Rickard Equivalences and Block Theory

MICHEL BROUE

Ecole Normale Supérieure, Paris

Four lectures given at the International
Conference on Group theory “Groups 93”
Galway, August 1993

1. INTRODUCTION
Control of fusion.
Let G be a finite group, and let p be a prime number.

1.1. Definition. We say that a subgroup H of G controls the fusion of p—subgroups of
G if the following two conditions are fulfilled :
(C1) H contains a Sylow p-subgroup S, of G,
(C2) whenever P is a subgroup of S, and g is an element of G such that gPg~' C S, ,
there exist z in the centralizer Cq(P) of P in G, and h in H, such that g = hz.

1.2. Basic example. We denote by O,/G the largest normal subgroup of G with
order prime to p. Then if H is a subgroup of G which “covers the quotient” G/O, G
(i.e., if G = HO, G), then H controls the fusion of p—subgroups of G.

The following two results provide fundamental examples where the converse is true.
The first one is due to Frobenius and was proved in 1905. The second one was proved
by Glauberman for the case p = 2 (see [G]]), and for odd p it is a consequence of the
classification of non abelian finite simple groups (see also [Ro] for an approach not using
the classification).

1.3. Theorems.

(Fr) Assume that a Sylow p-subgroup S, of G controls the fusion of p—subgroups of
G. Then G = 5,0,G.

(Gl) Assume that there exists a p—subgroup P of G whose centralizer Cq(P) controls
the fusion of p—subgroups of G. Then G = Cq(P)0, G .

Groups with abelian Sylow p—subgroups.

A classical example where a subgroup controls the fusion of p—subgroups is given by
an old result of Burnside :
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Assume that the Sylow p-subgroups of G are abelian. Let H be the normalizer of one
of them. Then H controls the fusion of p—subgroups of G.

If G is p—solvable, this is once again a particular case of 1.2, since it is not difficult
to prove the following result.

1.4. Proposition. Let G be p-solvable and let H be the normalizer of a Sylow p—
subgroup. If the Sylow p—subgroups of G are abelian, then G = HO, G.

The situation may look quite different if G is a non abelian simple group with abelian
Sylow p-subgroups. Indeed, in this case, we have G # HO, G whenever H normalizes
a non-trivial p—subgroup of G.

For example, there seems to be an enormous difference between the Monster group,
a non abelian simple group of order

246.320 .59 .76 .11%2.13%.17-19-23-29-31-41-47-59 - 71 ~ 8.10°%,

and the normalizer of one of its Sylow 11-subgroups, a group of order 72600, isomorphic
to (C11 x C11) X (Cs x SLa(5)) (here we denote by Cy, the cyclic group of order m).

Nevertheless, there still is a strong connection between G and the normalizer of a
Sylow p—subgroup, which is a kind of generalization of the “factorization situation”
given by theorem 1.3. In order to express this connection, we need to introduce the
language of block theory.

The principal block.

Let K be a finite extension of the field of p-adic numbers Q, which contains the
|G|-th roots of unity. Thus the group algebra KG is a split semi-simple K-algebra.
Let O be the ring of integers of K over Z,. We denote by p the maximal ideal of O,
and we set k := O/p. If JkG denotes the Jacobson radical of the group algebra kG,
the algebra kG /JkG is a split semi-simple k—algebra.

K

(’)Hk:(’)/p

Qp

™

The decomposition of the unity element of OG into a sum of orthogonal primitive
central idempotents 1 = ) e corresponds to the decomposition of the algebra OG into
a direct sum of indecomposable two-sided ideals OG = @ B (B = OGe), called the
blocks of OG. For B a block of OG, we set KB := K Qo B and kB := k ®o B.

By reduction modulo p, a primitive central idempotent remains primitive central, and
consequently kG = @ kB is still a decomposition into a direct sum of indecomposable

two—sided ideals, called the blocks of kG.

7y —= T, = Z,/pZ,
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OG = 6 B
! !
kG = & kB
The augmentation map OG — O factorizes through a unique block of OG called the
principal block and denoted by B,(G).
If B is a block of OG, we denote by Irr(B) the set of all isomorphism classes of
irreducible representations of the algebra K B. The set Irr(B) will be identified with a
subset of the set Irr(G) of characters of irreducible representations of G over K.

For y € Irr(G), we denote by ker(x) the kernel of the corresponding representation
of G. In other words, we have

ker(y) ={z € G; (Vg € G)(x(z9) = x(9))} -

The factorization G = HO, G can be interpreted in terms of principal blocks as follows.

1.5. Proposition.

(1) We have mxelrr(Bp(G)) ker(y) = OpG.
(2) If H is a subgroup of G, the following assertions are equivalent
(i) G =HO,G,
(ii) the map ResGy induces a bijection from Irr(B,(G)) onto Irr(By(H)) .

What happens in the general case (where the Sylow p—subgroups of G are abelian
and H is the normalizer of one of them) will first be illustrated by the example of
the group G = 5. The bijection Resg of the previous proposition is replaced by a
“bijection with signs” between Irr(B,(G)) and Irr(B,(H)).

The case of G = 5.

Let G be the alternating group on five letters. Then |G| = 2%-3-5, and for all prime
number p which divides |G|, the Sylow p-subgroups of G are abelian. Let us examine the
principal p—blocks of G and their connections with the corresponding Sylow normalizers.

1.6. Character table of Qs

H 2 3 (5) (5)
1 1 1 1 1 1
X4 4 1 —1 —1
X5 5 1 —1 0 0
X3 3 ~1 0 (14+v5)/2  (1—-+5)/2
X3 3 —1 0 1-V5)/2 (1+V5)/2

We have
Irr(B2(G)) = {1, X5, X35 X3} »

Irr(Bs(G)) = {1, x4, X5},
Irr(B5(G)) = {1, X4, X3+ X5}, -
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For each p € {2,3,5}, let us denote by S, a Sylow p-subgroup of G. We shall point
out that there exists an isomorphism

I,: ZIrr(Bp(Ng(Sp)))—LZIrr(Bp(G))

such that :

(I1) I, is an isometry,
(I2) it preserves the character degrees modulo p,
(I3) it preserves the values on the p-elements.

The preceding properties express the fact that I, is an isotypy between B,(G) and
B,(Na(Sp)), as we shall explain below in §2.
The case p = 2.

The normalizer Ng(S2) of a Sylow 2—subgroup Sy of G is isomorphic to the alter-
nating group 4. The principal block By(Ng(S2)) is its only 2-block. Let us change
the sign of certain irreducible characters in its character table.

1.7. Character table of 24

1 1 1 1 1
—a3 -3 1 0 0
o | -1 -1 (14VEB)/2 (1 V73))2
T e S W C V) Vi S 6 B V) Vi

We denote by I the map

1 1

I2 . —q3 — X5
—ag X3

—a X3

The case p = 3.

The normalizer Ng(S3) of a Sylow 3—subgroup S; of G is isomorphic to the symmetric
group G3. The principal block B3(Ng(S3)) is its only 3-block.

1.8. Character table of &3

3 1 ~1 1
B 2 0 ~1
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We denote by I3 the map

1 1
L: | 5= x4
52 X5

The case p=5.

The normalizer Ng(S5) of a Sylow 5—subgroup S5 of G is isomorphic to the dihedral
group Ds. The principal block Bs(Ng(S5)) is its only 5-block. Let us change the sign
of certain irreducible characters in its character table.

1.9. Character table of Dj

Ln @ (5) (5)
1 1 1 1 1
— | -1 1 ~1 ~1
e | 2 0 (Q4+VE2  (1-vE)2
-2 0 (1-VB2  (1+VE)2

We denote by I5 the map

1 1

I5 -N N X4
—72 X3

—72 X3

Remark. We can also notice that

e if one changes 5 to —3, then I(«) takes also on the 3—elements of G the same
values as « takes on the 5—elements of Ng(S2),

o I[;(/) takes also on the 2—elements of G the same values as 3 takes on the
5—elements of Ng(Ss),

o I[;(v) takes also on the 2—elements of G the same values as v takes on the

3—elements of Ng(Ss),

i.e., in other words, if {p,¢,r} = {2,3,5}, not only do ¢ and I,(() take the same values
on non trivial p—elements, but (with suitable trick for p = 2) they exchange values on
non trivial ¢—elements and r—elements. This last property will not be explained in what
follows.

2. IsoTYPIES
The case of s provides particular examples of what should replace the factorization

type theorem (see above theorem 1.3 and proposition 1.5) in the case where H is the
normalizer of an abelian Sylow p—subgroup.
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Notation.

Various class functions.

For R = K or O, we denote by CF(G, R) the R—module of all class functions from
G into R. For B a block of G, we denote by CF(B,K) the subspace of CF(G, K)
consisting of functions which are linear combination of characters of K B, and we set
CF(B,0) :=CF(G,0)nCF(B,K).

We denote by CF,/ (G, R) the submodule of CF(G, R) consisting of all class functions
on G which vanish outside the set G,/ of p'—elements of G. For B a block of G, we set
CF,(B,R) :=CF,(G,R)NCF(B,R).

Remark. The Brauer character of a kG—module is usually defined as a class function
on Gy . Extending it by 0 outside G,/ , we shall make here the convention that the
Brauer characters are elements of CF,/(G,O) (hence elements of CF,/(B,O) for the
characters of B-modules). It results from our convention that the set Brlrr(B) of
Brauer irreducible characters of B—modules is an O-basis of CF,/(B, O).

Finally, we denote by CF]PD,T(G, O) the dual submodule of CF)/ (G, O) in CFy (G, K),
consisting of all elements of CF,/ (G, ) whose scalar product with the elements of
CF, (G, O) belongs to O, and we set CF]P;,T(B,O) = CF]PD,T(G, O)NCF(B,K). From
our previous convention it follows that the set Prim(B) of characters of indecomposable
projective OG-modules is an O-basis of CF]PD,T(G, ).

Decomposition maps.

For  a p—element of G, we denote by
d¢,: CF(G,0) — CFp (Cq(x),0)

the linear map defined by

N x(2y) if y is a p-regular element of Cg(x)
dG(0ly) =

0 if y is a p-singular element of Cg(x).

It results from Brauer’s second and third main theorems (see for example [Fe]) that the
map d¢ sends CF(B,(G),O) into CFy (B,(Cg(x)), O), and so induces by restriction a
map still denoted by

d%: CF(B,(G),0) — CF,(B,(Ca(z)),0).

Isotypies.

From now on, the following hypothesis and notation will be in force : We denote by
G a finite group whose Sylow p-subgroups are abelian. We denote by 5, one of the
Sylow p—subgroups, and we set H := Ng(S,).

The following definition is a slight modification of the analogous definition given in
[Brl] (see Remarque 2 following definition 4.6 in loc. cit.).

Remark. A more general definition is available for non—principal blocks with abelian
defect groups. Its statement requires the use of the “local structure” associated with a

block (see [AlBr] or [Br4]). We refer the reader to [Brl] for details.



nickard equivalences and blockK theory K

2.1. Definition. An wsotypy I between B,(G) and B,(H) s the datum, for every
p-subgroup P of Sp, of a bijective 1sometry

I(P): ZIre(By(Cr(P)))——ZIr(By(Ca(P)))

such that the following conditions are fullfilled :

(Equi) (Equivariance) For all h € H, we have I(P)* = I(P").

(Com) (Compatibility condition) For every subgroup P of S, and every x € S, , we still
denote by

I(P): CF(B,y(Cu(P)), K): —CF(By(Ca(P)), K)
the bijective wsometry defined by linear extension of I(P). The following diagram
18 commutative :

CF(B,(Cu(P).K) . CFB,(Ca(P)).K)

dé’mml ld“é};(f’)

CF(B,(Cu(P(x))), K) “2 CF(B,(Ca(P(x))), K)

(Triv) I(S,) is the identity map.
Moreover, we say that the isotypy I is normalized if I(P)(1cy,(py) = log(p) for all
P CS,.

Let us list some of the straighforward properties of an isotypy. In what follows,
for every subgroup P of S, we denote by R(P) the inverse map of I(P). We set

I(1) = I({1}) and R(1) = R({1}).

2.2. Proposition.

(Loc) (Local isotypies) Let P be any subgroup of S,. Set Ip(Q) := I(PQ). The
collection of maps (Ip(Q))gcs, defines an isotypy between By(Cy(P)) and
By(Ca(P)).

Int) (Integrality property) By restriction, the map I(1) induces bijective 1sometries
q Yy properiy Y y P ]

I(1): CF(B,(H),0) 5 CF(B,(G),0)
I(1): CFp(B,(H),0) — CFyp(By(G),0)
I(1): CE*/(B,(H).0) —>CFPT(BP( ),0)

(Loc) is obvious. We give a proof of (Int). By 2.1, (Com), applied with # = 1, we see
first that I(1) sends CF,(B,(H),K) into CF,(B,(G),K). Moreover, since, for any
finite group G, the ordinary decomposition map df;: ZIrr(B,(G)) — ZBrlrr(B,(G)) is
onto, and since Brlrr(B,(G)) is an O-basis of CF,/(B,(G),0), we see that I(1) and
R(1) define inverse isometries between CF, (B,(H)),O) and CF,(B,(G),O). It then
follows by adjunction that they induce inverse isometries between CF]PD,Y(BP(H), O) and
CF]P;,T(BP(G),O).

To check that I(1) and R(1) induce inverse isomorphisms between CF(B,(H),O)
and CF(B,(G),0), it suffices to check that the image of CF(B,(H),O) under I(1)
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is contained in CF(B,(G),0), i.e. that, for ( € CF(By(H),0) and ¢ € G, we have
I(1)(¢)(g) € O. Let = be the p—component of ¢ and let &' be its p'~component. We
have I(1)(¢)(g) = (L({z))(d%;(¢))) (z') and the result follows from the fact that I((z))
sends CF,/(Cy(z),O0) into CF, (Cq(x), O), by the “local isotypies” property (Loc) and
what preceds. [

Remark.
The integrality properties (Int) show that the map I(1) is a “perfect isometry” as
defined in [Brl].

It follows in particular (see [Brl] or [Br5]) that an isotypy induces an isomorphism
between the associated “Cartan—decomposition” triangles between Grothendieck groups
(see [Se] or [Brl] for the definitions of the triangles).

dg;

ZIrr(B,(G)) ZBrlrr(B,(G))
’ ZPrim(B,(G))
ZIr(B,(H)) i ZBilrr(B,(H))
! ZPrim(B,(H))

The character of an wsotypy.

Any linear map F': ZIre(H) — ZIrr(G) between the character groups of H and G
defines a character pp of H x G by the formula

npi= ) COF(Q).

CEIrr(H)
Let I = (I(P))pcs, be an isotypy between B,(G) and B,(H ). We set pp := pirpy.
Then the defining properties of an isotypy (cf. 2.1) translate as follows :

(Equi) For all h € H, we have s = pipn .

0 if © and y are not conjugate in G,

Com zx' yy') = .
( ) MP( ) {MP(I)(xlvyl) fo —=y.

The following statement describes the case of a p—group. If G is an (abelian) p—group,

then H = G, and B,(G) = OG.
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2.3. Lemma. Let G be an abelian p-group. Let I = (I(P))pcg be a “self-isotypy” of
OG. If p =2, assume moreover that I 1s normalized. Then I(P) is the identity for all
p—subgroups P of G.

Proof of 2.3. By definition of an isotypy (property (Triv)), we know that I(G) is the
identity. We prove by induction on |G : P| that I(P) = Id for any subgroup P of G.
Let P be a proper subgroup of G. By the induction hypothesis, we may assume that
I(P'") = Id whenever P’ is a subgroup of G which strictly contains P, and we must
prove that I(P) = Id. For « € G, the map df, is identified with the map y — x(z). For
\ € Iir(G) we have I(P)(\)(r) = d&(I(P)Y(x)) = I(P{a)(d%(x)) and so T(P)(y)(x) =
x(x) forall v ¢ P. Nowlet y € P. For x ¢ P, we have zy ¢ P, so I(P)(x)(zy) = x(zy).
Set I(P)(x) = eyX' where ¢, = £1 and \' € Irr(G). It follows that

V() = exx(z) for z¢P
x(z) for ze€P.
For p odd, this implies that ¢, = 1, and so I(P) = Id.
Assume p = 2. Since I is normalized, I(P) fixes the trivial character, and so for
v € P we have I(P)(\)(x) = I(P(e))(d5(x)) = I(PY(d5(x)) = d5(x) = x(x) which
also shows that ¢, = 1 and that I(P) =1d. O

Remark. If G = Z/2Z and if Ire(G) = {1,0}, then I := {I(1),I(G)} where I(G) = 1d

and 1
I(1): { -

o— —1
is a non trivial self-isotypy.
A conjecture.

The following conjecture is a particular case of a more general conjecture concerning
blocks with abelian defect groups (see [Brl]).

2.4. Conjecture. Let G be a finite group whose Sylow p-subgroups are abelian. Let
H be the normalizer of a Sylow p-subgroup. Then there 1s a normalized isotypy between

B,(G) and B,(H).

The preceding conjecture is true if G is p—solvable, by 1.4 and 1.5, (2), above.
It has also been checked in the following cases.

e ( is a symmetric group (Rouquier, [Roul]), or an alternating group (Fong),

e ( is a sporadic non abelian simple group (Rouquier, [Roul]),

e ( is a “finite reductive group” in non-describing characteristic (Broué—Malle—
Michel, [BMM] and [BrMi)),

e p=2—and G is any finite group with abelian Sylow 2-subgroups (Fong-Harris,
[FoHal).

3. RICKARD EQUIVALENCES

We shall explain now why the existence of an isotypy between the principal blocks
of two finite groups must be the “shadow” of a much deeper connection between the
two blocks, which we call a “Rickard equivalence”.
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p—permutation modules and Rickard complexes.

p-permutation modules and the Brauer functor.

Let R denote either O or k. We call p-permutation RG—modules the summands of
the permutation G—modules over R. The following characterization of p—permutation
RG-modules is well known (see for example [Br3]).

3.1. Proposition. The p-permutation RG-modules are the modules which, once re-
stricted to a Sylow p—subgroup of G, are permutation modules.

Let us denote by rgperm, the category of all p-permutation RG-modules. For P
a p-subgroup of G, we set Ng(P) := Ng(P)/P.

For Q a finite G-set, we denote by QF the set of fixed points of Q under P, viewed
as a N¢g(P)-set.

3.2. Proposition. There 1s a functor
Brp: ogperm, — v pperm,

which “induces” the “fized points” functor, i.e., which 1s such that the diagram of natural

transformations
P

aset SN ~.(p)Set

l l

Br
oGPerm, ——— % perm,
18 commutative.
Sketch of proof of 3.2. For X a p—permutation OG—module and () a p—subgroup of G,
we define
Trg: X9 5 XP by

Trg(:zj) = Z g(x).

geEP/Q
We set
Brp(X) = (X/pX)"/ Y Trh((X/pX)?).
QP
O

For V any kG-module, and ¢ a p'—element of G, we denote by Brtr(g; V') the value
at ¢ of the Brauer character of V. Recall that we view the Brauer character Brtr(-; V)
as a class function on G vanishing outside the set Gy of p-regular elements of GG. The
following proposition generalizes to p—permutation modules a result which is well known
for actual permutation modules.

3.3. Proposition. Let X be a p-permutation OG-module. If ¢ = gpg9, where g, is a
p—element, g, s p-reqular and g,9, = gprgp, then

tr(g; X ) = Brtr(g, ; Br<gp>(X)).
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Rickard complexes.

Let us start with some notation related to complexes of modules.

am +1dm-|—1 dm-|—a—1 m-+a
LetI''=(-+- =2 0—-I"—]"""— ...  — T — 0 — --- ) be a complex of

modules on some O-algebra. The O-dual of T' is by definition the complex I'* :=
t gm4a—1 t gm
(- -+ — 0 — Home(I'™** O) QR d—>Homo(Tm,(’)) —0— ) :

From now on, the following hypothesis and notation will be in force :

We denote by G a finite group whose Sylow p—subgroups are abelian. We denote by S,
one of the Sylow p—subgroups, and we set H := Ng(S,).

3.4. Definition. A Rickard complex for the principal blocks B,(G) and By(H) is a
bounded complex of (B,(G), By(H))-bimodules

m m41 mta—1
r — (..._>()_>Pmd_>rm+1d_> LN Pm+a_>()_>...>

with the following properties :

(1) Each constituant I of T', viewed as an O[G x H]|-module, s a p—permutation
module with vertex contained in Agyxme(Sy) (where AGgxpe: Sy — G x H is

defined by Agxpo(x) := (x,271)).
(2) We have homotopy equivalences :

I' @ T" ~ B,(G) as complezes of (B,(G), B,(G))-bimodules,
OH

I'' @ I'~B,(H) as complezes of (By(H ), By(H))-bimodules.
oG

One of the main properties of Rickard complexes is that they automatically define
Rickard complexes at the “local level” as well, as shown by the following result.

3.5. Theorem. (J. Rickard)

Let T' be a Rickard complex for B,(G) and B,(H). Then, for every subgroup P of
Sy, there is a finite complex I'p of (B,(Cq(P)), By(Cu(P)))-bimodules, unique up to
wsomorphism, such that

(1) T'p is a Rickard complex for B,(Cq(P)) and B,(Ch(P)),

(2) we have

BrAGxHO(P)(P) =k®oTp.

Rickard complexes and derived equivalences.

For A an O-algebra (finitely generated as an O-module), we denote by D°(A) the
derived bounded category of the module category smod, i.e., the triangulated category
whose

e objects are the complexes

X:: <_>Xnd_n>Xn+1(Eda__iXa_>0_>>
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of finitely generated projective A-modules, bounded on the right, and exact
almost everywhere,
e morphisms are chain maps modulo homotopy.

If T is a Rickard complex for B,(G) and B,(H), it is easy to see that the functor

Y =T @ Y defines an equivalence of triangulated categories from D*(B,(H)) to
By (H)

Db (B,(G)) (see for example [Br5] for more details).

Thus the datum of a Rickard complex for B,(G) and B,(H) induces a consistent
family of derived equivalences between B,(Cq(P)) and B,(CH(P)), where P runs over
the set of subgroups of 9.

Rickard complexes and isotypies.

o Let

m m41 mta—1
r — (..._>()_>Pmd_>rm+1d_> LN Pm+a_>()_>...>

be a Rickard complex for B,(G) and B,(H). We denote by pr the character of I' as a
complex of (OG, OH )-bimodules, v.e., ur := > (=1)"tr(-; I'™).

e For every subgroup P of S,, let I'p be the complex of (B,(Cq(P)), B,(Cu(P)))-
bimodules defined as in 3.5 above. We denote by ur, the character of I'p as a complex
of (OCq(P),Cr(P))-bimodules.

The following result is a consequence of the definition of a Rickard complex, of 3.3
and of 3.5. It shows that a Rickard complex for B,(G) and B,(H) provides a natural
isotypy between B,(G) and B,(H ).

3.6. Theorem. There is an isotypy I = (I(P))pcs, such that, for each subgroup P
of Sp, we have

UDp = Z C@I(P)(C).

Celrr(By(Cr (P)))

A conjecture.

The following conjecture (one of J. Rickard and the author’s dreams) makes more
precise earlier conjectures about derived equivalences between blocks (see [Brl] and

[Br5)).

3.7. Conjecture. Let G be a finite group with abelian Sylow p—subgroups, and let H
be the normalizer of one of the Sylow p—subgroups. Then there exists a Rickard complex
for B,(G) and B,(H).

It follows from 3.6 that the preceding conjecture implies the conjecture 2.4.

Notice that conjecture 3.7 holds if G is p—solvable by 1.4. Indeed, in this case the
(B,(G), By(H))-bimodule O(G/O,/G) is a Rickard complex for B,(G) and B,(H) (in
this case, the algebras B,(G) and B,(H ) are actually isomorphic).

Conjecture 3.7 is known to hold only in a few cases if G is not p—solvable.

e Some examples are provided below for the case G = 25, and others are provided
in §4 for the case where G is a finite reductive group.

e It follows from recent work of Rouquier ([Rou2]) that conjecture 3.7 holds when
S, 1s cyclic.
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The case of G = 5.

The case p = 2.

The following explanation of the isotypy Iz described in §1 is due to Rickard (cf.
[Ri4]).

We set H := Ng(952), where Sy denote a Sylow 2—subgroup of G.

We view By(G) as a (B2(G), Bo(H))-bimodule, where By(G) acts by left multipli-
cation, while By(H) acts by right multiplication.

Let us denote by IB3(G) the kernel of the augmentation map By(G) — O. Thus
IB3(G) is a (By(G), B(H))-sub-bimodule of By(G). Let C denote a projective cover

of the bimodule I By(G).

{0} ——= IBs(G) — B2(G) — {0}

C

{0}

We denote by

[y := ({0} = € — By(G) — {0})
the complex of (By(G), Ba(H))-bimodules defined by the preceding diagonal arrow,
where By(G) is in degree 0 (and C in degree —1).

We denote by KT's the complex of (K B2(G), K By(H ))-bimodules deduced by exten-
sion of scalars up to K. Let H*(KT3) and H~'(KT3) be the corresponding homology
groups, viewed as (KG, K H )-bimodules.

It is clear that H°(KTy) is the trivial (KG, K H)-bimodule, hence its character is
1®1.

3.8. Theorem. (J. Rickard)

(1) The character of H='(KT4) (with suitables choices of /5 and /=3 in the field
K) is
(X5 @ as)+ (x3 @ a1) + (x5 @ ay).

In particular the character of Y (—=1)"H"™(KTy) s

(1o1) —((xs @as) + (x3 @ 1) + (X5 @ ay)).
(2) We have homotopy equivalences :

Iy @ T ~ By(G) as complezes of (B2(G), Bo(G))-bimodules,
OH

'Y @ T'y ~ By(H) as complexes of (B2(H), B2(H))-bimodules.
(o] €&
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Remark. The above theorem 3.8 may be viewed now as a particular consequence of
Rouquier’s recent theorem (cf. [Rou2]) which provides Rickard complexes from certain
stable equivalences.

The case p = 3.

Now we view G as SLy(4). We then denote by T the group of diagonal matrices in G
(the split torus, which is also a Sylow 3—subgroup of G), and by U the Sylow 2—subgroup
of G, consisting of unipotent uppertriangular matrices.

We set H := Ng(T), and 0 := <(1) _01> We have H =T x (o).

Let I's denote the free Zs—module with basis G/U. Then T's is a (Z3G,Z35T)-
bimodule, where G acts by left multiplication while T acts by right mutiplication.

3.9. Theorem.
(1) The (Z3G,Z3T)-bimodule I's extends to a (Z3G,ZsH)-bimodule, whose char-
acter as o (KG, K H)-bimodule s
(101 +(xa@B1)+ (x5 @ B2).

(2) We have isomorphisms :

s (’)®H I'; ~ Bs(G) as (Bs(G), B3(G))-bimodules,

I's @ I's ~Bs(H) as (Bs(H),Bs(H))-bimodules.

OG

Remark. The previous example is a particular case of a much more general situation,
as will be shown in §4.

The case p=5.
Now we set H := Ng(S5), where S5 is a Sylow 5—subgroup of G.

Since S5 is cyclic, we can apply Rouquier’s constructions as in [Rou2].

The Brauer trees of the blocks Bs(G) and Bs(H ) are respectively

(for G) @ il @ P2 Xex

(for H) @ @ @ Q- @

where the exceptional vertices correspond to characters

Xex = X3 + X;’)
Yex = T2+ Y2 -

In other words, we have minimal projective resolutions of the trivial representations,
periodic of period 4, of the following shapes :

-—>P1—>P2—>P2—>P1—>O—>{O}
= Q1= Q2 — Q= Q1 — O — {0}.
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The (Bs(G), Bs(H))-bimodule Bs(G) is indecomposable and its projective cover has
the shape (cf. [Rou2])

(P1 ® I’IOIIl(f)(CQl7 O)) ) (P2 ® I’IOIIl(')(CQQ7 O)) L>B5((;) .
Following [Rou2], we then define
Ts = ({0} — P, @ Homo(Q2, 0)—"B5(G) — {0}> .

3.10. Theorem. (R. Rouquier)
(1) The character of H-'(KT5) is

(x4 @71)+ (x3 @72) + (X5 @73).
In particular the character of > (—1)"H™(KT5) is

(1@1) = ((xa @71) + (x3 @72) + (x3 @73))-

(2) We have homotopy equivalences :

I's @ I't ~ Bs(G) as complezes of (Bs(G), Bs(G))-bimodules,
OH

I'' @ I's ~Bs(H) as complexes of (Bs(H), Bs(H))-bimodules.
(o] €&

4. THE CASE OF THE FINITE REDUCTIVE GROUPS

In the case where G is a “finite reductive group”, the conjecture 3.7 can be made more
precise and closely linked with the underlying algebraic geometry (for more details, see

[BrMa]).

In this paragraph, we change our notation to fit with the usual notation of finite
reductive groups : our prime p (the characteristic of our field & := O/p) is now denoted
by ¢, and ¢ denotes a power of another prime p = (.

From now on, we denote by G be a connected reductive algebraic group over F,,
endowed with a Frobenius endomorphism F' which defines a rational structure on F,.
The finite group G of fixed points of G under F is called a finite reductive group.

The Deligne—Lusztig variety and its (—adic cohomology.
The Deligne—Lusztig variety.

Let P be a parabolic subgroup of G, with unipotent radical U, and with F—stable
Levi subgroup L.
We denote by Y(U) the associated Deligne-Lusztig variety defined (cf. [DeLu] and
[La]) by
Y(U) = {g(U 1 F(U)) € G/UNF(U); ¢ Flg) € F(U)}.

It is clear that G acts on Y(U) by left multiplication while L acts on Y(U) by right
multiplication.
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It is known (cf. [Lu]) that Y(U) is an L¥ —torsor on a variety X(U), which is smooth
of pure dimension equal to dim(U/U N F(U)), and which is affine (at least if ¢ is large
enough). In particular X(U) is endowed with a left action of GI". If R is a commu-
tative ring, the image of the constant sheaf R on Y(U) through the finite morphism
7: Y(U) — X(U) is a locally constant constant sheaf m.(R) on X(U). We denote this
sheaf by Fgrr.

A consequence of yet another theorem of J. Rickard.

From now on, we denote by ¢ a prime number which does not divide ¢, and which is

good for G.

The following theorem is a consequence of the main result of [Ri5] (for a “character
theoretic approach” of this result, see [Brl], §2.A).

4.1. Theorem. (J. Rickard) There exists a bounded complex

dm-|—a—1
. —

AC(X(U%}—Z[LF):(..._>0_>Amﬁ>Am+ldm_+>1” Pm+a—>0—>--->

of (Z/GT | Z LY )-bimodules, with the following properties :

(1) For each positive integer n, (Z¢/("Z¢) @ A(X(U), Fg,r) ts a representative,
in the derived bounded category of ((Zo/0"Zo)GY (Zo/("Z)LY ) -bimodules, of
the “l-adic cohomology complez” RT(X(U), F(z, jenz,yLF )

(2) For each integer n, the ZJGY x LY -module A™ is an (—permutation mod-
ule, such that each of its indecomposable constituant has a vertex contained in

AGF X(LF)O(LF)

If O is the ring of integers of a finite extension K of Q,, we set

Ad(X(U), Forr) := 0 @z, Ae(X(U), Fz,1r).

A conjecture.
Notation.

From now on, we assume that ¢ is a prime number, ¢ # p, which is good for G, and
such that the Sylow (-—subgroups of G are abelian.

o Let O be the ring of integers of a finite unramified extension k of the field of (—adic
numbers Qg, with residue field k, such that the finite group algebra kG’ is split.

e Let e be the principal block idempotent of OGY, so that OGTe is the principal
block Bo(G!) of OGT,

e Let S be a Sylow (-subgroup of G and let L := Cg(S). The group L is a rational
Levi subgroup of G.

We have Ngr(S) = Ngr(L). The group S is a Sylow (~subgroup of Z(L)!", and ¢
does not divide |[Ngr(L)/L.

Let f be the principal block idempotent of OLY, so that OLf is the principal block
By(LT) of OLY.
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4.2. Conjecture. There exists a parabolic subgroup of G with unipotent radical U
and Levi complement L, such that

(C1) the idempotent e acts as the identity on the complex A (X(U), Forr).f,

(C2) the structure of complex of (OGTe, OLY f)-bimodules of A(X(U), Forr).f ez-
tends to a structure of complex of (OGTe, ONgr (L)f)-bimodules,

(C3) we have homotopy equivalences :

A(X(U), Forr)-f  ®  FA(X(U), Forr)* ~ OG'e
ONgr(L)f
as complezes of (OGTe, OGTe)-bimodules,
FAX(U), Forr )" Og?F A(X(U), Forr).f ~ ONgr(L)f

as complezes of (ONgr(L)f, ONgr(L)f)-bimodules.

By 4.1, one sees that if the above conjecture is true, the complex A (X(U), Forr) is
indeed a Rickard complex for OG¥e and ONgr(L)f.

Although some evidence in favour of conjecture 4.2 is indeed available (see [BrMal)),
it is actually known to be true in very few cases.

The particular case where ¢ divides (¢ — 1) (which had been conjectured and almost
proved by Hiff) may be deduced from some results of Puig ([Pu]).

4.3. Theorem. Assume that { divides ¢ — 1 and does not divide the order of the Weyl
group of G.

(1) We have L =T, a quasi—split mazimal torus of G. For P = B, a rational Borel
subgroup of G containing T with unipotent radical U, we have

A(X(U), Forr) ~ O[GF /U]
(2) (L. Puig) We have isomorphims :
O[GF/U.f ©  fO[UNG] ~0OGte
ONgr(T)f
as (OGYe, OGTe)-bimodules,
f.OUNGT] @ O[GY/UT].f ~ONgr(T)f

OGFe
as (ONgr(T)f,ONgr(T)f)-bimodules,

providing a Morita equivalence between OGYe and ONgr(T)f.

Remark. The case where GI" = SLy(4) and ¢ = 3 (see theorem 3.9 above) is a particular
case of the preceding theorem.
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