp}_{n}(q), \mathrm{U}_{n}(q), \ldots
$$

Finite Reductive Groups

Let q be a prime power. There is (up to non unique isomorphism) a single field with q elements, denoted \mathbb{F}_{q}.

Since Chevalley (1955), one knows how to construct Lie groups over \mathbb{F}_{q}, analog of the usual complex reductive Lie groups :

$$
\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right), \mathrm{O}_{n}\left(\mathbb{F}_{q}\right), \mathrm{Sp}_{n}\left(\mathbb{F}_{q}\right), \mathrm{U}_{n}\left(\mathbb{F}_{q}\right), \ldots
$$

denoted respectively

$$
\mathrm{GL}_{n}(q), \mathrm{O}_{n}(q), \mathrm{Sp}_{n}(q), \mathrm{U}_{n}(q), \ldots
$$

For example

$$
U_{n}(q):=\left\{U \in \operatorname{Mat}_{n}\left(\mathbb{F}_{q^{2}}\right) \mid U \cdot{ }^{t} U^{*}=1\right\}
$$

Finite Reductive Groups

Let q be a prime power. There is (up to non unique isomorphism) a single field with q elements, denoted \mathbb{F}_{q}.

Since Chevalley (1955), one knows how to construct Lie groups over \mathbb{F}_{q}, analog of the usual complex reductive Lie groups :

$$
\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right), \mathrm{O}_{n}\left(\mathbb{F}_{q}\right), \mathrm{Sp}_{n}\left(\mathbb{F}_{q}\right), \mathrm{U}_{n}\left(\mathbb{F}_{q}\right), \ldots
$$

denoted respectively

$$
\mathrm{GL}_{n}(q), \mathrm{O}_{n}(q), \mathrm{Sp}_{n}(q), \mathrm{U}_{n}(q), \ldots
$$

For example

$$
U_{n}(q):=\left\{U \in \operatorname{Mat}_{n}\left(\mathbb{F}_{q^{2}}\right) \mid U \cdot{ }^{t} U^{*}=1\right\}
$$

There are also groups of exceptional types $G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$ over \mathbb{F}_{q}.

Finite Reductive Groups

Let q be a prime power. There is (up to non unique isomorphism) a single field with q elements, denoted \mathbb{F}_{q}.

Since Chevalley (1955), one knows how to construct Lie groups over \mathbb{F}_{q}, analog of the usual complex reductive Lie groups :

$$
\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right), \mathrm{O}_{n}\left(\mathbb{F}_{q}\right), \mathrm{Sp}_{n}\left(\mathbb{F}_{q}\right), \mathrm{U}_{n}\left(\mathbb{F}_{q}\right), \ldots
$$

denoted respectively

$$
\mathrm{GL}_{n}(q), \mathrm{O}_{n}(q), \mathrm{Sp}_{n}(q), \mathrm{U}_{n}(q), \ldots
$$

For example

$$
U_{n}(q):=\left\{U \in \operatorname{Mat}_{n}\left(\mathbb{F}_{q^{2}}\right) \mid U .{ }^{t} U^{*}=1\right\}
$$

There are also groups of exceptional types $G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$ over \mathbb{F}_{q}.
They can be viewed from the algebraic groups point of view, as follows.

- Let \mathbf{G} be a connected reductive algebraic group over $\overline{\mathbb{F}}_{q}$, endowed with a Frobenius endomorphism F which defines an $\mathbb{F}_{q^{-r a t i o n a l ~} \text { structure. }}$
- Let \mathbf{G} be a connected reductive algebraic group over $\overline{\mathbb{F}}_{q}$, endowed with a Frobenius endomorphism F which defines an \mathbb{F}_{q}-rational structure. Then the group $G:=\mathbf{G}(q):=\mathbf{G}^{F}$ is a finite reductive group over \mathbb{F}_{q}.
- Let \mathbf{G} be a connected reductive algebraic group over $\overline{\mathbb{F}}_{q}$, endowed with a Frobenius endomorphism F which defines an $\mathbb{F}_{q^{-r a t i o n a l ~}}$ structure. Then the group $G:=\mathbf{G}(q):=\mathbf{G}^{F}$ is a finite reductive group over \mathbb{F}_{q}.
Example:
- Let \mathbf{G} be a connected reductive algebraic group over $\overline{\mathbb{F}}_{q}$, endowed with a Frobenius endomorphism F which defines an $\mathbb{F}_{q^{-r a t i o n a l ~}}$ structure. Then the group $G:=\mathbf{G}(q):=\mathbf{G}^{F}$ is a finite reductive group over \mathbb{F}_{q}.
Example:
Assume $\mathbf{G}=\mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{q}\right)$.
- Let G be a connected reductive algebraic group over $\overline{\mathbb{F}}_{q}$, endowed with a Frobenius endomorphism F which defines an \mathbb{F}_{q}-rational structure.

Then the group $G:=\mathbf{G}(q):=\mathbf{G}^{F}$ is a finite reductive group over \mathbb{F}_{q}.
Example:
Assume $\mathbf{G}=\mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{q}\right)$.

- For $F:\left(a_{i, j}\right) \mapsto\left(a_{i, j}^{q}\right)$,
- Let G be a connected reductive algebraic group over $\overline{\mathbb{F}}_{q}$, endowed with a Frobenius endomorphism F which defines an $\mathbb{F}_{q^{-}}$-rational structure.

Then the group $G:=\mathbf{G}(q):=\mathbf{G}^{F}$ is a finite reductive group over \mathbb{F}_{q}.
Example:
Assume $\mathbf{G}=\mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{q}\right)$.

- For $F:\left(a_{i, j}\right) \mapsto\left(a_{i, j}^{q}\right), G=G L_{n}(q)$.
- Let \mathbf{G} be a connected reductive algebraic group over $\overline{\mathbb{F}}_{q}$, endowed with a Frobenius endomorphism F which defines an $\mathbb{F}_{q^{-}}$-rational structure.

Then the group $G:=\mathbf{G}(q):=\mathbf{G}^{F}$ is a finite reductive group over \mathbb{F}_{q}.
Example:
Assume $\mathbf{G}=\mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{q}\right)$.

- For $F:\left(a_{i, j}\right) \mapsto\left(a_{i, j}^{q}\right), G=G L_{n}(q)$.
- For $F:\left(a_{i, j}\right) \mapsto{ }^{t}\left(a_{i, j}^{q}\right)$,
- Let \mathbf{G} be a connected reductive algebraic group over $\overline{\mathbb{F}}_{q}$, endowed with a Frobenius endomorphism F which defines an $\mathbb{F}_{q^{-}}$-rational structure.

Then the group $G:=\mathbf{G}(q):=\mathbf{G}^{F}$ is a finite reductive group over \mathbb{F}_{q}.
Example:
Assume $\mathbf{G}=\mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{q}\right)$.

- For $F:\left(a_{i, j}\right) \mapsto\left(a_{i, j}^{q}\right), G=G L_{n}(q)$.
- For $F:\left(a_{i, j}\right) \mapsto{ }^{t}\left(a_{i, j}^{q}\right), G=U_{n}(q)$.
- Let \mathbf{G} be a connected reductive algebraic group over $\overline{\mathbb{F}}_{q}$, endowed with a Frobenius endomorphism F which defines an \mathbb{F}_{q}-rational structure.

Then the group $G:=\mathbf{G}(q):=\mathbf{G}^{F}$ is a finite reductive group over \mathbb{F}_{q}.
Example:
Assume $\mathbf{G}=\mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{q}\right)$.

- For $F:\left(a_{i, j}\right) \mapsto\left(a_{i, j}^{q}\right), G=G L_{n}(q)$.
- For $F:\left(a_{i, j}\right) \mapsto{ }^{t}\left(a_{i, j}^{q}\right), G=U_{n}(q)$.
- Let $\mathbf{T} \cong \overline{\mathbb{F}}_{q}^{\times} \times \cdots \times \overline{\mathbb{F}}_{q}^{\times}$be an F-stable maximal torus of \mathbf{G}.
- Let \mathbf{G} be a connected reductive algebraic group over $\overline{\mathbb{F}}_{q}$, endowed with a Frobenius endomorphism F which defines an \mathbb{F}_{q}-rational structure.

Then the group $G:=\mathbf{G}(q):=\mathbf{G}^{F}$ is a finite reductive group over \mathbb{F}_{q}.
Example:
Assume $\mathbf{G}=\mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{q}\right)$.

- For $F:\left(a_{i, j}\right) \mapsto\left(a_{i, j}^{q}\right), G=G L_{n}(q)$.
- For $F:\left(a_{i, j}\right) \mapsto{ }^{t}\left(a_{i, j}^{q}\right), G=U_{n}(q)$.
- Let $\mathbf{T} \cong \overline{\mathbb{F}}_{q}^{\times} \times \cdots \times \overline{\mathbb{F}}_{q}^{\times}$be an F-stable maximal torus of \mathbf{G}. The Weyl group of \mathbf{G} is $W:=N_{G}(\mathbf{T}) / \mathbf{T}$.
- Let \mathbf{G} be a connected reductive algebraic group over $\overline{\mathbb{F}}_{q}$, endowed with a Frobenius endomorphism F which defines an \mathbb{F}_{q}-rational structure.

Then the group $G:=\mathbf{G}(q):=\mathbf{G}^{F}$ is a finite reductive group over \mathbb{F}_{q}.
Example:
Assume $\mathbf{G}=\mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{q}\right)$.

- For $F:\left(a_{i, j}\right) \mapsto\left(a_{i, j}^{q}\right), G=G L_{n}(q)$.
- For $F:\left(a_{i, j}\right) \mapsto{ }^{t}\left(a_{i, j}^{q}\right), G=U_{n}(q)$.
- Let $\mathbf{T} \cong \overline{\mathbb{F}}_{q}^{\times} \times \cdots \times \overline{\mathbb{F}}_{q}^{\times}$be an F-stable maximal torus of \mathbf{G}. The Weyl group of \mathbf{G} is $W:=N_{\mathbf{G}}(\mathbf{T}) / \mathbf{T}$.

Example:

$$
\text { For } \mathbf{G}=\mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{q}\right), \mathbf{T}=\left(\begin{array}{ccc}
\overline{\mathbb{F}}_{q}^{\times} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \overline{\mathbb{F}}_{q}^{\times}
\end{array}\right)
$$

- Let \mathbf{G} be a connected reductive algebraic group over $\overline{\mathbb{F}}_{q}$, endowed with a Frobenius endomorphism F which defines an \mathbb{F}_{q}-rational structure.

Then the group $G:=\mathbf{G}(q):=\mathbf{G}^{F}$ is a finite reductive group over \mathbb{F}_{q}.
Example:
Assume $\mathbf{G}=G L_{n}\left(\overline{\mathbb{F}}_{q}\right)$.

- For $F:\left(a_{i, j}\right) \mapsto\left(a_{i, j}^{q}\right), G=G L_{n}(q)$.
- For $F:\left(a_{i, j}\right) \mapsto{ }^{t}\left(a_{i, j}^{q}\right), G=U_{n}(q)$.
- Let $\mathbf{T} \cong \overline{\mathbb{F}}_{q}^{\times} \times \cdots \times \overline{\mathbb{F}}_{q}^{\times}$be an F-stable maximal torus of \mathbf{G}. The Weyl group of \mathbf{G} is $W:=N_{\mathbf{G}}(\mathbf{T}) / \mathbf{T}$.

Example:
For $\mathbf{G}=G L_{n}\left(\overline{\mathbb{F}}_{q}\right), \mathbf{T}=\left(\begin{array}{ccc}\overline{\mathbb{F}}_{q}^{\times} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \overline{\mathbb{F}}_{q}^{\times}\end{array}\right)$and $W=S_{n}$.

- Let $Y(\mathbf{T}):=\operatorname{Hom}\left(\overline{\mathbb{F}}_{q}^{\times}, \mathbf{T}\right)$ be the group of co-characters of \mathbf{T}, a free \mathbb{Z}-module of finite rank.
- Let $Y(\mathbf{T}):=\operatorname{Hom}\left(\overline{\mathbb{F}}_{q}^{\times}, \mathbf{T}\right)$ be the group of co-characters of \mathbf{T}, a free \mathbb{Z}-module of finite rank.
- Set $V:=\mathbb{C} \otimes_{\mathbb{Z}} Y(\mathbf{T})$, a finite dimensional complex vector space.
- Let $Y(\mathbf{T}):=\operatorname{Hom}\left(\overline{\mathbb{F}}_{q}^{\times}, \mathbf{T}\right)$ be the group of co-characters of \mathbf{T}, a free \mathbb{Z}-module of finite rank.
- Set $V:=\mathbb{C} \otimes_{\mathbb{Z}} Y(\mathbf{T})$, a finite dimensional complex vector space. Then W acts on V as a reflection group, and the Frobenius endomorphism F acts on V as $q \varphi$, where φ is a finite order element of $N_{G L(V)}(W)$.
- Let $Y(\mathbf{T}):=\operatorname{Hom}\left(\overline{\mathbb{F}}_{q}^{\times}, \mathbf{T}\right)$ be the group of co-characters of \mathbf{T}, a free \mathbb{Z}-module of finite rank.
- Set $V:=\mathbb{C} \otimes_{\mathbb{Z}} Y(\mathbf{T})$, a finite dimensional complex vector space. Then W acts on V as a reflection group, and the Frobenius endomorphism F acts on V as $q \varphi$, where φ is a finite order element of $N_{G L(V)}(W)$.

$$
\text { The type of } G \text { is } \mathbb{G}:=(V, W \varphi) \text {. }
$$

- Let $Y(\mathbf{T}):=\operatorname{Hom}\left(\overline{\mathbb{F}}_{q}^{\times}, \mathbf{T}\right)$ be the group of co-characters of \mathbf{T}, a free \mathbb{Z}-module of finite rank.
- Set $V:=\mathbb{C} \otimes_{\mathbb{Z}} Y(\mathbf{T})$, a finite dimensional complex vector space. Then W acts on V as a reflection group, and the Frobenius endomorphism F acts on V as $q \varphi$, where φ is a finite order element of $N_{G L(V)}(W)$.

$$
\text { The type of } G \text { is } \mathbb{G}:=(V, W \varphi) \text {. }
$$

Example:

- Let $Y(\mathbf{T}):=\operatorname{Hom}\left(\overline{\mathbb{F}}_{q}^{\times}, \mathbf{T}\right)$ be the group of co-characters of \mathbf{T}, a free \mathbb{Z}-module of finite rank.
- Set $V:=\mathbb{C} \otimes_{\mathbb{Z}} Y(\mathbf{T})$, a finite dimensional complex vector space. Then W acts on V as a reflection group, and the Frobenius endomorphism F acts on V as $q \varphi$, where φ is a finite order element of $N_{G L(V)}(W)$.

$$
\text { The type of } G \text { is } \mathbb{G}:=(V, W \varphi) \text {. }
$$

Example:

- For $G=\mathrm{GL}_{n}(q)$, its type is $\mathbb{G}=\mathrm{GL}_{n}:=\left(\mathbb{C}^{n}, \mathfrak{S}_{n}\right)$.
- Let $Y(\mathbf{T}):=\operatorname{Hom}\left(\overline{\mathbb{F}}_{q}^{\times}, \mathbf{T}\right)$ be the group of co-characters of \mathbf{T}, a free \mathbb{Z}-module of finite rank.
- Set $V:=\mathbb{C} \otimes_{\mathbb{Z}} Y(\mathbf{T})$, a finite dimensional complex vector space. Then W acts on V as a reflection group, and the Frobenius endomorphism F acts on V as $q \varphi$, where φ is a finite order element of $N_{G L(V)}(W)$.

$$
\text { The type of } G \text { is } \mathbb{G}:=(V, W \varphi) \text {. }
$$

Example:

- For $G=\mathrm{GL}_{n}(q)$, its type is $\mathbb{G}=\mathrm{GL}_{n}:=\left(\mathbb{C}^{n}, \mathfrak{S}_{n}\right)$.
- For $G=U_{n}(q)$, its type is $\mathbb{G}=U_{n}:=\left(\mathbb{C}^{n},-\mathfrak{S}_{n}\right)$.
- Let $Y(\mathbf{T}):=\operatorname{Hom}\left(\overline{\mathbb{F}}_{q}^{\times}, \mathbf{T}\right)$ be the group of co-characters of \mathbf{T}, a free \mathbb{Z}-module of finite rank.
- Set $V:=\mathbb{C} \otimes_{\mathbb{Z}} Y(\mathbf{T})$, a finite dimensional complex vector space. Then W acts on V as a reflection group, and the Frobenius endomorphism F acts on V as $q \varphi$, where φ is a finite order element of $N_{G L(V)}(W)$.

$$
\text { The type of } G \text { is } \mathbb{G}:=(V, W \varphi) \text {. }
$$

Example:

- For $G=\mathrm{GL}_{n}(q)$, its type is $\mathbb{G}=\mathrm{GL}_{n}:=\left(\mathbb{C}^{n}, \mathfrak{S}_{n}\right)$.
- For $G=U_{n}(q)$, its type is $\mathbb{G}=U_{n}:=\left(\mathbb{C}^{n},-\mathfrak{S}_{n}\right)$.

Main fact

Lots of data about $G=\mathbf{G}(q)$ are values at $x=q$ of polynomials in x which depend only on the type \mathbb{G}.

- Let $Y(\mathbf{T}):=\operatorname{Hom}\left(\overline{\mathbb{F}}_{q}^{\times}, \mathbf{T}\right)$ be the group of co-characters of \mathbf{T}, a free \mathbb{Z}-module of finite rank.
- Set $V:=\mathbb{C} \otimes_{\mathbb{Z}} Y(\mathbf{T})$, a finite dimensional complex vector space. Then W acts on V as a reflection group, and the Frobenius endomorphism F acts on V as $q \varphi$, where φ is a finite order element of $N_{G L(V)}(W)$.

$$
\text { The type of } G \text { is } \mathbb{G}:=(V, W \varphi) \text {. }
$$

Example:

- For $G=\mathrm{GL}_{n}(q)$, its type is $\mathbb{G}=\mathrm{GL}_{n}:=\left(\mathbb{C}^{n}, \mathfrak{S}_{n}\right)$.
- For $G=U_{n}(q)$, its type is $\mathbb{G}=U_{n}:=\left(\mathbb{C}^{n},-\mathfrak{S}_{n}\right)$.

Main fact

Lots of data about $G=\mathbf{G}(q)$ are values at $x=q$ of polynomials in x which depend only on the type \mathbb{G}.
As if there were an object $\mathbb{G}(x)$ such that $\left.\mathbb{G}(x)\right|_{x=q}=\mathbf{G}(q)$.

Polynomial order

Let $\mathbb{G}=(V, W \varphi)$.

Polynomial order

Let $\mathbb{G}=(V, W \varphi)$.
R. Steinberg (1967) : There is a polynomial (element of $\mathbb{Z}[x]$)

$$
|\mathbb{G}|(x)=x^{N} \prod_{d} \Phi_{d}(x)^{a(d)}
$$

Polynomial order

Let $\mathbb{G}=(V, W \varphi)$.
R. Steinberg (1967) : There is a polynomial (element of $\mathbb{Z}[x]$)

$$
|\mathbb{G}|(x)=x^{N} \prod_{d} \Phi_{d}(x)^{a(d)}
$$

such that
$|\mathbb{G}(q)=|G(q)|=|G|$.

Polynomial order

Let $\mathbb{G}=(V, W \varphi)$.
R. Steinberg (1967) : There is a polynomial (element of $\mathbb{Z}[x]$)

$$
|\mathbb{G}|(x)=x^{N} \prod_{d} \Phi_{d}(x)^{a(d)}
$$

such that
$|\mathbb{G}(q)=|\mathbf{G}(q)|=|G|$.

Example

Polynomial order

Let $\mathbb{G}=(V, W \varphi)$.
R. Steinberg (1967) : There is a polynomial (element of $\mathbb{Z}[x]$)

$$
|\mathbb{G}|(x)=x^{N} \prod_{d} \Phi_{d}(x)^{a(d)}
$$

such that
$|\mathbb{G}(q)=|\mathbf{G}(q)|=|G|$.

Example

- $\left|\mathrm{GL}_{n}\right|(x)=x^{\binom{n}{2}} \prod_{d=1}^{d=n}\left(x^{d}-1\right)=x^{\binom{n}{2}} \prod_{d=1}^{d=n} \Phi_{d}(x)^{[n / d]}$

Polynomial order

Let $\mathbb{G}=(V, W \varphi)$.
R. Steinberg (1967) : There is a polynomial (element of $\mathbb{Z}[x]$)

$$
|\mathbb{G}|(x)=x^{N} \prod_{d} \Phi_{d}(x)^{a(d)}
$$

such that
$|\mathbb{G}(q)=|\mathbf{G}(q)|=|G|$.
Example

- $\left|G L_{n}\right|(x)=x^{\binom{n}{2}} \prod_{d=1}^{d=n}\left(x^{d}-1\right)=x^{\binom{n}{2}} \prod_{d=1}^{d=n} \Phi_{d}(x)^{[n / d]}$
- $\left|\mathrm{U}_{n}\right|(x)= \pm\left|\mathrm{GL}_{n}\right|(-x)$

Polynomial order

Let $\mathbb{G}=(V, W \varphi)$.
R. Steinberg (1967) : There is a polynomial (element of $\mathbb{Z}[x]$)

$$
|\mathbb{G}|(x)=x^{N} \prod_{d} \Phi_{d}(x)^{a(d)}
$$

such that
$|\mathbb{G}(q)=|\mathbf{G}(q)|=|G|$.

Example

- $\left|\mathrm{GL}_{n}\right|(x)=x^{\binom{n}{2}} \prod_{d=1}^{d=n}\left(x^{d}-1\right)=x^{\binom{n}{2}} \prod_{d=1}^{d=n} \Phi_{d}(x)^{[n / d]}$
- $\left|\mathrm{U}_{n}\right|(x)= \pm\left|\mathrm{GL}_{n}\right|(-x)$ (well, precisely $(-1)^{\binom{n}{2}}\left|\mathrm{GL}_{n}\right|(-x)$).

Remarks

Remarks

- The prime divisors of $|\mathbb{G}|(x)$ are x and cyclotomic polynomials $\Phi_{d}(x)$.

Remarks

- The prime divisors of $|\mathbb{G}|(x)$ are x and cyclotomic polynomials $\Phi_{d}(x)$.
- N is the number of reflecting hyperplanes of the Weyl group of G.

Remarks

- The prime divisors of $|\mathbb{G}|(x)$ are x and cyclotomic polynomials $\Phi_{d}(x)$.
- N is the number of reflecting hyperplanes of the Weyl group of \mathbf{G}. Hence \mathbf{G} has a trivial Weyl group, i.e., \mathbf{G} is a torus

$$
\mathbf{G} \cong \overline{\mathbb{F}}_{q}^{\times} \times \cdots \times \overline{\mathbb{F}}_{q}^{\times}
$$

if and only if its (polynomial) order is not divisible by x.

Admissible subgroups

Admissible subgroups

- The tori of G are the subgroups of the shape $T=\mathbf{T}(q)=\mathbf{T}^{F}$ where $\mathbf{T} \cong \overline{\mathbb{F}}_{q}^{\times} \times \cdots \times \overline{\mathbb{F}}_{q}^{\times}$is an F-stable torus of \mathbf{G}.

Admissible subgroups

- The tori of G are the subgroups of the shape $T=\mathbf{T}(q)=\mathbf{T}^{F}$ where $\mathbf{T} \cong \overline{\mathbb{F}}_{q}^{\times} \times \cdots \times \overline{\mathbb{F}}_{q}^{\times}$is an F-stable torus of \mathbf{G}.
- The Levi subgroups of G are the subgroups of the shape $L=\mathbf{L}(q)=\mathbf{L}^{F}$ where $\mathbf{L}=C_{\mathbf{G}}(\mathbf{T})$ is the centralizer of an F-stable torus in \mathbf{G}.

Admissible subgroups

- The tori of G are the subgroups of the shape $T=\mathbf{T}(q)=\mathbf{T}^{F}$ where $\mathbf{T} \cong \overline{\mathbb{F}}_{q}^{\times} \times \cdots \times \overline{\mathbb{F}}_{q}^{\times}$is an F-stable torus of \mathbf{G}.
- The Levi subgroups of G are the subgroups of the shape $L=\mathbf{L}(q)=\mathbf{L}^{F}$ where $\mathbf{L}=C_{\mathbf{G}}(\mathbf{T})$ is the centralizer of an F-stable torus in \mathbf{G}.

Examples for $G L_{n}(q)$

Admissible subgroups

- The tori of G are the subgroups of the shape $T=\mathbf{T}(q)=\mathbf{T}^{F}$ where $\mathbf{T} \cong \overline{\mathbb{F}}_{q}^{\times} \times \cdots \times \overline{\mathbb{F}}_{q}^{\times}$is an F-stable torus of \mathbf{G}.
- The Levi subgroups of G are the subgroups of the shape $L=\mathbf{L}(q)=\mathbf{L}^{F}$ where $\mathbf{L}=C_{\mathbf{G}}(\mathbf{T})$ is the centralizer of an F-stable torus in \mathbf{G}.

Examples for $\mathrm{GL}_{n}(q)$

- The split maximal torus $T_{1}=\left(\mathbb{F}_{q}^{\times}\right)^{n}$ of order $(q-1)^{n}$

$$
T_{1}=\left(\begin{array}{ccc}
\mathbb{F}_{q}^{\times} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \mathbb{F}_{q}^{\times}
\end{array}\right)
$$

Admissible subgroups

- The tori of G are the subgroups of the shape $T=\mathbf{T}(q)=\mathbf{T}^{F}$ where $\mathbf{T} \cong \overline{\mathbb{F}}_{q}^{\times} \times \cdots \times \overline{\mathbb{F}}_{q}^{\times}$is an F-stable torus of \mathbf{G}.
- The Levi subgroups of G are the subgroups of the shape $L=\mathbf{L}(q)=\mathbf{L}^{F}$ where $\mathbf{L}=C_{\mathbf{G}}(\mathbf{T})$ is the centralizer of an F-stable torus in \mathbf{G}.

Examples for $\mathrm{GL}_{n}(q)$

- The split maximal torus $T_{1}=\left(\mathbb{F}_{q}^{\times}\right)^{n}$ of order $(q-1)^{n}$
$T_{1}=\left(\begin{array}{ccc}\mathbb{F}_{q}^{\times} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \mathbb{F}_{q}^{\times}\end{array}\right)$

The Coxeter torus $T_{c}=G L_{1}\left(\mathbb{F}_{q^{n}}\right)$ of order $q^{n}-1$.

Admissible subgroups

- The tori of G are the subgroups of the shape $T=\mathbf{T}(q)=\mathbf{T}^{F}$ where $\mathbf{T} \cong \overline{\mathbb{F}}_{q}^{\times} \times \cdots \times \overline{\mathbb{F}}_{q}^{\times}$is an F-stable torus of \mathbf{G}.
- The Levi subgroups of G are the subgroups of the shape $L=\mathbf{L}(q)=\mathbf{L}^{F}$ where $\mathbf{L}=C_{\mathbf{G}}(\mathbf{T})$ is the centralizer of an F-stable torus in \mathbf{G}.

Examples for $\mathrm{GL}_{n}(q)$

- The split maximal torus $T_{1}=\left(\mathbb{F}_{q}^{\times}\right)^{n}$ of order $(q-1)^{n}$

$$
T_{1}=\left(\begin{array}{ccc}
\mathbb{F}_{q}^{\times} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \mathbb{F}_{q}^{\times}
\end{array}\right)
$$

- The Coxeter torus $T_{c}=\mathrm{GL}_{1}\left(\mathbb{F}_{q^{n}}\right)$ of order $q^{n}-1$.
- Levi subgroups have shape $\mathrm{GL}_{n_{1}}\left(q^{a_{1}}\right) \times \cdots \times \mathrm{GL}_{n_{s}}\left(q^{a_{s}}\right)$

Lagrange theorem, generic p-groups

Lagrange theorem

Lagrange theorem, generic p-groups

Lagrange theorem

The (polynomial) order of an admissible subgroup (torus or Levi subgroup) divides the (polynomial) order of the group.

Lagrange theorem, generic p-groups

Lagrange theorem

The (polynomial) order of an admissible subgroup (torus or Levi subgroup) divides the (polynomial) order of the group.

The following definition is the generic version of p-subgroups of G.

Lagrange theorem, generic p-groups

Lagrange theorem

The (polynomial) order of an admissible subgroup (torus or Levi subgroup) divides the (polynomial) order of the group.

The following definition is the generic version of p-subgroups of G.
$\Phi_{d}(x)$-groups
For $\Phi_{d}(x)$ a cyclotomic polynomial, a $\Phi_{d}(x)$-group is a finite reductive group whose (polynomial) order is a power of $\Phi_{d}(x)$.

Lagrange theorem, generic p-groups

Lagrange theorem

The (polynomial) order of an admissible subgroup (torus or Levi subgroup) divides the (polynomial) order of the group.

The following definition is the generic version of p-subgroups of G.

$\Phi_{d}(x)$-groups

For $\Phi_{d}(x)$ a cyclotomic polynomial, a $\Phi_{d}(x)$-group is a finite reductive group whose (polynomial) order is a power of $\Phi_{d}(x)$. A $\Phi_{d}(x)$-group is a torus.

Lagrange theorem, generic p-groups

Lagrange theorem

The (polynomial) order of an admissible subgroup (torus or Levi subgroup) divides the (polynomial) order of the group.

The following definition is the generic version of p-subgroups of G.

$\Phi_{d}(x)$-groups

For $\Phi_{d}(x)$ a cyclotomic polynomial, a $\Phi_{d}(x)$-group is a finite reductive group whose (polynomial) order is a power of $\Phi_{d}(x)$. A $\Phi_{d}(x)$-group is a torus.

Examples for GL_{n}

Lagrange theorem, generic p-groups

Lagrange theorem

The (polynomial) order of an admissible subgroup (torus or Levi subgroup) divides the (polynomial) order of the group.

The following definition is the generic version of p-subgroups of G.

$\Phi_{d}(x)$-groups

For $\Phi_{d}(x)$ a cyclotomic polynomial, a $\Phi_{d}(x)$-group is a finite reductive group whose (polynomial) order is a power of $\Phi_{d}(x)$. $\mathrm{A} \Phi_{d}(x)$-group is a torus.

Examples for GL_{n}

- The split torus T_{1} is a $\Phi_{1}(x)$-subgroup.

Lagrange theorem, generic p-groups

Lagrange theorem

The (polynomial) order of an admissible subgroup (torus or Levi subgroup) divides the (polynomial) order of the group.

The following definition is the generic version of p-subgroups of G.

$\Phi_{d}(x)$-groups

For $\Phi_{d}(x)$ a cyclotomic polynomial, a $\Phi_{d}(x)$-group is a finite reductive group whose (polynomial) order is a power of $\Phi_{d}(x)$. A $\Phi_{d}(x)$-group is a torus.

Examples for GL_{n}

- The split torus T_{1} is a $\Phi_{1}(x)$-subgroup.
- The Coxeter torus T_{c} (a cyclic group of order $q^{n}-1$) contains a $\Phi_{n}(x)$-subgroup.

Sylow theorems

Sylow theorems

(1) Maximal $\Phi_{d}(x)$-subgroups ("Sylow $\Phi_{d}(x)$-subgroups") S_{d} of G have as (polynomial) order the contribution of $\Phi_{d}(x)$ to the (polynomial) order of G :

$$
\left|S_{d}\right|=\left|\mathbf{S}_{d}(q)\right|=\Phi_{d}(q)^{a(d)} .
$$

Sylow theorems

(1) Maximal $\Phi_{d}(x)$-subgroups ("Sylow $\Phi_{d}(x)$-subgroups") S_{d} of G have as (polynomial) order the contribution of $\Phi_{d}(x)$ to the (polynomial) order of G :

$$
\left|S_{d}\right|=\left|\mathbf{S}_{d}(q)\right|=\Phi_{d}(q)^{a(d)} .
$$

Notation: Set $L_{d}:=C_{G}\left(\mathbf{S}_{d}\right)$ and

Sylow theorems

(1) Maximal $\Phi_{d}(x)$-subgroups ("Sylow $\Phi_{d}(x)$-subgroups") S_{d} of G have as (polynomial) order the contribution of $\Phi_{d}(x)$ to the (polynomial) order of G :

$$
\left|S_{d}\right|=\left|\mathbf{S}_{d}(q)\right|=\Phi_{d}(q)^{a(d)} .
$$

Notation: Set $L_{d}:=C_{G}\left(\mathbf{S}_{d}\right)$ and $\quad N_{d}:=N_{G}\left(\mathbf{S}_{d}\right)=N_{G}\left(\mathbf{L}_{d}\right)$

Sylow theorems

(1) Maximal $\Phi_{d}(x)$-subgroups ("Sylow $\Phi_{d}(x)$-subgroups") S_{d} of G have as (polynomial) order the contribution of $\Phi_{d}(x)$ to the (polynomial) order of G :

$$
\left|S_{d}\right|=\left|\mathbf{S}_{d}(q)\right|=\Phi_{d}(q)^{a(d)}
$$

Notation : Set $L_{d}:=C_{G}\left(\mathbf{S}_{d}\right)$ and $N_{d}:=N_{G}\left(\mathbf{S}_{d}\right)=N_{G}\left(\mathbf{L}_{d}\right)$
(2) Sylow $\Phi_{d}(x)$-subgroups are all conjugate by G.

Sylow theorems

(1) Maximal $\Phi_{d}(x)$-subgroups ("Sylow $\Phi_{d}(x)$-subgroups") S_{d} of G have as (polynomial) order the contribution of $\Phi_{d}(x)$ to the (polynomial) order of G :

$$
\left|S_{d}\right|=\left|\mathbf{S}_{d}(q)\right|=\Phi_{d}(q)^{a(d)}
$$

Notation: Set $L_{d}:=C_{G}\left(\mathbf{S}_{d}\right)$ and $N_{d}:=N_{G}\left(\mathbf{S}_{d}\right)=N_{G}\left(\mathbf{L}_{d}\right)$
(2) Sylow $\Phi_{d}(x)$-subgroups are all conjugate by G.
(3) The (polynomial) index $\left|G: N_{d}\right|$ is congruent to 1 modulo $\Phi_{d}(x)$.

Sylow theorems

(1) Maximal $\Phi_{d}(x)$-subgroups ("Sylow $\Phi_{d}(x)$-subgroups") S_{d} of G have as (polynomial) order the contribution of $\Phi_{d}(x)$ to the (polynomial) order of G :

$$
\left|S_{d}\right|=\left|\mathbf{S}_{d}(q)\right|=\Phi_{d}(q)^{a(d)}
$$

Notation: Set $L_{d}:=C_{G}\left(\mathbf{S}_{d}\right)$ and $N_{d}:=N_{G}\left(\mathbf{S}_{d}\right)=N_{G}\left(\mathbf{L}_{d}\right)$
(2) Sylow $\Phi_{d}(x)$-subgroups are all conjugate by G.
(3) The (polynomial) index $\left|G: N_{d}\right|$ is congruent to 1 modulo $\Phi_{d}(x)$.
(4) $W_{d}:=N_{d} / L_{d}$ is a true finite group, a complex reflection group in its action on $V_{d}:=\mathbb{C} \otimes Y\left(\mathbf{S}_{d}\right)$.

Sylow theorems

(1) Maximal $\Phi_{d}(x)$-subgroups ("Sylow $\Phi_{d}(x)$-subgroups") S_{d} of G have as (polynomial) order the contribution of $\Phi_{d}(x)$ to the (polynomial) order of G :

$$
\left|S_{d}\right|=\left|\mathbf{S}_{d}(q)\right|=\Phi_{d}(q)^{a(d)}
$$

Notation: Set $L_{d}:=C_{G}\left(\mathbf{S}_{d}\right)$ and $N_{d}:=N_{G}\left(\mathbf{S}_{d}\right)=N_{G}\left(\mathbf{L}_{d}\right)$
(2) Sylow $\Phi_{d}(x)$-subgroups are all conjugate by G.
(3) The (polynomial) index $\left|G: N_{d}\right|$ is congruent to 1 modulo $\Phi_{d}(x)$.
(4) $W_{d}:=N_{d} / L_{d}$ is a true finite group, a complex reflection group in its action on $V_{d}:=\mathbb{C} \otimes Y\left(\mathbf{S}_{d}\right)$.
$=$ The group W_{d} is the d-cyclotomic Weyl group of the finite reductive group G.

Sylow theorems

(1) Maximal $\Phi_{d}(x)$-subgroups ("Sylow $\Phi_{d}(x)$-subgroups") S_{d} of G have as (polynomial) order the contribution of $\Phi_{d}(x)$ to the (polynomial) order of G :

$$
\left|S_{d}\right|=\left|\mathbf{S}_{d}(q)\right|=\Phi_{d}(q)^{a(d)}
$$

Notation: Set $L_{d}:=C_{G}\left(\mathbf{S}_{d}\right)$ and $N_{d}:=N_{G}\left(\mathbf{S}_{d}\right)=N_{G}\left(\mathbf{L}_{d}\right)$
(2) Sylow $\Phi_{d}(x)$-subgroups are all conjugate by G.
(3) The (polynomial) index $\left|G: N_{d}\right|$ is congruent to 1 modulo $\Phi_{d}(x)$.
(4) $W_{d}:=N_{d} / L_{d}$ is a true finite group, a complex reflection group in its action on $V_{d}:=\mathbb{C} \otimes Y\left(\mathbf{S}_{d}\right)$.
$=$ The group W_{d} is the d-cyclotomic Weyl group of the finite reductive group G.

$$
\text { Note that, for } d=1 \text { and } \varphi= \pm 1 \text {, one has } W_{1}=W
$$

Example for GL_{n}

Recall that

$$
\left|\mathrm{GL}_{n}\right|(x)=x^{\binom{n}{2}} \prod_{d=1}^{d=n} \Phi_{d}(x)^{[n / d]}
$$

Example for GL_{n}

Recall that

$$
\left|\mathrm{GL}_{n}\right|(x)=x^{\binom{n}{2}} \prod_{d=1}^{d=n} \Phi_{d}(x)^{[n / d]}
$$

For each $d(1 \leq d \leq n), \operatorname{GL}_{n}(q)$ contains a subtorus of (polynomial) order $\Phi_{d}(x)^{\left[\frac{n}{d}\right]}$

Example for GL_{n}

Recall that

$$
\left|\mathrm{GL}_{n}\right|(x)=x^{\binom{n}{2}} \prod_{d=1}^{d=n} \Phi_{d}(x)^{[n / d]}
$$

For each $d(1 \leq d \leq n), \mathrm{GL}_{n}(q)$ contains a subtorus of (polynomial) order $\Phi_{d}(x)^{\left[\frac{n}{d}\right]}$

Assume $n=m d+r$ with $r<d$. Then

Example for GL_{n}

Recall that

$$
\left|\mathrm{GL}_{n}\right|(x)=x^{\binom{n}{2}} \prod_{d=1}^{d=n} \Phi_{d}(x)^{[n / d]}
$$

For each $d(1 \leq d \leq n), G L_{n}(q)$ contains a subtorus of (polynomial) order $\Phi_{d}(x)^{\left[\frac{n}{d}\right]}$

Assume $n=m d+r$ with $r<d$. Then

$$
L_{d}=\mathrm{GL}_{1}\left(q^{d}\right)^{m} \times \mathrm{GL}_{r}(q)
$$

Example for GL_{n}

Recall that

$$
\left|\mathrm{GL}_{n}\right|(x)=x^{\binom{n}{2}} \prod_{d=1}^{d=n} \Phi_{d}(x)^{[n / d]}
$$

For each $d(1 \leq d \leq n), G L_{n}(q)$ contains a subtorus of (polynomial) order $\Phi_{d}(x)^{\left[\frac{n}{d}\right]}$

Assume $n=m d+r$ with $r<d$. Then

$$
L_{d}=\mathrm{GL}_{1}\left(q^{d}\right)^{m} \times \mathrm{GL}_{r}(q) \text { and } W_{d}=\mu_{d} \imath S_{m}
$$

Example for GL_{n}
Recall that

$$
\left|\mathrm{GL}_{n}\right|(x)=x^{\binom{n}{2}} \prod_{d=1}^{d=n} \Phi_{d}(x)^{[n / d]}
$$

For each $d(1 \leq d \leq n), G L_{n}(q)$ contains a subtorus of (polynomial) order $\Phi_{d}(x)^{\left[\frac{n}{d}\right]}$

Assume $n=m d+r$ with $r<d$. Then

$$
L_{d}=\mathrm{GL}_{1}\left(q^{d}\right)^{m} \times \mathrm{GL}_{r}(q) \text { and } W_{d}=\mu_{d} \imath \mathfrak{S}_{m}
$$

where $\boldsymbol{\mu}_{\boldsymbol{d}}$ denotes the cyclic group of all d-th roots of unity.

Generic and ordinary Sylow subgroups

Generic and ordinary Sylow subgroups

Let ℓ be a prime number.

Generic and ordinary Sylow subgroups

Let ℓ be a prime number.

- If ℓ divides $|G|=|\mathbb{G}|(q)$, let d be the order of q modulo ℓ (so ℓ divides $\left.\Phi_{d}(q)\right)$.

Generic and ordinary Sylow subgroups

Let ℓ be a prime number.

- If ℓ divides $|G|=|\mathbb{G}|(q)$, let d be the order of q modulo ℓ (so ℓ divides $\left.\Phi_{d}(q)\right)$.
- Let \mathbf{S}_{d} be a Sylow $\Phi_{d}(x)$-subgroup of \mathbf{G}, and let S_{ℓ} be the Sylow ℓ-subgroup of $\mathbf{S}_{d}(q)$.

Generic and ordinary Sylow subgroups

Let ℓ be a prime number.

- If ℓ divides $|G|=|\mathbb{G}|(q)$, let d be the order of q modulo ℓ (so ℓ divides $\left.\Phi_{d}(q)\right)$.
- Let \mathbf{S}_{d} be a Sylow $\Phi_{d}(x)$-subgroup of \mathbf{G}, and let S_{ℓ} be the Sylow ℓ-subgroup of $\mathbf{S}_{d}(q)$.
- Let W_{ℓ} be a Sylow ℓ-subgroup of the d-cyclotomic Weyl group W_{d}.

Generic and ordinary Sylow subgroups
Let ℓ be a prime number.

- If ℓ divides $|G|=|\mathbb{G}|(q)$, let d be the order of q modulo ℓ (so ℓ divides $\left.\Phi_{d}(q)\right)$.
- Let \mathbf{S}_{d} be a Sylow $\Phi_{d}(x)$-subgroup of \mathbf{G}, and let S_{ℓ} be the Sylow ℓ-subgroup of $\mathbf{S}_{d}(q)$.
- Let W_{ℓ} be a Sylow ℓ-subgroup of the d-cyclotomic Weyl group W_{d}.
(M. Enguehard)

Generic and ordinary Sylow subgroups

Let ℓ be a prime number.

- If ℓ divides $|G|=|\mathbb{G}|(q)$, let d be the order of q modulo ℓ (so ℓ divides $\left.\Phi_{d}(q)\right)$.
- Let \mathbf{S}_{d} be a Sylow $\Phi_{d}(x)$-subgroup of \mathbf{G}, and let S_{ℓ} be the Sylow ℓ-subgroup of $\mathbf{S}_{d}(q)$.
- Let W_{ℓ} be a Sylow ℓ-subgroup of the d-cyclotomic Weyl group W_{d}.

(M. Enguehard)

(1) A Sylow ℓ-subgroup of $N_{d}=N_{G}\left(\mathbf{S}_{d}\right)$ is a Sylow ℓ-subgroup of G.

Generic and ordinary Sylow subgroups

Let ℓ be a prime number.

- If ℓ divides $|G|=|\mathbb{G}|(q)$, let d be the order of q modulo ℓ (so ℓ divides $\left.\Phi_{d}(q)\right)$.
- Let \mathbf{S}_{d} be a Sylow $\Phi_{d}(x)$-subgroup of \mathbf{G}, and let S_{ℓ} be the Sylow ℓ-subgroup of $\mathbf{S}_{d}(q)$.
- Let W_{ℓ} be a Sylow ℓ-subgroup of the d-cyclotomic Weyl group W_{d}.

(M. Enguehard)

(1) A Sylow ℓ-subgroup of $N_{d}=N_{G}\left(\mathbf{S}_{d}\right)$ is a Sylow ℓ-subgroup of G.
(2) In general, such a Sylow is an extension of S_{ℓ} by W_{ℓ}.

Generic and ordinary Sylow subgroups

Let ℓ be a prime number.

- If ℓ divides $|G|=|\mathbb{G}|(q)$, let d be the order of q modulo ℓ (so ℓ divides $\left.\Phi_{d}(q)\right)$.
- Let \mathbf{S}_{d} be a Sylow $\Phi_{d}(x)$-subgroup of \mathbf{G}, and let S_{ℓ} be the Sylow ℓ-subgroup of $\mathbf{S}_{d}(q)$.
- Let W_{ℓ} be a Sylow ℓ-subgroup of the d-cyclotomic Weyl group W_{d}.

(M. Enguehard)

(1) A Sylow ℓ-subgroup of $N_{d}=N_{G}\left(\mathbf{S}_{d}\right)$ is a Sylow ℓ-subgroup of G.
(2) In general, such a Sylow is an extension of S_{ℓ} by W_{ℓ}.

If "not general", then a Sylow ℓ-subgroup of G an extension of $Z^{0}\left(L_{d}\right)_{\ell}$ by W_{ℓ}.

Unipotent characters, generic degrees

(1) The set $\operatorname{Un}(G)$ of unipotent characters of G is parametrized by a "generic" (i.e., independant of q) set Un($\mathbb{G})$. We denote by

$$
\operatorname{Un}(\mathbb{G}) \rightarrow \operatorname{Un}(G), \quad \rho \mapsto \rho_{q}
$$

that parametrization.

Unipotent characters, generic degrees

(1) The set $\operatorname{Un}(G)$ of unipotent characters of G is parametrized by a "generic" (i.e., independant of q) set Un($\mathbb{G})$. We denote by

$$
\operatorname{Un}(\mathbb{G}) \rightarrow \operatorname{Un}(G), \quad \rho \mapsto \rho_{q}
$$

that parametrization.
Example for $G L_{n}: \operatorname{Un}\left(G L_{n}\right)$ is the set of all partitions of n.

Unipotent characters, generic degrees

(1) The set $\operatorname{Un}(G)$ of unipotent characters of G is parametrized by a "generic" (i.e., independant of q) set Un($\mathbb{G})$. We denote by

$$
\operatorname{Un}(\mathbb{G}) \rightarrow \operatorname{Un}(G), \rho \mapsto \rho_{q}
$$

that parametrization.
Example for $G L_{n}: \operatorname{Un}\left(G L_{n}\right)$ is the set of all partitions of n.
(2) Generic degree: For $\rho \in \operatorname{Un}(\mathbb{G})$, there exists $\operatorname{Deg}_{\rho}(x) \in \mathbb{Q}[x]$ such that

$$
\left.\operatorname{Deg}_{\rho}(x)\right|_{x=q}=\rho_{q}(1)
$$

Unipotent characters, generic degrees

(1) The set $\operatorname{Un}(G)$ of unipotent characters of G is parametrized by a "generic" (i.e., independant of q) set Un(\mathbb{G}). We denote by

$$
\operatorname{Un}(\mathbb{G}) \rightarrow \operatorname{Un}(G), \quad \rho \mapsto \rho_{q}
$$

that parametrization.
Example for $G L_{n}: \operatorname{Un}\left(\mathrm{GL}_{n}\right)$ is the set of all partitions of n.
(2) Generic degree : For $\rho \in \operatorname{Un}(\mathbb{G})$, there exists $\operatorname{Deg}_{\rho}(x) \in \mathbb{Q}[x]$ such that

$$
\left.\operatorname{Deg}_{\rho}(x)\right|_{x=q}=\rho_{q}(1)
$$

Example for GL_{n} :

Unipotent characters, generic degrees

(1) The set $\operatorname{Un}(G)$ of unipotent characters of G is parametrized by a "generic" (i.e., independant of q) set Un(\mathbb{G}). We denote by

$$
\operatorname{Un}(\mathbb{G}) \rightarrow \operatorname{Un}(G), \quad \rho \mapsto \rho_{q}
$$

that parametrization.
Example for $G L_{n}: \operatorname{Un}\left(\mathrm{GL}_{n}\right)$ is the set of all partitions of n.
(2) Generic degree: For $\rho \in \operatorname{Un}(\mathbb{G})$, there exists $\operatorname{Deg}_{\rho}(x) \in \mathbb{Q}[x]$ such that

$$
\left.\operatorname{Deg}_{\rho}(x)\right|_{x=q}=\rho_{q}(1)
$$

Example for GL_{n} : For $\lambda=\left(\lambda_{1} \leq \cdots \leq \lambda_{m}\right)$ a partition of n, let $\beta_{i}: \lambda_{i}+i-1$.

Unipotent characters, generic degrees

(1) The set $\operatorname{Un}(G)$ of unipotent characters of G is parametrized by a "generic" (i.e., independant of q) set Un(\mathbb{G}). We denote by

$$
\operatorname{Un}(\mathbb{G}) \rightarrow \operatorname{Un}(G), \quad \rho \mapsto \rho_{q}
$$

that parametrization.
Example for $G L_{n}: \operatorname{Un}\left(G L_{n}\right)$ is the set of all partitions of n.
(2) Generic degree: For $\rho \in \operatorname{Un}(\mathbb{G})$, there exists $\operatorname{Deg}_{\rho}(x) \in \mathbb{Q}[x]$ such that

$$
\left.\operatorname{Deg}_{\rho}(x)\right|_{x=q}=\rho_{q}(1)
$$

Example for GL_{n} : For $\lambda=\left(\lambda_{1} \leq \cdots \leq \lambda_{m}\right)$ a partition of n, let $\beta_{i}: \lambda_{i}+i-1$. Then

$$
\operatorname{Deg}_{\lambda}(x)=\frac{(x-1) \cdots\left(x^{n}-1\right) \prod_{j>i}\left(x^{\beta_{j}}-x^{\beta_{i}}\right)}{x^{\binom{m-1}{2}+\binom{(-2}{2}+\cdots} \prod_{i} \prod_{j=1}^{\beta_{i}}\left(x^{j}-1\right)} .
$$

(3) The (polynomial) degree $\operatorname{Deg}_{\rho}(x)$ of a unipotent character divides the (polynomial) order $|\mathbb{G}|(x)$.
(3) The (polynomial) degree $\operatorname{Deg}_{\rho}(x)$ of a unipotent character divides the (polynomial) order $|\mathbb{G}|(x)$.
(4) More: character values!
(3) The (polynomial) degree $\operatorname{Deg}_{\rho}(x)$ of a unipotent character divides the (polynomial) order $|\mathbb{G}|(x)$.
(9) More: character values! In $\mathrm{GL}_{n}(q)$, unipotent classes are also parametrized by partitions of n.
(3) The (polynomial) degree $\operatorname{Deg}_{\rho}(x)$ of a unipotent character divides the (polynomial) order $|\mathbb{G}|(x)$.
(9) More: character values! In $\mathrm{GL}_{n}(q)$, unipotent classes are also parametrized by partitions of n. For λ and μ partitions of n, let λ_{q} be the corresponding unipotent character of $\mathrm{GL}_{n}(q)$,
(3) The (polynomial) degree $\operatorname{Deg}_{\rho}(x)$ of a unipotent character divides the (polynomial) order $|\mathbb{G}|(x)$.
(9) More: character values! In $\mathrm{GL}_{n}(q)$, unipotent classes are also parametrized by partitions of n. For λ and μ partitions of n, let λ_{q} be the corresponding unipotent character of $\mathrm{GL}_{n}(q)$, and let u_{q}^{μ} be a unipotent element of $\mathrm{GL}_{n}(q)$ of type μ.
(3) The (polynomial) degree $\operatorname{Deg}_{\rho}(x)$ of a unipotent character divides the (polynomial) order $|\mathbb{G}|(x)$.
(9) More: character values! In $\mathrm{GL}_{n}(q)$, unipotent classes are also parametrized by partitions of n. For λ and μ partitions of n, let λ_{q} be the corresponding unipotent character of $\mathrm{GL}_{n}(q)$, and let u_{q}^{μ} be a unipotent element of $\mathrm{GL}_{n}(q)$ of type μ.

There exists a polynomial $V_{\lambda, \mu}(x)$ such that $\lambda_{q}\left(u_{q}^{\mu}\right)=\left.V_{\lambda, \mu}(x)\right|_{x=q}$.
(3) The (polynomial) degree $\operatorname{Deg}_{\rho}(x)$ of a unipotent character divides the (polynomial) order $|\mathbb{G}|(x)$.
(9) More: character values! In $\mathrm{GL}_{n}(q)$, unipotent classes are also parametrized by partitions of n. For λ and μ partitions of n, let λ_{q} be the corresponding unipotent character of $\mathrm{GL}_{n}(q)$, and let u_{q}^{μ} be a unipotent element of $\mathrm{GL}_{n}(q)$ of type μ.

There exists a polynomial $V_{\lambda, \mu}(x)$ such that $\lambda_{q}\left(u_{q}^{\mu}\right)=\left.V_{\lambda, \mu}(x)\right|_{x=q}$.
(6) More: $\mathrm{U}_{n}(q)=G L_{n}(-q)$!
(3) The (polynomial) degree $\operatorname{Deg}_{\rho}(x)$ of a unipotent character divides the (polynomial) order $|\mathbb{G}|(x)$.
(9) More: character values! In $\mathrm{GL}_{n}(q)$, unipotent classes are also parametrized by partitions of n. For λ and μ partitions of n, let λ_{q} be the corresponding unipotent character of $\mathrm{GL}_{n}(q)$, and let u_{q}^{μ} be a unipotent element of $G L_{n}(q)$ of type μ.

There exists a polynomial $V_{\lambda, \mu}(x)$ such that $\lambda_{q}\left(u_{q}^{\mu}\right)=\left.V_{\lambda, \mu}(x)\right|_{x=q}$.
(9) More: $\mathrm{U}_{n}(q)=G L_{n}(-q)$! In $\mathrm{U}_{n}(q)$, unipotent classes and unipotent characters are parametrized by partitions of n as well.
(3) The (polynomial) degree $\operatorname{Deg}_{\rho}(x)$ of a unipotent character divides the (polynomial) order $|\mathbb{G}|(x)$.
(9) More : character values! In $\mathrm{GL}_{n}(q)$, unipotent classes are also parametrized by partitions of n. For λ and μ partitions of n, let λ_{q} be the corresponding unipotent character of $\mathrm{GL}_{n}(q)$, and let u_{q}^{μ} be a unipotent element of $G L_{n}(q)$ of type μ.

There exists a polynomial $V_{\lambda, \mu}(x)$ such that $\lambda_{q}\left(u_{q}^{\mu}\right)=\left.V_{\lambda, \mu}(x)\right|_{x=q}$.
(6) More: $\mathrm{U}_{n}(q)=G L_{n}(-q)$! In $\mathrm{U}_{n}(q)$, unipotent classes and unipotent characters are parametrized by partitions of n as well. For λ and μ partitions of n, let $\lambda_{U_{n}(q)}$ be the corresponding unipotent character,
(3) The (polynomial) degree $\operatorname{Deg}_{\rho}(x)$ of a unipotent character divides the (polynomial) order $|\mathbb{G}|(x)$.
(9) More : character values! In $\mathrm{GL}_{n}(q)$, unipotent classes are also parametrized by partitions of n. For λ and μ partitions of n, let λ_{q} be the corresponding unipotent character of $\mathrm{GL}_{n}(q)$, and let u_{q}^{μ} be a unipotent element of $G L_{n}(q)$ of type μ.

There exists a polynomial $V_{\lambda, \mu}(x)$ such that $\lambda_{q}\left(u_{q}^{\mu}\right)=\left.V_{\lambda, \mu}(x)\right|_{x=q}$.
(6) More: $\mathrm{U}_{n}(q)=G L_{n}(-q)$! In $\mathrm{U}_{n}(q)$, unipotent classes and unipotent characters are parametrized by partitions of n as well. For λ and μ partitions of n, let $\lambda_{U_{n}(q)}$ be the corresponding unipotent character, and let $u_{\mathrm{U}_{n}(q)}^{\mu}$ be a unipotent element of type μ.
(3) The (polynomial) degree $\operatorname{Deg}_{\rho}(x)$ of a unipotent character divides the (polynomial) order $|\mathbb{G}|(x)$.
(9) More: character values! In $\mathrm{GL}_{n}(q)$, unipotent classes are also parametrized by partitions of n. For λ and μ partitions of n, let λ_{q} be the corresponding unipotent character of $\mathrm{GL}_{n}(q)$, and let u_{q}^{μ} be a unipotent element of $G L_{n}(q)$ of type μ.

There exists a polynomial $V_{\lambda, \mu}(x)$ such that $\lambda_{q}\left(u_{q}^{\mu}\right)=\left.V_{\lambda, \mu}(x)\right|_{x=q}$.
(6) More: $\mathrm{U}_{n}(q)=G L_{n}(-q)$! In $\mathrm{U}_{n}(q)$, unipotent classes and unipotent characters are parametrized by partitions of n as well. For λ and μ partitions of n, let $\lambda_{U_{n}(q)}$ be the corresponding unipotent character, and let $u_{\mathrm{U}_{n}(q)}^{\mu}$ be a unipotent element of type μ.

Ennola :

$$
\lambda_{U_{n}(q)}\left(u_{U_{n}(q)}^{\mu}\right)= \pm\left. V_{\lambda, \mu}(x)\right|_{x=-q}
$$

More generic evidence

More generic evidence

Lots of other behaviors or data for $\mathrm{GL}_{n}(q)$ may be viewed as obtained from its type GL_{n} evaluated at $x=q$.

More generic evidence

Lots of other behaviors or data for $\mathrm{GL}_{n}(q)$ may be viewed as obtained from its type $G L_{n}$ evaluated at $x=q$.

- The ℓ-modular representation theory of G (here for simplicity we only consider the type GL_{n}).

More generic evidence

Lots of other behaviors or data for $\mathrm{GL}_{n}(q)$ may be viewed as obtained from its type GL_{n} evaluated at $x=q$.

- The ℓ-modular representation theory of G (here for simplicity we only consider the type GL_{n}).
One may define a notion of $\Phi_{d}(x)$-blocks of characters of GL_{n}

More generic evidence

Lots of other behaviors or data for $\mathrm{GL}_{n}(q)$ may be viewed as obtained from its type GL_{n} evaluated at $x=q$.

- The ℓ-modular representation theory of G (here for simplicity we only consider the type GL_{n}).
One may define a notion of $\Phi_{d}(x)$-blocks of characters of $G L_{n}$ (the so-called $\Phi_{d}(x)$-Harish-Chandra theory).

More generic evidence

Lots of other behaviors or data for $\mathrm{GL}_{n}(q)$ may be viewed as obtained from its type GL_{n} evaluated at $x=q$.

- The ℓ-modular representation theory of G (here for simplicity we only consider the type GL_{n}).
One may define a notion of $\Phi_{d}(x)$-blocks of characters of GL_{n} (the so-called $\Phi_{d}(x)$-Harish-Chandra theory). Now, given ℓ which divides $\Phi_{d}(q)$, in order to find the ℓ-blocks :

More generic evidence

Lots of other behaviors or data for $\mathrm{GL}_{n}(q)$ may be viewed as obtained from its type GL_{n} evaluated at $x=q$.

- The ℓ-modular representation theory of G (here for simplicity we only consider the type GL_{n}).
One may define a notion of $\Phi_{d}(x)$-blocks of characters of GL_{n} (the so-called $\Phi_{d}(x)$-Harish-Chandra theory). Now, given ℓ which divides $\Phi_{d}(q)$, in order to find the ℓ-blocks :
- for $\mathrm{GL}_{n}(q)$, set $x=q$,

More generic evidence

Lots of other behaviors or data for $\mathrm{GL}_{n}(q)$ may be viewed as obtained from its type GL_{n} evaluated at $x=q$.

- The ℓ-modular representation theory of G (here for simplicity we only consider the type GL_{n}).
One may define a notion of $\Phi_{d}(x)$-blocks of characters of GL_{n} (the so-called $\Phi_{d}(x)$-Harish-Chandra theory). Now, given ℓ which divides $\Phi_{d}(q)$, in order to find the ℓ-blocks :
- for $\mathrm{GL}_{n}(q)$, set $x=q$,
- for $U_{n}(q)$, set $x=-q$.

More generic evidence

Lots of other behaviors or data for $\mathrm{GL}_{n}(q)$ may be viewed as obtained from its type GL_{n} evaluated at $x=q$.

- The ℓ-modular representation theory of G (here for simplicity we only consider the type GL_{n}).
One may define a notion of $\Phi_{d}(x)$-blocks of characters of GL_{n} (the so-called $\Phi_{d}(x)$-Harish-Chandra theory). Now, given ℓ which divides $\Phi_{d}(q)$, in order to find the ℓ-blocks :
- for $\mathrm{GL}_{n}(q)$, set $x=q$,
- for $U_{n}(q)$, set $x=-q$.
- For each element $w \in W$, one may define the Deligne-Lusztig variety \mathbf{X}_{w}, a subvariety of \mathbf{G} / \mathbf{B}, acted on by G.

More generic evidence

Lots of other behaviors or data for $\mathrm{GL}_{n}(q)$ may be viewed as obtained from its type GL_{n} evaluated at $x=q$.

- The ℓ-modular representation theory of G (here for simplicity we only consider the type GL_{n}).
One may define a notion of $\Phi_{d}(x)$-blocks of characters of GL_{n} (the so-called $\Phi_{d}(x)$-Harish-Chandra theory). Now, given ℓ which divides $\Phi_{d}(q)$, in order to find the ℓ-blocks :
- for $\mathrm{GL}_{n}(q)$, set $x=q$,
- for $U_{n}(q)$, set $x=-q$.
- For each element $w \in W$, one may define the Deligne-Lusztig variety \mathbf{X}_{w}, a subvariety of \mathbf{G} / \mathbf{B}, acted on by G.

Then, for $\ell \nmid q$, the ℓ-adic cohomology $\mathbb{Q}_{\ell} G$-modules $\mathrm{H}_{c}^{i}\left(\mathbf{X}_{w}, \mathbb{Q}_{\ell}\right)$

More generic evidence

Lots of other behaviors or data for $\mathrm{GL}_{n}(q)$ may be viewed as obtained from its type GL_{n} evaluated at $x=q$.

- The ℓ-modular representation theory of G (here for simplicity we only consider the type GL_{n}).
One may define a notion of $\Phi_{d}(x)$-blocks of characters of GL_{n} (the so-called $\Phi_{d}(x)$-Harish-Chandra theory). Now, given ℓ which divides $\Phi_{d}(q)$, in order to find the ℓ-blocks :
- for $\mathrm{GL}_{n}(q)$, set $x=q$,
- for $U_{n}(q)$, set $x=-q$.
- For each element $w \in W$, one may define the Deligne-Lusztig variety \mathbf{X}_{w}, a subvariety of \mathbf{G} / \mathbf{B}, acted on by G.

Then, for $\ell \nmid q$, the ℓ-adic cohomology $\mathbb{Q}_{\ell} G$-modules $H_{c}^{i}\left(\mathbf{X}_{w}, \mathbb{Q}_{\ell}\right)$ should also come from a generic... ?? $\mathrm{H}_{c}^{i}\left(\mathbb{X}_{w}\right)(x)$??

Complex reflection groups

Complex reflection groups

A finite reflection group on a field K is a finite subgroup of $\mathrm{GL}_{K}(V)$ (V a finite dimensional K-vector space) generated by reflections, i.e., linear maps represented by

$$
\left(\begin{array}{cccc}
\zeta & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

Complex reflection groups

A finite reflection group on a field K is a finite subgroup of $\mathrm{GL}_{K}(V)$ (V a finite dimensional K-vector space) generated by reflections, i.e., linear maps represented by

$$
\left(\begin{array}{cccc}
\zeta & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

- A finite reflection group on \mathbb{R} is called a Coxeter group.

Complex reflection groups

A finite reflection group on a field K is a finite subgroup of $\mathrm{GL}_{K}(V)$ (V a finite dimensional K-vector space) generated by reflections, i.e., linear maps represented by

$$
\left(\begin{array}{cccc}
\zeta & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

- A finite reflection group on \mathbb{R} is called a Coxeter group.
- A finite reflection group on \mathbb{Q} is called a Weyl group.

Complex reflection groups

A finite reflection group on a field K is a finite subgroup of $\mathrm{GL}_{K}(V)$ (V a finite dimensional K-vector space) generated by reflections, i.e., linear maps represented by

$$
\left(\begin{array}{cccc}
\zeta & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

- A finite reflection group on \mathbb{R} is called a Coxeter group.
- A finite reflection group on \mathbb{Q} is called a Weyl group.
- Irreducible finite reflection groups over \mathbb{C} have been classified (Shephard-Todd, 1954).

The Spetses dream (M. B. - G. Malle - J. Michel)

The Spetses dream (M. B. - G. Malle - J. Michel)

- Try to treat a complex reflection group as a Weyl group:

The Spetses dream (M. B. - G. Malle - J. Michel)

- Try to treat a complex reflection group as a Weyl group: try to build a family of objects providing polynomials depending only on the type \mathbb{G} associated with a complex reflection group...

The Spetses dream (M. B. - G. Malle - J. Michel)

- Try to treat a complex reflection group as a Weyl group: try to build a family of objects providing polynomials depending only on the type \mathbb{G} associated with a complex reflection group... "like" the finite reductive groups are associated with their Weyl group.

The Spetses dream (M. B. - G. Malle - J. Michel)

- Try to treat a complex reflection group as a Weyl group: try to build a family of objects providing polynomials depending only on the type \mathbb{G} associated with a complex reflection group... "like" the finite reductive groups are associated with their Weyl group.
- Try at least to build unipotent characters of \mathbb{G}, or at least to build their degrees (polynomials in x), satisfying all the machinery of Harish-Chandra series, families, Frobenius eigenvalues, Fourier matrices...

The Spetses dream (M. B. - G. Malle - J. Michel)

- Try to treat a complex reflection group as a Weyl group: try to build a family of objects providing polynomials depending only on the type \mathbb{G} associated with a complex reflection group... "like" the finite reductive groups are associated with their Weyl group.
- Try at least to build unipotent characters of \mathbb{G}, or at least to build their degrees (polynomials in x), satisfying all the machinery of Harish-Chandra series, families, Frobenius eigenvalues, Fourier matrices...
- Lusztig knew already a solution for Coxeter groups which are not Weyl groups (except the Fourier matrix for H_{4} which was determined by Malle in 1994).

The Spetses dream (M. B. - G. Malle - J. Michel)

- Try to treat a complex reflection group as a Weyl group: try to build a family of objects providing polynomials depending only on the type \mathbb{G} associated with a complex reflection group... "like" the finite reductive groups are associated with their Weyl group.
- Try at least to build unipotent characters of \mathbb{G}, or at least to build their degrees (polynomials in x), satisfying all the machinery of Harish-Chandra series, families, Frobenius eigenvalues, Fourier matrices...
- Lusztig knew already a solution for Coxeter groups which are not Weyl groups (except the Fourier matrix for H_{4} which was determined by Malle in 1994).
- Malle gave a solution for imprimitive spetsial complex reflection groups in 1995.

The Spetses dream (M. B. - G. Malle - J. Michel)

- Try to treat a complex reflection group as a Weyl group: try to build a family of objects providing polynomials depending only on the type \mathbb{G} associated with a complex reflection group... "like" the finite reductive groups are associated with their Weyl group.
- Try at least to build unipotent characters of \mathbb{G}, or at least to build their degrees (polynomials in x), satisfying all the machinery of Harish-Chandra series, families, Frobenius eigenvalues, Fourier matrices...
- Lusztig knew already a solution for Coxeter groups which are not Weyl groups (except the Fourier matrix for H_{4} which was determined by Malle in 1994).
- Malle gave a solution for imprimitive spetsial complex reflection groups in 1995.
- Stating now a long series of precise axioms - many of technical nature - we can now show that there is a unique solution for all primitive spetsial complex reflection groups.

Spetsial groups

Spetsial groups in red.
$G(e, 1, r), G(e, e, r)$, and

Group G_{n}	4	5	6	7	8	9	10	11	12	13	14	15	16
Rank	2	2	2	2	2	2	2	2	2	2	2	2	2

Group G_{n} Rank	17	18	19	20	21	22	23	24	25	26	2	
	2	2	2	2	2	2	3	3	3	3		3
Remark							H_{3}					

$$
\begin{array}{|r|rrrrrrrrrr|}
\hline \text { Group } G_{n} & 28 & 29 & 30 & 31 & 32 & 33 & 34 & 35 & 36 & 37 \\
\text { Rank } & 4 & 4 & 4 & 4 & 4 & 5 & 6 & 6 & 7 & 8 \\
\hline \text { Remark } & F_{4} & & H_{4} & & & & & E_{6} & E_{7} & E_{8} \\
\hline
\end{array}
$$

The case of the cyclic group of order $3:\left\{1, \zeta, \zeta^{2}\right\}$

Unipotent degrees and Frobenius eigenvalues

The case of the cyclic group of order $3:\left\{1, \zeta, \zeta^{2}\right\}$

Unipotent degrees and Frobenius eigenvalues

ρ	$\operatorname{Deg}(\rho)$	$\operatorname{Fr}(\rho)$
χ_{a}	1	1
χ_{b}	$\frac{1}{1-\zeta^{2}} x\left(x-\zeta^{2}\right)$	1
χ_{c}	$\frac{1}{1-\zeta} x(x-\zeta)$	1
γ	$\frac{\zeta}{1-\zeta^{2}} x(x-1)$	ζ^{2}

The case of the cyclic group of order $3:\left\{1, \zeta, \zeta^{2}\right\}$

Unipotent degrees and Frobenius eigenvalues

ρ	$\operatorname{Deg}(\rho)$	$\operatorname{Fr}(\rho)$
χ_{a}	1	1
χ_{b}	$\frac{1}{1-\zeta^{2}} x\left(x-\zeta^{2}\right)$	1
χ_{c}	$\frac{1}{1-\zeta} x(x-\zeta)$	1
γ	$\frac{\zeta}{1-\zeta^{2}} x(x-1)$	ζ^{2}

Two families: $\left\{\chi_{a}\right\},\left\{\chi_{b}, \chi_{c}, \gamma\right\}$

The case of the cyclic group of order $3:\left\{1, \zeta, \zeta^{2}\right\}$

Unipotent degrees and Frobenius eigenvalues

ρ	$\operatorname{Deg}(\rho)$	$\operatorname{Fr}(\rho)$
χ_{a}	1	1
χ_{b}	$\frac{1}{1-\zeta^{2}} x\left(x-\zeta^{2}\right)$	1
χ_{c}	$\frac{1}{1-\zeta} x(x-\zeta)$	1
γ	$\frac{\zeta}{1-\zeta^{2}} x(x-1)$	ζ^{2}

Two families: $\left\{\chi_{a}\right\},\left\{\chi_{b}, \chi_{c}, \gamma\right\}$
Where is the Steinberg character ?

Unipotent characters for G_{4}

(3)-(3)

Unipotent characters for G_{4}

In red $=$ the Φ_{6}^{\prime}-series.

- = the Φ_{4}-series.

Character	Degree	FakeDegree	Eigenvalue	Family
$\bullet \phi_{1,0}$	$\bullet 1$	1	1	C_{1}
$\phi_{2,1}$	$\frac{3-\sqrt{-3}}{6} q \Phi_{3}^{\prime} \Phi_{4} \Phi_{6}^{\prime \prime}$	$q \Phi_{4}$	1	$X_{3} .01$
$\phi_{2,3}$	$\frac{3+\sqrt{-3}}{6} q \Phi_{3}^{\prime \prime} \Phi_{4} \Phi_{6}^{\prime}$	$q^{3} \Phi_{4}$	1	$X_{3} .02$
$Z_{3}: 2$	$\frac{\sqrt{-3}}{3} q \Phi_{1} \Phi_{2} \Phi_{4}$	0	ζ_{3}^{2}	$X_{3} .12$
$\bullet \phi_{3,2}$	$\bullet q^{2} \Phi_{3} \Phi_{6}$	$q^{2} \Phi_{3} \Phi_{6}$	1	C_{1}
$\phi_{1,4}$	$\frac{-\sqrt{-3}}{6} q^{4} \Phi_{3}^{\prime \prime} \Phi_{4} \Phi_{6}^{\prime \prime}$	q^{4}	1	$X_{5} .1$
$\phi_{1,8}$	$\frac{\sqrt{-3}}{6} q^{4} \Phi_{3}^{\prime} \Phi_{4} \Phi_{6}^{\prime}$	q^{8}	1	$X_{5.2}$
$\bullet \phi_{2,5}$	$\bullet \frac{1}{2} q^{4} \Phi_{2}^{2} \Phi_{6}$	$q^{5} \Phi_{4}$	1	$X_{5.3}$
$Z_{3}: 11$	$\frac{\sqrt{-3}}{3} q^{4} \Phi_{1} \Phi_{2} \Phi_{4}$	0	ζ_{3}^{2}	$X_{5} .4$
$\bullet G_{4}$	$\bullet \frac{1}{2} q^{4} \Phi_{1}^{2} \Phi_{3}$	0	-1	$X_{5.5}$
$\Phi_{3}^{\prime}, \Phi_{3}^{\prime \prime}\left(\right.$ resp. $\left.\Phi_{6}^{\prime}, \Phi_{6}^{\prime \prime}\right)$ are factors of $\Phi_{3}\left(\right.$ resp $\left.\Phi_{6}\right)$ in $\mathbb{Q}\left(\zeta_{3}\right)$				

