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A bstract . We prove the uniqueness of weak solutions for the Cauchy problem for a class of

transport equations whose velocities are partially with bounded variation. Our result deals

with the initial value problem ∂tu + Xu = f, u|t=0 = g, where X is the vector field

a1(x1) · ∂x1 + a2(x1, x2) · ∂x2 , a1 ∈ BV (RN1
x1

), a2 ∈ L1
x1

(
BV (RN2

x2
)
)
,

with a boundedness condition on the divergence of each vector field a1, a2. This model was

studied in the paper [LL] with a W 1,1 regularity assumption replacing our BV hypothesis. This

settles partly a question raised in the paper [Am]. We examine the details of the argument

of [Am] and we combine some consequences of the Alberti rank-one structure theorem for BV

vector fields with a regularization procedure. Our regularization kernel is not restricted to be

a convolution and is introduced as an unknown function. Our method amounts to commute a

pseudo-differential operator with a BV function.
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2 Transport equations

1. Introduction

In this article, we want to study some transport equations whose velocities are partially
with bounded variation. More precisely, we intend to prove the uniqueness of weak solutions
u of

∂tu + Xu = 0, u|t=0 = 0,

for vector fields X of the following type,

(1.1)

{
X = a1(x1) · ∂x1 + a2(x1, x2) · ∂x2 , a1 ∈ BV (RN1

x1
), a2 ∈ L1

x1

(
BV (RN2

x2
)
)
,

div1 a1 ∈ L∞(RN1), div2 a2 ∈ L∞(RN1+N2).

Note that the BV vector field a1 depends only on the x1-variables, but that the vector field
a2 is only L1 with respect to the x1-variables (and BV with respect to x2). Note also that
our condition on the divergence is stronger that div X ∈ L∞ since we want to control both
divergences of the vector fields a1, a2. This type of question is tackled in a recent paper by
C. Le Bris and P.L.Lions ([LL]), in which they examine vector fields of type (1.1), where the
BV regularity is replaced by a W 1,1 assumption.

A short historical account of the problem. Let us recall briefly a part of the recent
history of this problem. In 1989, R.DiPerna and P.L.Lions proved in [DL] that the W 1,1 regu-
larity of a vector field, (along with a condition of boundedness on the divergence and a global
condition) is enough to ensure the uniqueness of weak solutions. In 1998, P.L.Lions intro-
duced in [Li] the so-called piecewise W 1,1 class and extended the results of [DL] for this type
of regularity. In 2001, F.Bouchut studied in [Bo] some cases of BV regularity correspond-
ing essentially to W 1,1 singularities occurring on hyperplanes. The paper [CL2] introduced
the invariantly defined class conormal BV, for which the authors prove the uniqueness of
weak solutions; moreover, their definition is simplified by the remark that closed sets whose
(N−1)-Hausdorff measure is zero are unimportant for locally bounded vector fields. Finally
in 2003, L.Ambrosio fully proved in [Am] the conjecture formulated in [DL] that BV vector
fields (with bounded divergence) do have a flow. The main new ingredient brought forward
by the article [Am] is a deep structure result on BV -vector-valued functions due to G.Alberti
([Al]). Although the full strength of the Alberti theorem is not needed as noted in the re-
mark 3.7 of [Am] and also below in our Remark 3.4, it is nevertheless a very helpful tool for
our investigation. It should also be noted that the classical counterexample of M.Aizenman
([Ai]), the recent counterexamples of N.Depauw ([De]) and of F.Colombini, T.Luo, J.Rauch
([CLR]) indicate that the BV regularity is close to optimality for the uniqueness property.

The renormalization property. Following the method introduced in [DL], the main tool
for the proof of all these uniqueness results for vector fields X is a commutation lemma
devised to ensure that a (bounded) solution u of the equation Xu = 0 should be also such
that X(u2) = 0 and more generally should satisfy the renormalization property

(1.2) X
(
β(u)

)
= β′(u)Xu
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for any C1 function β (to get uniqueness, it is enough to prove the Leibniz formula X(u2) =
2uX(u)). The property (1.2) could fail even if both sides of the equality make sense, as
shown by the counterexample constructed in [De]. In that paper, N.Depauw shows that
there exists a bounded measurable vector field a ∈ L∞(Rt × R2

x;R2) with null divergence
and a bounded measurable function u ∈ L∞(Rt × R2

x), supported in {t ≥ 0} such that

∂tu + ∂x · (au) = 0, u2 = 1R+(t).

For that particular vector field XD = ∂t +a(t, x) ·∂x and that function u, we have XD(u2) =
δ(t) and 2uXD(u) = 0, violating (1.2), in spite of the fact that XD(u2) and 2uXD(u) are
both meaningful. A somewhat equivalent approach to checking the property (1.2) is the fact
that to get uniqueness for a vector field X, one should be able to prove that it behaves like
an ordinary vector field with respect to the Leibniz formula, namely, assuming for instance
that X is in L1

loc with L1
loc divergence, and u, v are L∞loc functions such that X(u), X(v) are

in L1
loc, we have to check

X(uv) = uX(v) + vX(u).

Checking (1.2) can be reduced to a commutation problem. In fact, assuming that X is a
L1

loc vector field with null divergence and u is a L∞loc function such that Xu = 0, checking
X(u2) = 0 amounts to examine the bracket of duality (ϕ is a test function in C1

c )

〈Xu2, ϕ〉 = −
∫

u2(x)(Xϕ)(x)dx

since the divergence of X is zero. Now assuming that Rεu is C1, bounded and converging
pointwise a.e. to u when ε goes to zero, we get

〈Xu2, ϕ〉 = − lim
ε→0

∫
u(x) (Rεu)(x) (Xϕ)(x)dx = 〈X(uRεu), ϕ〉.

Now since Rεu is C1, one can use Leibniz formula X(uRεu) = (Xu)(Rεu) + uX(Rεu) and
since Xu = 0, we get

〈Xu2, ϕ〉 = lim
ε→0
〈uX(Rεu), ϕ〉 = lim

ε→0

∫
ϕ(x) u(x) (XRεu)(x) dx.

Using again that Xu = 0, we obtain

〈Xu2, ϕ〉 = lim
ε→0

∫
(ϕu)(x)

(
[X, Rε]u

)
(x) dx.

Since the function ϕu is bounded with compact support, to obtain Xu2 = 0 is thus reduced
to proving that the commutator [X, Rε]u goes to zero in L1

loc.
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· If the vector field X is W 1,1
loc , one can take the regularization operator Rε as any convo-

lution by a C1
c function ρ(x/ε)ε−N (with integral 1).

· If the vector field has some singularities on affine submanifolds, for instance on {x1 = 0},
this translation invariance property leaves open the choice of a convolution operator, but
with a structure respecting the geometry such as

ρ
(x1

ε1
,
x2

ε2

)
ε−N1
1 ε−N2

2 , 0 < ε1 
 ε2.

· If a simple jump for X occurs on a curved hypersurface, no convolution operator will
do the job, which is quite natural after all, since no translation invariance is preserved. In
fact one has to look for a regularizing kernel of a more general form

(1.3) (Rεu)(x) =
∫

ρ
(
x, ε−1(x− y)

)
ε−Nu(y)dy.

More pedantically , one could say that we intend to commute a pseudo-differential operator
of order 1 with a BV function. Our approach in the present paper will be to take the kernel
ρ in (1.3) as an unknown function, and we shall see that the commutation property of [X, Rε]
can essentially be expressed as some first-order PDE on that kernel ρ.

Note also that going from the property (1.2) to the uniqueness is now rather standard
a fact, since, taking for instance β(u) = u2, we produce non-negative solutions, whose
uniqueness is easy to establish (see e.g. Lemma 3.1 in [CL2], Lemma 2.2 in [LL]).

A sketch of our paper. Our goal here is in fact twofold. First of all, we wish to revisit the
Ambrosio’s argument of [Am] by following our approach of commuting our vector field with a
regularizing operator of type (1.3), checking which constraints occur on the unknown kernel
ρ (this is done in our section 3). However, our method will follow closely the arguments of
[Am] and we shall try to be as explicit as possible in our construction. In particular, if X is
our vector field, the canonical decomposition of its derivative can be written as

DX = DXac + DXs, |DXac| 
 m, DXs ⊥ m (m is the Lebesgue measure on RN ).

Using the polar decomposition of the singular part, we get DXs = M |DXs|, where M(x)
is a N ×N matrix. An “ideal” kernel ρ(x, z) to be used in (1.3) should satisfy

(1.4)
∂ρ

∂z
(x, z)M(x)z = 0

which is a PDE in the variable z, which should be satisfied |DXs|-a.e in the variable x. Also
the support in the z-variable should be compact. These notions have to be clarified, at least
for questions of regularity, and it is done in details in section 3. However it is interesting
to note that if M is an antisymmetric matrix, one can choose ρ as a convolution kernel
(i.e. independent of the variable x) depending only on |z|2, and the equation (1.4) becomes



N.Lerner 5

tzMz = 0 which is satisfied since M is antisymmetric: so we recover also the remark made
in [CP] that we could also generalize. Anyhow, to get compactly supported solutions (in
z) for the equation (1.4) requires some spectral condition on the matrix M , and at least
spectrum M ⊂ iR (naturally that condition is satisfied by an antisymmetric matrix). At
any rate, the spectral structure of the matrix M(x) is playing a key role and we shall use
some consequences of Alberti’s rank-one theorem [Al]. More details are given in our Remark
3.4 below.

Our second aim is to use that constructive approach to tackle vector fields of type (1.1)
and to obtain a generalization to BV regularity of the results of [LL]. This gives also a
partial answer to the remark 3.8(3) of [Am]. In our section 4, we concentrate our attention
on the proof of the renormalization property for vector fields of type (1.1). We shall use a
regularizing kernel in (1.3) of type ρ(x1, x2, z2), which means in particular that we regularize
only in the x2-variable but in a way depending on the point (x1, x2). We have to deal
with another commutation problem between the vector field a1(x1)∂x1 in (1.1) and our
regularization operator. Moreover, we follow the construction in section 3 with parameters
x1 and we use the disintegration of the measure ∂a2/∂x2. Also in our Remark 5.5, we give
some invariance properties of the matrix M under C1,1 diffeomorphism.

2. Statement of the results

We concentrate our attention on the so-called renormalization property for the vector field

(2.1) X = a1(x1)∂x1︸ ︷︷ ︸
X1

+ a2(x1, x2)∂x2︸ ︷︷ ︸
X2

, a1 ∈ BVloc(RN1), a2 ∈ L1
loc

(
R

N1 ;BVloc(RN2)
)

satisfying also

(2.2) div X1 ∈ L1
loc(R

N1), div X2 ∈ L1
loc(R

N1+N2).

Theorem 2.1. Let N, N1, N2 be non-negative integers such that N = N1 + N2. Let X be
a vector field on RN satisfying (2.1-2) and let w be a L∞loc(R

N ) function such that Xw ∈
L1

loc(R
N ). Then, with α ∈ C1(R;R),

(2.3) X
(
α(w)

)
= α′(w)Xw.

The proof of this theorem is given in section 4. Theorem 2.1 above along with Lemma
3.1 in [CL1] imply readily the following local uniqueness result.

Theorem 2.2. Let X be a vector field satisfying the assumptions of Theorem 2.1 such that
X ∈ L∞loc, div X ∈ L∞loc. Let Ω be an open subset of RN and S be a C1 hypersurface of Ω
such that X is transverse to S. Let c and w be L∞loc(Ω) functions such that Xw = cw on Ω,
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and suppw ⊂ S+ (here S+ is the “half-space” above S). Then w = 0 on a neighborhood of
S.

Theorem 2.1 is also the key step to get the uniqueness of bounded solutions for transport
equations of type ∂t + X. Let T > 0 be given and X be a vector field as above. Let c be
a L1

loc(R
N+1) function and w be a L∞loc(R

N+1) function. Let us recall that the following
equation

(2.4)
{

∂tw + Xw = cw on (0, T )× RN ,
w(0, x) = 0 on RN ,

holds weakly means that

(2.4)′ ∀ϕ ∈ C∞c
(
[0, T )× RN

)
,

∫ T

0

∫
RN

w
(
∂tϕ + Xϕ + ϕ div X + cϕ

)
dxdt = 0.

The following theorem is a consequence of Theorem 2.1 above and of Lemma 3.3 in [CL1].

Theorem 2.3. Let X be a vector field satisfying the assumptions of Theorem 2.1 such that

a1(x1)
1 + |x1|

∈ L1(RN1),
a2(x1, x2)
1 + |x2|

∈ L1
(
R

N
)
,(2.5)

div X1 ∈ L∞(RN1), div X2 ∈ L∞(RN ).(2.6)

Let T be a positive number. Let c(t, x) and w(t, x) be L∞
(
(0, T )× RN

)
functions such that

(2.4) holds weakly (i.e. (2.4)′). Then w = 0 on (0, T )× RN .

We refer the reader to the paper [LL] for the statements of similar uniqueness theorems
that we are able to generalize by replacing in (H1) and (H4) of [LL] the W 1,1 regularity by
the BV regularity.

In our Remark 5.6, we point out that an invariant formulation can be found to express
an assumption such as (2.1).

3. Following Ambrosio’s argument with some modifications

In this section, we follow closely Ambrosio’s argument in [Am], based on the Alberti
rank-one theorem (Theorem 2.3 in [Am]). We give a few modifications and we take the
regularizing kernel as an unknown function.

Theorem 3.1. Let Ω be an open subset of RN , X be a real BVloc vector field on Ω such
that div X ∈ L1

loc and w ∈ L∞loc such that Xw ∈ L1
loc. Then, with α ∈ C1(R;R),

(3.1) X
(
α(w)

)
= α′(w)Xw.
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Remarks 3.2. Note that proving the uniqueness of weak solutions requires only to get
X(w2) = 0 whenever Xw = 0 for w ∈ L∞loc (see e.g. lemma 3.1 in [CL1]). Also to obtain
(3.1) on the open set Ω, it is enough to prove it on an open subset Ω0 such that

HN−1(Ω\Ω0) = 0,

provided that the vector field X is also locally bounded as well as its divergence (here HN−1

stands for the N − 1 Hausdorff measure). For a L1
loc vector field X =

∑
aj∂j with an L1

loc

divergence and a L∞loc function w, the distribution Xw is defined as

(3.2) Xw =
∑

1≤j≤n

∂j(ajw)− w div X.

Proof of Theorem 3.1. Step 1: Preliminaries. Proving (3.1) amounts to checking that for
any test function ϕ ∈ C1

c (Ω),∫
α(w)

(
Xϕ + ϕ div X

)
dm +

∫
α′(w)(Xw)ϕdm = 0,

where dm is the Lebesgue measure on RN . Let χ be a C1
c (Ω) function identically equal to

1 on the support of ϕ. Then for x ∈ suppϕ, α
(
w(x)

)
= α

(
χ(x)w(x)

)
, so that we need only

to check

(3.3) −
∫

α(χw)
(
Xϕ + ϕ div X

)
dm =

∫
α′(χw)

(
X(χw)

)
ϕdm.

Note that, from the assumptions of Theorem 3.1,

v = χw ∈ L∞comp, Xv = wXχ + χXw ∈ L1
comp,

and we can use a mollifier with the properties of Lemma 5.2 of our appendix to write

−
∫

α(v)
(
Xϕ + ϕ div X

)
dm = − lim

ε→0

∫
α
(
Rεv

)(
Xϕ + ϕ div X

)
dm

= lim
ε→0

{∫
α′

(
Rεv

)(
X(Rεv)−Rε(Xv)

)
ϕdm +

∫
α′

(
Rεv

)
Rε(Xv)ϕdm

}
.

Lemma 5.2 shows that Rε(Xv) converges to Xv in L1 and since Rεv is bounded indepen-
dently of ε, and converges almost everywhere toward v, proving (3.3) amounts to proving

lim
ε→0

∫
ϕα′

(
Rεv

)
[X, Rε]vdm = 0.
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Using Lemma 5.3 in the appendix, we get

∫
ϕα′

(
Rεv

)
[X, Rε]vdm =

∫
ϕα′

(
Rεv

)
Tε,ρvdm +

∫ bounded︷ ︸︸ ︷
α′

(
Rεv

) →0
in L1︷ ︸︸ ︷

ϕNεv dm

so that we need only to prove

(3.4) lim
ε→0

∫
ϕα′

(
Rεv

)
Tε,ρvdm = 0,

that is, using (5.3)

lim
ε→0

∫∫
∂2ρ(x, z)ε−1

(
X(x)−X(x− εz)

)(
v(x− εz)− v(x)

)
ϕ(x)α′

(
(Rεv)(x)

)
dxdz = 0.

Now if (vk)k∈N is a sequence of C1
c functions converging almost everywhere to the L∞comp

function v so that ‖vk‖L∞ ≤ ‖v‖L∞ , we set

ω(ε, k) =
∫∫

∂2ρ(x, z)ε−1
(
X(x)−X(x− εz)

)(
vk(x− εz)− vk(x)

)
ϕ(x)α′

(
(Rεv)(x)

)
dxdz

=
∫∫∫ 1

0

∂2ρ(x, z)DX(x− εθz)z
(
vk(x− εz)− vk(x)

)
ϕ(x)α′

(
(Rεv)(x)

)
dxdzdθ,(3.5)

which makes sense as a bracket of duality since the distribution derivative DX is of order
≤ 1. We have to prove

(3.6) lim
ε→0

(
lim

k→∞
ω(ε, k)

)
= 0.

Step 2: Getting rid of the absolutely continuous part. So far our discussion required only
that X and div X should belong to L1

loc(Ω). In fact our assumption on X in Theorem 3.1
makes DX a Radon measure. We consider now the canonical decomposition of that measure
DX

DX = DXa + DXs, |DXa| 
 m, |DXs| ⊥ m,

where m is the Lebesgue measure on RN . We note that defining

ω0(ε, k) =
∫∫∫ 1

0

∂2ρ(x, z)DXa(x− εθz)z
(
vk(x− εz)− vk(x)

)
ϕ(x)α′

(
(Rεv)(x)

)
dxdzdθ,

we get with

(3.7) C0 = sup
|s|≤‖v‖L∞

|α′(s)|,
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using that DXa ∈ L1,

lim sup
k→∞

|ω0(ε, k)| ≤ C0

∫∫∫ 1

0

|DXa(x− εθz)||(τεzv − v)(x)||ϕ(x)|dx|z|ρ0(z)dzdθ

and using Lemma 5.1, we get (3.6) for ω0.
Step 3: Handling the singular part. We are left with the bracket of duality (that we write

as an integral),

ω1(ε, k) =∫∫∫ 1

0

∂2ρ(x+εθz, z)DXs(x)z
(
τεz−εθzvk−τ−εθzvk

)
(x)τ−εθzϕ(x)α′

(
(τ−εθzRεv)(x)

)
dxdzdθ,

so that, using the polar decomposition of the measure DXs = M |DXs| with the notation
µ = |DXs|, we get

ω1(ε, k) =
∫∫∫ 1

0

∂2ρ(x + εθz, z)M(x)z
(
τεz−εθzvk − τ−εθzvk

)
(x)(τ−εθzϕ)(x)

α′
(
(τ−εθzRεv)(x)

)
dµ(x)dzdθ.

Using now that supk,x |vk(x)| ≤ ‖v‖L∞ and that the measure µ is positive, we obtain

|ω1(ε, k)| ≤ C02 ‖v‖L∞
∫∫∫ 1

0

|∂2ρ(x + εθz, z)M(x)z||ϕ(x + εθz)|dµ(x)1supp ρ0(z)dzdθ.

Since ∂2ρ and ϕ are continuous functions, |M(x)| ≤ 1, µ-a.e., the dominated convergence
theorem for the measure dµdzdθ gives

(3.8) lim sup
ε→0

(
sup

k
|ω1(ε, k)|

)
≤ C02 ‖v‖L∞

∫∫
|∂2ρ(x, z)M(x)z||ϕ(x)|dµ(x)dz.

We reach now the main point of the proof which amounts to choosing properly the mollifier
ρ so that the z-integral of the dot product Mz · ∂2ρ in (3.8) is small. Let us consider the
function

(3.9) ρ(x, z) = F0

(
U(x)z

)
|detU(x)|

where, using the notation MN (R) for the N ×N real matrices, and C1
b for the C1 functions

bounded as well as their first derivatives,

(3.10) U ∈ C1
b (RN ;MN (R)), tU(x)U(x) ≥ Id,
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and F0 ∈ C1
c (RN ;R+),

∫
F0(ζ)dζ = 1. Note that the function ρ given by (3.9) satisfies the

assumptions of Lemma 5.2; to check (5.1) we assume supp F0 ⊂ B(0, r0) and we get, since
|z| ≤ |U(x)z|,

sup
x

ρ(x, z) ≤ sup |F0|1B(0,r0)(z) ‖detU‖L∞ .

Similar estimates are true for supx |dx,zρ(x, z)|. We get∫∫
|∂2ρ(x, z)M(x)z||ϕ(x)|dµ(x)dz

=
∫∫
|F ′0(U(x)z)U(x)M(x)z||det U(x)||ϕ(x)|dµ(x)dz

≤
∫
‖U(x)M(x)U(x)−1‖|ϕ(x)|dµ(x)

∫
|F ′0(ζ)||ζ|dζ,

so that we obtain from (3.8) that we need only to prove

(3.11) 0 = inf
U

satisfying (3.10)

∫
‖U(x)M(x)U(x)−1‖|ϕ(x)|dµ(x).

It is possible to simplify further that condition by getting rid of the continuity properties of
U, U ′ required in (3.10). First of all, (3.11) is a consequence of

(3.12) 0 = inf
V ∈C1

c (RN ;MN (R))

∫
‖
(
Id +tV (x)V (x)

)
M(x)

(
Id +tV (x)V (x)

)−1‖|ϕ(x)|dµ(x),

since the matrix U(x) = Id +tV (x)V (x) satisfies (3.10) for V ∈ C1
c (RN ;MN (R)). We claim

now that it is enough to obtain

(3.13) 0 = inf
V ∈L∞(|ϕ|dµ)

∫
‖
(
Id +tV (x)V (x)

)
M(x)

(
Id +tV (x)V (x)

)−1‖|ϕ(x)|dµ(x).

To prove that claim, we consider a matrix V ∈ L∞(|ϕ|dµ) ; since |ϕ|dµ is a finite Radon
measure on RN , can find a sequence (Vl) ∈ C0

c (RN ;MN (R)) converging to V in L1(|ϕ|dµ)
with

sup
x
‖Vl(x)‖ ≤ ‖V ‖L∞(|ϕ|dµ) .

Regularizing by a standard mollifier the matrices Vl, we may suppose that they are in
C1

c (RN ;MN (R)) and, extracting a subsequence, we may also assume that they converge
pointwise |ϕ|dµ-a.e. to V . We note that |ϕ|dµ-a.e.,

‖
(
Id +tVl(x)Vl(x)

)
M(x)

(
Id +tVl(x)Vl(x)

)−1‖ ≤ ‖ Id +tVl(x)Vl(x)‖ ≤ 1 + ‖V ‖2L∞(|ϕ|dµ) ,
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so that the Lebesgue dominated convergence theorem for the measure with finite mass |ϕ|dµ

gives

(3.14) lim
l→+∞

∫
‖
(
Id +tVl(x)Vl(x)

)
M(x)

(
Id +tVl(x)Vl(x)

)−1‖|ϕ(x)|dµ(x)

=
∫
‖
(
Id +tV (x)V (x)

)
M(x)

(
Id +tV (x)V (x)

)−1‖|ϕ(x)|dµ(x).

Thus the infimum in the rhs of (3.13), a priori smaller than the rhs of (3.12) is actually the
same, proving our claim. We are then reduced to proving (3.13). The key argument relies
on

Theorem 3.3 (Alberti’s rank one theorem[Al]). Let Ω be an open subset of RN , a ∈
BV (Ω,RN ′) and let Da = M |Da| be the polar decomposition of its distribution derivative.
Then M(x) has rank one, i.e.

M(x) = ξ(x)⊗ η(x), |Dsa| almost everywhere.

The product ξ ⊗ η is the linear map defined by 〈ξ, T 〉η and if a is a vector field on Ω
(Ω ⊂ RN , N ′ = N), the divergence of a is 〈ξ, η〉|Da| so that the absolute continuity of the
divergence with respect to the Lebesgue measure amounts to the orthogonality of the unit
vectors ξ, η, |Dsa| almost everywhere. We apply this theorem to the matrix-valued measure
DXs = M |DXs|, µ = |DXs|, and we use the notation M = ξ ⊗ η, µ-almost everywhere.
We choose now the L∞(µ) matrix V (x) = γ1/2M(x), where γ ≥ 0, and we note that, from
Lemma 5.4,

(3.15) ‖
(
Id +tV (x)V (x)

)
M(x)

(
Id +tV (x)V (x)

)−1‖ ≤ (1 + γ)−1.

Since γ is an arbitrary positive number and |ϕ|dµ is finite, we obtain (3.13), completing the
proof of Theorem 3.1. �
Remark 3.4. Looking at our proof, it seems quite obvious that the full strength of Alberti’s
theorem is not needed. For instance, in the paper [CL2], the key argument could be modified
to rely on the fact that the matrix M is triangular with zeros on the diagonal. It is also
pointed out in remark 3.7 of [Am] that a recent still unpublished proof of Alberti is using
only the absolute continuity of the divergence with respect to the Lebesgue measure, that
is Tr M = 0. As far as our proof is concerned, from the analysis in (3.8) , for fixed x, we
need to have a compactly supported (in z) solution ρ(x, z) of the equation

(3.16)
∂ρ

∂z
(x, z)M(x)z = 0.

The previous equation is simply given by a vector field in the z-variables, with coefficients
depending linearly on z (and with parameters x),∑

1≤j≤N

( ∑
1≤k≤N

Mkj(x)zj

) ∂ρ

∂zj
(x, z) = 0.
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For this vector field, to have a compactly supported solution require the spectral condition,

(3.17) spectrum(M(x)) ⊂ iR.

However, the equation (3.16) need not to be satisfied exactly, and (3.17) may certainly be
relaxed.

Remark 3.5. If we follow our remark 5.5 below, we see that, although the matrix M(x) =
( ∂aj

∂xk
)1≤j,k≤N does not carry any geometric meaning, its class modulo L1

loc has actually some
invariance properties, so that it is not hopeless to expect that a spectral condition of type
(3.17) could be meaningful, even for a vector field

∑
j aj∂j more singular than BV .

4. Sum of Leibnizian vector fields

In this section, we prove that the renormalization property holds for the vector field

(4.1) X = a1(x1)∂x1︸ ︷︷ ︸
X1

+ a2(x1, x2)∂x2︸ ︷︷ ︸
X2

, a1 ∈ BVloc(RN1), a2 ∈ L1
loc

(
R

N1 ;BVloc(RN2)
)

provided that

(4.2) div X1 ∈ L1
loc(R

N1), div X2 ∈ L1
loc(R

N1+N2).

In Remark 5.6 below, we point out that an invariant formulation of our statement can be
given, using a codimension N1-foliation of the reference open set.

Theorem 4.1. Let N, N1, N2 be non-negative integers such that N = N1 + N2. Let X be
a vector field on RN satisfying (4.1-2) and w ∈ L∞loc(R

N ) such that Xw ∈ L1
loc(R

N ). Then,
with α ∈ C1(R;R),

(4.3) X
(
α(w)

)
= α′(w)Xw.

Proof. To simplify our argument, we shall only prove that, if w ∈ L∞(RN ) satisfies Xw =
0, then X(w2) = 0. Also, we shall assume that both divergences in (4.2) are vanishing
identically. Let us consider ρ ∈ C1(RN1

x1
× RN2

x2
× RN2

z2
;R+) such that∫

RN2

ρ(x1, x2, z2)dz2 = 1,(4.4)

sup
x1,x2

(
|ρ(x1, x2, z2)|+ |dx1,x2,z2ρ(x1, x2, z2)|

)
= ρ0(z2) ∈ L∞comp.(4.5)

We define also for ε > 0 the operator Rε by

(4.6) (Rεu)(x1, x2) =
∫
RN2

ρ
(
x1, x2, ε

−1(x2 − y2)
)
ε−N2u(x1, y2)dy2.

We need now to commute Rε with the vector field X1.
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Lemma 4.2. Let X1, Rε, w be as above. Then, X1Rεw and RεX1w belong to L1
loc and

limε→0+ [X1, Rε]w = 0 in L1
loc.

Proof of the lemma. We have, since ρ is C1,

X1Rεw =
∂

∂x1
·
∫

a1(x1)ρ
(
x1, x2, ε

−1(x2 − y2)
)
ε−N2w(x1, y2)dy2

=
∫

a1(x1) ·
∂ρ

∂x1

(
x1, x2, ε

−1(x2 − y2)
)
ε−N2w(x1, y2)dy2

+
∫

ρ
(
x1, x2, ε

−1(x2 − y2)
)
ε−N2

∂

∂x1
·
(
a1(x1)w(x1, y2)

)
dy2

=
∫

a1(x1) ·
∂ρ

∂x1

(
x1, x2, z2

)(
w(x1, x2 − εz2)− w(x1, x2)

)
dz2

+ a1(x1) ·
∫

∂ρ

∂x1

(
x1, x2, z2

)
dz2︸ ︷︷ ︸

=0 from (4.4)

w(x1, x2) + RεX1w,

which entails [X1, Rε]w ∈ L1
loc and from Lemma 5.1 that limε→0[X1, Rε]w = 0 in L1

loc.
Moreover, we have, using that ρ is C1 and the equation Xw = 0,

RεX1w = −RεX2w = −
∫

ρ
(
x1, x2, ε

−1(x2 − y2)
)
ε−N2(∂2 · a2w)(x1, y2)dy2

= −
∫

∂ρ

∂z2

(
x1, x2, ε

−1(x2 − y2)
)
ε−N2−1 · (a2w)(x1, y2)dy2

which belongs to L1
loc, completing the proof of the lemma. �

We have, using Theorem 3.1 and Lemma 4.2 (that is the fact that X1 is Leibnizian,
Rεw ∈ L∞loc, X1Rεw ∈ L1

loc)

X
(
(Rεw)2

)
= X1

(
(Rεw)2

)
+ X2

(
(Rεw)2

)
= 2(Rεw)(X1Rεw) + X2

(
(Rεw)2

)
.

We note also that the function Rε is C1 with respect to x2, so that the ordinary Leibniz
formula can be used to get X2

(
(Rεw)2

)
= 2(Rεw)(X2Rεw). We obtain,

X
(
(Rεw)2

)
= 2(Rεw)([X1, Rε]w) + 2(Rεw)(RεX1w) + 2(Rεw)([X2, Rε]w) + 2(Rεw)RεX2w

= 2(Rεw)([X1, Rε]w) + 2(Rεw)(RεXw) + 2(Rεw)([X2, Rε]w)

which gives, since Xw = 0,

(4.7) X
(
(Rεw)2

)
= 2(Rεw)([X1, Rε]w) + 2(Rεw)([X2, Rε]w).
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Since the term [X1, Rε]w goes to zero in L1
loc from the Lemma 4.2 and the function Rεw

is locally bounded from Lemma 5.2 we are left with the bracket [X2, Rε]w. We recall that,
with ϕ ∈ C1

c (RN ),

〈(X1 + X2)(w2), ϕ〉D′(1),C1
c

= − lim
ε→0

∫
RN

(Rεw)2(Xϕ)dm

= lim
ε→0

∫
RN

X
(
(Rεw)2

)
ϕdm = 2 lim

ε→0

∫
RN

(Rεw)([X2, Rε]w)ϕdm.

We need only to prove that the last term above is 0. We define

ω̃(ε) =
∫
RN

(Rεw)([X2, Rε]w)ϕdm =

=
∫∫∫

(Rεw)(x1, x2)ϕ(x1, x2)
∂ρ

∂z2
(x1, x2, z2)ε−1

(
X2(x1, x2)−X2(x1, x2 − εz2)

)
(
w(x1, x2 − εz2)− w(x1, x2)

)
dx2dz2dx1.

Now, we consider a sequence of continuous functions wk bounded by ‖w‖L∞ converging a.e.
to w and we define

ω̃(ε, k) =
∫∫∫

(Rεw)(x1, x2)ϕ(x1, x2)
∂ρ

∂z2
(x1, x2, z2)ε−1

(
X2(x1, x2)−X2(x1, x2 − εz2)

)
(
wk(x1, x2 − εz2)− wk(x1, x2)

)
dx1dx2dz2.

We need only to prove that

(4.8) lim
ε→0

(
lim

k→∞
ω̃(ε, k)

)
= 0.

We have, using an integral notation for the bracket of duality,

ω̃(ε, k) =
∫ 1

0

∫∫∫
(Rεw)(x1, x2)ϕ(x1, x2)

∂ρ

∂z2
(x1, x2, z2)

∂a2

∂x2
(x1, x2 − εθz2)z2(

wk(x1, x2 − εz2)− wk(x1, x2)
)
dθdx1dx2dz2

=
∫ 1

0

∫∫∫
(Rεw)(x1, x2 + εθz2)ϕ(x1, x2 + εθz2)

∂ρ

∂z2
(x1, x2 + εθz2, z2)

∂a2

∂x2
(x1, x2)z2(

wk(x1, x2 + εθz2 − εz2)− wk(x1, x2 + εθz2)
)
dθdx1dx2dz2.

From our assumption on the L1(RN ) function a2, that we shall make globally for simplicity,
we know that for mN1-almost all x1 in RN1 , the function RN2 � x2 �→ a2(x1, x2) ∈ RN2 is
in BV (RN2) with an L1 divergence and

(4.9)
∫ [
‖a2(x1, ·)‖BV (RN2 ) + ‖div a2(x1, ·)‖L1(RN2 )

]
dx1 <∞.
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As a consequence, from the canonical decomposition of D2a2(x1, ·), the polar decomposition
of D2a2(x1, ·)s, and the Theorem 3.3 along with Lemma 5.4, we get that for mN1-almost all
x1 in RN1 ,

D2a2(x1, ·) = (D2a2(x1, ·))ac + (D2a2(x1, ·))s
,(4.10)

(D2a2(x1, ·))s = Mx1(x2)µx1(x2), µx1 = | (D2a2(x1, ·))s |(4.11)

and

(4.12) ‖
(
Id +γtMx1(x2)Mx1(x2)

)
Mx1(x2)

(
Id +γtMx1(x2)Mx1(x2)

)−1‖ ≤ (1 + γ)−1,

with

(4.13)
∫
RN1

[
‖D2a2(x1, ·)ac‖L1(RN2) + ‖D2a2(x1, ·)s‖M(RN2 )

]
dx1 <∞.

In particular, setting kx1(x2) = (D2a2(x1, ·))ac we get that
∫
RN1 ‖kx1‖L1(RN2 ) dx1 <∞ and

thus the function (x1, x2) �→ kx1(x2) belongs to L1(RN ). Let us recall the standard (see e.g.
theorem 2.28 in [AFP])

Lemma 4.3 (disintegration of the measure ∂a2/∂x2). Let N, N1, N2 as above and
a2 ∈ L1

(
R

N1
x1

;BV (RN2
x2

)
)
. We denote by π1 the projection RN1 × RN2 → R

N1 , by ν the
measure ∂a2/∂x2 and we set λ = π1∗(|ν|). Our assumption implies that |ν|(RN ) <∞. The
disintegration theorem gives

ν = λ⊗ νx1

where for λ-almost all x1 ∈ RN1 , the MN2-valued measure νx1 is such that

|νx1 |(RN2) = 1.

It means that for F (x1, x2) ∈ L1(RN , dν), we have, for λ-almost all x1 ∈ RN1 , F (x1, ·) ∈
L1(RN2 , d|νx1 |), x1 �→

∫
RN2 F (x1, x2)dνx1(x2) belongs to L1(RN1 , dλ) and∫

RN1×RN2

F (x1, x2)dν(x1, x2) =
∫
RN1

(∫
RN2

F (x1, x2)dνx1(x2)
)

dλ(x1).

We note also that the measure λ is absolutely continuous with respect to the Lebesgue
measure: let A be a Borelian subset of RN1 of Lebesgue measure 0. We have from (4.9)

λ(A) = |ν|(A× RN2) ≤
∫

A

∈L1(RN1 )︷ ︸︸ ︷
‖|D2a2|(x1, ·)‖M(RN2 ) dx1 = 0.
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We thus obtain that, with h ∈ L1(RN1), ν = λ ⊗ νx1 = hmN1 ⊗ νx1 , and thus we have the
disintegration formulas

(4.14)
∂a2

∂x2
= ν = mN1 ⊗ h(x1)νx1 = mN1 ⊗Mx1µx1 + L1(RN ).

In fact for F ∈ C0
c (RN ), we have with the notations of (4.10–13)

∫
RN1

(∫
RN2

F (x1, x2)Mx1(x2)dµx1(x2)
)

dx1 +
∫
RN1

(∫
RN2

F (x1, x2)kx1(x2)dx2

)
dx1

=
∫
RN1×RN2

F (x1, x2)dν(x1, x2)

=
∫
RN1

(∫
RN2

F (x1, x2)dνx1(x2)
)

h(x1)dx1.

The term belonging to L1(RN ) in (4.14) can be given the same treatment as DXa in section
3 and the same method along with (4.14) gives

(4.15) lim sup
ε→0

ω̃(ε)

≤ 2 ‖w‖2L∞
∫∫ (∫

|ϕ(x1, x2)|
∣∣∣∣ ∂ρ

∂z2
(x1, x2, z2)Mx1(x2)z2

∣∣∣∣ dµx1(x2)
)

dz2dx1.

We inspect then the arguments of section 3, between (3.9) and (3.15). We consider a function

(4.16) ρ(x1, x2, z2) = F0(U(x1, x2)z2)|det U(x1, x2)|

where U ∈ C1
b (RN ;MN2(R)) is such that tU(x)U(x) ≥ Id, and F0 ∈ C1

c (RN2 ;R+) satisfies∫
RN2 F0(ζ)dζ = 1. We would like to choose

U(x) = Id +γtMx1(x2)Mx1(x2),

but, as in section 3, it is not directly possible because of the lack of regularity of that func-
tion. The matrices Mx1(x2) have norm ≤ 1. For all x1, we can find a sequence (Vx1,l(x2))l∈N
of functions in C1

b (RN2 ; unit ball of MN2(R)) converging pointwise to the bounded matrix
Mx1(x2). We can also regularize these matrices with respect to x1 by a standard mollifier,
which will be enough since the integral in the variables x1, z2 takes place on a fixed com-
pact set. We can conclude as in section 3 by using (4.12). The proof of Theorem 4.1 is
complete. �
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5. Appendix

Lemma 5.1. Let a ∈ L1(RN ) and v ∈ L1(RN ) ∩ L∞(RN ). Then, we have

lim
t→0

∫
|a(x)||v(x + t)− v(x)|dx = 0.

Proof. We have for λ > 0,∫
|a(x)||v(x− t)− v(x)|dx ≤ λ

∫
|a|≤λ

|v(x− t)− v(x)|dx + 2 ‖v‖L∞
∫
|a|≥λ

|a(x)|dx

≤ λ ‖τtv − v‖L1 + 2 ‖v‖L∞
∫

1|a|≥λ|a(x)|dx,

so that, since v ∈ L1, lim supt→0

∫
|a(x)||v(x − t) − v(x)|dx ≤ 2 ‖v‖L∞

∫
1|a|≥λ|a(x)|dx,

which gives the result by taking the limit of the rhs when λ goes to infinity. �

Remark. Assuming v ∈ L∞ is enough, as proven in the lemma 5.1 of [CL2].

Lemma 5.2. Let ρ ∈ C1(RN × RN ;R+) such that
∫
RN ρ(x, z)dz = 1 and

(5.1) ρ0(z) = sup
x
|ρ(x, z)|+ sup

x
|dx,zρ(x, z)| ∈ L∞comp.

For ε > 0, we consider the operator Rε with kernel ρ
(
x, ε−1(x− y)

)
ε−N , defined for u ∈ L1

loc

by

(5.2) (Rεu)(x) =
∫

ρ
(
x, ε−1(x− y)

)
ε−Nu(y)dy.

Let 1 ≤ p < +∞ and u ∈ Lp; then limε→0 Rεu = u in Lp. If u ∈ L∞, ‖Rεu‖L∞ ≤
‖u‖L∞ . If u belongs to L1

loc, the function Rεu belongs to C1(RN ) and for almost all x ∈ RN ,
limε→0(Rεu)(x) = u(x).

Proof. This lemma is classical for a convolution. We check here that this more general
regularizing kernel does not introduce any new difficulty. Let us first assume that u ∈ Lp

with 1 ≤ p < +∞. We have

(Rεu)(x)− u(x) =
∫

ρ(x, z)
(
u(x− εz)− u(x)

)
dz

so that, defining α = ‖ρ0‖L1 , we get from Jensen’s inequality

‖Rεu− u‖pLp ≤
∫ (∫

ρ0(z)|(τεzu− u)(x)|dz

)p

dx ≤ αp−1

∫
ρ0(z) ‖τεzu− u‖pLp dz.
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Since limε→0 ‖τεzu− u‖Lp = 0 and ‖τεzu− u‖Lp ≤ 2 ‖u‖Lp , Lebesgue’s dominated conver-
gence theorem gives the result. Let us assume now that u ∈ L∞ ; the estimate on ‖Rεu‖L∞
is trivial. Moreover, we have for u ∈ L1

loc

|(Rεu)(x)− u(x)| ≤
∫

z∈supp ρ0

|u(x− εz)− u(x)|dz ‖ρ0‖L∞

and since supp ρ0 is compact, the Lebesgue differentiation theorem gives that this quantity
is going to 0 with ε for almost all x. Assuming u ∈ L1

loc, the function

y �→ ρ
(
x, ε−1(x− y)

)
ε−Nu(y)

belongs to L1 for all x since∫
ε−Nρ0

(
ε−1(x− y)

)
|u(y)|dy ≤ ε−N ‖ρ0‖L∞

∫
x−ε supp ρ0

|u(y)|dy <∞.

Moreover the function x �→ ρ
(
x, ε−1(x − y)

)
ε−Nu(y) is continuously differentiable and for

K compact∫
sup
x∈K

∣∣∂1ρ
(
x, ε−1(x− y)

)
ε−N + ε−1∂2ρ

(
x, ε−1(x− y)

)
ε−N

∣∣ |u(y)|dy

≤ 2 ‖ρ0‖L∞ ε−N−1

∫
K−ε supp ρ0

|u(y)|dy <∞.

We obtain that the function Rεu belongs to C1(RN ), completing the proof of the lemma. �

Lemma 5.3. Let Ω be an open subset of RN and let X be a L1
loc vector field on Ω such that

div X ∈ L1
loc(Ω). Let v be in L∞comp(Ω) and Rε be given by Lemma 5.1. Then we have

(XRεv −RεXv)(x) = (Tε,ρv)(x) + (Nεv)(x)

with with limε→0 Nεv = 0 in L1
loc and

(5.3) (Tε,ρv)(x) =
∫

∂2ρ(x, z)ε−1
(
X(x)−X(x− εz)

)(
v(x− εz)− v(x)

)
dz.

Proof. To avoid confusion between the vector field X (for each x ∈ Ω, X(x) is a vector
tangent to Ω at x) and the operator X acting on functions, we shall denote by X the
operator: we use the notation (Xw)(x) = dw(x)X(x) (a scalar quantity as the product of
the 1×N covector dw with the N × 1 vector X) and we write

XRεv =
∫

∂1ρ
(
x, ε−1(x−y)

)
ε−Nv(y)dyX(x)+

∫
∂2ρ

(
x, ε−1(x−y)

)
ε−1−Nv(y)dyX(x).
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We note that ∂2ρ
(
x, ε−1(x−y)

)
ε−1 = − ∂

∂y

(
ρ
(
x, ε−1(x−y)

))
which gives, using the identity∫

ρ(x, z)dz ≡ 1,

XRεv =

:=Nε,1v(x)︷ ︸︸ ︷∫
∂1ρ(x, z)X(x)

(
v(x− εz)− v(x)

)
dz +

=0︷ ︸︸ ︷∫
∂1ρ(x, z)dz X(x)v(x)

+
∫

∂

∂y

(
ρ
(
x, ε−1(x− y)

)
ε−N

)(
X(y)−X(x)

)
v(y)dy

−
∫

∂

∂y

(
ρ
(
x, ε−1(x− y)

)
ε−N

)
X(y)v(y)dy,

so that

XRεv = Nε,1v(x) +
∫

∂2ρ(x, z)ε−1
(
X(x)−X(x− εz)

)
v(x− εz)dz

+
∫

ρ
(
x, ε−1(x− y)

)
ε−N ∂

∂y
·
(
X(y)v(y)

)
dy,

where the last term is in fact a bracket of duality. Since we have from (3.2)

∂

∂y
·
(
X(y)v(y)

)
= (Xv)(y) + (div X)(y)v(y),

we obtain

XRεv = Nε,1v +

=(Tε,ρv)(x)︷ ︸︸ ︷∫
∂2ρ(x, z)ε−1

(
X(x)−X(x− εz)

)(
v(x− εz)− v(x)

)
dz

+
∫

∂2ρ(x, z)ε−1
(
X(x)−X(x− εz)

)
dzv(x)

+
∫

ρ
(
x, ε−1(x− y)

)
ε−N

(
(Xv)(y) + (div X)(y)v(y)

)
dy,

which implies

XRεv = Nε,1v + Tε,ρv +
∫

∂2ρ(x, z)ε−1
(
X(x)−X(x− εz)

)
dzv(x) + RεXv + Rεv div X.

Since z �→ ρ(x, z) is compactly supported and C1, the covector
∫

∂2ρ(x, z)dz = 0. Moreover,
we have

−
∫

∂2ρ(x, z)ε−1X(x− εz)dzv(x) + (Rεv div X)(x) =

− v(x)
∫

ρ(x, z)(div X)(x− εz) +
∫

ρ(x, z)v(x− εz)(div X)(x− εz)dz

=
∫

ρ(x, z)
(
v(x− εz)− v(x)

)
(div X)(x− εz)dz := Nε,2v(x)
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and consequently
XRεv = Nε,1v + Tε,ρv + Nε,2v + RεXv.

We have for K compact subset of RN and ρ0 ∈ L1(dz) given in (5.1)

∫
K

|Nε,1(x)|dx ≤
∫ goes to 0 with ε from lemma 5.1,

bounded above by 2‖1K X‖L1‖v‖L∞︷ ︸︸ ︷∫
|1K(x)X(x)||(τεzv − v)(x)|dx ρ0(z)dz,

so that Lebesgue’s dominated convergence theorem gives limε→0 ‖Nε,1v‖L1(K) = 0. We have
for K compact subset of RN∫

K

|Nε,2v(x)|dx ≤
∫∫

1K−ε supp ρ0(x)|(div X)(x)||v(x)− v(x + εz)|ρ0(z)dzdx

which goes to zero with ε from Lemma 5.1. The proof of Lemma 5.3 is complete. �

Lemma 5.4. Let E be a real Euclidean finite dimensional vector space. Let M be an
endomorphism of E such that M = ξ ⊗ η with ξ, η orthogonal unit vectors. Then for all
γ ≥ 0,

(5.4)
∥∥(Id +γtMM)M(Id +γtMM)−1

∥∥ ≤ (1 + γ)−1.

Proof. Since for T ∈ E, we have MT = 〈ξ, T 〉η we get M2T = 〈ξ, T 〉〈ξ, η〉η = 0 and

〈M tMMT1, T2〉 = 〈ξ, tMMT1〉〈η, T2〉 = 〈η, η〉〈ξ, T1〉〈η, T2〉 = 〈MT1, T2〉,

which means M = M tMM and implies (1 + γ)M = M + γM tMM = M(Id +γtMM) and

(5.5) (Id +γtMM)M(Id +γtMM)−1 = M(Id +γtMM)−1 = (1 + γ)−1M

implying (5.4). �

Remark 5.5. It worth noticing that for a BVloc vector field X =
∑

1≤j≤N aj(x)∂xj , the
matrix

(5.6) M(x) =
(

∂aj

∂xk

)
1≤j,k≤N

has some invariance properties, under C1 diffeomorphism, at least modulo L1
loc matrices. In

fact if x = κ(y), y = ν(x) is such a diffeomorphism, the vector field X in the y-chart is

X =
∑

1≤j,k≤N

aj(κ(y))
∂yk

∂xj
∂yk

=
∑

1≤k≤N

bk(y)∂yk
, bk =

∑
1≤j≤N

aj
∂yk

∂xj
,

so that
∂bk

∂yl
=

∑
1≤j≤N

∂aj

∂xm

∂xm

∂yl

∂yk

∂xj
+ L1

loc,
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which means

(5.7) N (y) =
(

∂bk

∂yl

)
1≤k,l≤N

= ν′(x)M(x)κ′(y) + L1
loc

and since ν′(κ(y))κ′(y) = Id, we find that matricesM(x) and N (y) are equivalent, modulo
a L1

loc matrix.

Remark 5.6. Let us point out here that an invariant formulation of our statement of Theorem
2.1 can be given, using a codimension N1-foliation of the reference open set. Let Ω be an
open subset of RN equipped with a codimension N1 foliation (in our coordinates the leaves
are x1 = cte). A vector field T is tangent to the foliation means, in our coordinates, that
T = β(x1, x2)∂x2 since T (x1) should be identically 0. Let us call T the vector fields tangent
to the foliation. We introduce a vector field X such that,

(5.8) ∀T ∈ T , [X, T ] ∈ T .

In our coordinates, it means if X = α1(x1, x2)∂x1 + α2(x1, x2)∂x2 and T = β(x1, x2)∂x2 is
any tangent vector field

[X, β(x1, x2)∂x2 ] = α1∂x1(β)∂x2 − β∂x2(α1)∂x1 + α2∂x2(β)∂x2 − β∂x2(α2)∂x2

is tangent to the foliation. So to ask for this commutator to be tangent is the requirement
β∂x2(α1) = 0 for all β, which means ∂x2(α1) = 0, so in our coordinates

X = a1(x1)∂x1 + a2(x1, x2)∂x2 .

If the open set Ω is equipped with a Riemannian structure, X can be decomposed in the
sum of a tangential part to the foliation (a2(x1, x2)∂x2) and a normal part (a1(x1)∂x1) ; to
get the divergence property, we shall assume that the divergence of both parts is zero. The
geometric hypothesis (5.8) allows us to produce an invariant result.

Index of notations.
· Let X =

∑
1≤j≤N aj

∂
∂xj

be a vector field on an open set of RN . DX stands for the matrix

( ∂aj

∂xk
)1≤j,k≤N . When X is a BVloc vector field, DX is a matrix of Radon measures and we

can write the canonical decomposition

DX = DXa + DXs, |DXa| 
 m, µ = |DXs| ⊥ m

where m is the Lebesgue measure on RN . The polar decomposition of the matrix DXs is

DXs = Mµ.

· For y ∈ RN and u ∈ D′(RN ), 〈τyu, ϕ〉D′,D = 〈u, τ−yϕ〉D′,D, (τ−yϕ)(x) = ϕ(x + y).
· C1

b stands for the C1 functions bounded as well as their first derivatives.
· For ξ, η ∈ RN , the product ξ ⊗ η is the linear map RN � T �→ 〈ξ, T 〉η ∈ RN .
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port, Séminaire XEDP, Ecole Polytechnique (2003-04).
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