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2.5 Carathéodory theorem on outer measures . . . . . . . . . . . . . . 93
2.6 Hausdor↵ measures, Hausdor↵ dimension . . . . . . . . . . . . . . 96
2.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
2.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3 Spaces of integrable functions 125
3.1 Convexity inequalities (Jensen, Hölder, Minkowski) . . . . . . . . . 125
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Preface

This volume is a textbook on Integration Theory, supplemented by 160 exercises
provided with detailed answers. There are already many excellent texts on this
topic and it is legitimate to ask whether it is worth while to add a new entry in
an already long list of books on Measure Theory.

Nevertheless, the author’s teaching experience has shown that many of these
books were too di�cult for a student exposed to integration theory for the first
time. We have tried here to keep a rather elementary level, at least in the way
of exposing our arguments and proofs, which are hopefully complete, detailed,
sometimes at the cost of a lack of concision. Moreover, we hope that the many
exercises (with answers) included at the end of each chapter will represent a key
asset for the present book.

Another trend present in the contemporary textbook literature on integration
theory is simply to omit the not-so-easy construction of Lebesgue measure. We are
strongly opposed to this tendency, and we have made all e↵orts in our redaction to
provide a complete construction of the mathematical objects used in the book, first
and foremost for the construction of Lebesgue measure. Our point of view here is
not exclusive of some compromises in the reading order which can be used by the
reader trying to learn this material: the chapters of this book are of course ordered
logically (chapter n+1 is using chapters 1, . . . , n and never chapter n+2, . . . ), but
some “construction” chapters, such as Chapter 2, parts of Chapters 4, 5, could be
bypassed at first reading. We expect that a mathematically curious reader will feel
the need of a construction after experiencing some of the most e�cient (or more
computational) parts of the theory and then will go back to these construction
chapters.

Last but not least, we hope that this book could serve as a reasonable “en-
trance gate” to Integration Theory for scientists and mathematicians non-experts
in measure theory. Another fact of mathematical life, say in the last thirty years,
is that it is more and more di�cult to learn some mathematics not directly con-
nected with your professional area. Where is it possible for an Analyst to learn the
algebraic properties of Theta functions? Where to find a text on Fourier Analysis
accessible to an Algebraic Geometer? Although both questions above have (mani-
folds) answers, it remains di�cult to find a way to enter a domain with which you
are not a priori conversant. It is the author’s opinion that accessibility is now a
rarefied good in the literature, and we hope that the present book will provide its
share of that good.

Integration Theories

The initial goal of integration theory, founded more that two millennia ago (the
Greek scientist Archimedes of Syracuse, who lived in the third century B.C, was
able to provide a quadrature of the parabola) is to compute areas, volumes of
various objects. A somewhat simplified mathematical version of this question is to
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consider a function f : [0, 1] �! R
+

and try to evaluate the area A between the
x-axis and the curve y = f(x). The standard notations are

A =

Z

1

0

f(x)dx.

Of course some assumptions should be made on the function f for this area to
make sense.

Riemann’s integral

Greek mathematicians of the third century B.C. were aware of volumes of spheres,
cones, polyhedra, and of many classical geometric objects. Later, in the early eigh-
teenth century, Gottfried Wilhelm Leibniz (1646–1716) introduced the Infinitesi-
mal Calculus, whereas Isaac Newton (1642–1727) defined the Calculus of Fluxions,
both inventions (close to each other) closely linked with a notion of integral cal-
culus. However the first systematic attempt to define the integral of a function is
due to the German mathematician Bernhard Riemann (1826–1866): cutting the
source space (here [0, 1]) into tiny pieces,

[0 = x
0

, x
1

], . . . [xk, xk+1

], . . . , [xN�1

, xN = 1], xj ",
you expect A to be close to

SN =
X

0k<N

(xk+1

� xk)f(mk), where mk 2 [xk, xk+1

],

since the area A should resemble the sum of the areas of the vertical rectangles with
base (xk, xk+1

) and height f(mk). In fact, assuming for instance f uniform limit
of step functions (a step function is a finite linear combination of characteristic
functions of intervals), you obtain that SN has a limit when

sup
0k<N

(xk+1

� xk) goes to zero,

and you define that limit as
R

1

0

f(x)dx. It is indeed a simple matter to show directly
that this procedure works for a continuous function on [0, 1]. That theory is quite
elementary but has several downsides. The very first one is a terrible instability
with respect to small perturbations: in particular, if you modify the function f (say
f continuous) on a rather small set such as the rational numbers Q, you may ruin
the integrability in the above sense. The rational numbers should be considered
as “small” since it is a countable set {xn}n2N and thus, for any ✏ > 0,

Q ⇢ [n2N(xn � ✏

2n+2

, xn +
✏

2n+2

)

and thus the “length” ` of Q is such that for any ✏ > 0,

`  ✏
X

n2N
2�n�1 = ✏ =) ` = 0.
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In particular, it is easy to show that the integral of 1Q\[0,1] (a small perturbation of
0) cannot be defined by the procedure sketched above. Although the latter function
may appear to be quite pathological, the e↵ects of this instability are disturbing.
Other di�culties are occurring with the Riemann integral, with complications
to integrate unbounded functions and also to develop a comprehensive theory of
multidimensional integrals.

The Lebesgue perspective

A key point in Lebesgue theory of integration (see e.g. [8]) is that to calculate
the integral of f : X �! R, one should not cut into small pieces the source space
X (for instance in small subintervals if X is an interval of R) but that the target
space should be cut into pieces depending on the function f itself. It is easy to
illustrate this in the (very) simple case where

f : X = {x
1

, . . . , xm} �! {y
1

, . . . , yn} = Y ⇢ R.
We can evaluate

P

x
j

2X f(xj) by sorting out the values taken by f :
X

x
j

2X

f(xj) =
X

y
k

2Y

yk card
�{x 2 X, f(x) = yk}

�

.

Also, playing around freely with the notations, say for f non-negative on R, H =
1R

+

,
Z

R
f(x)dx =

ZZ

H(f(x)� y)H(y)dydx =

Z

⇣

Z

H(f(x)� y)dx
⌘

H(y)dy

=

Z

H(y) measure
�{x 2 R, f(x) > y}�dy.

If we can “measure” the sets {x 2 R, f(x) > y}, it is thus quite natural to take
as a definition for the integral of f the last expression. Note that this expression
is very simple if f is taking a finite number of values y

1

, . . . , yN : we have in that
case

Z

f(x)dx =
X

1kN

yk measure
�{x 2 R, f(x) = yk}

�

.

The set {x 2 R, f(x) = yk} could be quite complicated and we shall see that
many functions could be well approximated by simple functions, i.e. finite linear
combinations of characteristic functions. To overcome the di�culties linked to
the integration of unbounded functions, we may consider f(x) = 1

2

x�1/21
(0,1)(x)

(integral 1); we get according to the previous computation,

Z

1

0

1

2
p
x
dx =

Z

+1

0

measure
�{x 2 (0, 1),

1

2
p
x
> y}�dy

=

Z

+1

0

min(1,
1

4y2
)dy =

Z

1/2

0

dy +

Z

+1

1/2

1

4y2
dy =

1

2
+

1

4 1

2

= 1,
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and many other examples involving unbounded functions can be dealt with. If we
go back to our stability problem, we may consider the function q = 1Q, f : R ! R

+

,
then the integral of f is equal to the integral of f + q:

Z

R
(f + q)(x)dx =

Z

+1

0

measure
�{x 2 R, f(x) + q(x) > y}�dy

=

Z

+1

0

measure
�{x 2 R, f(x) > y}�dy =

Z

f(x)dx,

since the function q vanishes except on a set with measure 0. Since the reader
may feel skeptical about the perturbation by this function q, let us give a finite
version of it, illustrating the instability occurring with the Riemann approach, an
instability which is not present with the Lebesgue simple method outlined above.
We consider the interval [0, 1] and for some large integer N the function

f(x) =
X

0k<N

1
[

k

N

, k+2

�N

N

]

(x).

Applying the Riemann method, using the sequence xk = k/N, 0  k < N , we deal
with

S =
X

0k<N

�k + 1

N
� k

N

�

f(mk), mk 2 [
k

N
,
k + 1

N
].

We may for instance choose mk = xk = k/N , so that f(mk) = 1 and S = 1. On
the other hand, Lebesgue’s method uses the fact the the function f is taking two
values 0, 1, and the evaluation of the integral by this method gives

I = measure{x 2 [0, 1], f(x) = 1} =
X

0k<N

2�N/N = 2�N .

Nonetheless this value turns out to be the exact value of the integral, but also it
goes to 0 when N goes to infinity whereas S is stuck at 1, very far from the true
value I. It is of course a scaling problem, since choosing the sequence (xk) such
that supk |xk+1

�xk|  2�N will provide a more accurate value for S. Nevertheless
this scaling phenomenon is a good illustration of the fact that a perturbation f
with a small integral but with a large sup norm could trigger huge variations of
S, although the Lebesgue calculation remains stable.

There is much more to say in favour of Lebesgue’s point of view and in
particular the fact that we can define a Banach space (complete normed vector
space) of integrable functions, the space L1(Rn), and also spaces Lp(Rn), 1 
p  +1, other Banach spaces (L2 is a Hilbert space), is of considerable interest
and well-tuned to the developments of functional analysis. Moreover, Lebesgue’s
theory provides its user with a remarkably simple convergence theorem, the so-
called Lebesgue’s dominated convergence theorem. The problem at hand is to
decide whether

R

fn(x)dx is converging with limit
R

f(x)dx when we have already
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a (weak) pointwise information, i.e. limn fn(x) = f(x) for all x. A precise statement
can be found in Chapter 1 (Theorem 1.6.8), but let just say here that a domination
condition

sup
n

|fn(x)| = g(x) is such that

Z

|g(x)|dx < +1,

will ensure nonetheless the sought convergence of integrals but also convergence
of the sequence of functions (fn)n2N in the functional space L1.

Is there a downside to Lebesgue’s integration theory1? Mathematically speak-
ing, the answer is no, and that theory has been widely used, polished and some-
times generalized to many di↵erent situations. However, it is true that Lebesgue’s
theory of integration is not elementary and that its actual construction requires
a significant e↵ort. On the other hand the Instruction Manual for Lebesgue In-
tegration is indeed quite simple and one should encourage the reader to enjoy
the simplicity and e�ciency of that theory before going back to the more austere
construction aspects.

We may draw a comparison with the construction and use of the real num-
bers: the real line R is widely used in Calculus and elsewhere as a basic mathemat-
ical object, but few students actually went through a construction of R. In fact, R
is also a very complicated object, as could be seen through the many examples of
the present book (cardinality questions, non-measurable subsets, Cantor ternary
set, Cantor sets with positive measure, category and measure,. . . ), but nobody (?)
is suggesting that getting some familiarity with the real line should not be a part
of a standard mathematical curriculum.

Description of the contents of the book

Chapter 1, entitled General Theory of Integration, is presenting the basic frame-
work for integration theory, with the notion of measure space. We obtain rather
easily the three classical convergence theorems (Beppo Levi, Fatou, Lebesgue’s
dominated convergence) and we can define the space of integrable functions L1(µ).
This abstract presentation of integration is not di�cult to follow, but there is ob-
viously a shortage of significant examples of measure spaces at this stage of the
exposition.

The main examples are constructed in Chapter 2, Actual construction of
measure spaces; a first route is following the Riesz-Markov representation Theorem
via linear forms on continuous compactly supported functions. We present as well
the more set-theoretic Carathéodory approach. At the end of this chapter, we

1An utterly pragmatic point of view was defended by Richard W. Hamming (1915–1998),
a computer scientist and mathematician: “ Does anyone believe that the di↵erence between the

Lebesgue and Riemann integrals can have physical significance, and that whether say, an airplane

would or would not fly could depend on this di↵erence? If such were claimed, I should not care to

fly in that plane.” In N. Rose Mathematical Maxims and Minims, Raleigh NC: Rome Press Inc.,

1988. That criticism is surprising, since the norms of the functional spaces provided by Lebesgue
theory are actually used in the numerical approximations and their stability is expressed by
inequalities involving those norms.
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introduce the notion of Hausdor↵ measure. Among the statements in the exercises,
one may single out the construction of a non-measurable set, using the axiom
of choice. The parts dealing with the construction of the Lebesgue measure are
quite technical, and while using some earlier version of these notes for teaching
a one-semester course, we always postponed the exposition of the details of the
construction of Lebesgue measure to the very last week of class, after the students
have acquired some familiarity with the scope and means of that integration theory.

Chapter 3 deals with Spaces of integrable functions. The important convexity
inequalities (Jensen, Hölder, Minkowski) are studied and the definition of Lp(µ)
spaces (1  p  1) are given along with their main properties, most notably the
fact that they are Banach spaces. We study as well integrals depending on a param-
eter, with continuity and di↵erentiability properties; this part is of course related
to many practical examples such as the Gamma function, Zeta function and many
integrals or series depending on a parameter. Riemann-Lebesgue Lemma, Egoro↵’
and Lusin’s theorems are proven. The last section provides a survey of various
notions of convergence encountered in the text. Some exercises are related to vari-
ous explicit computations, others to more abstract questions, such as examples of
non-separable spaces.

The fourth chapter, Integration on a product space, is constructing integrals
on product spaces, and contains statements and proofs of Tonelli and Fubini the-
orems. Some exercises are purely computational (e.g. computation of the volumes
of the Euclidean balls in Rn), others are more abstract, for instance with the study
of the notion of monotone class.

Chapter 5 is entitled Di↵eomorphisms of open subsets of Rn and integra-
tion. We deal there with the change-of-variable formula and give some classical
examples, such as polar coordinates. We also define the integration on a smooth
hypersurface of the Euclidean Rn, using implicitly a distribution approach to the
construction of the simple layer. The last part of this chapter goes back to the
notion of Hausdor↵ measures introduced in Chapter 2 and to the construction
of Cantor sets. We give many details on the construction of the classical Cantor
ternary set, along with the computation of its Hausdor↵ dimension and with the
study of the Cantor function (a.k.a. as the devil’s staircase). We study also Cantor
sets with positive measure and compare the (unrelated) notions of category and
measure. We calculate the cardinalities of the Borel and Lebesgue �-algebras on
Rn: this requires some e↵ort related to the introduction of cardinals and ordinals
and we have devoted a lengthy appendix to these topics.

Convolution is the topic of Chapter 6, in which the Banach algebra L1(Rn)
is studied, as well as the classical Young’s inequality. Weak Lp spaces are intro-
duced and we give a proof of the Hardy-Littlewood-Sobolev inequality, following
an explicit argument due to E. Lieb and M. Loss [43]. In the exercises, the reader
will find various computations related to the heat equation and to the Laplace
operator. We give also a study of Lorentz spaces and of the notion of decreasing
rearrangement.

Chapter 7 is entitled Complex measures and is essentially devoted to the proof
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of the classical Radon-Nikodym theorem, as well as to the expression of the dual of
Lp(µ) for 1  p < 1. We give several examples with the spaces c

0

, `p, and study
various possible behaviours of weakly convergent sequences. The decomposition in
absolutely continuous, pure point, singular continuous parts for a Borel measure
on the real line is studied as well as the notion of polar decomposition of a vector-
valued measure.

Basic Harmonic Analysis on Rn is the topic of Chapter 8. Here we have cho-
sen to follow Laurent Schwartz’ presentation of Fourier transformation, first via
the space S (Rn) of rapidly decreasing functions, for which it is truly easy to prove
the Fourier inversion formula. Introducing the space S 0(Rn) of tempered distri-
butions as the topological dual space of the Fréchet space S (Rn) was impossible
to resist, since the Fourier inversion formula follows almost immediately on the
huge space S 0(Rn), by a trivial abstract nonsense argument. We took advantage
of the fact that tempered distributions are much easier to understand than gen-
eral distributions, essentially because the space S (Rn) is simply a Fréchet space,
whose topology is defined by a countable family of semi-norms. Understanding
general distributions is complicated by the fact that the space of test functions is
not metrizable. Anyhow, we recover easily the standard properties of the Fourier
transformation as well as basic properties of periodic distributions. Along the way,
we provide a proof of the Poisson summation formula using a Gabor’s wavelet
method (coherent states method).

The last chapter is the ninth, Classical inequalities, which begins with Hada-
mard’s three-lines theorem and Riesz-Thorin interpolation. Although this tech-
nique is useful to provide natural generalizations of Young’s inequality, it falls
short of dealing with natural operators such that the Hilbert transform: for that
purpose, we give a proof of the Marcinkiewicz Theorem. We introduce the notion
of maximal function, and prove the Lebesgue di↵erentiation theorem. In order to
study Sobolev spaces, we start with a classical inequality due to Gagliardo and
Nirenberg. It turns out that this inequality is a perfect tool to handle Sobolev em-
bedding theorems. We would have liked to expand that chapter to study Fourier
multipliers and Hörmander-Mikhlin theorems as well as more general Sobolev
spaces, including the homogeneous ones. The best way to do this would have been
to introduce various tools of harmonic analysis, such as Calderón-Zygmund oper-
ators and pseudodi↵erential techniques: this would have been obviously too much
and we refer the reader to [5] for these developments.

Let us go through our Appendix, essentially intended to reach a reasonable
self-containedness for the present book. The first section is concerned with set
theory, cardinals, ordinals: these notions are important for the understanding of
many problems related to measure theory, and we have chosen a rather lengthy and
elementary presentation of this topic. Section 2 deals with various topological ques-
tions, including the notion of filter, useful for Tychono↵ theorem. A proof of Baire
theorem is given and some classical consequences are recalled (Banach-Steinhaus,
open mapping theorem): these questions are important for the understanding of
duality, which is also related to measure theory and Lp spaces. The last three
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sections of the appendix are concerned with basic formulas and classical computa-
tions related to integration. Although it might seem preposterous to provide again
this widely available material in such a book, the author would like to point out in
the first place that some of these formulas are not so easy to derive, but above all,
it seems that the true absurdity would be to teach Lebesgue measure to people
ignoring basic formulas of integral calculus. These elementary computational as-
pects are here as a gentle reminder that Mathematics is also about computation,
and that refined concepts and tools are often finding their motivations in intricate
calculations.


