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A bstract . Let X be a bounded vector field with bounded divergence defined in an open

set Ω of Rd, transverse to a hypersurface S. Let Ω0 be an open subset of Ω such that

the Hausdorff measure Hd−1(Ω\Ω0) = 0. We suppose that the vector field X belongs to

BVloc(Ω0) “conormally”, an assumption made precise in the text, which is satisfied whenever

the gradients of the coefficients of X have locally only a single component which is actually

a Radon measure. This class can be invariantly defined and contains the so-called piecewise

W 1,1 functions studied in [Li]. We prove the uniqueness of L∞ solutions for the Cauchy

problem related to X across the hypersurface S. We use for the proof some simple arguments

of geometric measure theory to get rid of closed sets with codimension > 1. Next, we need

an anisotropic regularization argument analogous to the one used in [Bo].
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2 Vector fields of bounded variation

1. Introduction

Let us give first the general framework of our study: we shall consider a real vector
field X defined in an open set Ω of Rd and a Lipschitz oriented hypersurface S so that

(1.1) X ∈ L∞loc, div X ∈ L∞loc, X is positively transverse to S.

Note that the first condition is simply the requirement of finite speed of propagation so
that a local problem makes sense for the equation Xu = f . The second condition is
essentially necessary to get a uniqueness result: in our appendix A1, we give an example
of a two-dimensional W 1,1 ∩ L∞ vector field whose divergence is a positive unbounded
L1 function so that no uniqueness property is satisfied (see also section IV.1 of [DL]).
Let us clarify the third condition. Let ν be a unit vector field conormal to the oriented
Lipschitz hypersurface S. The vector field X is said to be positively tranverse to S if for
all x0 ∈ S, there exists a neighborhood V0 of x0 such that

(1.2) essinfV0 X(x) · ν(x) > 0.

When the dimension is ≤ 2, the conditions (1.1) essentially ensure uniqueness of L∞

solutions. In one dimension, the autonomous ODE

(1.3) ẋ = f(x), x(0) = x0,

has a unique solution, provided f is merely continuous and f(x0) �= 0. The existence
is given by Peano’s theorem whereas the uniqueness follows from the direct integration
of dx

f(x) = dt. In fact, setting G(x) =
∫ x

x0

dy
f(y) , we find a neighborhood of x0 in which

G ∈ C1, G′ �= 0 so that G has an inverse function g ∈ C1. Then for a C1 solution x(t)
defined near 0 of (1.3), we get

d

dt
(G(x(t)) =

ẋ(t)
f(x(t))

= 1

which implies G(x(t)) = t and thus x(t) = g(t) and the uniqueness. In two dimensions,
let us examine a divergence-free L∞ vector field X. It is then a Hamiltonian vector field
Hσ

X =
∂σ

∂y

∂

∂x
− ∂σ

∂x

∂

∂y
,

where σ is a Lipschitz function. Denoting by ρ the Lipschitz equation of the hypersurface,
one can assume from (1.2) that {σ, ρ} ≥ 1 near 0. It means that the Jacobian determinant
of the mapping κ given by (ρ, σ) = κ(x, y) is

det κ′ =
∣∣∣∣ ∂xρ ∂yρ
∂xσ ∂yσ

∣∣∣∣ = X(ρ) ≥ 1,
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and κ is thus a bi-Lipschitz local homeomorphism. Setting ν = κ−1, and for a function
F ∈ C1

c , we get for u ∈ L∞ such that Xu = 0,

0 = 〈Xu, F (ρ, σ)〉 = −
∫∫

u(x, y)
∂F

∂ρ
(ρ(x, y), σ(x, y))X(ρ)(x, y)dxdy

= −
∫∫

(u ◦ ν)(ρ, σ)
∂F

∂ρ
(ρ, σ) detκ′(ν(ρ, σ)) det ν′(ρ, σ)dρdσ

= −
∫∫

(u ◦ ν)(ρ, σ)
∂F

∂ρ
(ρ, σ)dρdσ.

It means
∂(u ◦ ν)

∂ρ
= 0

and since u ◦ ν|ρ<0 = 0, we obtain u = 0.
In dimension ≥ 3, the Cauchy uniqueness under the sole conditions (1.1) does not

appear to be true. In fact a three-dimensional counterexample, due to M.Aizenman [Ai],
shows that the existence of a flow is not guaranteed for a divergence-free L∞ vector field.
It is then natural to require some additional regularity for the coefficients of the vector
field. A standard result in this direction is the Eulerian version of the classical Cauchy-
Lipschitz theorem, ensuring the uniqueness of L1

loc solutions for Lipschitz vector fields
satisfying (1.1). In 1989, an important step forward was accomplished by R.DiPerna and
P.-L.Lions, who proved in [DL] a uniqueness result for W 1,1 vector fields. Let us give a
local version of their theorem.

Theorem 1.1. Let X be a vector field and S be an hypersurface satisfying (1.1) on an
open set of Rd. Assume moreover that X ∈ W 1,1

loc and let c be a L1
loc function. Let u be a

L∞loc function such that
Xu = cu, suppu ⊂ S+,

where S+ is the half-space above the oriented S. Then if c+ belongs to L∞loc, the function
u vanishes in a neighborhood of S. The same conclusion holds if we replace in (1.1) the
condition div X ∈ L∞loc by (div X)+ ∈ L∞loc.

A natural question raised in [PP], [PR], [Li], with important implications in fluid
mechanics, is to know if the same result holds, replacing W 1,1 by BV . In [CoL], the
authors proved the following theorem.

Theorem 1.2. Let X be a vector field and S be an hypersurface satisfying (1.1) on an
open set Ω of Rd. Assume moreover that X ∈ BVloc and let c be a Radon measure on Ω.
Let u be a continuous function on Ω such that

Xu = cu, suppu ⊂ S+,
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where S+ is the half-space above the oriented S. Then, if c+ belongs to L∞loc, the function
u vanishes in a neighborhood of S. The same conclusion holds if we replace in (1.1) the
condition div X ∈ L∞loc by (div X)+ ∈ L∞loc.

Remarks. If X ∈ L1
loc, div X ∈ L1

loc and u ∈ L∞loc, we define

Xu =
∑

1≤j≤n

∂

∂xj
(aju) − udiv X.

The same formula can be used if X ∈ L1
loc(Ω), div X ∈ D′(0)(Ω) (the Radon measures

M(Ω)) and u ∈ C0(Ω). These definitions are of course consistent with the usual definition
of Xu whenever u is smooth and with the weak definition

〈Xu, φ〉 = −
∫

u
(
X(φ) + φdiv X

)
dm, ∀φ ∈ C1

c (Ω),

where dm stands for the Lebesgue measure. In fact, if (M, ω) is a smooth oriented
manifold, and X a locally bounded measurable vector field on M , the divergence of X

can be defined by the equality

(1.4) div X = −tX − X.

For ϕ, ψ, C1
c test functions, we define

〈tXϕ, ψ〉 = 〈ϕ, Xψ〉 =
∫

ϕ(Xψ)ω.

In both theorems above, the one-sided condition can be replaced by the more elegant
(c + div X)+ ∈ L∞loc. On may remark that an unbounded divergence makes a real vector
field an irreversible equation, since the divergence acts as a diffusion term. Theorem
1.2 gives uniqueness of continuous solutions, which are indeed weak solutions, but whose
existence is not guaranteed. We are seeking uniqueness of L∞ solutions, whose existence
is known for vector fields satisfying (1.1) (see prop.II.1. in [DL]).

2. A new result

We shall now describe a new result, giving uniqueness of L∞ solutions for a class of BV

vector fields going beyond the so-called piecewise W 1,1 vector fields introduced in [Li].
We refer the reader to the appendix A2 for the trivial verification that the assumptions
(1.1) and X ∈ BVloc are indeed invariant by C1,1 diffeomorphism.
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Definition 2.1. Let Ω0 be an open set of Rd. The space conormalBVloc(Ω0) is defined
as a subspace of BVloc(Ω0).

(i) A function a ∈ BVloc(Ω0) belongs to conormalBVloc(Ω0) if each x ∈ Ω0 has a
neighborhood V ⊂ Ω0 such that, on V , there exist C1,1 coordinates x1, . . . , xd so that

∂a

∂x1
∈ M(V ),

∂a

∂xk
∈ L1

loc(V ), for k ≥ 2.

(ii) A vector field X ∈ BVloc(Ω0) belongs to conormalBVloc(Ω0) if each x ∈ Ω0 has a
neighborhood V ⊂ Ω0 such that, on V , there exist C1,1 coordinates x1, . . . , xd so that,
whenever X =

∑
1≤j≤d aj∂xj

,

∀j ∈ {1, . . . , d}, ∂aj

∂x1
∈ M(V ),

∂aj

∂xk
∈ L1

loc(V ), for k ≥ 2.

We shall denote the space conormalBVloc(Ω0) by CBVloc(Ω0).

Definition 2.1 is equivalent to the more intrinsic

Definition 2.1’. Let Ω0 be C1,1 oriented manifold, equipped with a C1,1 local foliation
of codimension 1. A vector field X ∈ BVloc(Ω0) belongs to CBVloc(Ω0) if, for all Lipschitz
continuous vector fields Y tangent to the foliation, the bracket [X, Y ] is in L1

loc(Ω0). A
function a ∈ BVloc(Ω0) belongs to CBVloc(Ω0) if, for all Lipschitz continuous vector fields
Y tangent to the foliation, the function Y (a) is in L1

loc(Ω0).

Note that in definition 2.1, the foliation is simply given by the hypersurfaces {x1 = c},
which can always be assumed locally. As said in the abstract, we shall need the BV

assumption only on a “small” open set Ω0, included in our reference open set Ω. This is
the reason for introducing the following

Definition 2.2. Let Ω be an open set of Rd. We define the class B(Ω) as

(2.1) B(Ω) = {a ∈ L∞loc(Ω)| ∃Ω0 open ⊂ Ω with Hd−1(Ω\Ω0) = 0 and a ∈ CBVloc(Ω0)},

where Hd−1 stands for the d − 1 dimensional Hausdorff measure. A vector field X ∈
L∞loc(Ω) belongs to B(Ω) if there exists an open set Ω0 ⊂ Ω such that Hd−1(Ω\Ω0) = 0
and X ∈ CBVloc(Ω0).

In the appendix A2, it is shown that the assumptions (1.1) and X ∈ B(Ω) are invariant
by a C1,1 diffeomorphism. It might be helpful for the reader to get a couple of examples
of CBV functions and vector fields.

Examples 2.3.
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(a) The class B(Ω) contains the so-called piecewise W 1,1 class accepting jumps across
C1,1 hypersurfaces (see proposition 6.4 of the appendix A3 for a proof of this statement).
In fact, an important new feature of our result is that we can get rid of subsets whose
(d − 1) dimensional Hausdorff measure is zero, so that our BV assumption is made only
on a “small” open set Ω0 ⊂ Ω, such that

(2.2) Hd−1(Ω\Ω0) = 0,

disregarding the geometric complexity coming from singular subsets of codimension > 1.
(b) The first simple example of a CBV function in Rd = Rx1 × Rd−1

x2
is the tensor

product

a(x1, x2) = b1(x1)b2(x2), where b1 ∈ BV (R), b2 ∈ W 1,1(Rd−1).

Note that this example is not in general piecewise W 1,1 since there is no restriction on
the singularity with respect to the variable x1, beyond the BV assumption.

(c) The class B(Ω) is not included in BVloc(Ω), because our regularity assumption is
made only on an open subset Ω0 of Ω such that (2.2) holds. In particular, we are able to
handle vector fields which are not locally BV , but only L∞ and conormal BV on a “small”
open set Ω0 such that (2.2) holds. For instance, we provide an example of a function in
our class B(R2), which is not in BVloc(R2). Let us consider for x = (x1, x2) ∈ R

2,
r =

√
x2

1 + x2
2, the function

a(x1, x2) = cos(r−2).

The function a belongs to L∞(R2) but is not in BVloc(R2) since, on {x �= 0},
∂a

∂x1
= 2r−4 sin(r−2)x1

and testing1 this distribution against the C0
c (R2) function 1[0,π−1/2](r)H(x1)x1sin(r−2),

where H is the characteristic function of R+, we get∫ π−1/2

0

2r−1 sin2(r−2)dr

∫ π/2

−π/2

cos2 θdθ =
π

2

∫ +∞

π

sin2 s

s
ds = +∞.

Nevertheless, since the function a belongs to C∞(R2\{0}), it is indeed in CBVloc(R2\{0})
and since H1({0}) = 0, the function a belongs to B(R2). Although we have the inclusion
L∞loc(R

2) ∩ C∞(R2\{0}) ⊂ B(R2) we should also notice that, for a line ∆,

L∞loc(R
2) ∩ C∞(R2\∆) �⊂ B(R2), (e.g. x1 sin(1/x1) /∈ B(R2), see the ftnt of lemma 6.5).

1We should use a sequence of smooth test functions χk(x)x1sin(r−2) where χk ∈ C∞c (R2; [0, 1])

is supported in {x ∈ R2, 0 < |x| < π−1/2 and x1 ≥ 0}, and such that, for almost all x, limk χk(x) =

1[0,π−1/2](|x|)H(x1).
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(d) One can go much beyond the second example (which is already not piecewise W 1,1)
as shown by the following example. If a(x1, x2) = b1(x1)b2(x2) with b1 ∈ BV (R), b2 ∈
BV (R) such that

b′1 =
∑
k∈N

αkδyk
+ L1

loc, b′2 =
∑
l∈N

βlδzl
+ L1

loc, (αk)k∈N, (βl)l∈N ∈ 31,

so that the sequences of real numbers (yk)k∈N and (zl)l∈N have both limit 0 then the set

Ωc
0 = {(0, 0)} ∪(k,l)∈N2 {(yk, zl)} ∪k∈N {(yk, 0)} ∪l∈N {(0, zl)}

is closed in R2, and H1(R2\Ω0) = 0. Consequently, to check that the function a belongs
to B(R2), it is enough to verify that a ∈ CBV (Ω0). In fact, for x ∈ Ω0, there exists a
neighborhood V of x such that V ⊂ Ω0 and a|V is as in example (b) above (or a(x2, x1)
is as in example (b)). This example is not piecewise W 1,1 because of the accumulation of
singular lines at {0} × R and R × {0}. Note however that the worst point (0, 0) belongs
to Ωc

0 as well as the simple intersections (yk, zl). On the other hand, there is no difficulty
to handle the points (0, x2) provided that x2 does not belong to the closure of the set
{zl}l∈N since there is then a neighborhood of (0, x2) in which a is of the type of example
(b). In the appendix A4, we provide a picture of the singular support of the function a

which illustrate the importance and flexibility of our assumption of local foliation on Ω0

in the definition 2.1’.
(e) Let a be a function in L∞loc(R

d) such that for all j ∈ {1, . . . , d}
∂a

∂xj
=

∑
k∈N

αk,jδSj
k

+ L1
loc, (αk,j)k∈N ∈ 31,

where for each j, (Sj
k)k∈N is a countable family of parallel hyperplanes, δSj

k
is the simple

layer at Sj
k. We assume that for j �= j′, the hyperplanes Sj

k and Sj′

l are transverse and
such that, for each j, the sequence (Sj

k)k∈N converges. Argumenting as in example (d),
one finds with

Ωc
0 = ∪1≤j �=j′≤d ∪k,l∈N (Sj

k ∩ Sj′

l )

that Hd−1(Rd\Ω0) = 0 and a ∈ B(Rd).
(f) Let us give a vector field example in Rd of the previous type. Assume that, for all

j ∈ {1, . . . , d}, there exists a countable family (Sj
k)k∈N of parallel hyperplanes so that, for

j �= j′, the hyperplanes Sj
k and Sj′

l are transverse and such that, for each j, the sequence
(Sj

k)k∈N converges. Let X =
∑

1≤i≤d ai∂xi be a bounded measurable vector field such
that, for all i, j ∈ {1, . . . , d}

∂ai

∂xj
=

∑
k∈N

αi
k,jδSj

k
+ L1

loc, (αi
k,j)k∈N ∈ 31.
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Then X belongs to B(Rd).
Since the notion of conormal BV makes sense on a C1,1 manifold, all the previous

examples can be pushed-forward by a C1,1 diffeomorphism.
The main theorem of this paper is the following

Theorem 2.4. Let Ω be an open subset of Rd, X be a vector field and S be an hyper-
surface satisfying (1.1) on Ω. Assume moreover that X belongs to B(Ω) (cf.def.2.2) and
let c be a function in L1

loc(Ω). Let u be a function in L∞loc(Ω) such that

Xu = cu, suppu ⊂ S+,

where S+ is the half-space above the oriented S. Then if c+ belongs to L∞loc(Ω), the
function u vanishes in a neighborhood of S. The same conclusion holds if we replace in
(1.1) the condition div X ∈ L∞loc(Ω) by (div X)+ ∈ L∞loc(Ω).

3. First part of the proof

We collect in this section the standard facts related to the proof, postponing the
introduction of the new ingredients to the next section.

Step 1: non-negative solutions are unique. The following lemma is proved in [CoL].
For the convenience of the reader, we recall its statement here and the proof in the
appendix A5. Let Ω be an open set of Rd and X be a L∞loc vector field on Ω with
divergence in L1

loc, c ∈ L1
loc and w ∈ L∞loc. We shall say that

Xw ≤ cw

if for all non-negative test functions θ ∈ C1
c (Ω),

−
∫

w(Xθ + θ div X)dm = 〈Xw, θ〉 ≤
∫

cwθdm.

Lemma 3.1. Let Ω be an open set of Rd, X be a vector field on Ω, and S a Lipschitz

oriented hypersurface of Ω such that X ∈ L∞loc, div X ∈ L1
loc and X is positively transverse

to S. Let w be a L∞loc function such that, for some function c ∈ L1
loc,

Xw ≤ cw, suppw ⊂ S+ and w ≥ 0.

Then if (c + div X)+ ∈ L∞loc, the function w vanishes in a neighborhood of S. Note that
the assumptions of this lemma are satisfied whenever c+ ∈ L∞loc and (1.1) is fulfilled.

Remark. This result does not require any regularity for X, besides finite speed, bounded
divergence and transversality to S.
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Step 2: prove that Xu = 0 implies X(u2) = 0. Then use Step 1 to get u = 0. More
pedantically, one could say that Leibnizian vector fields satisfying (1.1) have unique L∞

solutions across transverse hypersurface, where the following property would stand as a
definition of a Leibnizian vector field:

(3.1) u, v ∈ L∞, Xu, Xv ∈ L1 =⇒ X(uv) = X(u)v + uX(v).

Let us now assume that u ∈ L∞loc satisfies Xu = cu where c is an L1
loc function such that

c+ ∈ L∞loc, X is a vector field and S a hypersurface satisfying (1.1). We compute Xu2

using the property (3.1) and we get, since Xu = cu ∈ L1
loc

Xu2 = 2uXu = 2cu2.

We can now use step 1 to get the answer since 0 ≤ u2, c+ ∈ L∞loc and X, S satisfy (1.1)
with suppu2 = suppu ⊂ S+. In fact, the following lemma asserts that an even weaker
statement than (3.1) will be sufficient to get our uniqueness result.

Lemma 3.2. Let Ω be an open set of Rd, X be a vector field on Ω, and S a Lipschitz

oriented hypersurface of Ω such that X ∈ L∞loc, div X ∈ L1
loc, (div X)+ ∈ L∞loc and X is

positively transverse to S. Let u be a L∞loc function such that, for some function c ∈ L1
loc

with c+ ∈ L∞loc,

(3.2) Xu = cu, suppu ⊂ S+.

Assume also that there exist a L∞loc function C such that for all non-negative test functions
θ ∈ C1

c (Ω) there exists a sequence (uε) of Lipschitz continuous functions, bounded in
L∞(supp θ) by ‖u‖L∞(supp θ) and converging a.e. in supp θ to u such that

(3.3) lim sup
ε

{∫
X(uε)uθdm

}
≤

∫
Cu2θdm.

Then the function u vanishes in a neighborhood of S.

Proof. We shall prove that there exists a non-negative L∞loc function c̃ such that

(3.4) Xu2 ≤ c̃u2.

To get the conclusion, we shall use lemma 3.1. It means that we need to check that, for
all non-negative test functions θ ∈ C1

c (Ω), we have, with some non-negative L∞loc function
c̃,

−
∫

u2(Xθ + θ div X)dm = 〈Xu2, θ〉 ≤
∫

c̃u2θdm,
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i.e.

(3.5) 0 ≤
∫

u2
(
Xθ + θ(div X + c̃)

)
dm.

Let uε be a sequence of Lipschitz continuous functions, bounded in L∞(supp θ) by
‖u‖L∞(supp θ), converging a.e. to u. Then we have, since uε is Lipschitz continuous,
for all bounded measurable c̃,∫

u2
(
Xθ + θ(div X + c̃)

)
dm = lim

ε

∫
uuε

(
Xθ + θ(div X + c̃)

)
dm

= lim
ε

{
−〈X(uεu), θ〉 +

∫
uuεθc̃dm

}
= lim

ε

{
−〈X(uε)u, θ〉 − 〈uεX(u), θ〉 +

∫
uuεθc̃dm

}
= lim

ε

{
−

∫
X(uε)uθdm

}
+

∫
u2θ(c̃ − c)dm

≥ lim
ε

{
−

∫
X(uε)uθdm

}
+

∫
u2θ(c̃ − c)dm

≥
∫

u2θ(c̃ − c − C)dm.(3.6)

We can take c̃ = (c + C)+ to infer (3.5) from (3.6). �

The proof of theorem 2.3 is thus reduced to proving the estimate (3.3), which will be
done in section 5.

4. Getting rid of subsets whose Hd−1 measure is zero

We focus our attention in this section on the first new feature of our proof. We
shall show first that we need only to prove this estimate for non-negative test functions
θ in C1

c (Ω0) where Ω0 is an open subset of Ω such that Hd−1(Ω\Ω0) = 0. It is an
important aspect of our argument to reduce checking (3.3) in an open set Ω0 such that
Hd−1(Ω\Ω0) = 0, somehow getting rid a priori of subsets whose (d−1) Hausdorff measure
is zero.

Lemma 4.1. Let Ω0 ⊂ Ω be open subsets of Rd such that Hd−1(Ω\Ω0) = 0. Let X

be a vector field in L∞loc(Ω) such that div X ∈ L1
loc(Ω), and let v ∈ L∞loc(Ω) be a (weak)

solution on Ω0 of the equation Xv = f where f belongs to L1
loc(Ω). It means that for all

ϕ ∈ C1
c (Ω0),

(4.1)
∫

fϕdm = −
∫

v
(
X(ϕ) + ϕ div X

)
dm.
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Then the equation Xv = f is satisfied weakly on Ω, i.e. (4.1) is true for all ϕ ∈ C1
c (Ω).

Proof. We first make the more restrictive assumption

Md−1(Ω\Ω0) = 0

where Md−1 stands for the (d − 1) Minkowski content i.e., setting F = Ω\Ω0,

Ld(F + εB1) = εα(ε), with lim
ε→0+

α(ε) = 0,

where Ld stands for the d-dimensional Lebesgue measure and B1 is the closed unit ball
of Rd. Let ϕ be a test function ∈ C1

c (Ω). Using the notation Ac for the complement of A

in Rd, we note that the set

K = F ∩ suppϕ = Ωc
0 ∩ suppϕ

is a compact subset of Ω satisfying Md−1(K) = 0. We define the Lipschitz continuous
function

(4.2) σ(t) = min
(
(2t − 1)+, 1

)
, so that


σ(t) = 0 if t ≤ 1/2,

σ(t) = 1 if t ≥ 1,

0 ≤ σ′ ≤ 2.

We note that Xϕ belongs to L∞comp(Ω), suppXϕ ⊂ suppϕ and σ(ε−1|x − K|) tends to 1
on the complement of K when ε goes to 0+. Since the Lebesgue measure of K is zero,
we have2

(4.3) −
∫

v
(
X(ϕ) + ϕ div X

)
dm

= − lim
ε→0+

∫
v(x)

(
(Xϕ)(x) + ϕ(x)(div X)(x)

)
σ(ε−1|x − K|)dx.

Setting for ε > 0, ωε(x) = σ(ε−1|x − K|), we note that the function ωε is Lipschitz
continuous and

suppωε ⊂ {|x − K| ≥ ε/2} ⊂ Kc = F c ∪ (suppϕ)c = Ωc ∪ Ω0 ∪ (suppϕ)c

and thus

(4.4) suppωε ∩ suppϕ ⊂ Ω0.

2In the sequel, we shall use the notation dx for the Lebesgue measure when the variable x appears in

the integrand.
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We obtain from (4.3), with T = ∇x(|x − K|) (note that ‖T‖L∞ ≤ 1), integrating by parts
as we may on the open set Ω0 (that is using the assumption of the lemma),

(4.5) −
∫

v
(
X(ϕ) + ϕ div X

)
dm

= lim
ε→0+

{∫
σ(ε−1|x − K|)fϕdx +

∫
ϕvσ′(ε−1|x − K|)〈T (x) · X(x)〉ε−1dx

}
.

We have

lim sup
ε→0+

∫ ∣∣ϕvσ′(ε−1|x − K|)〈T (x) · X(x)〉
∣∣ ε−1dm

≤ 2 ‖vϕX‖L∞ lim sup
ε→0+

ε−1Ld(K + εB1) = 0,

since our assumption is precisely ε−1Ld(K + εB1) = α(ε) → 0 with ε. Thus (4.5) implies

−
∫

v
(
X(ϕ) + ϕ div X

)
dm =

∫
fϕdm, q.e.d.

Let us now make the less stringent3 assumption Hd−1(F ) = 0. Let ϕ be a test function
∈ C1

c (Ω) and consider as before the compact set K = F ∩ suppϕ ⊂ Ω. The fact that
Hd−1(K) = 0 means that for any ε > 0, there exist δε > 0 such that, for any δ ∈]0, δε],
there exist a sequence of

(4.6) open sets Sj with diameter ≤ δ such that Sj ∩ K �= ∅

and

(4.7) K ⊂ ∪j∈NSj ,
∑
j∈N

(diamSj)d−1 ≤ ε.

In particular, one can assume that δ ∈]0, ε]. Let us choose from now on some δ ∈]0, ε].
Since K is compact, we can assume that K ⊂ ∪j∈JSj with a finite set of indices J .
Setting δj = diamSj (note that 0 < δj ≤ δ since Sj is a non-empty open set), we consider

φj ∈ C∞c (Sj + 2δjB1; [0, 1])

a smooth function equal to 1 on Sj +δjB1 with ‖∇φj‖L∞ ≤ δ−1
j C(d), where C(d) depends

only on the dimension. We consider now the Lipschitz continuous function

χ = σ
(∑

j∈J

φj

)
, where σ is defined in (4.2).

3We are indebted to Giovanni Alberti for this improvement.
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For x ∈ K + (minj∈J δj)B1, there exists at least an index j ∈ J such that x ∈ Sj + δjB1

and thus φj(x) = 1. Consequently, the function χ is equal to 1 on K + (minj δj)B1 and
is supported in the set

{
∑
j∈J

φj ≥ 1/2} ⊂ ∪j∈J suppφj ⊂ ∪j∈J(Sj + 2δjB1) ⊂ K + 3δB1,

where the last inclusion is due to the assumption (4.6). Moreover, the gradient of χ

satisfies
|∇χ| = |σ′(

∑
j∈J

φj)
∑
j∈J

∇φj | ≤ 2C(d)
∑
j∈J

δ−1
j 1Sj+2δjB1

which implies the following estimate for its integral∫
Rd

|∇χ(x)|dx ≤ 21−dC(d)Ld(B1)
∑
j∈J

δ−1
j (diamSj + 4δj)d

= C1(d)
∑
j∈J

δd−1
j ≤ C1(d)ε,

where C1(d) depends only on the dimension. Eventually, for any ε > 0, we were able
to construct a Lipschitz continuous function χε, valued in [0,1], supported in K + 3εB1,
equal to 1 in K + ρεB1 with some ρε ∈]0, ε] such that

(4.8)
∫

|∇χε(x)|dx ≤ C1(d)ε.

In particular, since Ld(K) = 0, we obtain, with

(4.9) ωε = 1 − χε,

(4.10) lim
ε→0+

ωε(x) = 1, Ld − a.e. and ‖ωε‖L∞ ≤ 1.

It is then easy to start over the computations in (4.2–5). We check, using (4.10) and
vX(ϕ), ϕv ∈ L∞comp(Ω), vϕdiv X, fϕ ∈ L1,

−
∫

v
(
X(ϕ) + ϕ div X

)
dm = − lim

ε→0+

∫
ωεv

(
X(ϕ) + ϕ div X

)
dm

= lim
ε→0+

{∫
ωεfϕdm +

∫
ϕv〈∇ωε(x) · X(x)〉dx

}
=

∫
fϕdm
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from (4.10) and the following consequence of (4.8)

(4.11) lim sup
ε→0+

∫
|ϕv〈∇ωε(x) · X(x)〉| dx ≤ ‖ϕvX‖L∞ lim sup

ε→0+

∫
|∇χε(x)|dx = 0.

The proof of lemma 4.1 is complete.

Remark. This proof shows also that it would be possible to weaken the assumption
Hd−1(Ω\Ω0) = 0. As a matter of fact, a sufficient requirement on F concerns its so-
called W 1,1 capacity. We need only to assume that for all ε > 0, and all K compact
subset of F , there exists a W 1,1 function χε, supported in Ω, valued in [0,1], such that

(4.12) K ⊂ int
(
{χε = 1}

)
, lim

ε→0+
χε(x) = 0 Ld − a.e., lim

ε→0+

∫
|∇χε|dm = 0.

This assumption amounts essentially to require that the W 1,1 capacity of Ω\Ω0 is 0.
However, we shall stick on our hypothesis involving the (d − 1) Hausdorff measure since
we believe that this condition is easier to understand and more explicit than (4.12). We
can view the previous arguments as proofs of the implications4

Md−1(F ) = 0 =⇒ Hd−1(F ) = 0 =⇒ capW 1,1(F ) = 0.

In fact, we shall use the following lemma, dealing with an inequality, whose proof is
identical to lemma 4.1’s.

Lemma 4.2. Let Ω0 ⊂ Ω be open subsets of Rd such that Hd−1(Ω\Ω0) = 0. Let X

be a vector field in L∞loc(Ω) such that div X ∈ L1
loc(Ω), and let v ∈ L∞loc(Ω) be a (weak)

solution on Ω0 of the inequality Xv ≤ f where f belongs to L1
loc(Ω). It means that for all

non-negative ϕ ∈ C1
c (Ω0),

(4.13)
∫

fϕdm +
∫

v
(
X(ϕ) + ϕ div X

)
dm ≥ 0.

Then the inequality Xv ≤ f is satisfied weakly on Ω, i.e. (4.13) is true for all ϕ ∈ C1
c (Ω).

Proof. Let ϕ be a non-negative function ∈ C1
c (Ω), and let ωε satisfying (4.9 − 10) with

K = suppϕ ∩ Ωc
0. Following the same lines as in the previous proofs, we get∫

fϕdm +
∫

v
(
X(ϕ) + ϕ div X

)
dm =

∫
fϕdm + lim

ε→0+

∫
ωεv

(
X(ϕ) + ϕ div X

)
dm

=
∫

fϕdm − lim
ε→0+

∫
(X(ωε)v + ωεX(v))ϕdm

= lim
ε→0+

{∫
fωεϕdm +

∫
v
(
X(ωεϕ) + ωεϕ div X

)
dm

}
≥ 0. �

4We can note also that, for analytic sets (Suslin sets) we have the equivalence Hd−1(F ) = 0 ⇐⇒
capW1,1 (F ) = 0 (see e.g. lemma 5.12.3 in [Zi]).
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5. Commutation arguments

Preliminary remarks. When X ∈ W 1,1
loc (Ω), one can prove (see [DL]) a much stronger

statement than (3.3). Let Ω be an open set of Rd, X be a vector field on Ω, and S a C1

oriented hypersurface of Ω such that X ∈ L∞loc, div X ∈ L1
loc, (div X)+ ∈ L∞loc and X is

positively transverse to S. Let u be a L∞loc function such that, for some function c ∈ L1
loc

with c+ ∈ L∞loc,
Xu = cu, suppu ⊂ S+.

If X ∈ W 1,1
loc (Ω), then one can prove the strong convergence in L1 of θX(χu)ε to θcu,

where χ, θ are smooth compactly supported functions, χ = 1 on the support of θ, (χu)ε

is a regularization of χu by any standard mollifier. Here we took any smooth compactly
supported function ρ with integral 1 and set

vε(x) =
∫

ε−nρ
(x − y

ε

)
v(y)dy.

The proof amounts to the computation of the commutator

[X, ρ̂(εD)].

It fails even in the piecewise W 1,1 case if a jump occurs on a curved hypersurface. In
the latter case, one should use a pseudo-differential mollifier and not only a convolution
operator, or equivalently, straighten first the jump hypersurface and after this use a
convolution. However, one should be careful at choosing the various speeds: if the jump
occurs on the hypersurface {x1 = 0} then it is natural to choose ε1 � ε2, . . . , εd if ε is a
diagonal matrix. It is still not enough to handle the simplest BV example: we must pay
more attention at choosing the ε′s.

Beginning of the proof of the estimate (3.3). In order to obtain the result in
theorem 2.4, we need only to prove (3.3) on Ω0, since we shall then get that

X(u2) ≤ (C + c+)u2

on Ω0 and thus, from lemma 4.2, the same inequality in Ω. Then u2 will satisfy the
assumptions in lemma 3.1, which will give the result. Let us then consider a vector field
on V open subset of Ω0

X =
∑

1≤j≤d

aj(x)
∂

∂xj

and assume for 1 ≤ j ≤ d

(5.1)
∂aj

∂x1
∈ M(V ) = D′(0)(V ), and for k ≥ 2,

∂aj

∂xk
∈ L1

loc(V ),div X ∈ L1
loc(V ).
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Let u be a L∞loc(V ), c ∈ L1
loc(V ) such that Xu = cu. We consider a non-negative function

θ ∈ C1
c (V ) and χ ∈ C1

c (V ; [0, 1]) such that supp θ ⊂ {χ = 1}. Let ρ be a smooth
compactly supported function with integral 1, ε be a positive diagonal d× d matrix with
ε2 = · · · = εd. We need to check (3.3), setting v = χu and vε = v ∗ ρε

〈X(u2), θ〉 = −
∫

u2(X(θ) + θ div X)dm = −
∫

χu2(X(θ) + θ div X)dm

= − lim
ε→0+

∫
vε u

(
X(θ) + θ div X

)
dm = lim

ε→0+

∫
uθXvεdm +

∫
cu2θdm

≤ lim
ε→0+

∫
uθXvεdm +

∫
u2θc+dm.

We define, (for x ∈ suppχ and ε small enough so that suppχ + ε supp ρ ⊂ V ),

(5.2) (Rεv)(x) =
∑

1≤j≤d

∫ (
v(x − εz) − v(x)

)
ε−1
j

(
aj(x) − aj(x − εz)

)
(∂jρ)(z)dz

and we check easily that

(5.3)
(
X(v ∗ ρε) − (Xv) ∗ ρε

)
(x) =

(Rεv)(x) +

(Tεv)(x)︷ ︸︸ ︷∫
(div X)(x − εz)ρ(z)

(
v(x − εz) − v(x)

)
dz .

Consequently, we have,

(5.4) X(vε) = (Xv) ∗ ρε + Tεv + Rεv.

From the equation Xv = cv + uX(χ), we get that Xv belongs to L1 and the strong
convergence in L1 of θ(Xv ∗ ρε) to cθu. The term Tεv is also easy5 to handle since, using
the notation τtw(x) = w(x − t), we have

(5.5) ‖θTεv‖L1 ≤
∫

‖θ(τεz − Id)(div X)‖L1 2 ‖v‖L∞ |ρ(z)|dz

+
∫∫

|ρ(z)||v(x − εz) − v(x)||(div X)(x)|θ(x)dxdz.

Since div X belongs to L1
loc and ρ is compactly supported, the first term in the right-hand

side of the above inequality goes to 0 with ε. For the second term, we can use the assertion
(5.6) of the following simple lemma.

5It is even trivial to see that Tεv goes to zero strongly in L1 if we assume that div X is bounded since v

belongs to L1. However, we want to show that our weaker assumption (div X)+ ∈ L∞loc and div X ∈ L1
loc

is enough.
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Lemma 5.1. Let b ∈ L1, a ∈ BV and v ∈ L∞. Then, we have

lim
t→0

∫
|b(x)||v(x + t)−v(x)|dx = 0 and(5.6) ∫
|a(x + t) − a(x)||v(x)|dx ≤ ‖∇a‖Mb

‖v‖L∞ |t|.(5.7)

Proof: see the appendix A6.

We get then

〈X(u2), θ〉 ≤ lim
ε→0+

∫
uθRεvdm + 2

∫
u2θc+dm.

The key argument. We need to check the quantity

(5.8)
∫

uθRεvdm.

Looking at (5.2), we calculate, with a sequence uν of continuous functions converging a.e.
on suppχ to u with ‖uν‖L∞(supp χ) ≤ ‖u‖L∞(supp χ) and setting vν = χuν

(5.9)
∫

u(x)θ(x)(Rεv)(x)dx

= lim
ν

∑
1≤j≤d

∫∫
uν(x)θ(x)

(
vν(x − εz) − vν(x)

)
ε−1
j

(
aj(x) − aj(x − εz)

)
(∂jρ)(z)dzdx.

Setting (when ∂aj

∂xk
is a Radon measure, the integral stands for a bracket of duality)

(5.10) (Rεvν)(x) =
∑

1≤j,k≤d

∫ 1

0

∫ (
vν(x− εz)− vν(x)

)
ε−1
j εk

∂aj

∂xk
(x− sεz)zk(∂jρ)(z)dsdz,

and using the fact that ε is a positive diagonal matrix with

(5.11) 0 < ε1 ≤ ε2 = · · · = εd,

we get

(Rεvν)(x) =∫ 1

0

∫ (
vν(x − εz) − vν(x)

)∂a1

∂x1
(x − sεz)z1(∂1ρ)(z)dsdz(5.12)

+
∑

2≤k≤d

∫ 1

0

∫ (
vν(x − εz) − vν(x)

)
ε−1
1 ε2

∂a1

∂xk
(x − sεz)zk(∂1ρ)(z)dsdz(5.13)

+
∑

2≤j≤d

∫ 1

0

∫ (
vν(x − εz) − vν(x)

)
ε−1
2 ε1

∂aj

∂x1
(x − sεz)z1(∂jρ)(z)dsdz(5.14)

+
∑

2≤j,k≤d

∫ 1

0

∫ (
vν(x − εz) − vν(x)

) ∂aj

∂xk
(x − sεz)zk(∂jρ)(z)dsdz.(5.15)
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Note that from div X ∈ L1
loc, and (5.1) we get ∂a1

∂x1
∈ L1

loc so that

(5.16)
∂a1

∂x1
,
∂a1

∂xk
for k ≥ 2 and

∂aj

∂xk
for k ≥ 2 are in L1

loc.

This implies that the limit with ν → +∞ of the terms (5.12), (5.13) and (5.15) are
respectively (a.e. in x)∫ 1

0

∫ (
v(x − εz) − v(x)

)∂a1

∂x1
(x − sεz)z1(∂1ρ)(z)dsdz,

∑
2≤k≤d

∫ 1

0

∫ (
v(x − εz) − v(x)

)
ε−1
1 ε2

∂a1

∂xk
(x − sεz)zk(∂1ρ)(z)dsdz,

∑
2≤j,k≤d

∫ 1

0

∫ (
v(x − εz) − v(x)

) ∂aj

∂xk
(x − sεz)zk(∂jρ)(z)dsdz.

with domination by L1 functions of the variable x independent of the index ν. Conse-
quently, we obtain from (5.9),∫

u(x)θ(x)(Rεv)(x)dx =∫ 1

0

∫∫
u(x)θ(x)

(
v(x − εz) − v(x)

)∂a1

∂x1
(x − sεz)z1(∂1ρ)(z)dsdzdx,

+
∑

2≤k≤d

∫ 1

0

∫∫
u(x)θ(x)

(
v(x − εz) − v(x)

)
ε−1
1 ε2

∂a1

∂xk
(x − sεz)zk(∂1ρ)(z)dsdzdx,

+ lim
ν

∑
2≤j≤d

∫ 1

0

∫∫
uν(x)θ(x)

(
vν(x − εz) − vν(x)

)
ε−1
2 ε1

∂aj

∂x1
(x − sεz)z1(∂jρ)(z)dsdzdx,

+
∑

2≤j,k≤d

∫ 1

0

∫∫
u(x)θ(x)

(
v(x − εz) − v(x)

) ∂aj

∂xk
(x − sεz)zk(∂jρ)(z)dsdzdx.

Thus, using lemma 5.1, we get

(5.17)
∣∣∣∣∫ u(x)θ(x)(Rεv)(x)dx

∣∣∣∣ ≤ σ11(ε1, ε2) +
∑

2≤k≤d

σ1k(ε1, ε2)
ε2
ε1

+
∑

2≤j,k≤d

σjk(ε1, ε2)

+
ε1
ε2

2
∥∥u2θ

∥∥
L∞

∑
2≤j≤d

∥∥∥∥∂aj

∂x1

∥∥∥∥
Mb(supp χ)

∫
|z1(∂jρ)(z)|dz,

where the functions σ11, σ1k, σjk tend to 0 with ε. We infer from (5.17) that there exists
a constant C1 and a function σ such that∣∣∣∣∫ u(x)θ(x)(Rεv)(x)dx

∣∣∣∣ ≤ σ(ε1, ε2) + σ(ε1, ε2)
ε2
ε1

+ C1
ε1
ε2

,(5.18)

where 0 = lim
ε→0

σ(ε1, ε2).(5.19)
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We set

(5.20) β(ε2) = sup
0<ε1≤ε2

σ(ε1, ε2),

we note that limε2→0 β(ε2) = 0 and we choose in (5.18)

(5.21) ε1 = β(ε2)1/2ε2,

which is ≤ ε2, for ε2 small enough, obtaining

(5.22)
∣∣∣∣∫ u(x)θ(x)(Rεv)(x)dx

∣∣∣∣ ≤ β(ε2) + β(ε2)1/2 + C1β(ε2)1/2 −−−→
ε2→0

0.

We obtain
〈X(u2), θ〉 ≤ 2

∫
u2θc+dm,

that is the inequality
X(u2) ≤ 2c+u2

is satisfied on Ω0. Following the previous remarks, this completes the proof of theorem
2.2.

Concluding remarks. Note that the choice of ε1, ε2 depends on the geometry: the
condition (5.21) implies ε1 � ε2, a condition forced by the term ε1/ε2 in the right-hand-
side of (5.18). But this natural geometric condition is not enough to handle that matter:
the choice of ε1, ε2 depends also on the function u under scope, since in (5.20-21), the
functions σ and β depend on u.

6. Appendix

A1. Three simple examples with pictures. We give in this section three simple
examples, demonstrating that the condition (div X)+ ∈ L∞loc is necessary for the forward
uniqueness property.

Example 6.1. Let T1 = signx ∂
∂x + ∂

∂y be a vector field on R2. The vector field T1 belongs
to L∞ ∩ BV , is tranverse to the hypersurface S = {y = 0} since T1(y) = 1, and fails to
have the uniqueness property across S since

T1

(
(y − |x|)+

)
= 0, and (y − |x|)+|y<0

= 0.

Note that div T1 = 2δ(x) which is non-negative and not in L∞. The next example
shows that the negative part of the divergence is unimportant for uniqueness.
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Example 6.2. Let T2 = − signx ∂
∂x + ∂

∂y be a vector field on R2. The vector field T2

belongs to L∞ ∩ BV , is tranverse to the hypersurface S = {y = 0} since T2(y) = 1, and
has the uniqueness property across S from theorem 2.4 since (div T2)+ = 0.

Example 6.3. Let T3 = x ln2 |x| ∂
∂x + ∂

∂y be a vector field on R2. The vector field T3

belongs to ∩1≤p<∞W 1,p
loc , is tranverse to the hypersurface S = {y = 0} since T3(y) = 1,

and fails to have the uniqueness property across S since, on the open set {|x| < 1},

T3

((
y − 1

| ln |x||
)

+

)
= 0 and

(
y − 1

| ln |x||
)

+|y<0

= 0.

Note that div T3 = ln2 |x| + 2 ln |x| is non-negative near the origin and not bounded.
The behaviour of the Tj is also apparent on the following pictures.

S

S

S

Integral curves of T1, T2, T3

The integral curves of T1 (resp.T3) starting from {y < 0} cannot penetrate the shaded
region where {y > |x|} (resp. {y > 1/| ln |x||}). On the other hand, the integral curves
of T2 starting from {y < 0} fill a neighborhood of the origin.

A2. Invariance properties. Let us first check that the assumptions (1.1) and X ∈
BV loc are invariant by a C1,1 diffeomorphism. The boundedness and transversality prop-
erties in (1.1) are already invariantly stated. Moreover the BV regularity for a vector
field makes sense on a C1,1 manifold since with x = κ(y), where κ is a local C1,1 diffeo-
morphism,

X =
∑

j

aj
∂

∂xj
=

∑
k,j

aj
∂yk

∂xj

∂

∂yk
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and

∂

∂yl

(
aj(κ(y))

∂yk

∂xj
(κ(y))

)
=

∑
i

∈M︷︸︸︷
∂aj

∂xi

∈C0,1︷ ︸︸ ︷
∂xi

∂yl

∂yk

∂xj
+
∈L1︷︸︸︷
aj

∈L∞︷ ︸︸ ︷
∂2yk

∂xj∂xi

∂xi

∂yl

is indeed a Radon measure. The divergence is invariantly expressed in (1.4), but we can
note directly that for ω a non vanishing Lipschitz continuous function, the divergence of
the vector field X with respect to the n-form ω(x)dx1 ∧ · · · ∧ dxn is

div X = ω−1
∑

j

∂(ajω)
∂xj

=
∑

j

∂aj

∂xj
+ X(ln |ω|).

Since X is also in L∞loc, the divergence of X is a priori a Radon measure and the condition
div X ∈ L∞loc (resp. (div X)+ ∈ L∞loc) is simply

∑
j ∂xj

(aj) ∈ L∞loc (resp. (
∑

j)+ ∈ L∞loc),
a condition that can be easily checked as above in another chart of C1,1 coordinates.
Note that, on a C1,1 manifold, the regularity of the tangent bundle and of the bundle of
n-forms is Lipschitz continuity.

The condition X ∈ B(Ω) is also invariant by change of C1,1 coordinates from the
previous discussion and the fact that it is also the case for the condition on the Hausdorff
dimension.

Remark. It is tempting to formulate analogous conditions on a Lipschitz manifold, where,
for a vector field X, the conditions X ∈ L∞loc, X positively transverse to a Lipschitz
hypersurface S make sense. The vanishing of the Hausdorff measure is also invariant by
bi-Lipschitz homeomorphism. However, the divergence condition does not have a simple
expression (if any) in that framework, since the regularity of the function ω above could
only be boundedness and measurability (for instance it could be the determinant of the
Jacobian of a bi-Lipschitz homeomorphism). Moreover the notion of BVloc regularity for
a vector field on a Lipschitz manifold should be handled with caution since the change of
coordinates formulas written above do not obviously make sense, since it is not possible to
make the product of an L∞ function with a Radon measure. Nevertheless, the Lipschitz
framework would be certainly better, and in particular would allow a good approximation
of the jump set of BV functions.

A3. The class B contains the piecewise W 1,1 functions. Let Ω be an open set of
R

d. Let us recall6 the definition of the class P(Ω) = L∞loc(Ω)∩ piecewise W 1,1 (see page

6In fact the points (i)—(iv) are consequences of the definition in [Li]. Anyhow our purpose is to prove

that piecewise W 1,1 functions are indeed in our class B.
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836 of [Li]). A function a ∈ L∞loc(Ω) is said to belong to P(Ω) if there exists a partition
of Ω, Σd,Σd−1, . . . ,Σ0,Σ−1 such that

(i) for all 0 ≤ k ≤ d, ∪d−k≤i≤dΣi are open sets and a ∈ W 1,1(Σd),
(ii) for all 0 ≤ k ≤ d − 2, for all x ∈ Σk, there exists a neighborhood U of x and a

bi-Lipschitz continuous homeomorphism
κ : U → B1

y →
(
κ1(y), . . . , κd(y)

)
such that Σk ∩ U = {y ∈ U | ∀j, 1 ≤ j ≤ d − k, κj(y) = 0},

(iii) for all x ∈ Σd−1, there exists a neighborhood U of x and a C1,1 diffeomorphism
κ : U → B1

y #→
(
κ1(y), . . . , κd(y)

)
such that

Σd−1 ∩ U = {y ∈ U | κ1(y) = 0}.
(iv) The points of Σ−1 are isolated.

Proposition 6.4. Let Ω be an open set of Rd and P(Ω) be the set of piecewise W 1,1

functions described above. Then P(Ω) ⊂ B(Ω). In particular for all a ∈ P(Ω), there
exists an open subset Ω0 of Ω such that

Hd−1(Ω\Ω0) = 0, and a ∈ CBVloc(Ω0).

Note that the set Ω0 may depend on the function a.

Proof. Note that if κ : U −→ V is a bi-Lipschitz homeomorphism of open sets of Rd,
setting ν = κ−1, we obtain by regularization

det κ′(x) det ν′(κ(x)) = 1,

so that since essup |detκ′(x)| is finite, we get also that essinf |det ν′(κ(x))| is positive.
We remark first that Md−1(Σd−2) = 0. In fact Ld(Σd−2 + rB1) = O(r2) since for any
point in Σd−2 there exists a neighborhood V and local Lipschitz coordinates z such that

V ∩ (Σd−2 + rB1) ⊂ {z = (z1, z2, z
′′) ∈ R× R× Rd−2, |z1| ≤ r, |z2| ≤ r, |z′′| ≤ M0}.

The same argument can be applied for k ∈ {2, . . . , d} and with (iv), we get

∀k ∈ {2, . . . , d, d + 1},Md−1(Σd−k) = 0.

Consequently, we have indeed

Ω0 =

open set︷ ︸︸ ︷
Σd ∪ Σd−1 ⊂ Ω, with Hd−1(Ω\Ω0) = 0,

and Σd−1 is a C1,1 hypersurface of Ω0. Since a ∈ W 1,1(Σd), we get that a belongs to
conormalBVloc(Ω0) from the following simple lemma.
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Lemma 6.5. Let R0 > r0 > 0 be given positive numbers and d be an integer ≥ 2. We
define

V+ = {x = (x1, x
′) ∈ R× Rd−1, 0 < x1 < r0, |x′| < R0},

V− = {x = (x1, x
′) ∈ R× Rd−1,−r0 < x1 < 0, |x′| < R0},

V = {x = (x1, x
′) ∈ R× Rd−1,−r0 < x1 < r0, |x′| < R0}.

Let a be an L∞(V ) function such that a ∈ W 1,1(V+) ∩ W 1,1(V−). Then a belongs to
BV (V ) and more precisely7

∂a

∂x1
∈ Mb(V ), ∇x′a ∈ L1(V ).

Proof. Let ϕ be a test function in C1
c (V ). With brackets of duality, ω standing for a C1

function of one real variable equal to 1 outside a neighborhood of the origin, setting

b± =
∂a

∂x1
|V± ∈ L1(V±),

we have,

〈 ∂a

∂x1
, ϕ〉 = −

∫∫
∂ϕ

∂x1
(x1, x

′)a(x1, x
′)dx1dx′

= − lim
ε→0

∫∫
∂ϕ

∂x1
(x1, x

′)a(x1, x
′)ω(x1ε

−1)dx1dx′

= lim
ε→0

{∫∫
ϕ(x1, x

′)
[ ∂a

∂x1
(x1, x

′)ω(x1ε
−1) + a(x1, x

′)ε−1ω′(x1ε
−1)

]
dx1dx′

}
=

∫∫
ϕ(x1, x

′)[b+(x1, x
′) + b−(x1, x

′)]dx1dx′

+ lim
ε→0

∫∫
ϕ(εx1, x

′)a(εx1, x
′)ω′(x1)dx1dx′.

= 〈b+ + b−, ϕ〉 + lim
ε→0

∫
α(εx1)ω′(x1)dx1,

where α is the L∞comp(R) function α(t) =
∫

ϕ(t, x′)a(t, x′)dx′. From the inequality

‖α‖L∞(R) ≤ ‖ϕ‖L∞(V ) sup
|t|<r0

∫
|x′|<R0

|a(t, x′)|dx′,

7Note that the assumptions are “up to the boundary” and that the hypothesis a ∈ W 1,1
loc (V+) ∩

W 1,1
loc (V−) is not sufficient to get the conclusion as shown by the following function u ∈ C0(R)∩C∞(R∗)

given by u(x) = x sin(1/x) whose distribution derivative is not a Radon measure.
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we get that ∣∣∣∣limε→0

∫
α(εx1)ω′(x1)dx1

∣∣∣∣ ≤ C

∫
|ω′(x1)|dx1 ‖ϕ‖L∞(V ) ,

which implies that ∂a/∂x1 is a Radon measure on V . Finally, we need to check the x′

derivatives ; setting

c± = ∇x′a|V± ∈ L1(V±),

we write with the same notations as previously,

〈∇x′a, ϕ〉 = −
∫∫

a∇x′ϕdx1dx′

= − lim
ε→0

∫∫
a(x1, , x

′)(∇x′ϕ)(x1, , x
′)ω(x1ε

−1)dx1dx′

= lim
ε→0

∫∫
ϕ(x1, x

′)∇x′a(x1, x
′)ω(x1ε

−1)dx1dx′

=
∫∫

(c+ + c−)ϕdx1dx′

concluding the proof of the lemma. �

A4. A picture. We first describe the singular set of the two-dimensional example 2.3.(d)

(1)

(2'')

(4)

(3') (5')
(6)

(2')

(3'')

(5'')

Singular set of a in example 2.3.d
The points (1) are regular points (say W 1,1 points). The points (2) are the jump points:

in the picture above, the foliation is horizontal at (2′), vertical at (2′′). The points (3’)
(resp. (3”)) are accumulation points, but in Ω0 with horizontal (resp. vertical) foliation.
The open set Ω0 is the reunion of points (1),(2),(3). The other points (4),(5),(6) are the
compact set Ω\Ω0 whose H1 measure is zero.
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A vector field X in R2
x,y of the type defined in example (f) is transverse to the hyper-

surface {y = 0}, and has jumps across the hypersurfaces

Σk = {x = xk}, Sl = {y = yl}

where (xk) and (yl) are sequences with limit 0. The divergence condition forces the jump
to occur in the tangential part to the foliation. The foliation has not to be defined at
the intersection of the singular hypersurfaces, is vertical near the vertical component and
horizontal near the horizontal component. That type of example is not piecewise W 1,1.

A5. Proof of lemma 3.1. Let us consider a point x0 ∈ S and ϕ a defining function for
S in a neighborhood of x0 (i.e. S ∩ V0 = {x ∈ V0, ϕ(x) = 0}). We know that, on an open
neighborhood V0 of x0, with w0 = w|V0 ≥ 0, w0 ∈ L∞(V0), we have

(6.1) Xw0 ≤ cw0, suppw0 ⊂ {ϕ ≥ 0}, Xϕ ≥ ρ0 > 0.

Let us consider the following Lipschitz continuous function defined on V0

(6.2) ψ(x) = ϕ(x) + |x − x0|2, θ(ψ(x)) =
1
2

((
α2 − ψ(x)

)
+

)2

,

where α is a positive parameter such that the closed ball B(x0, α) with center x0 and
radius α is included in V0. We have

supp (θ(ψ)) ⊂ {ψ ≤ α2}

and
supp(w0θ(ψ)) ⊂ {ϕ ≥ 0} ∩ {ψ ≤ α2} = Kα $ x0

which is a compact subset of V0 (as a closed subset of B(x0, α)). Let χ ∈ C∞c (V0; [0, 1]),
χ = 1 on a neighborhood of Kα. Since ψ and θ(ψ) are Lipschitz continuous functions,
and X(χ) = 0 on a neighborhood of suppw0θ(ψ), we have

∑
1≤j≤n

ajw0∂j

(
θ(ψ)χ

)
= w0χθ′(ψ)X(ψ) +

=0︷ ︸︸ ︷
w0θ(ψ)X(χ) .

We calculate, dm standing for the Lebesgue measure,∫
cw0θ(ψ)χdm ≥ 〈Xw0, θ(ψ)χ︸ ︷︷ ︸

≥0

〉D′(1)(V0),C1
c (V0)

= −
∑

1≤j≤n

∫
ajw0∂j(θ(ψ)χ)dm −

∫
w0θ(ψ)χdivXdm

=
∑

1≤j≤n

∫
χw0aj∂j(ψ)(α2 − ψ)+dm −

∫
w0θ(ψ)χdivXdm.
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We obtain

(6.3) 0 ≥
∫

χw0(α2 − ψ)+
[
X(ψ) − 1

2
(α2 − ψ)+(divX + c)

]
dm.

Now on the set

{x ∈ V0, ϕ(x) + |x − x0|2 = ψ(x) ≤ α2} ∩ {x, ϕ(x) ≥ 0} ⊂ B(x0, α)

we have, using now (6.1–2) and the assumption of the lemma, that

X(ψ) − 1
2
(α2 − ψ)+(div X + c) ≥

ρ0 − 2 ‖X‖L∞(B(x0,α)) α − 1
2
α2 ‖(divX + c)+‖L∞(B(x0,α)) ≥ ρ0/2

if α is chosen small enough with respect to ρ0 and ‖X‖L∞(V0)
. On the other hand, the

term ∫
χw0

(
(α2 − ψ)+

)2(div X + c)−dm

makes sense and is non-negative. This yields

0 ≥
∫

χw0(α2 − ψ)+dm,

and since the integrand is non-negative we get χw0(α2−ψ)+ = 0. Since on a neighborhood
of x0, we have χ = 1 and α2 − ψ > 0 , we indeed obtain that w0 vanishes near x0. The
proof of lemma 3.1 is complete.

A6. Proof of lemma 5.1. To prove (5.6), we note that for all κ > 0, R > 0 we have

lim sup
t→0

∫
|b(x)||v(x + t) − v(x)|dx

= lim sup
t→0

{∫
|v(x+t)−v(x)|≤κ

|b(x)||v(x + t) − v(x)|dx +
∫
|v(x+t)−v(x)|>κ

|b(x)||v(x + t) − v(x)|dx

}

≤ κ ‖b‖L1 + 2 ‖v‖L∞ lim sup
t→0

∫
|v(x+t)−v(x)|>κ

|x|≤R

|b(x)|dx + 2 ‖v‖L∞

∫
|x|>R

|b(x)|dx

= κ ‖b‖L1 + 2 ‖v‖L∞

∫
|x|>R

|b(x)|dx

since Ld(A = {x, |x| ≤ R, and |v(x + t) − v(x)| > κ}) → 0 with t: in fact we have the
estimates

Ld(A) ≤ κ−1

∫
|x|≤R,|x+t|≤R

|v(x + t) − v(x)|dx + Ld({x, |x| ≤ R, |x + t| > R})

≤ κ−1 ‖τ−tvR − vR‖L1 + |t|Rd−1|Sd−1|,

with vR(x) = v(x)1(|x| ≤ R) which is an L1 function. The assertion (5.7) is an immediate
consequence of a.e. convergence of C0

c functions to v with L∞ bound ‖v‖L∞ . �
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