$GL_n(x)$ for x an indeterminate ?

Michel Broué

Institut universitaire de France Université Paris-Diderot Paris 7 CNRS-Institut de Mathématiques de Jussieu

February 2012

Let q be a prime power. There is (up to *non unique* isomorphism) a single field with q elements, denoted \mathbb{F}_q .

Let q be a prime power. There is (up to *non unique* isomorphism) a single field with q elements, denoted \mathbb{F}_q .

Since Chevalley (1955), one knows how to construct Lie groups over \mathbb{F}_q , analog of the usual complex reductive Lie groups :

Let q be a prime power. There is (up to *non unique* isomorphism) a single field with q elements, denoted \mathbb{F}_q .

Since Chevalley (1955), one knows how to construct Lie groups over \mathbb{F}_q , analog of the usual complex reductive Lie groups :

$$\mathsf{GL}_n(\mathbb{F}_q) \; , \; \mathsf{O}_n(\mathbb{F}_q) \; , \; \mathsf{Sp}_n(\mathbb{F}_q) \; , \; \mathsf{U}_n(\mathbb{F}_q) \; , \ldots$$

Let q be a prime power. There is (up to *non unique* isomorphism) a single field with q elements, denoted \mathbb{F}_q .

Since Chevalley (1955), one knows how to construct Lie groups over \mathbb{F}_q , analog of the usual complex reductive Lie groups :

$$\mathsf{GL}_n(\mathbb{F}_q) \ , \ \mathsf{O}_n(\mathbb{F}_q) \ , \ \mathsf{Sp}_n(\mathbb{F}_q) \ , \ \mathsf{U}_n(\mathbb{F}_q) \ , \ldots$$

denoted respectively

$$\mathsf{GL}_n(q)$$
, $\mathsf{O}_n(q)$, $\mathsf{Sp}_n(q)$, $\mathsf{U}_n(q)$,...

Let q be a prime power. There is (up to *non unique* isomorphism) a single field with q elements, denoted \mathbb{F}_q .

Since Chevalley (1955), one knows how to construct Lie groups over \mathbb{F}_q , analog of the usual complex reductive Lie groups :

$$\mathsf{GL}_n(\mathbb{F}_q) \ , \ \mathsf{O}_n(\mathbb{F}_q) \ , \ \mathsf{Sp}_n(\mathbb{F}_q) \ , \ \mathsf{U}_n(\mathbb{F}_q) \ , \ldots$$

denoted respectively

$$\mathsf{GL}_n(q)\ ,\ \mathsf{O}_n(q)\ ,\ \mathsf{Sp}_n(q)\ ,\ \mathsf{U}_n(q)\ ,\ldots$$

For example

$$\mathsf{U}_{\mathit{n}}(q) := \left\{ \mathit{U} \in \mathsf{Mat}_{\mathit{n}}(\mathbb{F}_{q^2}) \mid \mathit{U}^{.\mathit{t}}\mathit{U}^* = 1
ight\} \,.$$

Let q be a prime power. There is (up to *non unique* isomorphism) a single field with q elements, denoted \mathbb{F}_q .

Since Chevalley (1955), one knows how to construct Lie groups over \mathbb{F}_q , analog of the usual complex reductive Lie groups :

$$\mathsf{GL}_n(\mathbb{F}_q)$$
, $\mathsf{O}_n(\mathbb{F}_q)$, $\mathsf{Sp}_n(\mathbb{F}_q)$, $\mathsf{U}_n(\mathbb{F}_q)$,...

denoted respectively

$$\mathsf{GL}_n(q)$$
, $\mathsf{O}_n(q)$, $\mathsf{Sp}_n(q)$, $\mathsf{U}_n(q)$,...

For example

$$\mathsf{U}_n(q) := \left\{ U \in \mathsf{Mat}_n(\mathbb{F}_{q^2}) \mid \ U.^t U^* = 1
ight\} \,.$$

There are also groups of exceptional types G_2 , F_4 , E_6 , E_7 , E_8 over \mathbb{F}_q .

Let q be a prime power. There is (up to *non unique* isomorphism) a single field with q elements, denoted \mathbb{F}_q .

Since Chevalley (1955), one knows how to construct Lie groups over \mathbb{F}_q , analog of the usual complex reductive Lie groups :

$$\mathsf{GL}_n(\mathbb{F}_q)$$
, $\mathsf{O}_n(\mathbb{F}_q)$, $\mathsf{Sp}_n(\mathbb{F}_q)$, $\mathsf{U}_n(\mathbb{F}_q)$,...

denoted respectively

$$\mathsf{GL}_n(q)\ ,\ \mathsf{O}_n(q)\ ,\ \mathsf{Sp}_n(q)\ ,\ \mathsf{U}_n(q)\ ,\ldots$$

For example

$$\mathsf{U}_{\mathit{n}}(q) := \left\{ \mathit{U} \in \mathsf{Mat}_{\mathit{n}}(\mathbb{F}_{q^2}) \mid \mathit{U}^{.\mathit{t}}\mathit{U}^* = 1
ight\} \,.$$

There are also groups of exceptional types G_2 , F_4 , E_6 , E_7 , E_8 over \mathbb{F}_q .

They can be viewed from the *algebraic groups* point of view, as follows.

• Let **G** be a connected reductive algebraic group over $\overline{\mathbb{F}}_q$, endowed with a Frobenius endomorphism F which defines an \mathbb{F}_q -rational structure.

Example:

 \mathbb{F}_q .

Example:

 \mathbb{F}_q .

Assume
$$\mathbf{G} = \mathsf{GL}_n(\overline{\mathbb{F}}_q)$$
 .

 $\blacktriangleright \; \mathsf{For} \; F \; : \; (a_{i,j}) \mapsto (a_{i,j}^q) \, ,$

Example:

Assume $\mathbf{G} = \mathsf{GL}_n(\overline{\mathbb{F}}_q)$.

▶ For $F: (a_{i,j}) \mapsto (a_{i,j}^q)$, $G = GL_n(q)$.

Example:

- ▶ For $F: (a_{i,j}) \mapsto (a_{i,j}^q)$, $G = GL_n(q)$.
- $\blacktriangleright \ \text{For} \ F: \ (a_{i,j}) \mapsto {}^t(a_{i,j}^q),$

Example:

- ▶ For $F: (a_{i,j}) \mapsto (a_{i,j}^q)$, $G = GL_n(q)$.
- $\qquad \qquad \quad \mathsf{For} \; F \, : \, (a_{i,j}) \mapsto {}^t(a_{i,j}^q), \; G = \mathsf{U}_n(q) \, .$

Example:

- ▶ For $F: (a_{i,j}) \mapsto (a_{i,j}^q)$, $G = \operatorname{GL}_n(q)$.
- ▶ For $F: (a_{i,j}) \mapsto {}^t(a_{i,j}^q), G = \mathsf{U}_n(q)$.
- Let $\mathbf{T} \cong \overline{\mathbb{F}}_q^{\times} \times \cdots \times \overline{\mathbb{F}}_q^{\times}$ be an F-stable maximal torus of \mathbf{G} .

Example:

- ▶ For $F: (a_{i,j}) \mapsto (a_{i,j}^q)$, $G = GL_n(q)$.
- ▶ For $F: (a_{i,j}) \mapsto {}^t(a_{i,j}^q), G = \mathsf{U}_n(q)$.
- Let $\mathbf{T} \cong \overline{\mathbb{F}}_q^{\times} \times \cdots \times \overline{\mathbb{F}}_q^{\times}$ be an F-stable maximal torus of \mathbf{G} .

 The Weyl group of \mathbf{G} is $W := N_{\mathbf{G}}(\mathbf{T})/\mathbf{T}$.

Example:

 \mathbb{F}_q .

Assume $\mathbf{G} = \operatorname{GL}_n(\overline{\mathbb{F}}_q)$.

- ▶ For $F: (a_{i,j}) \mapsto (a_{i,j}^q), G = GL_n(q)$.
- ▶ For $F: (a_{i,j}) \mapsto {}^t(a_{i,j}^q), G = \mathsf{U}_n(q)$.
- Let $\mathbf{T} \cong \overline{\mathbb{F}}_q^{\times} \times \cdots \times \overline{\mathbb{F}}_q^{\times}$ be an F-stable maximal torus of \mathbf{G} .

 The Weyl group of \mathbf{G} is $W := N_{\mathbf{G}}(\mathbf{T})/\mathbf{T}$.

For
$$\mathbf{G} = \operatorname{GL}_n(\overline{\mathbb{F}}_q)$$
 , $\mathbf{T} = \begin{pmatrix} \overline{\mathbb{F}}_q^{\times} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \overline{\mathbb{F}}_q^{\times} \end{pmatrix}$

Example:

 \mathbb{F}_q .

Assume $\mathbf{G} = \operatorname{GL}_n(\overline{\mathbb{F}}_a)$.

- ▶ For $F: (a_{i,j}) \mapsto (a_{i,j}^q), G = GL_n(q)$.
- ▶ For $F: (a_{i,j}) \mapsto {}^t(a_{i,j}^q), G = \mathsf{U}_n(q)$.
- Let $\mathbf{T} \cong \overline{\mathbb{F}}_q^{\times} \times \cdots \times \overline{\mathbb{F}}_q^{\times}$ be an F-stable maximal torus of \mathbf{G} .

 The Weyl group of \mathbf{G} is $W := N_{\mathbf{G}}(\mathbf{T})/\mathbf{T}$.

For
$$\mathbf{G} = \operatorname{GL}_n(\overline{\mathbb{F}}_q)$$
, $\mathbf{T} = \begin{pmatrix} \overline{\mathbb{F}}_q^{\times} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \overline{\mathbb{F}}_q^{\times} \end{pmatrix}$ and $\mathbf{W} = \mathfrak{S}_n$.

• Let $Y(\mathbf{T}) := \operatorname{Hom}(\overline{\mathbb{F}}_q^{\times}, \mathbf{T})$ be the group of co-characters of \mathbf{T} , a free \mathbb{Z} -module of finite rank.

- Let $Y(\mathbf{T}) := \operatorname{Hom}(\overline{\mathbb{F}}_q^{\times}, \mathbf{T})$ be the group of co-characters of \mathbf{T} , a free \mathbb{Z} -module of finite rank.
- Set $V := \mathbb{C} \otimes_{\mathbb{Z}} Y(T)$, a finite dimensional complex vector space.

- Let $Y(\mathbf{T}) := \operatorname{Hom}(\overline{\mathbb{F}}_q^{\times}, \mathbf{T})$ be the group of co-characters of \mathbf{T} , a free \mathbb{Z} -module of finite rank.
- Set $V := \mathbb{C} \otimes_{\mathbb{Z}} Y(\mathbf{T})$, a finite dimensional complex vector space. Then W acts on V as a reflection group, and the Frobenius endomorphism F acts on V as $q\varphi$, where φ is a finite order element of $N_{\mathrm{GL}(V)}(W)$.

- Let $Y(\mathbf{T}) := \operatorname{Hom}(\overline{\mathbb{F}}_q^{\times}, \mathbf{T})$ be the group of co-characters of \mathbf{T} , a free \mathbb{Z} -module of finite rank.
- Set $V := \mathbb{C} \otimes_{\mathbb{Z}} Y(\mathbf{T})$, a finite dimensional complex vector space. Then W acts on V as a reflection group, and the Frobenius endomorphism F acts on V as $q\varphi$, where φ is a finite order element of $N_{\mathrm{GL}(V)}(W)$.

- Let $Y(\mathbf{T}) := \operatorname{Hom}(\overline{\mathbb{F}}_q^{\times}, \mathbf{T})$ be the group of co-characters of \mathbf{T} , a free \mathbb{Z} -module of finite rank.
- Set $V := \mathbb{C} \otimes_{\mathbb{Z}} Y(\mathbf{T})$, a finite dimensional complex vector space. Then W acts on V as a reflection group, and the Frobenius endomorphism F acts on V as $q\varphi$, where φ is a finite order element of $N_{\mathsf{GL}(V)}(W)$.

- Let $Y(\mathbf{T}) := \operatorname{Hom}(\overline{\mathbb{F}}_q^{\times}, \mathbf{T})$ be the group of co-characters of \mathbf{T} , a free \mathbb{Z} -module of finite rank.
- Set $V := \mathbb{C} \otimes_{\mathbb{Z}} Y(\mathbf{T})$, a finite dimensional complex vector space. Then W acts on V as a reflection group, and the Frobenius endomorphism F acts on V as $q\varphi$, where φ is a finite order element of $N_{\mathsf{GL}(V)}(W)$.

The type of
$$G$$
 is $\mathbb{G} := (V, W\varphi)$.

Example:

▶ For $G = GL_n(q)$, its type is $\mathbb{G} = GL_n := (\mathbb{C}^n, \mathfrak{S}_n)$.

- Let $Y(\mathbf{T}) := \operatorname{Hom}(\overline{\mathbb{F}}_q^{\times}, \mathbf{T})$ be the group of co-characters of \mathbf{T} , a free \mathbb{Z} -module of finite rank.
- Set $V := \mathbb{C} \otimes_{\mathbb{Z}} Y(\mathbf{T})$, a finite dimensional complex vector space. Then W acts on V as a reflection group, and the Frobenius endomorphism F acts on V as $q\varphi$, where φ is a finite order element of $N_{\mathrm{GL}(V)}(W)$.

- ▶ For $G = GL_n(q)$, its type is $\mathbb{G} = GL_n := (\mathbb{C}^n, \mathfrak{S}_n)$.
- ▶ For $G = U_n(q)$, its type is $\mathbb{G} = U_n := (\mathbb{C}^n, -\mathfrak{S}_n)$.

- Let $Y(\mathbf{T}) := \operatorname{Hom}(\overline{\mathbb{F}}_q^{\times}, \mathbf{T})$ be the group of co-characters of \mathbf{T} , a free \mathbb{Z} -module of finite rank.
- Set $V := \mathbb{C} \otimes_{\mathbb{Z}} Y(\mathbf{T})$, a finite dimensional complex vector space. Then W acts on V as a reflection group, and the Frobenius endomorphism F acts on V as $q\varphi$, where φ is a finite order element of $N_{\mathrm{GL}(V)}(W)$.

Example:

- ▶ For $G = GL_n(q)$, its type is $\mathbb{G} = GL_n := (\mathbb{C}^n, \mathfrak{S}_n)$.
- ▶ For $G = U_n(q)$, its type is $\mathbb{G} = U_n := (\mathbb{C}^n, -\mathfrak{S}_n)$.

Main fact

Lots of data about $G = \mathbf{G}(q)$ are values at x = q of polynomials in x which depend only on the type \mathbb{G} .

- Let $Y(\mathbf{T}) := \operatorname{Hom}(\overline{\mathbb{F}}_q^{\times}, \mathbf{T})$ be the group of co-characters of \mathbf{T} , a free \mathbb{Z} -module of finite rank.
- Set $V := \mathbb{C} \otimes_{\mathbb{Z}} Y(\mathbf{T})$, a finite dimensional complex vector space. Then W acts on V as a reflection group, and the Frobenius endomorphism F acts on V as $q\varphi$, where φ is a finite order element of $N_{\mathrm{GL}(V)}(W)$.

Example:

- ▶ For $G = GL_n(q)$, its type is $\mathbb{G} = GL_n := (\mathbb{C}^n, \mathfrak{S}_n)$.
- ▶ For $G = U_n(q)$, its type is $\mathbb{G} = U_n := (\mathbb{C}^n, -\mathfrak{S}_n)$.

Main fact

Lots of data about $G = \mathbf{G}(q)$ are values at x = q of polynomials in x which depend only on the type \mathbb{G} .

As if there were an object $\mathbb{G}(x)$ such that $\mathbb{G}(x)|_{x=q} = \mathbf{G}(q)$.

Let
$$\mathbb{G} = (V, W\varphi)$$
.

Let $\mathbb{G} = (V, W\varphi)$.

R. Steinberg (1967) : There is a polynomial (element of $\mathbb{Z}[x]$)

$$|\mathbb{G}|(x) = x^N \prod_d \Phi_d(x)^{a(d)}$$

Let $\mathbb{G} = (V, W\varphi)$.

R. Steinberg (1967) : There is a polynomial (element of $\mathbb{Z}[x]$)

$$|\mathbb{G}|(x) = x^N \prod_d \Phi_d(x)^{a(d)}$$

such that

$$|\mathbb{G}|(q)=|\mathbf{G}(q)|=|G|$$
 .

Let $\mathbb{G} = (V, W\varphi)$.

R. Steinberg (1967): There is a polynomial (element of $\mathbb{Z}[x]$)

$$|\mathbb{G}|(x) = x^N \prod_d \Phi_d(x)^{a(d)}$$

such that

$$|\mathbb{G}|(q)=|\mathbf{G}(q)|=|G|$$
 .

Let $\mathbb{G} = (V, W\varphi)$.

R. Steinberg (1967): There is a polynomial (element of $\mathbb{Z}[x]$)

$$|\mathbb{G}|(x) = x^N \prod_d \Phi_d(x)^{a(d)}$$

such that

$$|\mathbb{G}|(q)=|\mathbf{G}(q)|=|G|$$
.

•
$$|\mathsf{GL}_n|(x) = x^{\binom{n}{2}} \prod_{d=1}^{d=n} (x^d - 1) = x^{\binom{n}{2}} \prod_{d=1}^{d=n} \Phi_d(x)^{\lfloor n/d \rfloor}$$

Let $\mathbb{G} = (V, W\varphi)$.

R. Steinberg (1967): There is a polynomial (element of
$$\mathbb{Z}[x]$$
)

$$|\mathbb{G}|(x) = x^N \prod_d \Phi_d(x)^{a(d)}$$

such that

$$|\mathbb{G}|(q) = |\mathbf{G}(q)| = |G|.$$

•
$$|\mathsf{GL}_n|(x) = x^{\binom{n}{2}} \prod_{d=1}^{d=n} (x^d - 1) = x^{\binom{n}{2}} \prod_{d=1}^{d=n} \Phi_d(x)^{\lfloor n/d \rfloor}$$

•
$$|\mathsf{U}_n|(x) = \pm |\mathsf{GL}_n|(-x)$$

Let $\mathbb{G} = (V, W\varphi)$.

R. Steinberg (1967): There is a polynomial (element of
$$\mathbb{Z}[x]$$
)

$$|\mathbb{G}|(x) = x^N \prod_d \Phi_d(x)^{a(d)}$$

such that

$$|\mathbb{G}|(q)=|\mathbf{G}(q)|=|G|$$
 .

- $|\mathsf{GL}_n|(x) = x^{\binom{n}{2}} \prod_{d=1}^{d=n} (x^d 1) = x^{\binom{n}{2}} \prod_{d=1}^{d=n} \Phi_d(x)^{\lfloor n/d \rfloor}$
- $|\mathsf{U}_n|(x) = \pm |\mathsf{GL}_n|(-x)$ (well, precisely $(-1)^{\binom{n}{2}}|\mathsf{GL}_n|(-x)$).

▶ The prime divisors of $|\mathbb{G}|(x)$ are x and cyclotomic polynomials $\Phi_d(x)$.

- ▶ The prime divisors of $|\mathbb{G}|(x)$ are x and cyclotomic polynomials $\Phi_d(x)$.
- ▶ *N* is the number of reflecting hyperplanes of the Weyl group of **G**.

- ▶ The prime divisors of $|\mathbb{G}|(x)$ are x and cyclotomic polynomials $\Phi_d(x)$.
- ▶ *N* is the number of reflecting hyperplanes of the Weyl group of **G**. Hence **G** has a trivial Weyl group, *i.e.*, **G** is a torus

$$\mathbf{G}\cong\overline{\mathbb{F}}_q^{ imes} imes\cdots imes\overline{\mathbb{F}}_q^{ imes}$$

if and only if its (polynomial) order is not divisible by x.

• The tori of G are the subgroups of the shape $T = \mathbf{T}(q) = \mathbf{T}^F$ where $\mathbf{T} \cong \overline{\mathbb{F}}_q^\times \times \cdots \times \overline{\mathbb{F}}_q^\times$ is an F-stable torus of \mathbf{G} .

- The tori of G are the subgroups of the shape $T = \mathbf{T}(q) = \mathbf{T}^F$ where $\mathbf{T} \cong \overline{\mathbb{F}}_q^\times \times \cdots \times \overline{\mathbb{F}}_q^\times$ is an F-stable torus of \mathbf{G} .
- The Levi subgroups of G are the subgroups of the shape
 L = L(q) = L^F where L = C_G(T) is the centralizer of an F-stable torus in G.

- The tori of G are the subgroups of the shape $T = \mathbf{T}(q) = \mathbf{T}^F$ where $\mathbf{T} \cong \overline{\mathbb{F}}_q^\times \times \cdots \times \overline{\mathbb{F}}_q^\times$ is an F-stable torus of \mathbf{G} .
- The Levi subgroups of G are the subgroups of the shape
 L = L(q) = L^F where L = C_G(T) is the centralizer of an F-stable torus in G.

Examples for $GL_n(q)$

- The tori of G are the subgroups of the shape $T = \mathbf{T}(q) = \mathbf{T}^F$ where $\mathbf{T} \cong \overline{\mathbb{F}}_q^\times \times \cdots \times \overline{\mathbb{F}}_q^\times$ is an F-stable torus of \mathbf{G} .
- The Levi subgroups of G are the subgroups of the shape
 L = L(q) = L^F where L = C_G(T) is the centralizer of an F-stable torus in G.

Examples for $GL_n(q)$

The split maximal torus $T_1 = \left(\mathbb{F}_q^{\times}\right)^n$ of order $(q-1)^n$

$$\mathcal{T}_1 = egin{pmatrix} \mathbb{F}_q^{ imes} & \cdots & 0 \ dots & \ddots & dots \ 0 & \cdots & \mathbb{F}_q^{ imes} \end{pmatrix}$$

- The tori of G are the subgroups of the shape $T = \mathbf{T}(q) = \mathbf{T}^F$ where $\mathbf{T} \cong \overline{\mathbb{F}}_q^\times \times \cdots \times \overline{\mathbb{F}}_q^\times$ is an F-stable torus of \mathbf{G} .
- The Levi subgroups of G are the subgroups of the shape
 L = L(q) = L^F where L = C_G(T) is the centralizer of an F-stable torus in G.

Examples for $GL_n(q)$

The split maximal torus $T_1 = (\mathbb{F}_q^{\times})^n$ of order $(q-1)^n$

$$\mathcal{T}_1 = egin{pmatrix} \mathbb{F}_q^{ imes} & \cdots & 0 \ dots & \ddots & dots \ 0 & \cdots & \mathbb{F}_q^{ imes} \end{pmatrix}$$

The Coxeter torus $T_c = \operatorname{GL}_1(\mathbb{F}_{q^n})$ of order $q^n - 1$.

- The tori of G are the subgroups of the shape $T = \mathbf{T}(q) = \mathbf{T}^F$ where $\mathbf{T} \cong \overline{\mathbb{F}}_q^\times \times \cdots \times \overline{\mathbb{F}}_q^\times$ is an F-stable torus of \mathbf{G} .
- The Levi subgroups of G are the subgroups of the shape
 L = L(q) = L^F where L = C_G(T) is the centralizer of an F-stable torus in G.

Examples for $GL_n(q)$

The split maximal torus $T_1 = (\mathbb{F}_q^{\times})^n$ of order $(q-1)^n$

$$\mathcal{T}_1 = egin{pmatrix} \mathbb{F}_q^{ imes} & \cdots & 0 \ dots & \ddots & dots \ 0 & \cdots & \mathbb{F}_q^{ imes} \end{pmatrix}$$

- The Coxeter torus $T_c = \operatorname{GL}_1(\mathbb{F}_{q^n})$ of order $q^n 1$.
- Levi subgroups have shape $\operatorname{\mathsf{GL}}_{n_1}(q^{a_1}) \times \cdots \times \operatorname{\mathsf{GL}}_{n_s}(q^{a_s})$

Lagrange theorem

Lagrange theorem

The (polynomial) order of an admissible subgroup (torus or Levi subgroup) divides the (polynomial) order of the group.

Lagrange theorem

The (polynomial) order of an admissible subgroup (torus or Levi subgroup) divides the (polynomial) order of the group.

The following definition is the generic version of p-subgroups of G.

Lagrange theorem

The (polynomial) order of an admissible subgroup (torus or Levi subgroup) divides the (polynomial) order of the group.

The following definition is the generic version of p-subgroups of G.

$\Phi_d(x)$ –groups

For $\Phi_d(x)$ a cyclotomic polynomial, a $\Phi_d(x)$ -group is a finite reductive group whose (polynomial) order is a power of $\Phi_d(x)$.

Lagrange theorem

The (polynomial) order of an admissible subgroup (torus or Levi subgroup) divides the (polynomial) order of the group.

The following definition is the generic version of p-subgroups of G.

$\Phi_d(x)$ –groups

For $\Phi_d(x)$ a cyclotomic polynomial, a $\Phi_d(x)$ -group is a finite reductive group whose (polynomial) order is a power of $\Phi_d(x)$. A $\Phi_d(x)$ -group is a torus.

Lagrange theorem

The (polynomial) order of an admissible subgroup (torus or Levi subgroup) divides the (polynomial) order of the group.

The following definition is the generic version of p-subgroups of G.

$\Phi_d(x)$ –groups

For $\Phi_d(x)$ a cyclotomic polynomial, a $\Phi_d(x)$ -group is a finite reductive group whose (polynomial) order is a power of $\Phi_d(x)$. A $\Phi_d(x)$ -group is a torus.

Examples for GL_n

Lagrange theorem

The (polynomial) order of an admissible subgroup (torus or Levi subgroup) divides the (polynomial) order of the group.

The following definition is the generic version of p-subgroups of G.

$\Phi_d(x)$ –groups

For $\Phi_d(x)$ a cyclotomic polynomial, a $\Phi_d(x)$ -group is a finite reductive group whose (polynomial) order is a power of $\Phi_d(x)$. A $\Phi_d(x)$ -group is a torus.

Examples for GL_n

• The split torus T_1 is a $\Phi_1(x)$ -subgroup.

Lagrange theorem

The (polynomial) order of an admissible subgroup (torus or Levi subgroup) divides the (polynomial) order of the group.

The following definition is the generic version of p-subgroups of G.

$\Phi_d(x)$ –groups

For $\Phi_d(x)$ a cyclotomic polynomial, a $\Phi_d(x)$ -group is a finite reductive group whose (polynomial) order is a power of $\Phi_d(x)$. A $\Phi_d(x)$ -group is a torus.

Examples for GL_n

- The split torus T_1 is a $\Phi_1(x)$ -subgroup.
- The Coxeter torus T_c (a cyclic group of order $q^n 1$) contains a $\Phi_n(x)$ -subgroup.

• Maximal $\Phi_d(x)$ -subgroups ("Sylow $\Phi_d(x)$ -subgroups") S_d of G have as (polynomial) order the contribution of $\Phi_d(x)$ to the (polynomial) order of G:

$$|S_d| = |\mathbf{S}_d(q)| = \Phi_d(q)^{a(d)}$$
.

• Maximal $\Phi_d(x)$ —subgroups ("Sylow $\Phi_d(x)$ —subgroups") S_d of G have as (polynomial) order the contribution of $\Phi_d(x)$ to the (polynomial) order of G:

$$|S_d| = |\mathbf{S}_d(q)| = \Phi_d(q)^{a(d)}$$
.

Notation : Set $L_d := C_G(\mathbf{S}_d)$ and

• Maximal $\Phi_d(x)$ —subgroups ("Sylow $\Phi_d(x)$ —subgroups") S_d of G have as (polynomial) order the contribution of $\Phi_d(x)$ to the (polynomial) order of G:

$$|S_d| = |\mathbf{S}_d(q)| = \Phi_d(q)^{a(d)}$$
.

Notation : Set $L_d := C_G(\mathbf{S}_d)$ and $N_d := N_G(\mathbf{S}_d) = N_G(\mathbf{L}_d)$

• Maximal $\Phi_d(x)$ —subgroups ("Sylow $\Phi_d(x)$ —subgroups") S_d of G have as (polynomial) order the contribution of $\Phi_d(x)$ to the (polynomial) order of G:

$$|S_d| = |\mathbf{S}_d(q)| = \Phi_d(q)^{a(d)}$$
.

Notation : Set $L_d := C_G(\mathbf{S}_d)$ and $N_d := N_G(\mathbf{S}_d) = N_G(\mathbf{L}_d)$

2 Sylow $\Phi_d(x)$ —subgroups are all conjugate by G.

• Maximal $\Phi_d(x)$ —subgroups ("Sylow $\Phi_d(x)$ —subgroups") S_d of G have as (polynomial) order the contribution of $\Phi_d(x)$ to the (polynomial) order of G:

$$|S_d| = |\mathbf{S}_d(q)| = \Phi_d(q)^{a(d)}$$
.

Notation : Set $L_d := C_G(\mathbf{S}_d)$ and $N_d := N_G(\mathbf{S}_d) = N_G(\mathbf{L}_d)$

- ② Sylow $\Phi_d(x)$ —subgroups are all conjugate by G.
- **3** The (polynomial) index $|G:N_d|$ is congruent to 1 modulo $\Phi_d(x)$.

• Maximal $\Phi_d(x)$ —subgroups ("Sylow $\Phi_d(x)$ —subgroups") S_d of G have as (polynomial) order the contribution of $\Phi_d(x)$ to the (polynomial) order of G:

$$|S_d| = |\mathbf{S}_d(q)| = \Phi_d(q)^{a(d)}$$
.

Notation : Set $L_d := C_G(\mathbf{S}_d)$ and $N_d := N_G(\mathbf{S}_d) = N_G(\mathbf{L}_d)$

- 2 Sylow $\Phi_d(x)$ —subgroups are all conjugate by G.
- **3** The (polynomial) index $|G:N_d|$ is congruent to 1 modulo $\Phi_d(x)$.
- $W_d := N_d/L_d$ is a true finite group, a complex reflection group in its action on $V_d := \mathbb{C} \otimes Y(\mathbf{S}_d)$.

• Maximal $\Phi_d(x)$ —subgroups ("Sylow $\Phi_d(x)$ —subgroups") S_d of G have as (polynomial) order the contribution of $\Phi_d(x)$ to the (polynomial) order of G:

$$|S_d| = |\mathbf{S}_d(q)| = \Phi_d(q)^{a(d)}$$
.

Notation : Set $L_d := C_G(\mathbf{S}_d)$ and $N_d := N_G(\mathbf{S}_d) = N_G(\mathbf{L}_d)$

- 2 Sylow $\Phi_d(x)$ —subgroups are all conjugate by G.
- **3** The (polynomial) index $|G:N_d|$ is congruent to 1 modulo $\Phi_d(x)$.
- $W_d := N_d/L_d$ is a true finite group, a complex reflection group in its action on $V_d := \mathbb{C} \otimes Y(\mathbf{S}_d)$.

= The group W_d is the d-cyclotomic Weyl group of the finite reductive group G.

• Maximal $\Phi_d(x)$ —subgroups ("Sylow $\Phi_d(x)$ —subgroups") S_d of G have as (polynomial) order the contribution of $\Phi_d(x)$ to the (polynomial) order of G:

$$|S_d| = |\mathbf{S}_d(q)| = \Phi_d(q)^{a(d)}$$
.

Notation : Set $L_d := C_G(\mathbf{S}_d)$ and $N_d := N_G(\mathbf{S}_d) = N_G(\mathbf{L}_d)$

- ② Sylow $\Phi_d(x)$ —subgroups are all conjugate by G.
- **3** The (polynomial) index $|G:N_d|$ is congruent to 1 modulo $\Phi_d(x)$.
- $W_d := N_d/L_d$ is a true finite group, a complex reflection group in its action on $V_d := \mathbb{C} \otimes Y(\mathbf{S}_d)$.
- = The group W_d is the d-cyclotomic Weyl group of the finite reductive group G.

Note that, for d=1 and $\varphi=\pm 1$, one has $W_1=W$.

Example for GL_n

Recall that

$$|GL_n|(x) = x^{\binom{n}{2}} \prod_{d=1}^{d=n} \Phi_d(x)^{[n/d]}$$

Example for GL_n

Recall that

$$|\mathsf{GL}_n|(x) = x^{\binom{n}{2}} \prod_{d=1}^{d=n} \Phi_d(x)^{[n/d]}$$

For each d $(1 \le d \le n)$, $GL_n(q)$ contains a subtorus of (polynomial) order $\Phi_d(x)^{\left[\frac{n}{d}\right]}$

Example for GL_n

Recall that

$$|\mathsf{GL}_n|(x) = x^{\binom{n}{2}} \prod_{d=1}^{d=n} \Phi_d(x)^{[n/d]}$$

For each d $(1 \le d \le n)$, $GL_n(q)$ contains a subtorus of (polynomial) order $\Phi_d(x)^{\left[\frac{n}{d}\right]}$

Assume n = md + r with r < d. Then

Example for GL_n

Recall that

$$|\mathsf{GL}_n|(x) = x^{\binom{n}{2}} \prod_{d=1}^{d=n} \Phi_d(x)^{[n/d]}$$

For each d $(1 \le d \le n)$, $GL_n(q)$ contains a subtorus of (polynomial) order $\Phi_d(x)^{\left[\frac{n}{d}\right]}$

Assume n = md + r with r < d. Then

$$L_d = \mathsf{GL}_1(q^d)^m \times \mathsf{GL}_r(q)$$

Example for GL_n

Recall that

$$|\mathsf{GL}_n|(x) = x^{\binom{n}{2}} \prod_{d=1}^{d=n} \Phi_d(x)^{[n/d]}$$

For each d $(1 \le d \le n)$, $GL_n(q)$ contains a subtorus of (polynomial) order $\Phi_d(x)^{\left[\frac{n}{d}\right]}$

Assume n = md + r with r < d. Then

$$L_d = \mathsf{GL}_1(q^d)^m imes \mathsf{GL}_r(q)$$
 and $W_d = \mu_d \wr \mathfrak{S}_m$

Example for GL_n

Recall that

$$|\mathsf{GL}_n|(x) = x^{\binom{n}{2}} \prod_{d=1}^{d=n} \Phi_d(x)^{[n/d]}$$

For each d $(1 \le d \le n)$, $GL_n(q)$ contains a subtorus of (polynomial) order $\Phi_d(x)^{\left[\frac{n}{d}\right]}$

Assume n = md + r with r < d. Then

$$L_d = \mathsf{GL}_1(q^d)^m imes \mathsf{GL}_r(q)$$
 and $W_d = \mu_d \wr \mathfrak{S}_m$

where μ_d denotes the cyclic group of all d-th roots of unity.

Generic and ordinary Sylow subgroups

Generic and ordinary Sylow subgroups

Let ℓ be a prime number.

Let ℓ be a prime number.

• If ℓ divides $|G| = |\mathbb{G}|(q)$, let d be the order of q modulo ℓ (so ℓ divides $\Phi_d(q)$).

Let ℓ be a prime number.

- If ℓ divides $|G| = |\mathbb{G}|(q)$, let d be the order of q modulo ℓ (so ℓ divides $\Phi_d(q)$).
- Let \mathbf{S}_d be a Sylow $\Phi_d(x)$ —subgroup of \mathbf{G} , and let S_ℓ be the Sylow ℓ —subgroup of $\mathbf{S}_d(q)$.

Let ℓ be a prime number.

- If ℓ divides $|G| = |\mathbb{G}|(q)$, let d be the order of q modulo ℓ (so ℓ divides $\Phi_d(q)$).
- Let \mathbf{S}_d be a Sylow $\Phi_d(x)$ —subgroup of \mathbf{G} , and let S_ℓ be the Sylow ℓ —subgroup of $\mathbf{S}_d(q)$.
- Let W_ℓ be a Sylow ℓ -subgroup of the d-cyclotomic Weyl group W_d .

Let ℓ be a prime number.

- If ℓ divides $|G| = |\mathbb{G}|(q)$, let d be the order of q modulo ℓ (so ℓ divides $\Phi_d(q)$).
- Let \mathbf{S}_d be a Sylow $\Phi_d(x)$ —subgroup of \mathbf{G} , and let S_ℓ be the Sylow ℓ —subgroup of $\mathbf{S}_d(q)$.
- ullet Let W_ℓ be a Sylow ℓ -subgroup of the d-cyclotomic Weyl group W_d .

(M. Enguehard)

Let ℓ be a prime number.

- If ℓ divides $|G| = |\mathbb{G}|(q)$, let d be the order of q modulo ℓ (so ℓ divides $\Phi_d(q)$).
- Let \mathbf{S}_d be a Sylow $\Phi_d(x)$ —subgroup of \mathbf{G} , and let S_ℓ be the Sylow ℓ —subgroup of $\mathbf{S}_d(q)$.
- Let W_ℓ be a Sylow ℓ -subgroup of the d-cyclotomic Weyl group W_d .

(M. Enguehard)

1 A Sylow ℓ -subgroup of $N_d = N_G(\mathbf{S}_d)$ is a Sylow ℓ -subgroup of G.

Let ℓ be a prime number.

- If ℓ divides $|G| = |\mathbb{G}|(q)$, let d be the order of q modulo ℓ (so ℓ divides $\Phi_d(q)$).
- Let \mathbf{S}_d be a Sylow $\Phi_d(x)$ —subgroup of \mathbf{G} , and let S_ℓ be the Sylow ℓ —subgroup of $\mathbf{S}_d(q)$.
- Let W_ℓ be a Sylow ℓ -subgroup of the d-cyclotomic Weyl group W_d .

(M. Enguehard)

- **1** A Sylow ℓ -subgroup of $N_d = N_G(\mathbf{S}_d)$ is a Sylow ℓ -subgroup of G.
- ② In general, such a Sylow is an extension of S_{ℓ} by W_{ℓ} .

Let ℓ be a prime number.

- If ℓ divides $|G| = |\mathbb{G}|(q)$, let d be the order of q modulo ℓ (so ℓ divides $\Phi_d(q)$).
- Let \mathbf{S}_d be a Sylow $\Phi_d(x)$ —subgroup of \mathbf{G} , and let S_ℓ be the Sylow ℓ —subgroup of $\mathbf{S}_d(q)$.
- Let W_ℓ be a Sylow ℓ -subgroup of the d-cyclotomic Weyl group W_d .

(M. Enguehard)

- **1** A Sylow ℓ -subgroup of $N_d = N_G(\mathbf{S}_d)$ is a Sylow ℓ -subgroup of G.
- ② In general, such a Sylow is an extension of S_{ℓ} by W_{ℓ} .

If "not general", then a Sylow ℓ -subgroup of G an extension of $Z^0(L_d)_\ell$ by W_ℓ .

• The set Un(G) of unipotent characters of G is parametrized by a "generic" (i.e., independant of q) set $Un(\mathbb{G})$. We denote by

$$\mathsf{Un}(\mathbb{G}) \to \mathsf{Un}(G) \ , \ \rho \mapsto \rho_q$$

that parametrization.

• The set Un(G) of unipotent characters of G is parametrized by a "generic" (i.e., independant of q) set $Un(\mathbb{G})$. We denote by

$$\mathsf{Un}(\mathbb{G}) \to \mathsf{Un}(G) \ , \ \rho \mapsto \rho_q$$

that parametrization.

Example for GL_n : Un(GL_n) is the set of all partitions of n.

• The set Un(G) of unipotent characters of G is parametrized by a "generic" (i.e., independant of q) set $Un(\mathbb{G})$. We denote by

$$\mathsf{Un}(\mathbb{G}) \to \mathsf{Un}(G) \ , \ \rho \mapsto \rho_q$$

that parametrization.

Example for GL_n : $Un(GL_n)$ is the set of all partitions of n.

② Generic degree : For $\rho \in Un(\mathbb{G})$, there exists $Deg_{\rho}(x) \in \mathbb{Q}[x]$ such that

$$\mathsf{Deg}_{\rho}(x)\mid_{x=q} = \rho_q(1).$$

• The set Un(G) of unipotent characters of G is parametrized by a "generic" (i.e., independant of q) set $Un(\mathbb{G})$. We denote by

$$\mathsf{Un}(\mathbb{G}) \to \mathsf{Un}(G) \ , \ \rho \mapsto \rho_q$$

that parametrization.

Example for GL_n : $Un(GL_n)$ is the set of all partitions of n.

② Generic degree : For $\rho \in Un(\mathbb{G})$, there exists $Deg_{\rho}(x) \in \mathbb{Q}[x]$ such that

$$\mathsf{Deg}_{\rho}(x)\mid_{x=q} = \rho_q(1).$$

Example for GL_n :

• The set Un(G) of unipotent characters of G is parametrized by a "generic" (i.e., independant of q) set $Un(\mathbb{G})$. We denote by

$$\mathsf{Un}(\mathbb{G}) \to \mathsf{Un}(G) \ , \ \rho \mapsto \rho_q$$

that parametrization.

Example for GL_n : $Un(GL_n)$ is the set of all partitions of n.

② Generic degree : For $\rho \in Un(\mathbb{G})$, there exists $Deg_{\rho}(x) \in \mathbb{Q}[x]$ such that

$$\mathsf{Deg}_{\rho}(x)\mid_{x=q} = \rho_q(1).$$

Example for GL_n : For $\lambda = (\lambda_1 \leq \cdots \leq \lambda_m)$ a partition of n, let $\beta_i : \lambda_i + i - 1$.

• The set Un(G) of unipotent characters of G is parametrized by a "generic" (i.e., independant of q) set $Un(\mathbb{G})$. We denote by

$$\mathsf{Un}(\mathbb{G}) \to \mathsf{Un}(G) \ , \ \rho \mapsto \rho_q$$

that parametrization.

Example for GL_n : $Un(GL_n)$ is the set of all partitions of n.

② Generic degree : For $\rho \in Un(\mathbb{G})$, there exists $Deg_{\rho}(x) \in \mathbb{Q}[x]$ such that

$$\mathsf{Deg}_{\rho}(x)\mid_{x=q} = \rho_q(1).$$

Example for GL_n : For $\lambda = (\lambda_1 \leq \cdots \leq \lambda_m)$ a partition of n, let $\beta_i : \lambda_i + i - 1$. Then

$$\mathsf{Deg}_{\lambda}(x) = \frac{(x-1)\cdots(x^n-1)\prod_{j>i}(x^{\beta_j}-x^{\beta_i})}{x^{\binom{m-1}{2}+\binom{m-2}{2}+\cdots}\prod_{i}\prod_{j=1}^{\beta_i}(x^j-1)}.$$

3 The (polynomial) degree $\operatorname{Deg}_{\rho}(x)$ of a unipotent character divides the (polynomial) order $|\mathbb{G}|(x)$.

- **3** The (polynomial) degree $\operatorname{Deg}_{\rho}(x)$ of a unipotent character divides the (polynomial) order $|\mathbb{G}|(x)$.
- More : character values !

- **3** The (polynomial) degree $\operatorname{Deg}_{\rho}(x)$ of a unipotent character divides the (polynomial) order $|\mathbb{G}|(x)$.
- More: character values! In $GL_n(q)$, unipotent classes are also parametrized by partitions of n.

- **3** The (polynomial) degree $\operatorname{Deg}_{\rho}(x)$ of a unipotent character divides the (polynomial) order $|\mathbb{G}|(x)$.
- More: character values! In $GL_n(q)$, unipotent classes are also parametrized by partitions of n. For λ and μ partitions of n, let λ_q be the corresponding unipotent character of $GL_n(q)$,

- **3** The (polynomial) degree $\operatorname{Deg}_{\rho}(x)$ of a unipotent character divides the (polynomial) order $|\mathbb{G}|(x)$.
- More: character values! In $GL_n(q)$, unipotent classes are also parametrized by partitions of n. For λ and μ partitions of n, let λ_q be the corresponding unipotent character of $GL_n(q)$, and let u_q^{μ} be a unipotent element of $GL_n(q)$ of type μ .

- **3** The (polynomial) degree $\operatorname{Deg}_{\rho}(x)$ of a unipotent character divides the (polynomial) order $|\mathbb{G}|(x)$.
- More: character values! In $GL_n(q)$, unipotent classes are also parametrized by partitions of n. For λ and μ partitions of n, let λ_q be the corresponding unipotent character of $GL_n(q)$, and let u_q^{μ} be a unipotent element of $GL_n(q)$ of type μ .

There exists a polynomial $V_{\lambda,\mu}(x)$ such that $\lambda_q(u_q^\mu)=V_{\lambda,\mu}(x)|_{x=q}$.

- **1** The (polynomial) degree $\operatorname{Deg}_{\rho}(x)$ of a unipotent character divides the (polynomial) order $|\mathbb{G}|(x)$.
- More: character values! In $GL_n(q)$, unipotent classes are also parametrized by partitions of n. For λ and μ partitions of n, let λ_q be the corresponding unipotent character of $GL_n(q)$, and let u_q^{μ} be a unipotent element of $GL_n(q)$ of type μ .

There exists a polynomial $V_{\lambda,\mu}(x)$ such that $\lambda_q(u_q^\mu)=V_{\lambda,\mu}(x)|_{x=q}$.

- **3** The (polynomial) degree $\operatorname{Deg}_{\rho}(x)$ of a unipotent character divides the (polynomial) order $|\mathbb{G}|(x)$.
- More: character values! In $GL_n(q)$, unipotent classes are also parametrized by partitions of n. For λ and μ partitions of n, let λ_q be the corresponding unipotent character of $GL_n(q)$, and let u_q^{μ} be a unipotent element of $GL_n(q)$ of type μ .

There exists a polynomial $V_{\lambda,\mu}(x)$ such that $\lambda_q(u_q^\mu) = V_{\lambda,\mu}(x)|_{x=q}$.

More: $U_n(q) = GL_n(-q)$! In $U_n(q)$, unipotent classes and unipotent characters are parametrized by partitions of n as well.

- **1** The (polynomial) degree $\operatorname{Deg}_{\rho}(x)$ of a unipotent character divides the (polynomial) order $|\mathbb{G}|(x)$.
- More: character values! In $GL_n(q)$, unipotent classes are also parametrized by partitions of n. For λ and μ partitions of n, let λ_q be the corresponding unipotent character of $GL_n(q)$, and let u_q^{μ} be a unipotent element of $GL_n(q)$ of type μ .

There exists a polynomial $V_{\lambda,\mu}(x)$ such that $\lambda_q(u_q^\mu)=V_{\lambda,\mu}(x)|_{x=q}$.

• More : $U_n(q) = GL_n(-q)$! In $U_n(q)$, unipotent classes and unipotent characters are parametrized by partitions of n as well. For λ and μ partitions of n, let $\lambda_{U_n(q)}$ be the corresponding unipotent character,

- **1** The (polynomial) degree $\operatorname{Deg}_{\rho}(x)$ of a unipotent character divides the (polynomial) order $|\mathbb{G}|(x)$.
- More: character values! In $GL_n(q)$, unipotent classes are also parametrized by partitions of n. For λ and μ partitions of n, let λ_q be the corresponding unipotent character of $GL_n(q)$, and let u_q^{μ} be a unipotent element of $GL_n(q)$ of type μ .

There exists a polynomial $V_{\lambda,\mu}(x)$ such that $\lambda_q(u_q^\mu) = V_{\lambda,\mu}(x)|_{x=q}$.

• More : $U_n(q) = GL_n(-q)$! In $U_n(q)$, unipotent classes and unipotent characters are parametrized by partitions of n as well. For λ and μ partitions of n, let $\lambda_{U_n(q)}$ be the corresponding unipotent character, and let $u^{\mu}_{U_n(q)}$ be a unipotent element of type μ .

- **3** The (polynomial) degree $\operatorname{Deg}_{\rho}(x)$ of a unipotent character divides the (polynomial) order $|\mathbb{G}|(x)$.
- More: character values! In $GL_n(q)$, unipotent classes are also parametrized by partitions of n. For λ and μ partitions of n, let λ_q be the corresponding unipotent character of $GL_n(q)$, and let u_q^{μ} be a unipotent element of $GL_n(q)$ of type μ .

There exists a polynomial $V_{\lambda,\mu}(x)$ such that $\lambda_q(u_q^\mu) = V_{\lambda,\mu}(x)|_{x=q}$.

More: $U_n(q) = GL_n(-q)$! In $U_n(q)$, unipotent classes and unipotent characters are parametrized by partitions of n as well. For λ and μ partitions of n, let $\lambda_{U_n(q)}$ be the corresponding unipotent character, and let $u^{\mu}_{U_n(q)}$ be a unipotent element of type μ .

Ennola :
$$\lambda_{\mathsf{U}_n(q)}(u^\mu_{\mathsf{U}_n(q)}) = \pm V_{\lambda,\mu}(x)|_{x=-q} \,.$$

Lots of other behaviors or data for $GL_n(q)$ may be viewed as obtained from its type GL_n evaluated at x = q.

Lots of other behaviors or data for $GL_n(q)$ may be viewed as obtained from its type GL_n evaluated at x = q.

• The ℓ -modular representation theory of G (here for simplicity we only consider the type GL_n).

Lots of other behaviors or data for $GL_n(q)$ may be viewed as obtained from its type GL_n evaluated at x = q.

• The ℓ -modular representation theory of G (here for simplicity we only consider the type GL_n).

One may define a notion of $\Phi_d(x)$ -blocks of characters of GL_n

Lots of other behaviors or data for $GL_n(q)$ may be viewed as obtained from its type GL_n evaluated at x = q.

• The ℓ -modular representation theory of G (here for simplicity we only consider the type GL_n).

One may define a notion of $\Phi_d(x)$ -blocks of characters of GL_n (the so-called $\Phi_d(x)$ -Harish-Chandra theory).

Lots of other behaviors or data for $GL_n(q)$ may be viewed as obtained from its type GL_n evaluated at x = q.

• The ℓ -modular representation theory of G (here for simplicity we only consider the type GL_n).

One may define a notion of $\Phi_d(x)$ -blocks of characters of GL_n (the so-called $\Phi_d(x)$ -Harish-Chandra theory). Now, given ℓ which divides $\Phi_d(q)$, in order to find the ℓ -blocks :

Lots of other behaviors or data for $GL_n(q)$ may be viewed as obtained from its type GL_n evaluated at x = q.

- The ℓ -modular representation theory of G (here for simplicity we only consider the type GL_n).
 - One may define a notion of $\Phi_d(x)$ -blocks of characters of GL_n (the so-called $\Phi_d(x)$ -Harish-Chandra theory). Now, given ℓ which divides $\Phi_d(q)$, in order to find the ℓ -blocks :
 - for $GL_n(q)$, set x = q,

Lots of other behaviors or data for $GL_n(q)$ may be viewed as obtained from its type GL_n evaluated at x = q.

• The ℓ -modular representation theory of G (here for simplicity we only consider the type GL_n).

One may define a notion of $\Phi_d(x)$ -blocks of characters of GL_n (the so-called $\Phi_d(x)$ -Harish-Chandra theory). Now, given ℓ which divides $\Phi_d(q)$, in order to find the ℓ -blocks :

- for $GL_n(q)$, set x = q,
- for $U_n(q)$, set x = -q.

Lots of other behaviors or data for $GL_n(q)$ may be viewed as obtained from its type GL_n evaluated at x = q.

- The ℓ -modular representation theory of G (here for simplicity we only consider the type GL_n).
 - One may define a notion of $\Phi_d(x)$ -blocks of characters of GL_n (the so-called $\Phi_d(x)$ -Harish-Chandra theory). Now, given ℓ which divides $\Phi_d(q)$, in order to find the ℓ -blocks :
 - for $GL_n(q)$, set x = q,
 - for $U_n(q)$, set x = -q.
- For each element $w \in W$, one may define the Deligne–Lusztig variety \mathbf{X}_w , a subvariety of \mathbf{G}/\mathbf{B} , acted on by G.

Lots of other behaviors or data for $GL_n(q)$ may be viewed as obtained from its type GL_n evaluated at x = q.

- The ℓ -modular representation theory of G (here for simplicity we only consider the type GL_n).
 - One may define a notion of $\Phi_d(x)$ -blocks of characters of GL_n (the so-called $\Phi_d(x)$ -Harish-Chandra theory). Now, given ℓ which divides $\Phi_d(q)$, in order to find the ℓ -blocks :
 - for $GL_n(q)$, set x = q,
 - for $U_n(q)$, set x = -q.
- For each element $w \in W$, one may define the Deligne–Lusztig variety \mathbf{X}_w , a subvariety of \mathbf{G}/\mathbf{B} , acted on by G.

Then, for $\ell \nmid q$, the ℓ -adic cohomology $\mathbb{Q}_{\ell}G$ -modules $H_c^i(\mathbf{X}_w, \mathbb{Q}_{\ell})$

Lots of other behaviors or data for $GL_n(q)$ may be viewed as obtained from its type GL_n evaluated at x = q.

- The ℓ -modular representation theory of G (here for simplicity we only consider the type GL_n).
 - One may define a notion of $\Phi_d(x)$ -blocks of characters of GL_n (the so-called $\Phi_d(x)$ -Harish-Chandra theory). Now, given ℓ which divides $\Phi_d(q)$, in order to find the ℓ -blocks :
 - for $GL_n(q)$, set x = q,
 - for $U_n(q)$, set x = -q.
- For each element $w \in W$, one may define the Deligne–Lusztig variety \mathbf{X}_w , a subvariety of \mathbf{G}/\mathbf{B} , acted on by G.

Then, for $\ell \nmid q$, the ℓ -adic cohomology $\mathbb{Q}_{\ell}G$ -modules $H_c^i(\mathbf{X}_w, \mathbb{Q}_{\ell})$ should also come from a generic... ?? $H_c^i(\mathbb{X}_w)(x)$??

Complex reflection groups

A finite reflection group on a field K is a finite subgroup of $GL_K(V)$ (V a finite dimensional K-vector space) generated by reflections, i.e., linear maps represented by

$$\begin{pmatrix} \zeta & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

A finite reflection group on a field K is a finite subgroup of $GL_K(V)$ (V a finite dimensional K-vector space) generated by reflections, i.e., linear maps represented by

$$\begin{pmatrix} \zeta & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

ullet A finite reflection group on $\mathbb R$ is called a Coxeter group.

A finite reflection group on a field K is a finite subgroup of $GL_K(V)$ (V a finite dimensional K-vector space) generated by reflections, i.e., linear maps represented by

$$\begin{pmatrix} \zeta & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

- A finite reflection group on \mathbb{R} is called a Coxeter group.
- A finite reflection group on Q is called a Weyl group.

A finite reflection group on a field K is a finite subgroup of $GL_K(V)$ (V a finite dimensional K-vector space) generated by reflections, i.e., linear maps represented by

$$\begin{pmatrix} \zeta & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

- A finite reflection group on \mathbb{R} is called a Coxeter group.
- A finite reflection group on Q is called a Weyl group.
- Irreducible finite reflection groups over $\mathbb C$ have been classified (Shephard–Todd, 1954).

• Try to treat a complex reflection group as a Weyl group:

Try to treat a complex reflection group as a Weyl group: try to build
a family of objects providing polynomials depending only on the type

G associated with a complex reflection group...

• Try to treat a complex reflection group as a Weyl group: try to build a family of objects providing polynomials depending only on the type \mathbb{G} associated with a complex reflection group... "like" the finite reductive groups are associated with their Weyl group.

- Try to treat a complex reflection group as a Weyl group: try to build
 a family of objects providing polynomials depending only on the type

 G associated with a complex reflection group... "like" the finite
 reductive groups are associated with their Weyl group.
- Try at least to build unipotent characters of \mathbb{G} , or at least to build their degrees (polynomials in x), satisfying all the machinery of Harish-Chandra series, families, Frobenius eigenvalues, Fourier matrices...

- Try to treat a complex reflection group as a Weyl group: try to build
 a family of objects providing polynomials depending only on the type

 G associated with a complex reflection group... "like" the finite
 reductive groups are associated with their Weyl group.
- Try at least to build unipotent characters of \mathbb{G} , or at least to build their degrees (polynomials in x), satisfying all the machinery of Harish-Chandra series, families, Frobenius eigenvalues, Fourier matrices...
 - ▶ Lusztig knew already a solution for Coxeter groups which are not Weyl groups (except the Fourier matrix for *H*₄ which was determined by Malle in 1994).

- Try to treat a complex reflection group as a Weyl group: try to build
 a family of objects providing polynomials depending only on the type

 G associated with a complex reflection group... "like" the finite
 reductive groups are associated with their Weyl group.
- Try at least to build unipotent characters of \mathbb{G} , or at least to build their degrees (polynomials in x), satisfying all the machinery of Harish-Chandra series, families, Frobenius eigenvalues, Fourier matrices...
 - ▶ Lusztig knew already a solution for Coxeter groups which are not Weyl groups (except the Fourier matrix for *H*₄ which was determined by Malle in 1994).
 - ▶ Malle gave a solution for imprimitive **spetsial** complex reflection groups in 1995.

- Try to treat a complex reflection group as a Weyl group: try to build
 a family of objects providing polynomials depending only on the type

 G associated with a complex reflection group... "like" the finite
 reductive groups are associated with their Weyl group.
- Try at least to build unipotent characters of \mathbb{G} , or at least to build their degrees (polynomials in x), satisfying all the machinery of Harish-Chandra series, families, Frobenius eigenvalues, Fourier matrices...
 - ▶ Lusztig knew already a solution for Coxeter groups which are not Weyl groups (except the Fourier matrix for H₄ which was determined by Malle in 1994).
 - ► Malle gave a solution for imprimitive **spetsial** complex reflection groups in 1995.
 - Stating now a long series of precise axioms many of technical nature

 we can now show that there is a unique solution for all primitive

 spetsial complex reflection groups.

Spetsial groups

Spetsial groups in red.

$$G(e,1,r),G(e,e,r)$$
 , and

Group G_n	4	5	6	7	8	9	10	11	12	13	14	15	16
Rank	2	2	2	2	2	2	2	2	2	2	2	2	2

Group G _n	17	18	19	20	21	22	23	24	25	26	27
Rank	2	2	2	2	2	2	3	3	3	3	3
Remark							H_3				

Group G _n	28	29	30	31	32	33	34	35	36	37
Rank	4	4	4	4	4	5	6	6	7	8
Remark	F_4		H_4					E_6	E ₇	<i>E</i> ₈

Unipotent degrees and Frobenius eigenvalues

Unipotent degrees and Frobenius eigenvalues

ρ	Deg(ho)	Fr(ho)
$\chi_{\sf a}$	1	1
χь	$\frac{1}{1-\zeta^2}x(x-\zeta^2)$	1
χ_c	$\frac{1}{1-\zeta}x(x-\zeta)$	1
γ	$\frac{\zeta}{1-\zeta^2}x(x-1)$	ζ^2

Unipotent degrees and Frobenius eigenvalues

ρ	Deg(ho)	Fr(ho)
$\chi_{\sf a}$	1	1
χ_{b}	$\frac{1}{1-\zeta^2}x(x-\zeta^2)$	1
Ҳс	$\frac{1}{1-\zeta}x(x-\zeta)$	1
γ	$\frac{\zeta}{1-\zeta^2}x(x-1)$	ζ^2

Two families : $\{\chi_a\}$, $\{\chi_b, \chi_c, \gamma\}$

Unipotent degrees and Frobenius eigenvalues

ρ	Deg(ho)	Fr(ho)
χ_{a}	1	1
χь	$\frac{1}{1-\zeta^2}x(x-\zeta^2)$	1
χ_c	$\frac{1}{1-\zeta}x(x-\zeta)$	1
γ	$\frac{\zeta}{1-\zeta^2}x(x-1)$	ζ^2

Two families :
$$\{\chi_a\}$$
, $\{\chi_b, \chi_c, \gamma\}$

Where is the Steinberg character?

Unipotent characters for G_4

Unipotent characters for G_4

In red = the Φ'_6 -series.

• = the Φ_4 -series.

Character	Degree	FakeDegree	Eigenvalue	Family
• $\phi_{1,0}$	• 1	1	1	C_1
$\phi_{2,1}$	$\frac{3-\sqrt{-3}}{6}q\Phi_3'\Phi_4\Phi_6''$	$q\Phi_4$	1	$X_3.01$
$\phi_{2,3}$	$\frac{3+\sqrt{-3}}{6}q\Phi_3''\Phi_4\Phi_6'$	$q^3\Phi_4$	1	$X_3.02$
<i>Z</i> ₃ : 2	$\frac{\sqrt{-3}}{3}q\Phi_1\Phi_2\Phi_4$	0	ζ_3^2	$X_3.12$
• $\phi_{3,2}$	• $q^2\Phi_3\Phi_6$	$q^2\Phi_3\Phi_6$	1	C_1
$\phi_{1,4}$	$\frac{-\sqrt{-3}}{6}q^4\Phi_3''\Phi_4\Phi_6''$	q^4	1	$X_{5}.1$
$\phi_{1,8}$	$\frac{\sqrt{-3}}{6}q^4\Phi_3'\Phi_4\Phi_6'$	q^8	1	$X_5.2$
• $\phi_{2,5}$	• $\frac{1}{2}q^4\Phi_2^2\Phi_6$	$q^5\Phi_4$	1	$X_{5}.3$
$Z_3:11$	$\frac{\sqrt{-3}}{3}q^4\Phi_1\Phi_2\Phi_4$	0	ζ_3^2	$X_{5}.4$
• G ₄	$\bullet \ \frac{1}{2}q^4\Phi_1^2\Phi_3$	0	-1	$X_5.5$

 Φ_3',Φ_3'' (resp. $\Phi_6',\Phi_6'')$ are factors of Φ_3 (resp $\Phi_6)$ in $\mathbb{Q}(\zeta_3)$