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Chapter 1

Basic tools for Carleman estimates
techniques

1.1 Preliminaries

In 1939, the Swedish mathematician Torsten CARLEMAN introduced in [5] a new
method to prove uniqueness properties for 2D elliptic equations.

T. CARLEMAN, 1892-1949

These inequalities have found many different applications in various branches of
mathematical analysis, from uniqueness properties to control theory. Carleman’s
arguments are based upon some weighted inequalities and can be used with very
little regularity assumptions on the operator under scope, a sharp contrast with
Holmgren’s uniqueness theorems which require analyticity.

The very first question raised and solved by Carleman was the following. Let €2
be a connected open subset of R? and let assume that u is a solution of the elliptic
PDE

(024 07)u=V(z,y)u, Ve L),

such that u vanishes on a non-empty open subset w of 2. Then u is vanishing all
over 2. When V is an analytic function, thanks to the ellipticity of the constant
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coefficient Laplace operator, the function u is analytic and cannot vanish on w
without being identically 0 on the connected component 2. However, even with a
smooth (C*) function V', nothing better than C'*° regularity can be achieved for
u and C* functions can vanish on open sets without being identically 0. So the
result of [5] was really entering uncharted territory since most uniqueness results
were using either hyperbolicity or, when hyperbolicity was not satisfied (such as
for an elliptic operator), Cauchy-Kovalevskaya and Holmgren’s theorem, requiring
strong analyticity structure of the operator, were at the core of the arguments.

Instead of providing right away some elements on Carleman’s method, it seems
better to review the most standard Cauchy uniqueness results for strictly hyperbolic
operators, such as the wave operator.

1.1.1 Hyperbolicity, energy method, well-posedness

We consider the following Cauchy problem (¢ € R is the time-variable, x € R¢ are
the space variables), ¢ > 0 (speed of propagation),

c20%u — Ayu=Vu+ f,
u(0, ) = vo(x), (1.1.1)
(Oru) (0, z) = v1(x),

and we want to prove uniqueness: let u, us be two solutions of (1.1.1) with the same
initial data vg, v1; then by linearity the function w = u; — uy satisfies

20w — Ayw =V,
w(0,z) =0, (1.1.2)
(Ow) (0, z) = 0.

We calculate for v € C?(R, C?(R%)), with dot-products and norms in L?(R?), using
the notation v(t)(z) = v(t, x),

_ d( 5.
2e20f0 = A, Do = = (2 BOIP + (Vo) 0)]2),

so that, with O, = ¢ 7207 — A,
RO + (V)OI = e [[0(0)]* + |(Vav)(0)* + 2/0 {(Bev)(s), 0(s))ds.

This equality is true as well for functions in C?(R,, H*(R?)) and assuming that
regularity for w we define the energy E(t) of w by

E(t) = clla)|* + [(Vaw) @))%,
and we have for ¢t > 0, E(t) = E(0) + Qf(f(([]cw)(s),w(s»ds. Using the equation
satisfied by w, this gives

E(t) < E(0) +2/0 IV (s)w(s)[[[lw(s)l|ds.
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We have the Sobolev injection (for d > 2)

. . 1-0 1 1 2d
E[l Rd — 1171,2 Rd IJ[YO,p Rd - - _ _ =

We infer that

IV (s)w(s)Za@ay < IVl g gy 10 ()] gy o = IVILallw] o

so that [[V(8)w(s)ll sy < IV (S)lzallwll g, < mallV(5)llallVawll e and

d—2

t
E(t) < E(0)+2/ e[V (s)l | Vaw| 2 llir(s) [l e~ ds
0

t
< E0)+ cnd/ |V (s)||peE(s)ds = R(t).
0
We obtain R = ckg||V ()| 14 E(t) < crgl|V ()| e R(t), which implies

MQSMUSMW%WMAHWﬂW%

and thus
0 < E(t) < B(0)e o IVE©)lzads (1.1.3)

with a finite rhs if we assume V € L} (R, LYR%)). Of course, Inequality (1.1.3)
is providing uniqueness since E(0) = 0 implies E(t) = 0 for all positive times, but
it contains a much stronger information, the so-called well-posedness of the Cauchy
problem for the wave equation: the solution at time ¢ has an energy controlled by

the energy at initial time via a simple inequality of type
E(t) < E(0)C(1),

where C'is a known function depending on explicit given quantities (here the poten-
tial and the speed of propagation). That notion of well-posedness was introduced
by the French mathematician Jacques HADAMARD (1865-1963).

We would like to go beyond the global calculation (in the x variables) and provide
a local uniqueness argument by a simple modification of the energy method displayed
above. Let € be a C! open subset of R?: it means that there exists a C' function
p: R? — R such that

Q={recR p(x) <0}, plx)=0= dp(z)#D0. (1.1.4)
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Lemma 1.1.1 (A consequence of Green’s formula). Let Q be a C' open subset of
R? and let u,v be C? real-valued functions on Q. Then we have

ou
(Au,v)r200) + (Vu, V) 2q) = mvgda, (1.1.5)
ou ov
(Au, v) r20) — (U, Av) r2(0) = /89 (05 - ug)da (1.1.6)

Proof. We have

(Au,v)r200) = / vdiv (Vu)dzr = / (div (vVu) — Vu - Vv> dx

Q Q
ou
= v—do — (Vu, V)2,
o OV Q)
proving (1.1.5), and implying (1.1.6) by switching u with v. O

We calculate then, using (1.1.5) with v = w,v = w,

0
—2Re(Aw, yw) 12(0) = —2/ w—wda + 2(Vw, V) 120,
oo OV

and this gives

Ow d
<DC1U, 28tw>L2(Q) +2 /69 w%da = E(

We define now for Ty > 0, 0 <t < Ty, Ry = Ty,

o7z + IVwlliag)-  (1.1.7)

F(t) = / (¢ 2in(t, @) + [Vw(t, o)) de.
B(ID,RO*Ct)

We have with Q(t) = B(xg, Ry — ct)

: ow
F(t) = (Qew, 28tw>L2(Q(t)) + 2/ wW——do
ooy OV

d
+ [ Qe a) (il + [Vl

—§(Ro—ct—|z—z0])c

and thus

. 0
F(t) = (dew, 20,w) r2(q)) + / (2w—w — c’l\w\2 — c]Vw\Z) do.
o0(t) v _

~~

<0

We have thus for
20w — Apw =Vw, 0<t<Ty,|r—x0| < Ry=CTy
w(0,z) =0, |z —z| < Ry, (1.1.8)
(Btw)(O, l’) = 0, |(L’ — ,Io‘ S Ro,
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)
locy

assuming for simplicity V' € L

F(t) < 2[[Vwll 2@ Wl 2@ < 20wz [l 2@ < oF ().
We get from Gronwall’s inequality for 0 <t < Ty,
0< F(t) <e”F(0)
and thus a local uniqueness property for the wave equation with a bounded measur-

able potential. The same method provides a much more precise result: for w such
that

PHw —Dpw=Vw+f, 0<t< Ty, |z —x0| < Ry =Ty
w(0,2) = wy(z), |x— x| < Ro (1.19)
(Ow)(0,2) = wi(z), |v— 20| < Ry,

we find
F(t) < oF(t) + 2l f(O)llz2ep 1] 20y < (0 + DEE) + L0200

entailing
[ (t) |8y + IVw(t) |G = F(t) < e(aﬂ)t(leH?z(O) + [V [|§0))

t
+ [ eI £ (5) g d.
0

These inequalities are interesting since for instance with a null source f, assuming
that the initial data wg,w; are vanishing on B(z, Ry), we obtain nonetheless that
the solution w of (1.1.9) vanishes near x, for a small positive time, but much more,
that is w vanishes on the cone

Uo<t<ty B(o, Ry — ct) = {(t,x) € [0, Tp] x R?, |z — xo| + ct < Ry = Tp}.

|2 — 0| + ct < Ry

Figure 1.1: INITIAL DATA VANISHING ON |z — x¢| < Ry == THE SOLUTION IS VANISHING
ON THE CONE |z — z¢| + ¢t < Ry = T
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Also, we see that the values of w at time T' > 0 on the ball B(xy, R) will depend
on the values of w at initial time ¢ = 0 on the ball B(x, R + ¢T').

| <R |z — x| <R+ (T —1)
T — x| <

Figure 1.2: DOMAIN OF DEPENDENCE FOR THE WAVE EQUATION

Remark 1.1.2 (Local and global uniqueness). The reader may wonder why we
made two different discussions above about global uniqueness and local uniqueness.
We were able to prove that both global and local uniqueness hold for the wave
equation. We may point out here that local uniqueness is a much stronger property
than global uniqueness. In particular, if we study the heat equation

a j—
ot
a global uniqueness result is not difficult to obtain, say for C'(R,.%’(R?)) solutions
u(t) of

A, teR, zeR? 1.1.10
+

% —Agu=f, u0,2)=u(x), ue . (RY.

Using the Fourier transformation' we get that a(t, §) = 6_4”2”5'2&5(5) so that if ug is
vanishing, we have that u is vanishing, settling the global uniqueness property: if the
Cauchy data vanishes globally in the space variables x, then the solution vanishes
as well.

On the other hand, we know that a fundamental solution of the heat equation is

E(t,z) = H(t)(47rt)_d/26_% : aa—f —ALE=6(t) ®6(x).

'We define the Fourier transformation of a function u in the Schwartz space . (R?) by
w(€) = / e 28y () dx
Rd

and we get that u(z) = [p. 2™ ¢a4(£)dE. For u in the topological dual ./ (R?) of . (R?) we define

(U, ®) 5 (mt), 7Ry = (U, D) /(a7 (me). The same inversion formula holds. See Section 4.1 in our
Appendix for more details on the Fourier transformation.
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We know also that the ¢ singular support of E is reduced to Og,.rs and that
the support of F is equal to the half-space {t > 0}. As a result for any point
zo € R4\{0}, the C* function F(t,z) satisfies

oF

E —A,E=0 onR; X B(%, ‘x(J’)u E|{t§0}xB(xo,\xo\) =0,

violating the local uniqueness property. This simple example is certainly a useful
caveat about a global uniqueness property which turns out to be quite weak and
very far from a local uniqueness property.

1.1.2 Lax-Mizohata Theorems

We have seen above that for the wave equation, a very satisfactory uniqueness
theorem can be proven, going much beyond the uniqueness property: we were in
fact able to prove a well-posedness result. We showed that some precise inequalities
are controlling the size of the solution at time ¢ by the size of the data at initial
time. It turns out that this property is also true for strictly hyperbolic equations
and not only for the wave equation.

Let us define the notion of strict hyperbolicity for a linear operator of order
m. We are given on some open set U of R™ a linear scalar operator with smooth
coefficients

P(z,D) = Z ao(x)DY,
lal<m

and a C* hypersurface
Y ={xeUnp(x)=0}, pe C.(U;R), dp(x) # 0 at 3.
We define the principal symbol p,, of P as

Pm(2,§) = Z ao(2)6%, (2,€) e U x R™.

|a|=m

We shall say that P is strictly hyperbolic with respect to ¥ if for z € ¥ and £ € R"
such that £ A dp(x) # 0, the polynomial in the variable o given by

pm(z, & + odp(z)) has simple real roots and p,,(z, dp(x)) # 0.

Choosing local coordinates such that ¥ = {z € U, z,, = 0}, we have dp = €, and
we consider for & # 0, ¢(0) = pn(2/,0,&', &, + o). We require that the polynomial
in 7 of degree m given by

Q(7) = pm(2',0,¢,7)
has simple real roots and p,,(2’,0,0,1) # 0. Of course, if it occurs at some point
x' =z, for all & € S"2] the same property is true for the polynomial

T — pm(lj? xn7 5/7 T)
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for (z/,z,) in a small enough neighborhood of (z{,0) in R" and for ¢’ # 0 in R*~1.
In fact if we know that for || =1,

pm(‘rEﬁ 07567 7—0) =0= To € R7 a‘l‘pm(x/[h 075/7 7-0) # 07

we can apply the implicit function theorem for the function p,,(z’, z,, £, 7) and we
find a neighborhood of (zf, 0, &, 79) such that

P2 20,8 7) =0 <= 7=\, 2,,&),

where \ is a smooth function homogeneous of degree 1 with respect to £’. Eventually
we find m distinct real roots

()\j(l'/, ':Cn7 é-/)) ISjSm’

for the polynomial p,,(z', z,, &', 7) of the variable 7 and we have

P2 20,8 7) = e(2, x,) H (7= N2 20, €)), (1.1.11)

1<j<m
where the function e is not vanishing near the point (z(,0).
Of course the wave equation with propagation speed ¢ (a positive parameter)

1 0?

ar A
is strictly hyperbolic with respect to any spacelike hypersurface, i.e. an hypersurface
¥ of Ry x R? with a conormal vector v = (7, &) € R such that

—c P+ € <.

If a spacelike 3 is given by an equation p(t,x) = 0 with dp # 0 at X, we have
v = (0yp, Orp) and |0sp| > ¢|0,p|. We have thus

Y=ct=a(z), |Val<l.

So the wave equation is strictly hyperbolic with respect to any hyperplane with
equation
ct = (£, 2), €€R?Y  provided [¢] < 1,

so that this hyperplane does not intersect the light cone c|t| = |z|, except at t =
0,z =0.

More generally, considering a symmetric matrix

(gjk(x)) 1<jk<n
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with signature (1,n— 1) ( 1 positive eigenvalue, n — 1 negative eigenvalues), we may

consider its inverse matrix (¢7*(x)) and setting |det(g;x)| = |g|, we define the

1<j,k<n
wave operator attached to g by

_ 0 , 0
Oy =gl > Flglwgﬂ“(x)a—u

1<jk<n Y

We note that, for u,v € C?, we have
Oyl = [ Ol ds

SN (CrR e

1<jk<n
= Z /u Ok|g|' /2 g% 0 vdx
1<j,k<n
:/“|9|‘1/2 > dlgl g opulgl P dr = (u, Ogv)12y).

1<j,k<n

The principal symbol of this wave equation is

p(x,&) == Y g (@)&E = — (g7 (@)E, Omanr(a0)-

1<j,k<n

The dual wave cone C, at x is defined as

Co ={6 € T;(M), (g7 ()&, &) 1. an.120r) > 0}

and an hypersurface > with equation p(x) = 0 (dp # 0 at p = 0) will be said
spacelike whenever

(g7 (z)dp(z), dp(2)) 1,7y re(ary > 0, e dp(z) € C,.

Since the symmetric matrix ¢g~1(x) has signature (1,n — 1), we may assume, by
rotation and rescaling that it is a diagonal matrix with n — 1 eigenvalues equal to
—1 and one eigenvalue equal to 1, i.e reduce our problem to the wave equation with
speed 1. We have to deal with p(t,z) =t — a(x), ||Va| < 1 and

glo) = —(t+ o)’ + €+ ayll?, |yl <1, (1.6)A(1,y)#0.

We have
q(o) = *(=1+ lylI*) + 20(=7 +y - &) — 7° + [I€]]%,

a real second-degree polynomial in the variable ¢ whose discriminant is

A= (—1T+y )= (=" + &I (=1 +lylI*)
= (y-&)? =27y - &+ 72|yl + 1121 = llyl?).
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If y = 0, we have A = ||€]|* > 0 since (1,&) A (1,y) # 0. If y # 0, we may assume
that y = fe;,0 < 0 < 1. We find

A = 62£f — 207& + 707 + 5%(1 — 92) + |§'[2(1 — 92) = (& — 97')2 + \5’]2(1 — 92),
so that A > 0; if A =0 we get
5/ = O,fl =01 = (7—7 g) - (7—7 07—7 0)7 (Ly) = (1’970)7

which is incompatible with (7,£) A(1,y) # 0. As a result, the discriminant is positive
and the roots are real and distinct.

Remark 1.1.3. We note that it is meaningless to say that an operator is hyperbolic:
what makes sense is to say that an operator is hyperbolic with respect to some
hypersurface. For instance the wave equation ¢ 20?7 — A, is shown above to be
hyperbolic with respect to any (spacelike) hypersurface with equation p(t,z) = 0
with
¢ 0p)? > IVapl?, (eg t=0),

but the wave equation is not hyperbolic with respect to a characteristic hypersur-
face (i.e. such that ¢72(dip)? = ||V.p||?) or a timelike hypersurface (i.e. such that

¢ 2(0yp)? < ||Vopl|?). To check the latter statement, we see only that for the hyper-
plane z; + at = 0, ¢* > a* we have v = (a, 1,0)

q(o) = —c (1 + 0a)* + (&1 + 0)* + [|€']]?
= o0*(—a’c? 4+ 1) + 20(—arc 2 + &) — 2 + ||€])7,

and for ||¢'|| = 1,7 =10,& =0 (so that (7,&) A v # 0) we have

4(0) = 0* (—a® 4 1) +1,
T —
>0

whose roots are purely imaginary.

For strictly hyperbolic operators, we can apply a variant of the energy method
described in (the previous) Section 1.1.1 and prove some well-posedness inequalities
for such evolution equations. We want now to show that without hyperbolicity, no
well-posedness could be expected. In fact, we shall see that

Strict Hyperbolicity = Well-posedness = Hyperbolicity.

The first implication is proven in Section 1.1.1 for the wave equation and the second
implication is known by the generic name of Lax-Mizohata Theorem?. Hyperbolicity
will mean here for a scalar operator that the roots in (1.1.11) are real-valued but not

2 Peter LAX is a Hungarian-born (1926) American mathematician. Shigeru M1ZOHATA (1924
2002) is a Japanese mathematician.
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necessarily distinct. To start with a simple example, closely linked with Carleman’s
interests, we shall consider the following evolution equation

Otu+ Pu=0, u(0,r)=up(z), (t,z)€R% (1.1.12)

The operator 92402 is simply the (elliptic) Laplace operator, which is not hyperbolic
(with respect to any hypersurface): the roots of 7 — 72+¢£2 = 0 are purely imaginary.
We cannot expect a control of the solution of (1.1.12) at a positive time ¢ by the
initial datum: we cannot have, say for N large integer, K, L relatively compact open
subsets of R?

a8 - ey < O et lu(0) Loy

Taking for instance u(0,7) = cos(\z), we find that u(t,z) = e cos(A\x) solves
(1.1.12). At time ¢ = 0, we have [[u(0)|| g~ ) < CLAY and for ¢ > 0, [[u(t)|| -~ (x) >
eMegA™N, cx > 0. The inequality above would imply for some ¢ > 0 and any
positive A

Mo AN < u() i) < Cnenu0) || vy < Cuvc . CLAY,

and we would have for some ¢ > 0 limsup,_,, . eM\™?" < +o00, which is absurd.
We may rephrase this by saying that the Cauchy problem for the Laplace equation
is ill-posed: strong oscillations in the initial data (cos Az) keep that data bounded,

Mcos Ax).

but trigger an exponential increase in time (e

The paper [17] by P. Lax and the article [27] by S. Mizohata provided a more
general statement, proving that a well-posed problem must be hyperbolic. Further
developments were given by the Ivrii-Petkov article [16]. We reproduce here their
arguments in a more specialized framework. We consider a N x N system of PDE
with constant coefficients in one space dimension: for a N x N real-valued matrix

A, our evolution equation is

U1 Uy Ul(o,l') 1/1(33')
ol | -aa| | =0 | =

un un un (0, ) vn(x)

Let us assume that this system is not hyperbolic, i.e. the matrix A has a non-real
eigenvalue X\ 4 iu, 1 # 0. We have for a non-zero vector X +4Y in CV,

A(X +iY) = (A +ip) (X +1Y)

and since A is real-valued, we get AX = X —puY, AY = uX + \Y. We note that
X ANY # 0, otherwise if X # 0 (resp. Y # 0), we have Y = aX (resp. X = aY)
and X +14Y = (1 +ia)X (resp. X +iY = (a+1)Y) and thus

(1+i0)AX = AX +Y) = A+ ip)(X +iY) = (A +ip) (1 +in) X,

(resp. (a+i)AY = AX +Y)=A+ip)(X +3iY) = A+ ip)(a+1)Y),



16 CHAPTER 1. BASIC TOOLS

implying AX = (A4 iu)X (resp. AY = (A +iu)Y) which is not possible since AX
is real-valued and pX # 0 (resp. pY # 0). We calculate then

(A=XN2Y = (A= \NpX = =Y = (A= \)**Y = (=1)*p?Y.
As a result for 7 € R, we have

elTAY _ 617—)\627—(A—)\)Y

2k -2k 2k+1 2k+1

_ ein\(kz>0 1(2;)‘ ( 1>k 2ky +Z%—_'_)( 1)kp2k(A N )\)Y)

= €™ (cosh(ur)Y + isinh(pr)X).

Assuming that we have a solution valued in C*([0, T]; '(R; RY)) for some T' > 0
and for an initial data in the Schwartz space .7 (R;RY), considering v(t,&) the
Fourier transform with respect to x of u, we get

B(t,€) = 2m€A V(£ ), 0(0,€) = D).

Let x € C*(R), equal to 1 in a neighborhood of 0 and let € > 0 be given. We
consider the compactly supported distribution y(e£)v(t,£) and we have

d —2mtEA
@<( “IX(€)u(t,€)),0(6))

—(2imE Ae™ A (€)u(t, €), (&) + (7™ x () 2imE Au (L, €), 6(€)) = O,

so that e~ 24y (e€)v(t, €)

X(€€)D(€) and thus
X(€€)u(t, &) = x(e€)e® ™ i(€).
Choosing D(€) = w(§)Y = e~ Y (a vector in the Schwartz space), we find
X(€€)u(t,§) = x(e§)w(§)e™™* (cosh(p2mt€)Y + isinh(u2mts) X).

The weak limit of the lhs is v(t,£) and testing on ¢ € C°(R), the equality above
implies that

(v(t,8), 9(§)) 7 @mry),7®)
_ / $(€)e™2N (cosh (j2mtE)Y + i sinh (2mt€) X )w(€)de.

In particular this implies that the linear form defined for ¢ € C°(R) by the lhs is a
tempered distribution: this is not the case since for

— %% _ /
$(€) = e e H N (e€)r(€)
(k € C®°(R;R,),suppk = [0,400),k = 1 on [1,400)), that would imply that

1/4

+oo
1'6:/ Y (€€)k(€) cosh(p2mte)e 20+ ge
0
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has a finite limit when € goes to 0 which is not the case: by Fatou’s lemma
+o0
liminf I, > / K(€) cosh(u?wtf)e_Q(ng)mdS = +o00.
0

As a result our very mild assumption of well-posedness, i.e. for an initial data in
the Schwartz space, there exists a solution in C*([0, T]; &/ (R; R")) for some T > 0,
cannot hold and the problem is ill-posed in that sense.

1.1.3 Holmgren’s Uniqueness Theorems

Theorem 1.1.4 (Holmgren’s Uniqueness Theorem).? Let

P(x,D) = Z aq(z) DY,
a|<m
be a linear operator with analytic coefficients on some open subset  of R™ and
let ¥ be a non-characteristic C' hypersurface®, so that we have a partition Q =
Q_UXUQy, Qiopen. Let u be a distribution on Q such that ujq_ = 0. Then u =0
in an open neighborhood of 3.

For a proof of this result, see for instance Theorem 8.6.5 in [12] or Section 21
in [36]. Note that this result implies that the Laplace equation Au = Vu with V
analytic has the Cauchy uniqueness with respect to any hypersurface (the ellipticity
implies that any hypersurface is non-characteristic). However, it leaves wide open
the Cauchy uniqueness for the same problem when V' is not analytic.

1.1.4 Carleman’s idea

Let us choose a model problem, simple enough to get an easy exposition of Car-
leman’s main initial ideas. We are interested in proving that for v € C*(R?,;C),
a € L>(R?),
Owu + i0,u = a(t, x)u,
u(t,z) =0 for t <0,

Although Carleman’s question was concerned by the Laplace operator, the problem

}:>u:(). (1.1.13)

above is dealing with the 0 equation, still an elliptic operator (but with complex
coefficients). As already mentioned, this result is not a consequence of Holmgren’s
Theorem since the function a fails to be analytic.

Carleman’s idea dealt with proving some weighted estimate, say for smooth com-
pactly supported functions w, a real-valued function ¢ and a large parameter \: there
exists C' > 0 such that for all w € C}(R?) and all A > 1,

Clle™?(0; + 10, )wl| 22y > A2l w| 12 (z2). (1.1.14)

3Erik HOLMGREN (1872-1943) is a Swedish mathematician who proved a special case of this
theorem. The German-born American Mathematician Fritz JOHN (1910-1994) proved this result
for classical solutions. This result fails to generalize to non-linear equations as proven by [25].

o= {z € Qp(x) = 0},p € CHYR),dp # 0 at p = 0, pu(z,dp(z)) # 0,pm(z,&) =
Z|a\:m aa(x)goc.
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Before embarking on the proof of such an inequality, let us show that a good choice
of the function ¢ will lead to a proof of the sought uniqueness property. Let us take

t2
o(t,x) =t + ax® — 50 @ > 0 to be chosen later.

and let us apply (1.1.14) to w = yu , where x is a smooth cutoff function,
x =1 on t* + 2% < 1 and supported in t* + 22 < 5%, 3 > 1 to be chosen later.
We find with L? norms, since (9; + i0,)u = au
NP2 le 2 xul| < Clle™ 10, + i0e, x]ul| + Clle™* xau|
< Clle™(x; + ixg)ull + Cllall Lo supp o lle ™ xull.

We note that supp(x}+ix,)u C {1 < t*+x? < 8%t > 0} = K since V is supported
in the ring 1 < ¢ + 22 < 82 and suppu C {t > 0}. As a result, on the support of
(X} +iX%)u, we have

t? t2 1 1
¢=t—§+ax2 > t—§+a(1—t2) > t—t2(§+a)—|—a > t—t5(§+a)+a >a >0

if we choose

1 2
1<B<q

= , lLe. 0<a<1/2.

As a result we have
()\1/2 - CH@HL“’(suppx))Hei)@XUH < CHVXHL""ei)\aHuHLQ(K)’
so that for A2 > 2C/||al| . supp x)
A2 x| < 20|V x|l pme™ M ull 2.

On the other hand, on 2 4+ 22 < a*, we have

2

¢
¢(t,x)§t+x2—§§a2+a4

and this implies for A\ large enough,
/\1/26_>\(a2+a4)||U||L2(t2+m2ﬁa4) < )‘1/2||€_>\¢u||L2(t2+332S0<4) < )‘1/2||6_>\¢Xu”
< 20 Vx|l peee ™ [l 2
implying that u vanishes on t? + 22 < o, since for a small enough

a>a’+a*, trueeg when 0<a < 1/2.

Since the problem is translation invariant with respect to x, we get that u vanishes
on t < o? and by a connexity argument that u vanishes on R2.
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We are left with the proof of the estimate (1.1.14). Defining v = e w, it
amounts to prove

C||€_>\¢(at + iax)€A¢U||L2(R2) = C||((9t + Z)\QS; + Z@x + A¢;)U||L2(R2) Z >\1/2||U||L2(R2)-

We note that

10 +iA¢y, + 10z + Agp)vll* = [1(0r + iy )vl* + 1|(i0s + Adp)v]?
+ 2Re((0 + iAQL)v, (10, + AP} )v).

We have

2Re((0) + AP, (10, + Ay )v)
= (0 + 1A )v, (10, + AP, v) + (10, + A})v, (O + i, )v)
= (= (0 +IAG,) (10, + Ay )v + (10z + Ady) (0r + iAG, v, v).

We need to calculate the commutator
10, + Ay, 0, + i) = —A!, — Adly = A(1 — 20).
As a result, for 0 < a < 1/4, we have
A
10, +iA¢;, + i0n + A0 [|* = S [lv]?,

providing (1.1.14).
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The hypersurface ¥ separates the reference open set 2 in disjoint open subsets
Q4 (above X) and Q_ (below X). In our picture, ¥ is the hyperplane z, = 0, which
can always be achieved by a C' changes of variables. Although it is tempting to
choose the weight ¢ to be equal to x,, it is not a good idea and some convexification
should be performed: In particular the level set ¢ = 0 should contain a point of 3,
be included in Q_ and such that ¢ > 0 on supp y N Q.

supp uVyx

¢ > a >0 onsuppuVy

Figure 1.3: CONVEXIFICATION.
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1.2 Conjugation identities

1.2.1 Conjugation

We have several things to understand in the previous calculations. A first task is
understand the method by which we were able to prove the estimate (1.1.14). Let
us start with a differential operator

Pp(z,D) = Y au(x)DS, (1.2.1)
|af=m

where a,, are smooth functions defined in an open subset 2 of R”. We do not care so
much about lower order terms, since we shall be interested in differential inequalities
of type

(Pou)(@)| < > V(@) Viu(z)], (1.2.2)

0<j<m

say with V; non-negative locally bounded. We want to know if the hypothesis (1.2.2)
along with the vanishing of v in some open subset of {2 could imply that u vanishes
all over €2. We have seen that a well-chosen real-valued weight ¢ and an inequality
of type

3C > 0,3 > 1,VA > Ao, Y € C(€),
Clle™ Pywllrz > Y A7 e Viwl| 2, (1.2.3)

0<j<m
will be enough to tackle our unique continuation problem.

Lemma 1.2.1. Let us assume that the function ¢ is smooth, bounded on ) as well
as all its derivatives of order less than m. Property (1.2.3) is equivalent to

3C > 0,3\ > 1,VA > Ao, Vo € CZ(9),
CllP(z, D — iXdd)olle > > N2 o] . (1.2.4)

0<j<m

Proof. We assume that (1.2.4) holds and for w € C2°(£2), we define v = e *?w. We
note that

e MD;e* = D; — z)\g—(b = ¢ MD,e* = D, — i\dg(x),
L

so that

e P, (z, D)w = Z age D% v = P, (z, D — iXdo)v. (1.2.5)

|a)|=m
We calculate now

e MVIw = e MVieMy = (V + Ado)lv
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This implies that

ST NV | = > ATV + M) v o

0<jsm—1 0<j<m—1
<O 3 XY N ol €S AT Y Mol s
0<j<m—1 J1+72<] 0<j<m—1 1<y
<C N S <O Y Xl e
0<j<m—171<j 0<k<m—1

Using (1.2.4) and (1.2.5), we find that
> AT Vw2 < CIA|le P, Qf_g I,
0<j<m—1 =w
which is (1.2.3).
Conversely, let us assume that (1.2.3) holds. Let v € C2°(Q2) and let us apply
(1.2.3) to w = e*v: we obtain
_ mflf . _ .
C|| e*Pne*v |2 > Z N2 || e MOV eMy || .

=P, (z,D—iXdp)v 0sj<m (V+Ado)iv
from (1.2.5)

We have also V7 = (V + Ad¢ — Ad¢)? which implies that

X" <C Y XY 4+ M) vl + | s (A V) v]lie
N——

L
J+i"=g polynomial

with degree m — 1

SCY NNV MY v +Cr Y AT VR

J'<i 0<k<i<m-—1
We have thus for A > 1,

Dt vt

0<j<m—1

<G S NIV AN | +Cs Y AT VR

0<j<m—1 0<k<l<m—1

(since 1 < —k) < Cylle Pl + CsATH YT AR ||V,

0<j<m—1

which gives (1.2.4) for A large enough. We note also that since there exist positive
constant ¢,,, C,, such that

en(W [P < Y XTI < O (W + [,

0<j<m—1

we can replace for A > 1 the rhs of (1.2.4) by )\1/2HUHHT—1 with

[ollae = 1A+ [D)*oll 2. (1.2.6)
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We are then left with the study of the conjugate operator P, (x, D —iAd¢) which
is a polynomial of degree m in D, A\, whose symbol is

pm<x7£ - Z)\dgb(x)) + Tm,1($, 57 >‘)7

where r,,_; is a polynomial in (§,\) (with coefficients depending on x) with degree
< m — 1. Since we expect to proving an estimate

Ol| P, D — iddd)o]| = Aol 1,

the term r,, 1 is unimportant since the rhs of the above inequality will absorb this
for A large enough, thanks to the following lemma.

Lemma 1.2.2.

(1) Let q(x,&, N) be a polynomial of degree v in the variables (£, ) € R™ x [1, +00)
with coefficients smooth functions of x € €2 open subset of R"™. Then for any compact
subset K of Q, there exists a constant C such that, for all v € CP(Q),

la(z, Do, Moz < Crelvllag,

where HY is defined in (1.2.6).

(2) Let Q(x,&, N) be a polynomial of degree 2p in the variables (£, ) € R™ x [1, +00)
with coefficients smooth functions of x € € open subset of R™. Then for any compact
subset K of Q, there exists a constant C such that, for all v e CP(Q),

{Q(x, Day N, v)] < Ckl|v[[3-

Proof. (1) We have q(z, Dy, ) = 32,1 k<, ao(T)N* DS and thus

lg(@, Das Mvllzz < Y Hlaalle o A 1D 0]z < Cocllo]lan,
lo+k<p

since, for || +k < p, the Fourier multiplier A*¢ has an absolute value smaller than
Agflel < (- fge.

(2) We have (Q(z, Dy, N)v,v) = 371014 p<op Nelag (2) D%, v) and with yx € C®(Q)
equal to 1 on K,

(aa(2)Dgv,v) = ((D2) "Xk (2)a0(z) D3 (Dy) ™" (Dy)! v, (D) v).

It is thus enough to prove that the operator (D,) *b(x)D$(D,) " is bounded on
L*(R™) for || < 2u and b € C(R™): we write

(D,) b)) D2 (D)™ = (D,) ™ b(x){D,)" (D,) ™" D2(D,)~"

—~
bounded on L2?(R"™)
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so that it is enough® to prove that (D,) #b(x){D,)* is bounded on L?. We have
with u,v € .7(R"),

(D) b(a){ D) s, v) = / / / ba)e2 ™ € (£)1is(€) )R () ddé
- / / b(n — €)(€)"a(€) (m) 5 () dde.

Since b belongs to the Schwartz class, the kernel x(€,n) = b(n — £)(€)*(n)~# is such
that for N > 2max(u,n + 1),

/ k(& m)ldy < Crlé)" / (L4 1€ — )™ (1 + n]) dn
< Crle) / (L4 1€ — )21+ o] + |€ — nl)"dn < Cly

and a similar estimate holds for sup, [ [s(£,7)|d¢. The Schur criterion gives thus
the L? boundedness. O

1.2.2 Symbol of the conjugate

We may somehow concentrate our attention on the symbol

a(x,&,N) = pp(x, & —irdo(x)) (1.2.7)

which is an homogeneous polynomial of degree m in &, A\. Proving a Carleman esti-
mate for P amounts to proving an a priori estimate for the operator with symbol a
under the condition that A > Xy > 1.

Let Q(z,D) = 3 ,1<m Calz)Dg be a differential operator on R" with smooth
coefficients. We define the adjoint operator Q*(z, D) by the identity

Vu,v € C(R"™), (Q(x, D) u,v) 2 = (u, Q(z, D)v) 2.

We see at once that

Q(z,D)" = Y Dica(x). (1.2.8)

la<m

Lemma 1.2.3. Let Q(z, D) = 3_, <, ca(x) D be a differential operator on R™ with
smooth coefficients. We define

1 1
J = 5(@ + Q) (self-adjoint part), K = Q(Q — Q") (anti-adjoint part).

For k + |a| < 2u, we write as above

lo] [ |

Naa(z)Dgv,v) = N((Dz) ™% aa(2)Dg{Da) ™% (Dy) = v,{Dy) 2 v)

L? bounded

so that |\ (aa(2) Dgv,v)| < CIAM2(D,) 5 o||? < Cllvlize
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We have J = J*, K* = —K and for u € C*(R"),
1QulZ> = TvlIZ2 + 1K w][Z2 + ([, K], v) .
In particular, we have always |Qu||2, > ([J, Kv,v) 2.

Proof. We have Q** = @ so that the properties of J, K are obvious. Moreover, we
have for v € C°(R"),

1QulZ2 = lTv]1* + [ KvlZ2 + {Jv, Kv) + (Kv, Jv)

(. J/
-~

(K*Ju,0)+(J*Kv,v)

so that
2Re(Jv, Kv) = (=K J + JK)v,v) = ([J, K]v,v),

which is the sought result. O

Remark 1.2.4. Note that the differential operator [J, K] is self-adjoint since
K" = (JK)" = (KJ)*=K"J"— J'K*=-KJ+ JK = [J,K].

Definition 1.2.5. Let 2 be an open subset of R™ and let m be a non-negative
integer. ¥(€) is defined as the set of polynomials of degree < m in the variables
(&,A) € R™ x R with coefficients smooth functions of = € 2.

Theorem 1.2.6. Let p;(z,£,\) € ¥™, j = 1,2. We define P; = pj(x, Dy, \) and
we shall say that the polynomial p is the symbol of the operator P;. We shall write
as well P; = op(p;j). Then PPy = q(z, Dy, ) where ¢ € ¥™T™2 and more precisely

Lo b

; a£ o )(-T7£7)\> +rm1+m272(x7£7 )‘>7 (129)

Q(xa é-? )‘) = pl(xa 57 A)pg(l', 67 )‘) +
With Ty vmy—2 € X™T™272 We have also [Py, Py) =T with T = t(z, D, \) and

1
b= Z {p1,p2} + Smi+ma—2, Smi+ma—2 S Em1+m2—27 (1'2'10)

and where the Poisson bracket {p1,p2} is defined as
. Op1  Ops _ Op1 Op
(o6 = (B2 6N - (G2 TN (2
-y (%% _ %%)
0¢; Ox; O 06/

1<j<n

The symbol of Py is equal to

— 1 82]?1 _9
1 = - 2, 1.2.12
pi(@,&A) =pi(@,§,A) + ; I;n 9E01, (x,€,X), modulo ( )
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Proof. This is a standard consequence of elementary identities for pseudodifferential
operators, but it is certainly simpler to derive here a direct proof. We note that
(1.2.10) follows from (1.2.9). By linearity, it is enough to consider

ay () DX A\ ay (z) D2 NP2

IAMMmﬂ@im¥§:(&%ﬁmeﬁw
+y=a1

!
= Mtk (2)ay(x) DO o2 4 Z Aotkz g (1) “lealg a0 eJDfEm#
1<en (e _61)

4 Zml +mo—2

1
_ \kitk + ke +k —e;
= N0, (x)ag(x) DS 0‘2+Z E A2 a1 (2)0y; a0 Dy~ DY
1<j<n

mi+mo—2
+Tm1+m2—2 eym™m 2 ,

an operator whose symbol is p;ps + % Z1<j<n gzgl gpz modulo ¥™+m2=2 which is the

sought formula. The last assertion follows from the fact that with

Q= Y @Dy q@&N) = > calw)rie

|a|+k<m |a|+k<m

and from (1.2.8), we see that Q* = Z\a|+k<m)‘ D%, (x) whose symbol is, modulo
Em—Q,

Y e+ Y )Jf S g;“a@ q+% > 85282’
|a|+k:<m o] +k<m 1<]<n J 1<j<n ~ o397
o >1
completing the proof. O
Lemma 1.2.7. Let ¢ € X* be a real-valued symbol. Then
q*(z, Dy, N, Dy, N) = g2, €, N)? + Tou—1 modulo n2-2
with ro,—1 € L1 is purely imaginary. We have also for v € C¥ (),
lq(z, Dy, Mv||* = Re(q*(x, Dy, Mo, v) + O(||UH§#;_1), (1.2.13)
where H" is defined in (1.2.6).

Proof. Since ¢* = q + 13?: gé + Y72 the symbol of ¢*(x, Dy, N)q(x, Dy, \) is

1 9% 10(@+ iarde) g
R o LA R St

modulo 272,

0?2 dq O
1 qq_l_lq,q

that is, since ¢ is real-valued, ¢ + %  BwoE 5 oe modulo ¥2*72, providing the

first formula. We note than that

* . 21—2
Tou—1 = —T2u—1 modulo X777,
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and since
la(z, Day AJv[* = Refop(¢”)v,v) +  Re{op(ra,—1)v,v)
=5 ((op(rau—1)+op(r3,_))v,0)
Lemma 1.2.2 gives the answer. O]

Proposition 1.2.8. Let a be given by (1.2.7), where p,,(z,£) is an homogeneous
polynomial in the variables & € R™ with smooth coefficients of x € Q where § is an
open subset of R™. We define

CZm—l@(z, 57 >\)
= apm— . % _ 1 apm—apm
— i (D200 22(0.0) - 200 B2 0.0 B2 0. 0), (121
with ¢ = & —iAdp(x). The notations above stand for

Pow,0) 2200 = Y B2 0,0 L2,0),

af X 1<j<n 5]
v OPm 3pm 32¢ apm Opm
¢"(@)5¢ (@ O5¢ K%; 5 g, (@0 g @)

For every compact subset K of ), there exists a constant C such that for all v €
Cx(Q)
Cllvllsgs + [1Pn(z, D — iXd)vl[72 > |lop(Re am)vl72 + [lop(Im a)v] 72
+ Re(op(cam—1,4)v,v).

N.B. We may notice that the latter quantity in (1.2.14) is real-valued whenever ¢
is real-valued since its complex-conjugate is

NS apm 32¢ 8pm— I,
al'j8$k (:E) 66] (:L" C) Z @xﬁxk 5 (‘T’ C)a_gj(xa C)y

1<j,k<n 1<j,k<n
by symmetry of the matrix ¢"(x).

Proof. The proof is a direct application of Theorem 1.2.6. The symbol of the oper-
ator P,,(z, D —i\d®) is pp(x,& — iXd@) + rp_1 with r,, 1 € ¥™7 1 As a result for
v e CP (), we have,

Cllvllsgps + [1Pn(z, D = iXd)vl[72 = [lop(pm(, ))vllZ:.

Now, according to the last statement in Theorem 1.2.6 and to Lemmas 1.2.3 and
1.2.2, we have, with a,,(z,&,\) = pm(2,C), Tm1,Sm_1 € ™ L 1y, o € X272

lop(am)vl72 = llop(Re am + 7m-1)vll7> + lop(Im am + sm-1)v]72
+ Re([op(Re ay,), iop(Im a,)|v, v) + (op(rom—2)v, v),
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so that
Cullvll3pr + 1P, D — idd)v]|T2 > lop(Re am)]|Zz + [lop(Im ay, o7
+ Re([op(Re ay,), iop(Im ap, ) v, v).
Using now (1.2.13) and Theorem 1.2.6, we obtain
Collvl3mr + | P, D = ird@)v]| T >
lop(Re @, )vl|72 + [lop(Im ayn)v|| 72 + Re(op({Re @, Im ay, }) v, v).

We note also that

8@'0%1)_8ﬂ‘8am_8am.aﬁ_{a_a )
o ox /) 06 Ox I

={Rea,, —ilma,,, Rea,, + ilma,,} = 2i {Reay,, Ima,,},

2 1m<

so that

{Reap,Ima,,} = Im(ag—? . 8;_;»

entailing the sought result since

0@y, Oy, Opm Opm wi \OPm
o= e w0 (GrE0 -G 0)

O

Lemma 1.2.9. Let p be a C*° real-valued function defined on an open set 2 of R"
such that dp(x) # 0 at p(z) = 0. Let xy € Q such that p(xg) = 0. We define for
@ >0

Gul@) = pla) = ppla)? + 5ol = ol (1.2.15)

Then there exists a neighborhood V' of xq¢ in € such that

(£ € Vi6pule) = 0P\ {zo} € { € V, pla) < 0},

For any compact subset K of V\{xo}, we have inf ek pz)>0 ¢ppu(x) > 0. In partic-
ular, if we consider x € C°(V'), which is equal to 1 on a neighborhood of xq, we
have

inf z) > 0.
z€supp V,p(z)>0 ¢p,u( )

Proof. If z € Q is such that p(z) — pp(x)?* + i|x — z0|* = 0,7 # x, this implies
that

p(x)(1 = pp(x)) <0.
Defining V' = {x € Q,p(z) < 1/pu} (which is a neighborhood of ), we obtain the
sought inclusion. We have also for z € V and p(x) > 0,

1 1 1
p(x) — pp(z)* + 3T wol* = p(x) (L — pp()) + 31t wol* > 17~ wo”,
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so that {z € V,x # x¢,p(z) > 0} C {z € V,¢,,(x) > 0} and for any compact
subset K of {x € V,x # 20}, we have infyck pz)>0 @pu(x) > 0. The last statement
follows from the choice K = supp V. O

Lemma 1.2.10. Let p be a C* real-valued function defined on an open set €2 of R"
such that dp(z) # 0 at p(z) = 0. Let xy € Q such that p(zo) = 0. We define for
>0

Bpu(e) = /(o) = ) + 57 o) = 20)* = (o) = 20)* + gl = ol
(1.2.16)

Then there exists a neighborhood V' of xy in ) such that
{r eV, ®,u(x) = 0p\{zo} C {2 €V, p(x) <0}

For any compact subset K of V\{xo}, we have infyck pz)>0 ®ppu(x) > 0. In partic-
ular, if we consider x € C*(V'), which is equal to 1 on a neighborhood of xq, we
have

inf o, . (x) > 0.

z€supp Vx,p(x)>0

Proof. 1f x € €) is such that

/ 1 1 2 / 2 1 2
P(l’o)(fﬂ—l’o)er) (wo)(x — 20)® — pu(p (o) (x — 0)) +@|$—$o| =0,

this implies, with o; bounded in a fixed neighborhood of xy,

2 1

pla) + 03(z) (& = 20)" = p(ple) + o) = a0)?)* =~ —
so that with C} positive constants independent of p,
pla) = ppla)? < —g-le =+ (Co+ Cupla = aof
= _i\x — .1:0|2<1 —2u(Co + Crp) |z — a:0|>.

We may assume that 2u(Co + Cyu)|x — x| < 1/2, and this implies that

p(a)(1 = pp(x)) < 0.
Defining
V={z€Q,p(x) <1/p,2u(Co+ Crp)|x — | < 1/2}
(which is a neighborhood of z), we obtain the sought inclusion. We have also for

z €V and p(z) >0,

By(a) = pla) + ) = 20)* = (o) + o) = a0)?)’ + ol —
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so that @, () > p(x) — pp(x)® + 5;|x — x9|* = (Co + Crp)|x — x| and

1
@, ,(x) > p(x) — pp(r)® + ol ol* (1 = 21(Co + Crp) |z — o).

As aresult {x € V2 # x9,p(z) > 0} C {x € V,®,,(x) > 0} and for any compact
subset K of {x € V,x # w0}, we have inf ek pz)>0 Ppu(x) > 0. The last statement
follows from the choice K = supp Vy. O

1.2.3 Simple characteristics

Let us now discuss the case of simple characteristics. We may assume that our
oriented hypersurface is given by the equation ¢ = 0 near 0 € R} x R¢ and that our
differential operator has the principal symbol (a polynomial with degree m in &, 7),

pm(t,z;7,8).

Let ¢(t,x) =t — ‘%2 + % be a real-valued weight function (¢ > 0). We calculate
Com—1,4 as given by (1.2.14) and we obtain with

C=(r—iA(1 — pt), € — Mg) e ClHe,

Com—1,6(t, 2, T,&, ) =

Opm > )| 0pm 2
+>\M‘W(t>$,o __’8_§(t’x’ )| - (1.217)

We see that the dominant term in that symbol is A |ag—:1(t, z,() ’2. We shall assume
that the characteristics are simple: for (7,&, 1) € (R x R? x R,)\{0}

Pn(0,0,7 — i\, €) = 0 = %’ﬁ(o,o,r—m,g) £0. (1.2.18)
T

Note that above hypothesis implies that the hypersurface with equation ¢ = 0 is non-
characteristic for P, i.e. p,(0,0;1,0) # 0, otherwise, the polynomial p,,(0,0;,0)
would be the zero polynomial. That hypothesis means simply that the m roots of
the (complex-valued) polynomial 7 — p,,(0,0;7,¢) are simple for £ € R¥\{0}: if
¢ =0, we have

Pm(0,0; 7 — i\, 0) = p,,(0,0; 1,0) (7 — i)™

which is not zero for 7 — 2\ # 0.

Lemma 1.2.11. Let p,,(x,t, &, 7) be a polynomial of degree m with real coefficients
such that (1.2.18) holds. There exists a constant pr > 0 such that for (t,x) € W, =
{(t,2) € R [t + [a] < u~2}, for (7,6, ) € R x RY x (0, +00),

o (t, 2, QP (N + 72+ €)%+ comor ot 2,76 0) 2 7 I 72+ €)™
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Proof. Since both sides of the inequality are homogeneous with degree 2m — 1 with
respect to (7,€, ), it is enough to prove that on the half-sphere \? + 72 + |£]? =
1,A > 0. By reductio ad absurdum, a violation of the previous inequality would
mean that there exists a sequence (tg,xy) € Wy and a sequence (Ag, 7k, &) on the
half-sphere such that
. 1 a2 Y
Kpm(te, Tr, Tk — iA(1 — Ktg), § — iK™ ) |7 + com—1,6 (ks T, o, §py i) < T
(1.2.19)
By compactness of the closure of the half-sphere, we may assume that (A, 7%, &) is
converging to (Ao, 70, &) on the closure of half-sphere. Since kt;, goes to 0, multiply-
ing the previous inequality by k~! provides

Pm(0,0; 70 — iAo, §o) = 0. (1.2.20)

We assume first that \; > 0. We have

Opim ?
Com—1,6(ths Thos Ty ks Ak) = Ak %(tmﬂﬁkaﬁ;) +O(1)

and multiplying Inequality (1.2.19) by 1/kAx (kA goes to +oo with k), we get

Opm .
%(0, 0,70 — Mo;fo) =0.

From our assumption (1.2.18), this is impossible since (79, &, Ag) # 0.
We assume now that )\ = 0, so that 7& + & = 1. We have

CQm—l,d)(tka Lk Tk, §k7 Ak)

Opm ?

= \pk F(tkaxlm@)

1
+O(M\) + % {Pm, P} (s Tk5 Ty Eke)-

We have assumed that p,, has real coefficients, so that {pm, pm} (te, Tk; Tr, &) 1S
identically 0. Multiplying (1.2.19) by 1/kAx (A is positive), we get

Oprm ?
—(tr, o, Ge)| +O(1/k)

or <@

implying that ag—;”(O, 0,70,&) = 0. Since we have already p,,(0,0,79,&) = 0 from
(1.2.20) and Ay = 0, this is impossible since 7& + & = 1. The proof of the lemma is
complete. O

Using now the last inequality in Proposition 1.2.8, we get for A > u that

Cllvllsgs + [1Pm(, D — iAdd)vl72 = pllop(Re am)v]l3-1/2 + pllop(Im am)v|[5-12
+ Re(op(cam—1,6)v, v).
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and Lemma 1.2.11 , (1.2.13) (with g = m — 1), along with Garding’s inequality (see
our Appendix, Section 4.2) implies

, A
Culolgs + 1Puir D = XY = S ol
entailing (1.2.4) and thus (1.2.3). Applying the convexity property of Lemma 1.2.10,
we obtain the following uniqueness result, essentially due to A. Calderén [1].

Theorem 1.2.12. Let P be a differential operator of order m with C* real-valued
coefficients in the principal part, L>° complex-valued for lower order terms, in some
open subset Q2 of R™. Let X be a C' hypersurface of 0 given by an equation p(x) = 0,
with dp # 0 at 3. Let xg € X; we assume that for (§,\) € (R" x Ry)\{0}

Pm(0,§ — iAdp(w0)) = 0 == {pm, p} (0, — iAdp(x0)) # 0. (1.2.21)

function, supported in {x € W, p(z) > 0} where W is a neighborhood
of xo, is such that

Ifu is an H]J,

(@) < > Vi@)|Viu)|,  V;eLpy.

0<j<m
then u is vanishing in a neighborhood of xq.

N.B. Using a more specific Garding’s inequality as in Section 8.3 and 8.4 of [3], it
is possible to reduce the regularity requirements for the principal part in the above
theorem to C'. Some refinements of these methods, taking into account that the
operators involved are differential (and not general pseudodifferential operators),
are presented in [33] and allow a version of the previous theorem for Lipschitz reg-
ularity in the principal part. This is in some sense optimal, as far as regularity
is concerned, since some counterexamples are available for operators with Holder
continuous coefficients of any order < 1.

1.3 Pseudo-convexity

1.3.1 Checking the symbol of the conjugate operator

Let us now discuss the next case, when the characteristics may fail to be simple.
We may assume that our oriented hypersurface is given by the equation ¢ = 0 near
0 € R} xR? and that our differential operator has the principal symbol (a polynomial
with degree m in &, 7),

Pm(t, 73 7,6).

Let ¢(t,z) =t — “th + % be a real-valued weight function (1 > 0). We calculate
Com—1,¢ as given by (1.2.14) and we obtain with

¢=(r—iA(1 — pt), & — M%) c ClHe,
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Com—1,6(t, 2, T,&, ) =
8 m a m 8 m a m
o (202,0)- 20 0,2,0)) 1 (202,0)- 0,

+ Au‘— (1.3.1)

When the characteristics are simple, we have seen that that the dominant term in
. 2 .

that symbol is A\ |8g—j(t,m, C)! . However, we want to deal with some cases when

this term is actually vanishing. We may have for some (7,£,\) € (R x R x R, )\{0}

Opm
or

We have then to focus our attention on the second term of (1.3.1) (the first is

pm(0,0,7 =i\ ) =0 and ——(0,0,7 —i) &) =0. (1.3.2)

vanishing and the very last one will be proven unimportant, thanks to the occurrence
of the large term p in the denominator). We note first that

CQm_l,gg(t,ZE,T,g,O) =0. (133)

since, as p,, has real-valued coefficients,

Opm Opm Opm Opm
Im ( or (t,l’,T,f) ’ ot (t,il},T,f)) —|—IH1( aé— (t,l',T,&) ’ ox (t,l’,T, ))

1
= = _ma m EO
22.{p Pm}

We shall assume that for A > 0, (7,£,\) # (0,0,0),

p(0,0,7 — i), €) = 85’”(007 iNE) =0 —
. 1 Opm  Opm
i‘&ﬂe(lm(ﬁ' 1 007 —i(A+6),0)
+Im (apm apm)(OOT iA+6),6)) >0, (1.3.4)
o , (13,

Note that for A > 0 the limit is useless and for A = 0, this assumption means only
that for (7,£) # (0,0),

P
or

do 2m—1,¢

a/\ (07077—757)\)\)\:0 >0 at pm(07 077—7 £) =

<O7 O? 7 g) = 0
with

O-Qm_17¢(t, Z,T, f, /\)

Opm I ;.

= Im <%(t T, T — N0y, & — INDL) - o tx, T — X0y, & — z/\ﬁgcgb))

+Im (8pm (t,x, T — iNOyp, € — iNDL0) - gx (t, @, 7 — X0, & — M@ﬁb)) :
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Lemma 1.3.1. Let p,,(z,t,&,7) be a polynomial of degree m with real coefficients
such that (1.3.4) holds. There exists a constant p > 0 such that for (t,z) € W, =
{(t,2) € R, [t] 4[] < ), for (7,6,) € R x RY x (0, +00),

11 pm (t, 2, OO + 72 4+ €)™V + comro(t, 2, 7,6, 0) > 7NN 4 72 + [

Proof. Since both sides of the inequality are homogeneous with degree 2m — 1 with
respect to (7,€,\), it is enough to prove that on the half-sphere \? + 72 + [£]? =
1,A > 0. By reductio ad absurdum, a violation of the previous inequality would
mean that there exists a sequence (tx, ) € Wy and a sequence (A, Tk, &) on the
half-sphere such that

. N A
k|pm(tk,{L‘k,Tk—l)\k(l—thk),é'k—Z/\kk} lxk)|2+02m—1,¢<tk7J7k77—k7§k7/\k) < (135)

2k
e
By compactness of the closure of the half-sphere, we may assume that (A, 7%, &) is
converging to (Ao, 70, &) on the closure of half-sphere. Since kt; goes to 0, multiply-
ing the previous inequality by k! provides

Pm (0,05 70 — iAo, §o) = 0. (1.3.6)

We assume first that Ay > 0. We have

O 2
P +0(1)

Com—1,6(ths Thor T, ks k) = Ak W(tkal’m@)

and multiplying Inequality (1.3.5) by 1/kAx (kA goes to +oo with k), we get

Opm )
%(070770 — iAo, &) = 0.

From (1.3.5), we obtain that

1 Im <%(tk7xk,§k) . %(tk,xk, Ck:))

)\k‘ 67— at
1 Opm, Opm
1 | Opm ‘o
- E a_g(tkvxkvgk> < %7

which is incompatible with (1.3.4).
We assume now that A\ = 0, so that 73 + & = 1. We have

CQm—l,(b(tka Ly Tk, gka Ak)

Opm,
%(tk, Tk, Ck)

2

1
= )\kk‘ +O(>\k) + z{m,pm} (tk,xk;m,ﬁk). (137)
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We have assumed that p,, has real coefficients, so that {pm, pm} (te, Tr; Tk, &) 1S
identically 0. Multiplying (1.3.5) by 1/kA; (A is positive), we get

O 4 L o(k
aT<k7xk7Ck) + (/)

k2

implying that 85—;”(0,0,70,50) = 0. From (1.3.5), we obtain that (note that Ay, > 0
with limit 0)

1 Ipm Ipm
)\—klm ( 57_ (tk,$k,§k> gt (tkaxk‘aCk))

1 OPm Opm
+ —Im( gf (tk,xk,@) 8p:c (tk>37k7<k))

op 2
+k a—r(tmIka)

1| 0pm
E’ o€ (thy Try Cr) E'
We have thus
1 Opm Opm
/\—klm( apT (g, Tk, Ci) - gt (tkaxkagk))
1 dp O,
bt (P2 G P01,
_ Ugm_l(tk,xkaCk) - 52m—1(tk:axk:75k) < O(l/k’)

Ak
Thanks to the hypothesis (1.3.4), the lhs has the positive limit

Jo 2m—1,¢

O\

which is incompatible with the previous inequality. The proof of the lemma is

(07 07 70, 507 0)

complete. O
Using now the last inequality in Proposition 1.2.8, we get for A > u that
Cllvllsgs + [1Pn(, D — iAdd)vl[72 = pllop(Re am)vll3-1/2 + [lop(Im am)vlf3- /.
+ Re(op(cam—1,4)v,v).

and Lemma 1.2.11 , (1.2.13) along with Garding’s inequality (see our Appendix,
Section 4.2) implies

) A
Cullo|2s + | Pala, D — ird)l[32 = = ol2ner
X W A

entailing (1.2.4) and thus (1.2.3). Applying the convexity property of Lemma 1.2.10,
we obtain the following uniqueness result, due to L. Hormander [9], Chapter 28.
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Theorem 1.3.2. Let P be a differential operator of order m with C'*° real-valued
coefficients in the principal part, L>° complex-valued for lower order terms, in some
open subset 2 of R™. Let X be a C? hypersurface of Q0 given by an equation p(z) = 0,
with dp # 0 at 3. Let zq € X; we assume that for (§,)) € (R" x Ry)\{0}

Pm(20, & — iXdp(x0)) = {Pm, p} (0, & — iXdp(x0)) = 0 =>

E1_}1>00+ /\—li—eI (%?(xo () - 6pm( O;C)> —P”(Io)%@mo%(%,g) >0,

(1.3.8)

with ¢ = & —i(AN+€)dp(xo). If u is an H]. function, supported in {xz € W, p(z) > 0}
where W is a neighborhood of xq, is such that

(@) < > Vi@)|Viu)|,  V;eLpy.

0<j<m

then u is vanishing in a neighborhood of xq.

N.B. Using a more specific Garding’s inequality as in Section 8.3 and 8.4 of [3], it
is possible to reduce the regularity requirements for the principal part in the above
theorem to C%. Some refinements of these methods, taking into account that the
operators involved are differential (and not general pseudodifferential operators), are
presented in [33] and seem to allow a version of the previous theorem for Lipschitz
regularity in the principal part; however, the pseudo-convexity assumption would
have to be modified to be meaningful for the derivative of a Lipschitz-continuous
function, which is not defined pointwise but only as a bounded measurable function.

1.3.2 Comments

(a) Invariance of the assumptions by change of coordinates

We consider a reference open subset Q of R” and ¥ an oriented C! hypersurface of
Q:

Y={xeQpx)=0}
where p :  — R is a C' function such that p(z) = 0 implies dp(x) # 0. Note
that, applying the implicit function theorem, this implies that, for any xo € X, there
exists a neighborhood Vy = Wy x Jy of o, where W, is an open ball in R*~! and J,
is an open interval of R, a C! function « defined on W, such that

R(ENVy) ={(2", zn) € Wy X Jo, z, = a(2')},
where R € O(n). We have the following partition of {2

Q=0 USUQ,, Q. ={zeQ £pz)>0}
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and the open sets {21 have closure (2. U X in 2: the inclusion of the closure of €2,
into {2, U X is obvious, since a limit point x of a sequence (xy) such that p(xy) > 0
should satisfy p(x) > 0 and conversely if xq is such that p(x¢) = 0, we find a system
of (linear) coordinates on a neighborhood V of xg, centered at xg, such that %
appears as the graph of a C! function « as above, with «(0) = 0. Then Og. is the
limit of (Ogn-1,€) which belong to Q,.° An oriented hypersurface of Q does not
have a unique equation p, but if we are given two C' equations p;, pp such that
pj(x) =0 = dpj(x) # 0, with ¥ = {z € Q,p;(x) =0},Qy = {£p; > 0},5 = 1,2,
by the implicit function reasoning displayed above, we get near a distinguished point
xo a system of linear coordinates such that

p;(z) = ej(z)(z, — a(z’)), e; > 0 continuous.
As a result the conormal bundle ¥+ of ¥ is well-defined, by
Y ={(z,8) € A x R", p(x) = 0,& Adp(z) = 0}. (1.3.9)

Note that p = 0 is one constraint, and since dp(x) # 0 at p(x) = 0, £ Adp(z) =0
means that £ is proportional to dp(x), that is n— 1 constraints: the conormal bundle
is n dimensional. To take into account the orientation of the hypersurface ¥, we
may also define the positive conormal bundle

Yr={(2,6) € A x R", p(z) = 0, € Rydp()}, (1.3.10)

which is a closed subset of the conormal bundle. Note that these objects are intrin-
sically defined, nonetheless independently of a choice of coordinates, but also are
not dependent of a choice of a defining function p for the oriented hypersurface .

We consider now a differential operator P =3, ., aa(2) D5 whose coefficients
a, are C?(Q) functions for |a| = m and L>(Q) for |o| < m. If we perform a C*
change of coordinates U 3 y + r(y) = x € Q, k™! = v, we have for u € C*(Q),v =
uok € C®(U)

(Pu)(z) = (Pu)(s(y)) = Y aa(s(y)) ]] ( g—ZDyk)ajv-

la|<m 1<j<n 1<k<n

Considering the mapping

0 , _
RS0 = () = (D 50) 120, = V(@) = ¥ (x(y)n = W~ ()
1<k<n 7

6Same story for Q_. Note that, for a smooth function p, the closure of the set {p > 0} is
included in but not always equal to {p > 0}: take for instance a function p defined on R such that
p vanishes on [—1, 1] and is positive outside this interval: we have then

{p>0}=(—00,—~1]U[l,+0), {p>0}=R.

Of course that function has critical points at p = 0, which is excluded by our assumption.
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we may write that

(Pu)(x) = Z aa(r(y)) ('K (y) "' Dy)“v + lower order terms.

|a]=m

Defining the principal symbol of the operator P on  x R" = T*(Q2) (cotangent
bundle of Q) by
pm(2,€) = Z aa ()87,
la|=m
we obtain that the operator k* Pk, is also a differential operator of order m: here
we used the notation «* for the pullback by x and &, for the pushforward (i.e. the
pullback by k). We have for v € C*(U), kv =vorv =u,

(5" Pr.)(y) = (Prwv) (k(y) = (Pvov)) (k(y)).

Moreover the principal symbol of the differential operator x* Pk, is

am(y:n) = pm ((y), ' (y)"'n). (1.3.11)

We have proven that the principal symbol of the differential operator P is invariantly
defined on the cotangent bundle of Q: for (z,£) € T*(Q2), and k as above, we have
the canonical mapping

T*(U) 3 (y,n) = (k(y), %' (y)"'n) € T*(Q)

and Formula (1.3.11) proves the invariance by diffeomorphism of the principal sym-
bol of a differential operator.

Let us go back to our assumptions in Theorem 1.3.2. We are given an oriented
hypersurface >, a differential operator P and a distinguished point x in ¥. The
operator P has the principal symbol p, p is a defining function for . We require
for ( = & —iAdp(xo) with A > 0, whenever p(zo, () = {p, p}(x0,() =0

(2> 0 41m (% (20,0) - B2 (20,Q) ) — 0" (w0) B (2, ) 2% (@,€) > 0,
if A\ =0 %Im(ag—g(xo,g) : 85’—;”(:10070)' - P (w0) %2 (w, &) %2 (w,€) > 0.

We note that the points ¢ belong to the complexified cotangent space at zy and also
that —Im¢ € 1 (20) : 0 # ¢ € T () — iX4 (o).

Poisson bracket. We consider an open subset €2 of R” and the cotangent bundle
T*(Q)) = Q x R"™. Let a,b be C' functions defined on T*(Q2). We define the Poisson

bracket {a,b} by

da 0Ob  Oa 0Ob

With the two-form o defined by

o= > d¢ Ada, (1.3.13)

1<j<n
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we define the Hamiltonian vector field H, of a by
o1 H, = —da = (da, X) = X(a) = 0(X, H,) for a vector field X,
ie. p-0a+q-0ca=q-0ca—p-(—0za), H, = 0ca0, — 0,a0¢ and
H,(b) = {a,b} = 0(H,, Hy). (1.3.14)

If we perform a C'* change of coordinates U > y — k(y) = x € Q, k™! = v, this
induces the diffeomorphism &

T(U) > (y.n) = (K(y), "' (y)"'n) € T*(Q),
and the pullback of o by & is, written with Einstein’s convention,

~ ~ 8uk OK;
(o) = B*(d&; N dx;) = —dnp N —2dy; = dny, A dy.
(o) (dg; 7) Oz, Nk Dy, ! Nk k

We infer that, for a,b smooth on T7(Q2),

{ao &, bok} =R (0)(Haor, Hyor) = 0(T(%)Haor, T(R)Hyor) = 0(Hg, Hy) 0 R.

We have
ooy 0000

We note as well that

(220,020, 0)) = - (B2, 0) - B2, ¢) = B2 (0,)- P42, 0))

o0& ox 1\ 0€ ox Ox o0&
= % {pm(:c,é + i), pm(z, & + z’n)}n:ImC. (1.3.15)
Let us calculate, with ¢ = £ — iAdp(zo),
51111(8—&(560,@) : a—m(l’o,o)
0?py, . Opm Opm *p, .
— Im(a—gm, Q) (—idp(as)) - 2 (w0, €) + a%(:xo, Q- ngm, Q) (~idp(xo)) )
0D, OPm, Opm, D
= Re gz (0, Qdpli) - 57 (w0, €) = G (70,€) - 22 (o, O)dplaa))
so that
0 O, OPm " ODm, Opm,
o (e (0.0 G, Q) = ) Bt ) (1)
%P 0P, 0P, v,
= Re( g (w0, E)dp(ro) - F7 (w0, 6) = G (r0,8) - Gt (w0, () )
Opm, 0P,
— ol ) G @ ) 5 (@ 6)
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We note as well that

= 851_9 : 8xa§p : a:vp + a&ﬁ ) aip ’ aﬁﬂ —0.p- agp : aa:pu

entailing

— Re({Fm. {pm: 0} } (2,))

= (20,0 Z2(00,0)) a0 B2 0, B ,8)

We have thus proven the following

Lemma 1.3.3. With the above notations, the pseudo-convexity hypothesis is: for
C = 5 - ZAdp(xO) with A > 07 whenever pm(I'O; C) = {pm)p}(me) =0 and (57 A) €
(R™ x R4)\{0,0)},

{z‘f)\ >0 L1 0epin (w0, C) - Ouprm (w0, C) — 0" (0) 22 (2, C) 22 (9, ) > 0,
if A =0 Re({Pm, {pm p}} (20,€)) <O0.

(b) Invariance of the assumptions by change of defining function for X

We have defined in (1.3.10) the positive conormal bundle and we see that 0 # ¢ €
T () —iX4(wo): the condition {py,, p}(zo, () = 0 means that the vector d¢py, (w0, ¢)
is in the kernel of the covector d,p(z), i.e. in the kernel of all covectors in ¥+ (zo).
Now, if a vector T is such that the bracket of duality (dp(z¢),T) = 0, the quantity

1d2

( (2o + tT))u:o’

so that, replacing p by ep, with a positive function e near xy such that p(xg) = 0,
we obtain

1 d?

2
(ep)(20)T? = 55
2

1d
= 5@6(% +tT) p(xo) +

((ep)(xo + tT))\t:o

(o +T) {dpl0), T) +el) (" (20) T, T).

As a result with ¢ = & — iXe(zo)dp(zo) and e(xg) > 0, po(0,C) = {Pm, ep} (20,¢) =
0, we have with

llmm - Oypm (0, C) — e(x0)p" (2 )817; (,O) S

A
= e(xp) (% Im Oepr (20, ) + DuPrm (20, C) — p (20)

Opm
03

apm apm e
e O w0, 0) >0

(xOJé:)

from the assumption of pseudo-convexity.
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1.3.3 Examples

Simple characteristics

A reminder of a discussion above. We may assume that our oriented hypersurface
is given by the equation ¢ = 0 near 0 € R} x R? and that our differential operator
has a real-valued principal symbol (a polynomial with degree m in &, 7),

Pm(t, 737, €).
We assume for (7,6, 1) € R x Rt x R, \{(0,0,0)},
Pm(0,0;7 — X, &) = 0 = 0:pin(0,0;7 — i\, &) # 0.

Note that above hypothesis implies that the hypersurface with equation ¢ = 0 is non-
characteristic for P, i.e. p,(0,0;1,0) # 0, otherwise, the polynomial p,,(0,0;,0)
would be the zero polynomial. That hypothesis means simply that the m roots of
the polynomial 7 — p,,,(0,0; 7, €) are simple for & € R4\{0}: if £ = 0, we have

Pm(0,0; 7 — i\, 0) = p,,, (0,0; 1,0) (7 — i)™

which is not zero for 7 — i\ # 0. We may note as well that, since p,, is a polynomial
with real coefficients, the roots go by conjugate pairs, so that requiring that a non-
real root with negative imaginary part is simple entails that the conjugate root is
simple as well.

Lemma 1.3.4. A second-order elliptic operator P with real smooth coefficients in

the principal part, LiS. for the lower order terms, such as the Laplace operator, is

such that any hypersurface is pseudo-convexr and thus has unique continuation from
any open subset: if Q is a connected open set of R™ and if Qy # 0 is open C €,

Pu=01inQ, wg, =0, u€H,(Q),
this implies that uw = 0 in §2.

Proof. In particular let ps(x, &) be a second-order elliptic polynomial with real co-
efficients and let p be a (real-valued) function such that p = 0 = dp # 0. Let us
assume that for some (£, \) # (0,0)

po(x, & —iXdp(z)) = 0.

Then from the ellipticity property, we have A # 0 and we cannot have

Iepa(x, £ — iAdp(z)) - dp(x) = 0,

otherwise since py has real coefficients,

pa(, € £ Ndp(e) = = (pali, €+ iAdp(2))) =0,
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and the polynomial o — py(z,£ — iodp(z)) will have two distinct double zeroes at
o = =+, which is not possible since it is a polynomial of degree 2 with leading
coefficient —po(z, dp(x)) # 0 from the ellipticity. To prove unique continuation from
the non-empty open set )y, we need to use the connexity of €2 as follows.

(i) If O(suppu) = 0, then supp u = interior(supp «) and thus is closed and open.
Since (supp u)€ is non-empty, we must have supp u = 0.

(ii) We assume now that d(suppu) # () and we consider a point xy € d(supp u).
Since xy € €, there exists o > 0 such that B(zg,79) C Q2. We also know that
To is not an interior point of suppu, so that B(xzg,79/4) N (suppu)® # 0. Let x; €
B(zg,70/4) N (supp u)®. We note that

B(xy,70/4) C B(xo,70/2)(C Q) since |y — z1| < ro/4 = |y — xo| < 10/2.

We consider
R={r € (0,+50), B(z1,) C (suppu)’}.

The set R is not empty since x; belongs to the open set (suppu)¢. On the other
hand, an upper bound for R is r/4 since |z — xo| < 19/4 and xy € suppu. Let
ry = sup R : we have 0 < r; < 1¢/4 and the ball B(xy,7) C (suppu)© since

B(x1,71) = UpenB(21, 71 — €1), € > 07111?161@ = 0.

Using that B(z1,7m) C B(zg,7r0/2) C 2, and that the sphere |z — 21| = 71 is a
smooth hypersurface of €2, Cauchy uniqueness with respect to that sphere shows
that u must vanish in a neighborhood of the compact set B(x1,7;), in particular in

B(zq,r) with r > 71, contradicting the supremum property of 1. The hypothesis
(i) is absurd. O

Lemma 1.3.5. Let P be an operator of order m with smooth real-valued coefficients
and let ¥ be a smooth hypersurface with a defining function p. Let us assume that
P is strictly hyperbolic with respect to X2, i.e. for & A\ dp(x) # 0,

the roots of o+ pp(x, & + adp(x)) are real and simple and p,,(z,dp(x)) # 0.

Then 33 is strictly pseudo-convex with respect to P and P has unique continuation
from 4.

Proof. We may assume that p is a coordinate ¢ and for R* ! 3 £ #£ 0
pm(t,z,1,0) £ 0, 7 pu(t,x,7,£) has simple real roots.
Then the assumption of simple characteristics holds since for & # 0
Pt x, 7 —iNE) =0= A= 0,0.pn # 0

and if £ =0, pp(t,z, 7 — i), 0) = (T — i)™ pp(,t,1,0) # 0 if (7, A) # (0,0). ]
#0
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More generally, we have

Lemma 1.3.6. Let P be an operator of order m with real coefficients and let X2 be a
non-characteristic hypersurface with a defining function p such that for € Ndp(x) # 0

the roots of o v py(,€ + odp(x)) are simple.

Then ¥ is pseudo-convex with respect to P and P has unique continuation from .

We may notice that all these simple characteristics results are already encompass-
ing many interesting cases, including the strictly hyperbolic cases and the elliptic
operators with degree two and real coefficients. Also of course for these problems,
the orientation of the hypersurface does not matter, a kind of reversibility property.
We shall see that it is a sharp contrast with the pseudo convexity assumptions where
the orientation of ¥ plays an important role.

Pseudoconvexity

We may assume that our oriented hypersurface is given by the equation ¢ = 0 near
0 € R} x R? and that our differential operator has a real-valued principal symbol
(a polynomial with degree m in &, 1),

pm(t, x; 7, €).

We shall assume that for A > 0, (7,£, ) # (0,0,0),

OPm _
P(0,0,7 — i), ) = ai(o,om M) =0 =
T
Opm . Ipm :
for A > 0, %Im(g;§ . %)(O, 0,7 —i\ &) >0, (13.16)
for A\=0, H (t)(0,0,7,&) <0.
In particular, if the non-real roots are simple, i.e. for A > 0,
: Opm ,
Pm(0,0,7 — i\ &) =0 = 0_(0’ 0,7 — i\ &) #0, (1.3.17)
T
then we need only to check that for (7,&) # (0,0), at (0,0, 7,§),
pm = H,, (1) =0= H? (t) <0. (1.3.18)

Going back to general coordinates and equation for ¥, we see that this condition
is pm = Hp,,(p) = 0= H? (p) < 0 and can be illustrated geometrically. To say
that H,, (p) = 0 means that the Hamiltonian vector field of p,, is tangent to the
hypersurface ¥, viewed as a hypersurface of 7%(2). So Condition (1.3.18) expresses
the fact the bicharacteristic curves of p,,, i.e. the integral curves of H, , whenever
they are tangent to >, must have the concavity property Hgm (p) < 0. This appears
clearly in Picture 1.3.
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In other words, ¥ is “above” the tangential characteristics, a sort of convexity
assumption. The integral curves of H,, in the phase space are the bicharacteristic
curves and the characteristic curves are simply their first projection. The bicharac-
teristics are defined by

(1) = Goal0). €0, €0 =~ F(al0),€(0)

so that, calculating

>+

Figure 1.4: Pseudoconvex ¥ with respect to the characteristic curves of P

%(p(x(t))) = Hy(p)(x(1),£(1)), %(p(ﬂ?(t))) = Hy(p)(x(1),£(1))

and with p(zo) = Hpy(p)(xo,&) = 0, the pseudo-convexity condition is indeed
H2(p) (0, €0) < 0.
Pseudoconvexity for real second order operators

In that case, we shall assume that our oriented hypersurface is non-characteristic
and given by the equation ¢t = 0 near 0 € R} x R? and that our differential operator
has a real-valued principal symbol (a polynomial with degree 2 in &, 7),

pQ(ta T, 5)
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We recall that our pseudo-convexity assumption is given by (1.3.8); we note also

that if A #0,(7,§) € R x R*1,

p2(0,0; 7 — i\, &) = 0-p2(0,0; 7 — X, &) =0
implies by conjugation

p2(0,0; 7 + X, &) = 0-p2(0,0; 7 + 0N, &) = 0,

which gives that the polynomial 7 +— p9(0,0;7,&) has two double-roots 7 £ i),
which is impossible. If P is a second order operator with real coefficients in the
principal part the pseudo-convexity hypothesis with respect to a non-characteristic
hypersurface means that for R” 3 £ #£ 0

p(x0,8) = {p, p} (20,§) = 0= {p,{p, p}} (20,§) < 0. (1.3.19)

In fact non-real roots cannot be double since they occur in conjugate pair.

Tricomi operator

We consider the Tricomi operator
T =D? 4 z,|D')?, ¥, =x,>0. (1.3.20)

This is a second-order operator with real coefficients and ¥ is non-characteristic.
&, = 0 is a double root of the equation p(0;¢’,&,) = 0 and

{p.p} =26, {p.Ap.p}} =2{& + 2|, &} = 2| <0,

so that ¥ is strongly pseudo-convex at ¥ with respect to 7. Looking at the bichar-
acteristic curves starting at (z(, 0; &), 0) with || = 1, we have

dx daz’ d§ dg’
-n — 2 " - 2 . !/ sn — _ 112 S

sothat &' =¢&), & =—t, x,=—t* o' =ux)— %56
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Si=x>0

Figure 1.5: Projection of the bicharacteristic curves of the Tricomi operator 7.

Constant coeflicients

e When P has constant coefficients and ¥ non-characteristic with respect to P is
given by the equation z, = f(2’) with f(0) = 0, f/(0) = 0, the pseudoconvexity
condition is

dp

V(ﬁ',ﬁn,r) cR" ! xR x R, \{0}, p(f’,fn —iT) = g(f’,fn —i1) =0
— f"<o>§—§<e,sn - mg—g(e,sn —ir) >0

and for principal type operators, this follows from the convexity of f, i.e. of ¥ .

e Note however that for a constant coefficients operator such as
O.=c 20} — A,

an oriented hypersurface > can be pseudo-convex and >, may fail to be convex: let
us consider a one-sheet hyperboloid H, with equation

z]? = 14 ot
Then with p=[z]? =1 - 02 0 >c>0, p=—c 272+ |¢* we have

dp=2r-dv—20%tdt #0, atp=0(t=0= |z|=1),
pldp) = —c(—=20%t)* + 4|z|* = 4(|z|* — o*c*?)
=4(1+ 0’ —o'c*?) > 0at t =0,
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so that H, is time-like (and in particular non-characteristic) at ¢ = 0. Assuming
p={p,p} =0 = p, means

=2, 2P =14 0%, —2c i (—2t0?) + 26 - 21 =0,
so that we may assume || = 1, and at ¢t = 0 we have |z| = 1,
IT|=¢, &-2=0.

We have then

1 _ _
ZHﬁ(p) = 0,p0{&  x + Tto’c T} + Oep0,{& - w + Tto e}
= 27 2104266 =227t =2 -2 ¢ %0* <0,
since ¢ > ¢ > 0, proving pseudo-convexity for H, with respect to [, at t = 0.

However, 3, fails to be convex: for 2/, 2" € S"~1, 2’ # 2", we have (2/,t = 0), (2", =
0) € ¥, and

1 .

(5(1‘/ +2"),t=0)e X_
since 1la’ + 2> = (1 + («/,2")) < 1 : we have indeed from Cauchy-Schwarz
inequality and 2/, 2" € S"71 2’ # 2, that (2/,2”) < 1 (Cauchy-Schwarz provides

the large inequality [{(2/,2”)] < 1 and the equality would imply 2’ A 2” = 0, i.e.
' = 2" (excluded) or 2’ = —2” inducing (2/, 2") = —1).

A short summary

Let P(z, Dy) = >_ 1, <m a(®) Dy be a differential operator of order m on an open
subset €2 of R with coefficients in L{°

., with a smooth principal part with real

coefficients. Let 3 be a C? hypersurface, given by {z € Q, p(x) = 0} where p is
C! with dp # 0 at p = 0. We note

Pml(2,8) = > aa(x)€"

la|=m

Let xy € X. The simple characteristics assumption is

V(€ A) € (R" x R1)\{(0,0)},
Opm

Pm(@0,§ — tAdp(x9)) = 0 = 8—5(37075 — iAdp(o)) - dp(zo) # 0. (1.3.21)

Carleman estimate. Assumption (1.3.21) implies a Carleman inequality: there
exists Ao > 0 and a neighborhood Vi of xo such that for all v € CX(Vp),

CllPrgvlle = N2 [vllyes,  [loll3 I/\@(f)lz(lé\erAQ)mldf, (1.3.22)
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where ¢ is a real-valued C'*° function with a non-vanishing gradient, “convexifying”
i.e. such that

{z € Vo, 0(x) = 0} \{zo} C {p < 0}.

For elliptic operators, the natural Carleman estimate is

C||Pygvllre = A2 ||v]lpp. (1.3.23)
The pseudo-convexity assumption is V(&, \) € (R™ x R, )\{(0,0)}

—— 8pm ]
Pm(T0,§ — iAdp(10)) = a—g(lﬂo,f — iAdp(z0)) - dp(z) = 0 =

if A > O, )‘_1 Im(&:pm(l’o, C) ' axpm<x07 C)) - ,0//<l'o>a£pm<$0, C)aﬁpm(xm C) > 07
if A\=0, H} (p)(zo,¢) <0.
(1.3.24)

That hypothesis implies as well the Carleman estimate (1.3.22) and (1.3.23) in the
elliptic case.

1.4 Complex coefficients and principal normality

The reader may have noticed that we have assumed so far that the coefficients of
our operators are real-valued. It turns out that it is possible to extend the pseudo-
convexity hypothesis to some complex-valued operators and to retain the conclusions
about Carleman inequalities and uniqueness. The fact that the coefficients were real
was technically helpful in controlling the term {p,,,p,} in (1.3.7). Here we shall
only review quickly some elements related to these questions.

1.4.1 Principal normality

To control the above Poisson bracket, we shall introduce the following definition.

Definition 1.4.1 (see Definition 28.2.4 in [9] ). Let P be a differential operator
of degree m on an open subset of R™ with principal symbol p,,. We shall say
that P is principally normal whenever for each (z9,&y) € Q2 x (R™\{0}) such that
Pm(20,&) = 0, there exists a neighborhood V' of (xg,&y/[&|) in 2 x S" ' and C' > 0
such that for all (z,&) € V,

| {Dm, pm} (2, )| < Clpm(2,£)]. (1.4.1)

In particular differential operators with real coefficients are principally normal.

The terminology principally normal comes from the fact the principal symbol of
the adjoint of P is p,,, so that the principal symbol of the commutator [P*, P] is

I,
E {pm7pm}
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so that the vanishing of this Poisson bracket at p,, = 0 appears as a mild com-
mutation property of P with its adjoint, i.e. a commutation at the level of the
principal symbols. The following properties of Poisson brackets will be useful for
the forthcoming calculations.

Lemma 1.4.2. For a C* complex-valued symbol p, we have
{p,p} = 2i {Rep,Imp} € iR, (1.4.2)
m (7.9} = & (7.0} = 2 {Rep, Imp} (143)
Proof. 1t is enough to prove (1.4.2): we have with a = Rep,b = Imp,

{p,p} = {a —ib,a +ib} = {a,ib} + {—ib,a} = 2i{a,b}.

Some examples
The operator with (complex) symbol
p=7"+HE + &) —ie'e (1.4.4)

is principally normal since for 72 + £ + &2 =1,

1 _
—5: o} = {7+ UG + &), 'T} = 27 = [{p,p}] < dJ7[Tmp| < 4[Tmp].
We may note also that Condition (1.4.1) may be replaced by the apparently weaker

(#) P, D} (2,€) 2 —Clpm(, E)|1€]" 7,

but since Im {p,, pn} is a polynomial with degree 2m — 1 in the £ variable, (f)
implies

ImA{Dm, P} (2, —&) > —Clpm(z, _£)||€|m—1
— Im P pn} (2:6) < Clpm(a, I
= | Tm (B, pm} (2, )] < Clpm (2, IS de. (14.1).

Carleman estimates and local solvability

We note as well that a Carleman estimate of type (1.2.3) would imply local solvability
for P so that the Nirenberg-Treves’ condition (P) should be satisfied for an operator
satisfying a Carleman estimate: for a complex-valued (homogeneous) symbol p of
principal type with d¢ Rep # 0, condition (P) requires that the imaginary part of p
does not change sign along the bicharacteristic curves of the real part; in particular
if 7o = (g, &) is a characteristic point for p and if

Y(t) = Hrep(7),7(0) =70, t+> (Imp)(7(¢)) does not change sign.
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If it stays non-negative, this implies that

(Imp)(7(0)) =0,  Hrep(Imp)(7(0)) =0, ie {Rep,Imp}(7(0)) = 0.
We know that for a principal type operator

Carleman estimate = Local solvability <> Condition (P),

see [3]

and since we expect pseudo-convexity and principal normality to imply a Carleman
estimate, we can check that (1.4.1) implies condition (P): with the above notations,
we have near 7, that | {Re p, Im p} | < C|p||¢|™ ! which implies, since Re p((t)) = 0,

I% Im p(y(1))] < Clp(yO)IIE@)™ ™ = ClImp(y(8))[[€®)™

and thus, by Gronwall’s inequality Im p(7(¢)) = 0, a very strong form of Condition
(P).
The operator
D, +it*D, (1.4.5)

is not principally normal since {7,t2¢} = 2t£ so that the imaginary part does not
vanish identically as principal normality would imply. However, it satisfies Condition
(P) since the function ¢ — t2¢ is either always non-negative or always non-positive.
It is a known result that for (non-vanishing) complex vector field, Condition (P)
ensures uniqueness for the Cauchy problem with respect to a non-characteristic
hypersurface: a very complete study on complex vector fields is given in the paper
[32] by X. Saint Raymond. The book [37] by C. Zuily is providing a proof of a
Carleman estimate for vector fields satisfying Condition (P).

1.4.2 Fefferman-Phong inequality, Weyl quantization

Theorem 1.4.3 (Fefferman-Phong inequality). Let 2 be an open subset of R™ and
let m be an integer > 2. Let a € X™() (see Definition 1.2.5) be a nonnegative
symbol and let K be a compact subset of Q). Then there exists a constant C' such

that for all u € CFE(2),VA > 1,

2
Re(a(x, Dy, Nu,u) + OHUHHQ# >0, (1.4.6)

A

where the Sobolev space H3, is defined in (1.2.6).

We give some references and comments on this inequality in our Appendix 4.4.
We shall use this inequality as a tool to handle our Carleman estimates for operators
with complex symbols in a rather similar way as we have used Garding’s inequality.
However, the reader must be aware that the proof of the Fefferman-Phong inequality
is much more involved than the proof of the lowerbound given by Garding’s inequal-
ity, so that the technical apparatus used for principally normal operators increases
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dramatically with that inequality entering the game. On the other hand, a drawback
of this tool is that it is greedy with derivatives and it is not so easy to determine
the number of derivatives needed for the method to work: for this reason, we shall
always assume some smoothness in these cases.

Another tool which shall simplify our discussion is Weyl quantization. We refer
the reader to our Appendix 4.3 and to the book [24].

1.4.3 Pseudo-convexity for principally normal operators

We may then go back to our discussion of the symbol of the conjugate operators:
we have to deal with

CL(J]7 5, )‘) = pm<CL’,§ - Z/\dgb(l'))

and we may calculate the composition
1
ata = |a|* + % {a,a} = |pm(z,& —iXdd (1)) > + com_1.6(7, & N), mod 22

where cg,—1,4 is given by (1.2.14). Choosing ¢ as in (1.2.15) we shall prove

Lemma 1.4.4. Let p,,(x,§) be a principally normal symbol such that the pseudo-
convezity hypothesis (1.3.8) holds for a function p at a point xo. There exists a
constant 1 > 0 such that for x € W, = {x € R", |z — x| < pu 2}, for (§,\) €
R™ x (u?, +00),

‘pm(xag - Z)\d¢(flf))|2 + CQm—l,(b(xa 57 )\) 2 ,u_l)\()\Q + |§|2)m—1’
with the quadratic weight

|z — 20)?

o(x) = p'(wo) - (v — 20) + 1:0”(56’0)(37 - 130)2 - %(ﬂ/(fco) (- 550))2 + 212

2

Proof. The discussion follows the same lines as in the proof of Lemma 1.3.1 and
we shall use here as well a reductio ad absurdum. We find sequences (xg, &k, \g),
assuming as we may that zo = 0, |dp(0)| = 1, with

Rl <K% (& M) = (A + &) Y2 (Br, Ax), h,ﬁn(Ek,Ak) = (Z0, Ao),

with
Ap>0,A0 >0, AZ+|Z2=1=A]+|Z0)%,

so that, with ¢, = &, — idedop(xr), e > k2,
1P (ks Co) 2 4 Com—1.0(Th, Ey M) < BT AL + &6 [2) (1.4.7)
We note that, since |z < k™2,

dor () = p'(0) + p"(0), — kp'(0)axp' (0) + k2 —> lim dgy,(zx) = dp(0) # 0.
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We have thus

> g2+ 2 T
GI? = leel® + Xldon(eo)l, lim =

=[S0 + [dp(0)]*AF = 1.
Dividing both sides by |(|?™, we obtain with Z, = (u/|Ck]

lim Zy = Zo — ifodé(0) = Zo,  |pm (s, ZIP < O(G!|™) = pm(w0, Zo) = 0.
We have also

Camr6 = 1 (0epn (2.C) - Dapn(,€) ) = A0 (0) D) (2, C) (Oepm) ()

with ¢”(0) = p”(0) — up'(0)* + =2 so that (1.4.7) implies

P (2, Ge) P 4 kXL (0) - (Oepm) (s G)|?

+ 1 (Oepin - Oupm) (@, &) < MO(G™™ %), (1.4.8)

Previously the term Im (85% . &me) (g, &) was identically 0 since we had supposed
our operator with real coefficients (true as well for a constant coefficient operator);
we (badly) need to control that term in the case where Ay = 0. Let us start by
checking the

Case Ay > 0. Then we have

A _ A _
)\k|Ck|2m_2 = K—k’|§k|2m ! > 70|§k|2m 1, for k large enough,
k
and thus dividing (1.4.8) by kAg|(|*™ 2 (note that Ay > 0), we find that

2m—1
R R
hin ’Im(afpm a$pm) (xlw &C)| (ijk|Ck| ) = hl?l k%|§k|2mfl

and this proves
0 = 1im [p'(0) - (Fepm)(w, Zt)|* = {Pm p} (0, Zo). (1.4.9)

Case Ay = 0. Here we shall use the principal normality assumption: we know
that

I (Oepm - Oupm) (T, &) = —Col&|™ pm (2, &)

so that we infer from (1.4.8)

|pm(xk7 Ck)|2 + /fAk’PI(O) ) (8§pm)(xk7 Ck)\2
< Col&™ pm (zk, &)| + MeO(| G 2)
< [Pk, G GI™ Co + MO G ™2)

1 1 _ —
< §’pm(9€k, )| + §C§|6k|2m 2+ MO(| G2,
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an inequality that we can divide by kAg|(x|*™ 2 to obtain

02
/ i 2 < 0 -1
#(0) - Qepm) (i Z)* < 52+ O(k™)

and since kA, > k, we obtain in that case as well {p,,, p} (0, Zy) = 0. In both cases
we have found a point Z; where

Pm (0, Zo) = {pm, p} (0, Zo) = 0.

We may now apply the pseudo-convexity hypothesis. Developing the expression of
(1.4.8), we get

[P 6P + Bkl (0) - (Oepm) (@, Gl — )\kp//(o)mﬁgpm(xk, Ck)
+ Im(m : axpm(xlm Ck)) § k_l)\kO(Kk’Qm_2),

If Ag > 0 we may divide this inequality by A\x|Cx[* 2 to reach a contradiction.

Let us assume now that Ag = 0. We have

Pun(s: Go)? + BAR|0(0) - (epin) (v Go)I? = At (0)Deo (i, ) O (i )
0
+ Mgy <Im(3§pm(:ck, &k — iAdor (k) - oD (T, E — Z‘Adgb(xk)))) IA=0

T Im(aipm . &Upm)(il?k, &) < ETINO(GP™ ) + OGP ™),

which gives, using principal normality,

P (@, Co)[* + BN 0/(0) + (Oepim) (@hs Ge) | — A" (0)0epim (2, Cie) e (T, i)

+ )\k% <Im(35pm($k, &k — iAdPr (k) - Oupim (ke §k — i)\dgb(xk))))

< Col&|™ Mpm (r, &)| + BT MO ™ 2) + O G *™?)
< Col ™ Mpm(@r, G)| + o(AR] G2
+ ETINO(GP™?) + ORGP )

P (@, Co) P + O Gl ) 4 oAk GP™ %) + K~ AO(| G ™ 72)

|A=0

<

N | —

+ ORIG ™).

We divide this inequality by Ax|(x|*™ 2 to obtain (note that A, > k?)

/! a o . 7N a a9 . 7\
— 0"(0)0cpm(xk, Zi) Ogpm (Ths Zi) + B3 I (Oepm (2k, Zi) - Oupm (ks Z))

< o(1) + O(Ay).

This is incompatible with (1.3.8) for Ay = 0. O
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Theorem 1.4.5. Let P be a principally normal differential operator of order m with
C> coefficients in the principal part, L complex-valued for lower order terms, in
some open subset Q of R™. Let ¥ be a C' hypersurface of Q0 given by an equation
p(x) =0, with dp # 0 at 3. Let g € ¥; we assume that for (£, ) € (R" x R;)\{0}

Pm (0, — iAdp(x0)) = {Pm, p} (20, & — iAdp(z0)) = 0 =

1 a m a m 1/ 8 m a m
Jim s (0, Q) - (0, Q)) = 0 o) S (. O g (,€) > 0, (1410)

with ¢ = & —i(A+e€)dp(xg). If u is an H]. function, supported in {x € W, p(x) > 0}
where W is a neighborhood of xq, is such that

@< Y Vi@)V0ule)l, VjeLi,

0<j<m
then u is vanishing in a neighborhood of xq.

Proof. An immediate consequence of Lemma 1.4.4 and of Fefferman-Phong inequal-
ity. 0

We note that the proof, although technically more complicated is conceptually
quite simple: we start with the symbol

pm(ft,f - l)\dgb(l’)) = CL(ZE, 57 )\),

we calculate ¢ = afa, prove that c(z,&,\) > p= A\ + |£]?)™ !, apply Fefferman-
Phong inequality to obtain

1Pyl Ze — = Al

Hm 1 + COH’U/H2 ’m 1 > 0
providing the following Carleman estimate for A large enough

2 Praallzz = 1= A2l s



Chapter 2

Inequalities for elliptic operators
with jumps at an interface

2.1 Introduction

This chapter is based upon the joint paper [I&] of the author with Jérome LE
RousseEAU, which appeared in Analysis € PDE.

2.1.1 Preliminaries

We have seen in the first chapter that a Carleman estimate could be proven for
second-order elliptic operators, say with real-valued coefficients which are regular
enough. Inspecting our proofs, it can be established that Lipschitz continuity is
enough to handle uniqueness properties for second-order elliptic operators with real-
valued coefficients.

Furthermore, it was shown by A. Pli§ [29] that Holder continuity is not enough
to get unique continuation: this author constructed a real homogeneous linear dif-
ferential equation of second order and of elliptic type on R?® without the unique
continuation property although the coefficients are Holder-continuous with any ex-
ponent less than one. The constructions by K. Miller in [26], and later by N. Filonov
in [7], showed that Hélder continuity is not sufficient to obtain unique continuation
for second-order elliptic operators, even in divergence form.

Reminders on pseudo-convexity

Let P(z, Dy) = 37, <m da(®) Dy be a differential operator of order m on an open
subset 2 of R™ with coefficients in L

locy

coefficients. Let X be a C? hypersurface, given by {z € Q, p(x) = 0} where p is
C! with dp # 0 at p = 0. We note

with a smooth principal part with real

Pml(2,€) = > aa(x)€"

la|=m

%)
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Let 2y € X. The simple characteristics assumption is

V(€ A) € (R" x Ry)\{(0,0)},
Opm

Pm(Z0, € — tAdp(zo)) = 0 = 8—5(13075 —iAdp(z0)) - dp(zo) # 0. (2.1.1)

Carleman estimate. Assumption (2.1.1) implies a Carleman inequality: there
exists Ao > 0 and a neighborhood Vi of xo such that for all v e C*(Vp),

CllPrgvlle = N2 [[vllypes,  loll3 I/\ﬁ(f)l2(!£\2+k2)mldé, (2.1.2)

where ¢ is a real-valued C* function with a non-vanishing gradient, “convexifying”
1.e. such that

{z € Vo, o(x) = 0} \{xo} C {p < 0}.

For elliptic operators, the natural Carleman estimate is

CllPrgvllie = A7 vl (2.1.3)
The pseudo-convexity assumption is V(§, \) € (R™ x R, )\{(0,0)}

—— 8pm )
Pm(T0, & — iAdp(xg)) = 8_§(I0’§ —iAdp(xo)) - dp(xg) = 0 =

it A > Oa )\_1 Im(afpm(x()v C) : ame('rOa C)) - p”(xO)aEpm(an C)aﬁpm(xm C) > 07
(2.1.4)

That hypothesis implies as well the Carleman estimate (2.1.2) and (2.1.3) in the
elliptic case.

Second order elliptic operators with real coefficients. We consider an oper-
ator defined on an open set ) of R"

P= Z aji()D;Dy,  A(z) = (aje(x))1<j<n, symmetric > 0, (2.1.5)

<k<
1<jk<n 1sksn

A(r) smooth real-valued, Jcy > 0,V(x, &) € Q x R™, (A(x)E,€) > colé]®.  (2.1.6)

Lemma 2.1.1. Let P,Q be as above. Let p be a C' real-valued function in Q with
a non-vanishing gradient. Then the simple characteristics assumption (2.1.1) holds
at every point of Q. As a result, unique continuation holds for P across any C*
hypersurface.

Proof. If py(z,¢) = (A(z)(€ — iAdp(x)), (§ —iXdp(x))) = 0, since A is real-valued

we get

{(A(a:)g,f = N (A(z)dp(x), dp(x)) (2.1.7)



2.1. INTRODUCTION o7

If we have moreover Oepy,(z, () - dp(z) = 0, this means

(A(z)(€ — iXdp(z), dp(z)) = 0

and thus (A(x)¢, dp(x)) = M(A(z)dp(z),dp(z)) = 0. As a result, we get (A(z),&) =
0 and thus & = 0 by ellipticity of A. Moreover, since dp(z) is non-vanishing, we find
A = 0, proving the lemma. O

2.1.2 Jump discontinuities

Although the situation seems to be almost completely clarified by the previous re-
sults, with a minimal and somewhat necessary condition on Lipschitz continuity, we
are interested in the following second-order elliptic operator .Z,

ZLw = —div(A(xz)Vw), (2.1.8)
A(z) = (ap()1<jhen = AT (2), Hg|i|£nf:1<A<x)€’£> >0,

in which the matrix A has a jump discontinuity across a smooth hypersurface. How-
ever we shall impose some stringent — yet natural — restrictions on the domain of
functions w, which will be required to satisfy some homogeneous transmission con-
ditions, detailed in the next sections. Roughly speaking, it means that w must
belong to the domain of the operator, with continuity at the interface, so that Vw
remains bounded and continuity of the flux across the interface, so that div(AVw)
remains bounded, avoiding in particular the occurrence of a simple or multiple layer
at the interface. The article [6] by A. Doubova, A. Osses, and J.-P. Puel tackled
that problem, in the isotropic case (the matrix A is scalar ¢Id) with a monotonicity
assumption: the observation takes place in the region where the diffusion coefficient
c is the ‘lowest’. The case of an arbitrary dimension without any monotonicity con-
dition in the elliptic case was solved by J. Le Rousseau and L. Robbiano in [19]:
there the isotropic case is treated as well as a particular case of anisotropic medium.

We want here to show that a Carleman estimate can be proven for any operator
of type (2.1.8) without an isotropy assumption: A(z) is a symmetric positive-definite
matrix with a jump discontinuity across a smooth hypersurface. We also provide
conditions on the Carleman weight function that are rather simple to handle and
can be proven to be sharp.

The approach we follow differs from that of [19] where the authors base their anal-
ysis on the usual Carleman method for certain microlocal regions and on Calderén
projectors for others. The regions they introduce are determined by the ellipticity
or non-ellipticity of the conjugated operator. Here, our approach is somewhat closer
to A. Calderén’s original work on unique continuation [1]: the conjugated opera-
tor is factored out in first-order (pseudo-differential) operators for which estimates
are derived. Naturally, the quality of these estimates depends on their elliptic or
non-elliptic nature; we thus recover microlocal regions that correspond to those of

[19].
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2.1.3 Framework

Let 2 be an open subset of R™ and ¥ be a C* oriented hypersurface of {2: we have
the partition

Q=0Q,UXUQ_, Q =0,.UX%, Q4 open subsets of R, (2.1.9)
and we introduce the following Heaviside-type functions
Hy=1q,. (2.1.10)
We consider the elliptic second-order operator
£ =D-AD = —div(A(2)V), (D = —iV), (2.1.11)
where A(z) is a symmetric positive-definite n x n matrix, such that
A=H A +H/A,, ALeC>®Q). (2.1.12)
We shall consider functions w of the following type:
w=H w_+ Hyw,, wy€C®Q). (2.1.13)
We have
dw = H_dw_+ H, dwy + (wy —w_)dsv,
where dy, is the Euclidean hypersurface measure on ¥ and v is the unit conormal
vector field to ¥ pointing into 2. To remove the singular term, we assume
wy =w_ at X, (2.1.14)
so that Adw = H_A_dw_ + Hy A;dw, and we claim that
div (Adw) = H_div (A_dw_)+H, div (A, dw, )+ {(Adw, —A_dw_,v)ds. (2.1.15)

In fact to get the latter formula, we may assume that Q. = {z, £p(x) > 0} with p
a C' function such that dp # 0 at p = 0. We have then Hy = H(+p(z)), where H
is the Heaviside function (characteristic function of R ). We have, using Einstein’s
convention on summation of repeated indices,

o (HO) ) 50) = o) 52 ie) G+ Hplo) 5 (o) )

al‘k 1

ow™ 0 ow™

= al (2)—— —(at (2)——
- 52 Vja]k(‘r) al’k + H(p('x)) 8$] (a]k(x) axk )
%,—/ (. ~ v

<A+dw+7y> H+ div (A+dw+)
0 _ OwTy op _ . Ow~ o , _, Ow”
o (H=p()aze) G) = =0op) 505 () G+ H=pla) 5 (o) )

_ ., JOw™ o, _ Ow”
= sy ) G+ H (= pla)) o (5 0) ),
J

(. J NG )

-~

(A—dw—,v) H_div (A_dw_)
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and thus

div (Adw) — H_div (A_dw_) — Hy div (A dw, ) = s (A dw,,v)

— on(A_dw_,v),
which is (2.1.15). Moreover, we shall assume that
(Aydwy, — A_dw_,v) =0 at X, ie (dwy, Ayv) = {dw_,A v), (2.1.16)
so that
div(Adw) = H_div (A_dw_) + H, div (Adw,). (2.1.17)

Conditions (2.1.14)-(2.1.16) will be called transmission conditions on the function
w and we define the vector space

W = {H_w_ + Hiwy by, ec(Q) satisfying (2.1.14)-(2.1.16)- (2.1.18)

Note that (2.1.14) is a continuity condition of w across ¥ and (2.1.16) is concerned
with the continuity of (Adw,v) across X, i.e. the continuity of the flux of the vector
field Adw across Y. A weight function “suitable for observation from 2_" is defined
as a Lipschitz continuous function ¢ on €2 such that

p=H_ p_+Hipp, 02 €C™(Q), ¢r=0p_, (dps,X)>0 atX, (2.1.19)

for any positively transverse vector field X to ¥ (i.e. (v, X) > 0).

2.2 Carleman estimate

2.2.1 Theorem

Theorem 2.2.1. Let Q, %, 2, W be as in (2.1.9), (2.1.11) and (2.1.18). Then for
any compact subset K of Q, there exist a weight function ¢ satisfying (2.1.19) and
positive constants C', A1 such that for all A\ > A\ and all w € W with suppw C K,

Clle™ Lo oy > (221)
>\3/2H€7N’0w“L2(R") + )\1/2||H+67vaw+HL2(]R") + )\1/2||H_67)‘“0Vw_HL2(Rn)
+ AB/Q‘(e_ASOw)m‘LQ(Z) + )\1/2‘(6_)“pvw+)\E’L2(Z) + )\1/2|(6_)\@VU}7>|E‘L2(2).

2.2.2 Comments

Remark 2.2.2. It is important to notice that whenever a true discontinuity occurs
for the vector field Av, then the space W does not contain C*°(2): the inclusion
C>(©2) C W implies from (2.1.16) that for all w € C>*(Q), (dw,A v —A_v) =0
at X so that A,v = A_v at X, that is continuity for Av. The Carleman estimate
which is proven in the present paper takes naturally into account these transmission
conditions on the function w and it is important to keep in mind that the occurrence
of a jump is excluding many smooth functions from the space VW. On the other hand,
we have W C Lip(Q2).
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Remark 2.2.3. We can also point out the geometric content of our assumptions,
which do not depend on the choice of a coordinate system. For each z € 2, the
matrix A(x) is a positive-definite symmetric mapping from 7,.(£2)* onto 7T,.(£2) so that
A(z)dw(x) belongs indeed to T,(Q) and Adw is a vector field with a L? divergence
(Inequality (2.2.1) yields the L? bound by density).

If we were to consider a more general framework in which the matrix A(z), sym-
metric, positive-definite belongs to BV ()N L>*(Q2), and w is a Lipschitz continuous
function on € the vector field Adw is in L*(2): the second transmission condition
reads in that framework div(Adw) € L>*(Q2). Proving a Carleman estimate in such
a case is a wide open question.

2.3 Proof for a model case

We provide in this subsection an outline of the main arguments used in our proof.
To avoid technicalities, we somewhat simplify the geometric data and the weight
function, keeping of course the anisotropy. We consider the operator

1<j<n

ci(z) = H+Cj_ + H_Cj_, c;-t> 0 constants, H+ = 14,501,

with D; = %, and the vector space W of functions H w, +H w_, wy € C°(R"),
J
such that

at z, =0, wy =w_, ¢ dw,y =c,Ohw_, (2.3.2)

(transmission conditions across x,, = 0).
As a result, for w € Wy, we have D,,w = H, D,w; + H_D,w_ and

Low =Y (Hycf Djw, + H_c; Djw_). (2.3.3)

J

We also consider a weight function’

o = (o, — B2 /2) Hy + (a_zp, — B22/2) H_, x>0, [>0, (2.3.4)

(. 7 J

o o
a positive parameter \ and the vector space W, of functions Hyv, + H v_, vy €
C(R™), such that at =, =0,
Vy =V,

cH(Dpvy —idagvy) = ¢, (Dyv_ —ida_v_).

I 'We shall introduce later some minimal requirements on the weight function and suggest other
possible choices.



2.3. PROOF FOR A MODEL CASE 61

Observe that w € W, is equivalent to v = e **w € Wy. We have
e Lyw = e Ly (e w)
5%
A

so that proving a weighted a priori estimate ||e™** Zw||z2®n) 2 |le”*w||r2gny for
w € Wy amounts to getting || <\v||r2wny 2 ||V L2rny for v € Wi.

2.3.1 Pseudo-differential factorization
Using Einstein convention on repeated indices j € {1,...,n — 1}, we have
Ly = (D, — N )en(Dy, —iXg') + Dje; D;
and for v € W, from (2.3.3), with
my =my(D') = (cf)"*(c; D)2, (2.3.7)

L =H.c) (D, —ixg,)* + m?P)vy + H_c, ((Dy — ixg")* + m?* )v_,
so that
I+ et
—~ —~
L = Hycy (Dy —i(A —my)) (D — i(Agy +my))vy
+ H_c, (Dp —i(A¢" 4+ m_)) (D, —i(A¢" —m_))v_. (2.3.8)
\—Z_/ \7—/

Note that e_ is elliptic positive in the sense that

e_ =X +m_ = Xa_ +m_ — \Bx, =

> A+ |D'|, since x, <O0.
Moreover e, is elliptic positive at z,, = 0 since
er =X, +my = oy +my — NBx, 2 A+ |D'|, at x, =0.

We want at this point to use some natural estimates for these first-order factors on
the half-lines R..

Lemma 2.3.1 (Half-line estimate, type e_). Let u,7y be non-negative parameters.
Then for w € CL(R), we have

V2| Dw —i(p = yt)wllze ) > Il @) + 2 [w(0)].
Proof. We have

| Do — (1 — )2 (2.3.9)
= [ Dl + 01— y00wlBaqe ) + 2Re(Dyw, —iH () (1 — 7))

0
> / (= 1)* + ) lw(®)Pdt + plw(0)* > [lpwll72_y + ulw(0)%,

which is somehow a perfect estimate of elliptic type, suggesting that the first-order
factor containing e_ should be easy to handle. O
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Lemma 2.3.2 (Half-line estimate, type e,). Let i be a real parameter and let y be
a non-negative parameter. Then for w € C1(R), we have

[Dw —i(p = yt)wllT2@,) = Ywllze@,) — wlw(0)]*.
Proof. We have

1D — i — 0l (23.10)
= Do,y + (1 = yD)wlliz@, ) + 2 Re(Dyw, —iH (1) (1 — yt)w)

+oo
> /0 (1=t + ) w®)Pdt — ulw0)]* > y[wlTag,) — #lw(0),

an estimate of lesser quality, because we need to secure a control of w(0) to handle
this type of factor when p > 0. When p < 0, the estimate is similar to Lemma’s
2.3.1 result. [l

2.3.2 Sign discussion

From Lemma 2.3.1 and (2.3.8), we see that the factor containing e_ should be easier
to handle. We have another factor

fo=Xa_—m_— A3 x,,
S
n=f—-(0) v

and we note that f_(0) > 0= f_ >0 on R_ since f_ is decreasing with z,,.

Assuming f_(0) > 0, we may apply twice Lemma 2.3.1:

26, [[(Dy — ie-)(Dy — if Yol ) > €p Ao+ m_)V2|(Dy — if)o_||z2e
> e (e m2) (£ Ol ) + F-(0)o-(0)]). (23.11)

We check now the case [ (0) < 0.

Applying Lemma 2.3.1, we get

2¢, [|(Dp — ie_)(Dn —if-)o_| 2w
> ¢ (A +m ) Y2V2|(D, —if )v_(0)]
> (Aa— +m_)2V2 e (Dyve — ida_v_)(0) +ic,m_v_(0)]. (2.3.12)

Our key assumption will be that

F-(0) <0 = f,(0) < 0. (2.3.13)
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We shall explain this assumption later; let us go on with collecting our estimates.
We note in particular that since f, is a decreasing function of the variable x,,, this
implies that fi(x,) <0 on z, > 0. Applying Lemma 2.3.2, we get

2ep [[(Dy = i f4)(Dn — e ) vy || L2(ry)
> ¢ (my = day) 2V2[(Dy, —ies vy (0)]
> (my — Aa)Y2V2 | (Dyvy — iAoy vy )(0) — icimovy (0)] . (2.3.14)

As a result, defining

N_ =¢, (Dyv_ —ira_v_)(0) N, =cH(Dyvy —idasvy)(0), (2.3.15)

——
m (2.3.6)

we find that, with N = N_ =N,
2|40 > (Ma_ 4+ m_)"? N+ ic,m_v_(0)] + (my — Aary)t/? N —icimyv_(0)].
so that
2| Ll > min(()\oz_+m_)l/2, (m+—)\a+)1/2)|ic;m_v_(0)+ic:{m+v+(0)|. (2.3.16)
We note then that from (2.3.5), v_(0) = v4(0) = v(0) and also that
com_ +ctmy > ogl€'|, for some positive oy. (2.3.17)

2.3.3 Back to the Carleman estimate

With (2.3.8), we have

1230172 @) = lle (Dn = ie-)(Dn = if-)v-) 72
+|leh (Dp = if ) (D — ey )vy) ||%2(]R+)'

Let ¥ > 0 to be chosen later.

If f(0) = Aa- —m_(§) = (A +£]),
we get from (2.3.11),

2|, (D — ie_) (D — i f-)o_) |22z
> (D + m_)(ﬁ@ F1ED N0l 2y + £ + IS’D”QIU—(O)\), (2.3.18)

a satisfactory estimate. Note in particular that we get the surface term estimate

A 2@ 2 A2|w(0)]. (2.3.19)
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If f.(0) = XAa- —m_(¢) < k(A +[£']), then we assume that f,(0) = Ay —
m(§) < —w(A+[E])-

We obtain from (2.3.14), (2.3.16) and (2.3.17),
2l (D = if ) (D —desJv-) 2y > 872+ €)Y 200l€ [[0(0)]. (2:3.20)
We note also that
Aas =y (€) < —RA+1€]) = CIE| = my(€) = (5 + a)A+ rIE,

and for k small enough, this gives [£/| = A 2 |¢/|. As a result we get with a fixed
constant C

Coll Lvllizey = 5720+ €2} 0)], (2:3.21)

which implies the surface term estimate

AW L2y = A2 |v(0)]. (2.3.22)

We have now to prove that it is indeed possible to choose a small positive x such
that

Ao =m_ (&) < KA+ [€]) = Aoy = mo(€) < k(A +[¢]).

By homogeneity, it means that we have to find x > 0 such that on the half-sphere
N+ [EP=1,1>0,

A —m_(&) <k =K <my(£) — da,.

Lemma 2.3.3. Let m4 be continuous positive and positively homogeneous functions
of degree 1 on R"\{0}. We choose

a_ =1, a;= 5 siﬂf? m_(n)’ (2.3.23)
0<k<1/2, k< infgn—2m. (1) (2.3.24)

- ’ - 40é+ + 2

Then for (&',\) € R*™! x [0, 1] such that \* + |¢']? =1,
A —m_(&) <k =k <my(&) — da. (2.3.25)

Proof. (1) We assume first that ¢’ = 0 so that A = 1 and m.(0) = 0. The implication
(2.3.25) holds true since 1 < x does not occur.

(2) We assume A2 + |¢']?2 = 1,0 < A < infgn-2m, /2a. The implication (2.3.25)
holds true since its conclusion is verified:

B Aoy < gma(€) + sma(€) = m.(€)
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(3) We assume A\ + [£|? = 1, A > infgn-2m, /2a,. Then if \a_ —m_(&') < k, we
have Aa_ — k < m_(¢') and thus

my () = 2m-_(§ar = 2(Aa- — K)ay =2(A — K)ay,
so that
infgn-2 m. (')

40é++2

L.
= Aoy — 3 S{{l_f; m(¢) =0,

my (&) — day — Kk > day — 2kay — Kk > day — (1+2a4)

completing the proof of the lemma. n
We have proven above the following

Proposition 2.3.4. Let £, be given by (2.3.8), mx(§') by (2.3.7) (elliptic positive
homogeneous with degree 1). Let ¢i be given by (2.3.4) such that the assumption
(2.3.23) holds. Then there ezists a constant C such that for all

v=H(z,)v (2, z,) + H(—zp)v_(2', 2,)
with vy € L (R™) satisfying (2.3.5) and (2.3.6), we have
C|- L] 2@ny = A2[0(0, )| p2(rn-1y. (2.3.26)

This provides the fourth term in (2.2.1), which is a “surface term” and we have
to show now that we may obtain the other terms using the key estimate above.

2.3.4 Carleman estimate, continued

We shall start with rewriting the lemmas above.

Lemma 2.3.5. Let p,7y be non-negative parameters. Then for w € #(R), we have
[ Dsw — i = t)wll72 ey = 1 Dewllio ey + lrwllia ) + plw(0)]*.

Proof. We have

1Dy — i(p = w72

= [1Dwllzzey + (1 = 1)li2@ ) + 2Re(Diw, —iH(=t)(1 = 71)w)
0
— 1Dl s+ [ (=02 + )ttt + plo(O)P

—00

> [ Dl iz + lmwllz@ ) + plw(0)F,

completing the proof. O
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Lemma 2.3.6.
(1) Let u,~ be non-negative parameters. Then for w € ./ (R), we have

D — i — ) wlFee, ) + plw(0)[?
> | Dwllie@,) + YMwlzzm,) + (e = )wlia,)-
(11) Let pu be a negative parameter and let v be a non-negative parameter. Then for
w € .Z(R), we have
| Dyw — i(p — t)wl|Z2m, )
2 ||th||%2(R+) + (e — ’Yt)w”%?(ﬂh) + ’7||W||%2(R+) + [l |w(0) .
Proof. We have

| Dew —ip — Vt)w||%2(R+)
= D2,y + (1 = vO)wlliz@, ) + 2Re(Dyw, —iH (1) (1 — yt)w)

+oo
> | DwlZam,) + / (1 =) + ) lw()[2dt — p|w(0)[?
0
> | Dwllzam,) + Ywlze@.) — #lw(0)),
proving the lemma. O

Using Proposition 2.3.4, we want now to prove the estimate of Theorem 2.2.1.
We have from (2.3.8),

||«$AU||2L2(R)
2 . . —\2 . .
= () N(Dp = if1) (Do — e v l[72m,y + () I1(Dn = ie-)(Dp — i f- o7z
with
f:t = >\Oé:|: — mi(él) — )\ﬁxn, €4 = )\Oé:t + mi(ﬁ') - Aﬁ%n, (2327)

where § is a non-negative parameter and a4 are determined by (2.3.23). Since the
coefficients ¢ are positive and bounded away from 0, we find a constant Cy such
that

Coll Bl
> (Do = if)(Dn — ie4)os [aqe,) + (D — ie_) (Do = if )02 (2:3.28)

Let ¢y € (0,1] to be chosen later.
[1] We assume first that 1+ || < egA. Then we have

f-(0) = Ao —m_(&) > da- — [¢|[m_||psn-2) > Ma- — eollm—||=(sn-2))
> Na_/2,
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provided
260||m_||Loo(Sn72) S a_. (2329)

Under that condition, we may apply Lemma 2.3.5 to get

(Dy —ie-)(Dn — if-)v-|72@_

> e_(0)*[(Dy = if-)v-|l72_y + e-(0)[ Dyv—(0) — if-(0)v—(0)|”
> Na2 [[(Dy — if)o- 2+ Aa_|Dyv_(0) — if-(0)v_(0)?

A

1 .
‘a2 || Dpv- 72 Zk4a‘fl|vf||i2<m>+/\047\Dnvf(0)—fo(O)vf(O)\Q-

This implies with a fixed constant C'; that

v

CullAvllz2@y 2 AN Dav-lTe ) + Allv-llZ2@ ) + ADnv—(0) = if-(0)v-(0)[*.
Using (2.3.26) and |f_(0)| < Aa_, we obtain with a fixed constant Cy that
Coll Brtl2agey = VDt (B + Ao [y + ADwo OF,  (2.330)

a better estimate than what is required. We need now to handle the positive half-
line. We have

f1(0) = Ay —my(§) = Ay — €] [ms ]|z gn-2) > Ay — eollm—|| o (gn-2))
Z AOé-i-/27

provided
260Hm+HLoo(Sn—2) S Oé+. (2331)

We apply Lemma 2.3.6 (i)to get
I(Dn = if1)(Dy — e )0l 2w, ) + f+(0)|Dpv+(0) — e vy (0)
> AB||(Dy — ey )%, (2:3.32)

Thanks to (2.3.26) and (2.3.30), we have [|0]|72 g 2 A*|v(0)]* + A[Dyv—(0)[* and
the transmission condition (2.3.6) implies thus, along with (2.3.30),

1Ll T2y 2 A [0(0)F + A Dyv—(0)[* + Al Dyvs (0)
+ N[ Dnv- T2y + A llo-ll72@_ ) (2:3.33)
Since we have here |£'| < A, we have also
F+(0)| Dyv (0)—iesv4. (0)* < 2Xas | Dy (0)* +2X 0 vy (0)* (e [ [ oo 502 ).
This implies that we have
1Ll 22y 2 A%[0(0)[F + Al Dyv- (0)[* + Al Dy (0) [

+ )\2HDnU7H%2(R7) + )\4HU,H%2(R7)
+ ABI(Dr, —ie vy T2,y (2.3.34)
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Applying again Lemma 2.3.6 (1), we get

L2y 2 N[0(0)* + A Do (0)]* + Al Dpvy (0) 2
+ N[ Dnv [ Fo@y + Aoz
+ >\5||Dnv+||%2(ﬂ&+) + >\5||€+"U+||2L2(R+)- (2.3.35)

We note that ey > Aoy — fz,) > Aay/2, on the support of v, provided is v
supported in
T, < B ray /2. (2.3.36)

so that we obtain eventually with €y € (0, 1] satisfying (2.3.29), (2.3.31), 5 > 1 and
suppv C (—o0, 3~ /2]

L0l F2@) 2 A [(0)F + AlDyv-(0)[* + Al Dnvs (0)]
+ M| Dpv-||Z2@_ ) + A lo-lZ2@
+ADnve 2@,y + X0 Z2@y), (2:3.37)

which provides the sought estimate.
[2] We assume now that 1 < A < ¢[¢’|. Then we have

F(0) = Aa_ —m_(€)

. . 1.
< €| la_ —|¢] S171L1_f2 m_ = —|§’|(81£1_f2 m_ —ea_) < —|§']5817:51_f2 m_,

provided

2eqa_ < Sinﬁf2 m_. (2.3.38)

We have similarly
1.
f+(0) = Aoy —my (€) < _|§’|§§£f2 my

provided
2eg0ry < Sin_f2 mey. (2.3.39)

In that case we have thus

fe(0) = =[], ex(0) = ¢,

and using Proposition 2.3.4, we can follow the reasoning for the previous case (switch-
ing the role of the positive half-line with the negative half-line) to get

L0122 A [(0)F + AlDyv-(0)[* + A| Dpvs (0)]
+ N Dvi [, ) + Allos e, ) + A Dnv-l72@_) + X o=@ ), (23.40)

provided v is supported in
T, > - a_ /2. (2.3.41)
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3] We are left with the main case ¢|¢| < A < ;' + ¢ '[¢/|. Since we may
0 0
assume that A\ > 2/¢y, we can assume that

!/

o 1€ 1

2 7 AN T €0

We have always the elliptic terms e4(0) &~ A, but in that case f1(0) cannot be elliptic

and are in fact close to 0. We use the key Proposition 2.3.4 and Lemmas 2.3.5-2.3.6.
We check

E= (D —ifi)(Dn— i€+)v+||%2(R+) + [(Dy, — ie-)(Dn — if—)“—”%?(ﬂh)’
From (2.3.18) in the case f_(0) = da_ — m_(§') > k(A + |{'|) we find
1Dy — e ) (D = if-)o-lo@_y 2 Nllv-Il72@_y + A2 ().
We know that it is possible to find k > 0 such that if
f=(0) = Ao = m_(&') < k(A +[£]),
then f1(0) = Aay —m4 () < —r(A+[£]). Lemma 2.3.6 provides
I(Dy =i f)(Dn—ie )il 7o,y 2 M(Dn—ie vy 7o, ) +ADpvy (0) —iey (0)0(0)]*.
2

Since we control also A®|v(0)|2, this gives control of A|D,v; (0)|? and with the trans-

mission condition of A\|D,v_(0)|?>. Lemma 2.3.6 and a support condition for v give

A[(Dn, — i€+)v+”%2(R+) Z >‘3HU+H%2(R+)7

completing the proof.

2.4 Comments

2.4.1 Condition (V)
We may take a look at the one-dimensional estimate
Ol Dy = iAf (E)ull ey = ull o, (2.4.1)

where )\ is a large positive parameter and f is a real-valued smooth function. Some
simple examples show that this estimate holds for several choices of f. We set
h = 1/X in the sequel to get a semi-classical version of our estimates.
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Creation and Annihilation operators

The one-dimensional operators

O = hp, +it*+1, W = hD, — it?H!

(2.4.2)
are similar to creation and annihilation operators for £ € N. In particular, we have

with ¢ > 0, for v € #(R),

2k41
IC¥0]lo > exh o)),

wt2k+2

ker O™ = Ce™hamrm (2.4.3)
The second assertion is obvious whereas the first deserves a proof. With a linear

change of coordinate ¢ — th'/(?*+2) we see that Cf] is unitarily equivalent to

(D, + itk 1) p(2k+1)/(2k+2)
so it is enough to prove the estimate for h = 1. For v € .#(R), we know that
b — 27261y = 2irCMy so that

. (s2hH2_2k+2) o

2m [ e 1 (CYM)(s)ds  for t >0,
. (s2kH2_2h+2)

2im [* e~

o (O (s)ds  for t <0,

v(t) =

and since for ¢ > 0 we have

71'(.52k+2 t2k+2>
/H (s —te k1 ds

“+o00
— Y $2k+2 (2ki2)d
ST /0 e *1(o+ )" o

< 1 /+oo ~fe (3, <

T _
%t2 ), e o o= o 0,
and also

| m(s2k 2 2k2)
SU.p/H (s —te FF1 dt

§2k+2
[ e oy
T 2% +2

1 [t 1 e k
o 2k+1
< e 1do + / e w1 (s — 0) ") do
- Zk —|— 2 /0\ Qk + 2 max(o s2k+2 1) ( )
7 max(0 s2kt2_g 1
< —+e k1 < —+1,
— 27

along with analogous estimates for ¢t < 0, Schur’s Lemma gives

[vllo < CillC¥v]],,
which proves (2.4.3).
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The operator Cf] with (dense) domain
Dy = {u € L*(R), du € LA(R), t?**'u € L*(R)} = {u € L*(R),CFu e L2(R)}

is injective and has a closed image (thanks to (2.4.3)) of codimension 1: it is a
Fredholm operator with index —1. The operator O™ s the adjoint of C'J[f} and is
onto with a one-dimensional kernel: it is a Fredholm operator with index +1.

Cauchy-type operators

For k£ € N, we define
cM = hD, + t*v/~1. (2.4.4)

There exists ¢x > 0, such that for v € #(R),
IC¥vllo > cch @ u]lo. (2.4.5)

As above, the linear change of variable ¢t — th'/(?**1) shows that C([]k} is unitarily
equivalent to h2*/CFD(D, 4+ /—=1t?*) so that it suffices to prove (2.4.5) for h = 1.
Although a direct resolution of the ODE as for proving (2.4.3) would provide the
answer, we shall prove a more general lemma, implying both (2.4.4) and (2.4.3).

Lemma 2.4.1. Let ¢ € C°(R;R) such that
o(t) > 0,8 >t = ¢(s) > 0. (2.4.6)

Then for all v € WH(R) with ¢pv € L*(R), we have

d
sup [v(0)] g/|—“—¢vydt, (2.4.7)
A

teR
and if v is compactly supported, diameter(suppv) < 4, v € HY(R), pv € L*(R),

dv
||U||L2(R) S 5”% — (bU“L?(]R)- (248)
Moreover defining for X > 0, m(\) = [{t € R,|¢(t)] < A7'}| and assuming that
k(@) = infyso(m(X) + A) < 400, we have for v € H'(R) with ¢v € L*(R),

dv
lollezy < 20— — dvll2@s(9). (2.4.9)
N.B. This lemma implies the estimates (2.4.5) and (2.4.3): first of all the hypothesis
(2.4.6) holds for t?**1 £ (violated for —t?**1). Moreover for ¢ = h~1t!, we have

k(0) < |{t € R,hM < BB} + AT < 2R

and thus p
lv]| < 4hz+%u@v +ih ||,
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so that A1 ||v|| < 4||hsLv + it'v|| and for | even the same estimate for h-Lv — it'v.
Also the reader may have noticed that the estimates (2.4.7) and (2.4.9) hold true
without any condition on the support of v; on the other hand x(0) = 400 and
although the estimate (2.4.8) holds for ¢ = 0, no better estimate is true in that
simple case.

Proof of the Lemma. We define
T =inf{t € R, (t) > 0} (T = +oo if £¢ < 0).

The condition (2.4.6) ensures that

t>T =3t € (T,t) with ¢(t') > 0= ¢(t) > 0, (2.4.10)
t < T =0(t) <0. (2.4.11)
For v € C}(R), we have with 0 —¢v = f, and t > T
t . +oo s
o(t) = [ f(s)els ¢#gs = — (s)e™ Ji #@)do g,
+00 t

and since ¢ > 0 on [T, +00), we get

+00
fort > T, |o(t) g/ £ (s)lds,

and similarly for t < T, |v(t)| < ffoo |f(s)|ds, so that (2.4.7) follows as well as its
immediate consequence (2.4.8). For future reference we give another proof of (2.4.7)
which uses a more flexible energy method. We calculate with L = % + i¢ and
v e /(R)

+oo

for " > T, 2Re(Lv, iH(t — t")v) = [v(t")]* + 2/ o(t)|[v(t)]dt,

o

v
for ' < T, 2Re(Lv, —iH(t' — t)v) = |v(t')|* + 2/ |p(t)||v(t)*dt,

—00

and we get

sup [o(6)]? + 2 / B()][o(t) Pt < 2 / (L) (1) o (b)) dt. (24.12)

teR

proving (2.4.7) (with a constant 2), which implies also

/RW(t)Hv(t)!th < |[[Loflz2[[v]] z2- (2.4.13)

Now, we have also with A > 0,

/ fo(t) 2dt < / () 2dt + / No(@)llo()Pdt
R Ao(t)|<1 Ao(t)|>1
< |{t € suppw, [6(t)] < 1/A}|sup [o(t)[2 + N Lol z]lo]l

< 2| Lullzzlollee (1t € suppu, [6(1)] < 1/AH +A/2), (24.14)

which gives (2.4.9). O
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The last estimate is of particular interest when the function ¢ has a polynomial
behaviour, in the sense of the following lemma.

Lemma 2.4.2. Let k € N*,§ > 0 and C > 0 be given. Let I be an interval of R
and q : I — R be a C* function such that

. k >
yg |07 q| > o. (2.4.15)
Then for all h > 0, the set
{t € 1,]q(t)] < Ch*} Cigier Uy (2.4.16)

where J; is an interval with length h(apCo~ Y% ap = 22FEk!. As a consequence, the
Lebesgue measure of {t € I, |q(t)| < Ch*} is smaller than

hCOVEGV k4L (kYR < B EG—1/R4R2.

Proof. Let k € N*, h > 0 and set Ei(h,C,q) = {t € I,|q(t)] < Ch*}. Let us first
assume k = 1. Assume that t,ty € Ei(h,C,q); then the mean value theorem and
(2.4.15) imply 2Ch > |q(t) — q(to)| > 0|t — to| so that

Ei(h,C,q) N {t, |t —to| > R2C5 '} =0 :

otherwise we would have 2C'h > 6h2C /0. As a result, for any to,t € Ei(h,C,q), we
have |t — to] < h2C6~!. Either E;(h,C,q) is empty or it is not empty and then
included in an interval with length < h4C§—1.

Let us assume now that k > 2. If Ey(h,C,q) = 0, then (2.4.16) holds true. We
assume that there exists ty € Fi(h,C,q) and we write for t € I,

q(t) = q(to) + /01 q (to + 0t — t9))dO(t — to). (2.4.17)

N J/
-~

Q)

Then if t € Ey(h,C,q), we have 2Ch* > |Q(t)(t — ty)|. Now for a given w > 0,
either |t —to| <wh/2 and t € [tg —wh/2,ty+wh/2], or |t —ty] > wh/2 and from the
previous inequality, we infer |Q(¢)| < w™'4Ch*"!, i.e. we get that

Ey(h,C,q) C [to — wh/2,ty +wh/2] U Ey,_1(h,w 40, Q). (2.4.18)

But the function @ satisfies the assumptions of the lemma with & — 1,4 /k instead
of k,d: in fact for t € I,

@ = [ 4t + 0(t — 1))+ 16
0

and if ¢ () > § on I, we get Q¥ (t) > §/k. By induction on k and using (2.4.18),
we get that

Ek(h, C, C]) C [to - wh/2, to + Wh/Q] Ulglgk—l Jl, ’Jl| S h(40w_1k5_1ak_1)1/(k_1).
(2.4.19)
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We choose now w so that w = (4Cw™'kétay_1)Y/* =V ie. w* =406 kay,_;, that
is w = (C6'4kay_1)"*, yielding the result if oy, = 4kay_y, i.e. with oy = 2,

o = (4k)(4(k — 1)) ... (4 x 2)ay = 4571122 = 22V,
The proof of the lemma is complete. n

A consequence of Lemma 2.4.2 and of the estimate (2.4.14) is that for ¢ : R - R
satisfying (2.4.15),(2.4.6) and h > 0,

1
) _ h#+T _ 1
Iolle) < 206~ b gt (Lo + 11t € B a(n)] < n77)))

{t € R, g(t)] < B 7t} = |{t € R, |q(t)| < hFiT}| < 4k*hFT6

so that
k
Rt o] ey < 1RO — q(t)v]| 2wy (1 + 8K26H/F). (2.4.20)

On the other hand (2.4.13) implies as well

/h_l\CJ(t)Hv(t)th < o = gl 0]l o)
so that we have proven the following result.

Lemma 2.4.3. Let ¢ € C*°(R;R) such that (2.4.6) and (2.4.15) (for I = R and
some k € N*) hold. Then for all h > 0 and all v € C°(R) we have

_k
BT [0 2o + / lg(0)]|o() Pt
< ||ho — q(t)v|| 2@y |0 2qr) (2 + 8K26VF). (2.4.21)

Condition (V)
Going back to (2.4.1), we see using the previous results that the condition
ft) <0, s>t= f(s) <0, (2.4.22)

i.e. f does mot change sign from — to + when t increases is sufficient to obtain
an a priori estimate of type (2.4.1). It can be proven as well that this condition is
necessary (see e.g. Section 3 in [21]); Condition (2.4.22) is called condition (V) for
the adjoint operator D; + i\f(t). When f is piecewise affine, as in our discussion,
it turns out that this condition is equivalent to our main requirement expressed by
(2.3.13). We have indeed

f-(@) = f-(0) =~t,  fi(t) = [+(0) — L.

Indeed, if f_(0) > 0, this implies that f_(¢) > 0 for ¢ < 0 and since f, is decreasing,
no change of sign from — to + could occur when ¢ increases. On the other hand,
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if f.(0) < 0, since f_ is decreasing, no change of sign from — to + could occur
for t < 0, but we have to avoid f,(0) > 0, otherwise we would have a change of
sign from — to + when t increases for the discontinuous t — f(¢) near 0. So the
condition (2.3.13) is exactly the expression of Condition (V) for the adjoint operator
D

f-(0)>0 £+(0) can take any value
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f+(0) must be <0

s

to avoid a change of sign from — to +

2.4.2 Quasi-mode construction

Let us see what is happening when (2.4.22) does not hold, that is f_(0) < 0 and
f+(0) > 0. We want to show that (2.4.1) cannot hold. We have, with a, b, y positive

F(t) = H(=t)(f-(0) = 7t) + H(t)(f+(0) — 7t) = —H(=t)(a +~t) + H(t)(b— 1),

and we check the equation Dyu — i\ f(t)u = 0 which means

uw—ANa+7t)=0, fort<0,
0,

1+ Af(H)u=0, ie.
@t Af(t)u e {u+)\(b—’yt) for t > 0.

We get
w = Mt/ 2y (0), for t <0,
u = e M=/2)4(0) - for t > 0.

Let x € CP(R;Ry) equal to 1 near 0 and supported where
7t? < min(a, b)|t|, ie [t| <~ 'min(a,b).
On the support of x, we have

lu(t)] = e et /2|y (0)| € [e?altl g2 altl] | (0)|,  for t <0,
| = e MO/ (0)] € [ e 2] |0 (0)|,  for ¢ > 0.
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As a result we have if x =1 on [—r,7], u(0) = 1,

T

Ixullz> > |U(0)I2/ (H(t)e ™M 4 H(—t)e 22 at

1 — 672a/\r 1 — 672b)\r

=ty (2423)

We have also (D; — iAf(t)) (xu) = —ix/(t)u(t) so that if x is supported in [—2r, 2r],
we have

(D= M) e = [ (@Plulo)Pat
< 2 H (=B e 2 L i) e ) ¢
< [ YO (e
< () (H(—t)e ™ + H(t)e ™" )dt
_/MQTX()( (—t)e " + H(t) )
e Armin(a.d) (0)2dt. (2.4.24
= /r§|t§2rX(t) . )

The estimates (2.4.23) and (2.4.24) make (2.4.1) impossible for A — +o00: we would
have

1— 672(1)\7" 1 — 672b)\r
2an 1 26A
< lxul® < C?(Dy = idf (1)) (xuw)||*

< 026—>\r min(a,b) / X,(t)tha

r<|t|<2r

entailing

1— e—2a)\r 1— €—2b/\r

+ < )\e)mmin(a,b)cQ/ X/ ¢ Zdt,
2a 2b r<|t|<or )

with a lhs with a positive limit when A goes to +00 and a rhs with limit 0.

Since we can choose r > 0 as small as we like, Note that we have proven that there
is no neighborhood V' of 0 such that there exists C' > 0 so that for all u € C(V),
and all A > C,
Cl[Dyu = idf(t)ullz = [lul| L.

2.5 Open problems

2.5.1 BVelliptic matrix

The same questions can be asked for BVelliptic matrix: If we were to consider
a more general framework in which the matrix A(x), symmetric, positive-definite
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belongs to BV (Q)NL>(2), and w is a Lipschitz continuous function on €2 the vector
field Adw is in L*>(f2): the second transmission condition reads in that framework
div(Adw) € L*(Q2). Proving a Carleman estimate in such a case is a wide open
question.

2.5.2 Elliptic matrix with infinitely many jumps

However, there are simpler questions related to BV elliptic matrices: for instance
take a sequence (x)r>1 of positive numbers strictly decreasing with limit 0. Consider
the bounded real elliptic matrix

Ax) = B1(_w ) (n) + Z Akl(tkﬂ,tk)(xn) + Aol 400 (),

k>1

which has jumps on each hyperplane ¥, = {z € R",z,, = t;} and at g = {z €
R"™, x, = 0}. The matrix A belongs to BV with a differential

dA = (—B(SO + 5 (At — Ao — tk)>d:rn.

k>1

The transmission conditions can be easily derived and the unique continuation prob-
lem is not obvious to solve: take u satisfying the transmission conditions, vanishing
in some non-empty open subset of {z,, < 0} satisfying a differential inequality

| div(AVu)| < C(Ju| + [Vu)). (2.5.1)

Using the ellipticity of B, we obtain easily that u should vanish on the whole half
space {x, < 0}. Now the main question is: does that imply that u is vanishing
everywhere? Of course, to deal with these questions one should start with the
present question, a priori much simpler than the previous one dealing with a general
elliptic BV matrix.

2.5.3 Strong unique continuation

Staying in the framework of the present chapter with a single jump at a smooth
hypersurface ¥, we may ask for a strong unique continuation property starting from
a point of 3. Assume (2.5.1) and w vanishing of infinite order at a point zy € ¥, i.e.

VN e N, lim T_N/ lu(x)|Pdz =0,
r—04 |z—zo|<r

for some p € [2,400). Does that imply that w vanishes identically? Of course if the

point xg is located outside ¥, the strong unique continuation property for Lipschitz

second order real elliptic operators entails that u should vanish on one side of ¥ and
then by Cauchy uniqueness, we obtain the result.

If zy belongs to X, we probably need to prove a Carleman estimate with singular

weights behaving like |2 — x|~ near the point zy. However it is quite likely that the
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choice of the norm in that weight could not be isotropic and has to take into account
the jump across Y, introducing a specific singularity due to the jump. Anyhow, this
problem is widely open.
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Chapter 3

Conditional pseudo-convexity

Foreword. We explore here the notion of conditional pseudoconvexity of an hyper-
surface with respect to a differential operator. This notion was introduced in a series
of papers by A. Ionescu & S. Klainerman ([14, 15]) and plays an important role in
the proof of unique continuation properties for Lorentzian wave operators. We adopt
here a phase space point of view and we provide a statement valid on a differentiable
manifold not necessarily equipped with a Lorentzian structure.

3.1 Examples and counterexamples

3.1.1 The Alinhac-Baouendi counterexample

Let us consider the wave operator in 2-space dimension 9? — 9% — 85 = . There
exists V,u € C*°(R?) with

suppu = {y >0}, Ou+Vu=0. (3.1.1)

This result and some generalizations were proven by S. Alinhac and S. Baouendi
[2]. Note that this operator is with constant coefficients, so that the characteristics
are straight lines and the tangential ones are included in the boundary y = 0. This
problem is easily proven to be ill-posed since it is non hyperbolic with respect to the
timelike hypersurface y = 0.

The construction of this counterexample is a highly non-trivial task and this
result appears as the most significant counterexample to Cauchy uniqueness. We
note in particular that this constant coefficient operator (also of real principal type) is
locally solvable, which is not the case of P. Cohen’s vector fields counterexamples (see
e.g. Theorem 8.9.2) in [%]: typically the operator in two dimensions, 0; + ib(t, z)0,
fails to satisfy Cauchy uniqueness with respect to ¢ = 0 if ¢ — b(t,x) is highly
oscillatory around 0; here also the construction is pretty involved but since the
Nirenberg-Treves condition (P) is violated for this vector field, it is not locally
solvable. So the non-uniqueness property in that case is somehow less interesting
than for an operator having plenty of local solutions. The article [!] contains much
more information on non-uniqueness results.

81
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3.1.2 Hérmander-Tataru-Robbiano-Zuily’s uniqueness result

A recurrent question about the counterexample (3.1.1) was for long time if such
a phenomenon could hold if V' does not depend on the time variable. A negative
answer was given by D. Tataru’s [35], L. Hérmander’s [1 1], L. Robbiano & C. Zuily
in [30] who proved uniqueness for O + V (¢, z,y) with respect to {y = 0} when V'
is a smooth function depending analytically of the variable t. Several geometric
statements are given in that series of articles which go much beyond this example.

3.2 Background

3.2.1 Cauchy uniqueness

Let P =3", <., aa(2) D7 be a differential operator' and 3} be an oriented hypersur-
face of an open subset 2 of R"; we have in particular the partition of 2

Q=Y_UXUY,, Xjopen, X ;UX=%X,.

We are interested in the uniqueness for the Cauchy problem for P across ¥ in the
following sense. We shall say that P has the stable Cauchy uniqueness property
across the oriented ¥ if the conditions

loc

(Pu)()| < Y |Va(z)Dgu(x)|, on Q for some V,, € Li5, (), (3.2.1)

|a|<m—1

us_ =0, (3.2.2)

imply v = 0 in a neighborhood of X.

3.2.2 Pseudo-convexity

The principal symbol of P is defined on €2 x R™ by

plx,&) = > an()E"

|al=m

We shall always assume that, if p(z,£) = 0, there exists a neighborhood V' of (z, &)
in the sphere bundle, such that, on V', the following inequality holds:

{Rep,Imp} > —C|p|. (3.2.3)

Note that this condition is trivially satisfied when the coefficients of P are real-valued
(the case which interests us here anyway) and moreover that, since the polynomial
{Rep,Imp} (in the £ variable) has odd degree 2m — 1, this inequality is equivalent
to

[ {Rep, Imp} (2,€)| < Clp(z, O], (3.2.4)
DY = D% ... D",

I'We have used the standard notation D, = %%,
J
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a property called principal normality. The hypersurface ¥ is said to be strongly
pseudoconvex at xg € X if, whenever ¢ is a defining function of the oriented ¥,
(E={reQp(x)=0}dp#0at X, X, ={xecQ e >0}),

o

—— 8]9
p(z0, &0 — iTodp(z0)) = a—f(ﬂfo,Co) ~dp(zo) =0, (3.2.5)
for some R"™ x Ry 3 (&, 70) # (0,0) imply with ¢ = & — irdp(xg) that
i 7 D 00,0)- Lean,0) )~ (00) Lo, Lo ) > 0. (326)
() o€ g 1) ) T g0 S0) T eltor ol = B S

~
q

Note that if 79 > 0, the limit above is pointless and if 7y = 0, the function ¢(7) is
vanishing at 7 = 0, thanks to (3.2.4) and the limit is simply ¢’(0). In other words,
one can rewrite (3.2.6) when 75 = 0 as

Re {p,{p, ¥}} (z0,&) < 0. (3.2.7)

Note also that this notion does not depend on the choice of the function ¢ with a
non-vanishing gradient defining ¥: in the first place, the conditions (3.2.5) use only
the conormal vector Ny = dp(xg) of ¥ at xy and changing ¢ into ap with a positive
function a, will give a term

dp

op (1307(0) 8§

(ap” +2VaVp +a"p)=— o

(9007 Co)

and since ¢(zp) = 0 and V@%g(xo,go) = 0, the second term in (3.2.6) is only
multiplied by a(xg). Moreover ( = & — iTa(zo)dp(xg) so that 7 is also multiplied
by a(xg), thus as well as the first term. The positivity of (3.2.6) is left unchanged.

3.2.3 Examples
Simple roots

Let us assume that the hypersurface ¥ is non-characteristic for the operator P at x:
with Ny = dp(xg), it means that p(xg, Ng) # 0, where p is the principal symbol of
P. Choosing the coordinate system such that the hypersurface ¥ is the hyperplane
x, = 0, we get that

p(’ 20 € ) (homogeneous polynomial of degree m in (¢,€,) € R™! x R)

is a polynomial of degree m in the variable &,,. Now if the roots of ¢, — p(0,0;¢’, )
are simple, i.e. if for R"™! 3 ¢ £ 0,

p(0,0;¢, Gn) = “2(0,0:€.G) #0 (3.2.8)

%,

the pseudo-convexity hypothesis is satisfied since the situation (3.2.5) does not occur.
This is the hypothesis used by A. Calderén (say for operators with real coefficients).
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Second order real operators

If P is a second order operator with real coefficients in the principal part and X is
non-characteristic with respect to P, the pseudo-convexity hypothesis means that
for R" 3 & #0

p(0,§) = {p, v} (20,€) = 0= {p,{p, ¥} } (20,§) < 0. (3.2.9)

In fact non-real roots cannot be double since they occur in conjugate pair. In other
words, Y is “above” the tangential characteristics, a sort of convexity assumption.
The integral curves of H, in the phase space are the bicharacteristic curves and
the characteristic curves are simply their first projection. The bicharacteristics are

defined by

(1) = SEal0). €0, €)=~ 52 al0).€00)

so that, calculating

2+

Figure 3.1: Pseudoconvex ¥ with respect to the characteristic curves of P
d d? 9
2 (p@(0)) = Hy(0)(@(2),£(1),  —5((@(0)) = Hy(p)(x(1), (1))

and with p(zo) = Hy(¢)(z0,&) = 0, the pseudo-convexity condition is indeed
H2(0) 0. ) < 0.
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Constant coefficients

When P has constant coefficients and ¥ non-characteristic with respect to P is given
by the equation z,, = f(2') with f(0) =0, f’(0) = 0, the pseudoconvexity condition
is

_ %
0%,

and for principal type operators, this follows from the convexity of f, i.e. of X,.

o
o€

o

(5,7571 —i7) =0= f,/<0) o¢’

p<§,7 gn - ZT) (glv gn - ZT) <§,7 fn - ZT) >0

3.2.4 Uniqueness under pseudo-convexity

Theorem 3.2.1 (Calder6n, Hormander). Let P be a principally normal differential
operator with C™ coefficients (resp. an operator with Lipschitz-continuous real co-
efficients in the principal part) and ¥ a strongly pseudo-convex C? hypersurface at
xo. Then there exists a neighborhood w of xo such that P has the stable uniqueness
for the Cauchy problem on w with respect to the oriented 3.

This theorem was proven by Calderén for operators with real coefficients and
simple roots, using a pseudodifferential factorization; as a matter of fact, the paper
[1] was the starting point of microlocal methods in local analysis of PDE and it is
somewhat paradoxical that L. Hormander, who became one of the main architects
of pseudodifferential operator theory, found a generalization of Calderéon’s result via
a local method of proof, introducing the notion of pseudo-convexity.

The regularity issues are important, in particular for applications to quasi-linear
equations. The most general notion (3.2.4) of principal normality given in Definition
28.2.4 of [10] (see also [20]) is useful only for non-real operators but seems to require
the strength of Fefferman-Phong inequality, a method greedy with derivatives (the
more restrictive notion of principal normality used in Definition 8.5.1 of [3] was
using only C? regularity). However C! (and even Lipschitz continuity) is enough
is the real case as well as in the elliptic case. Andrzej Pli§ has shown in 1963
([28]) that Holder continuity (any index < 1) of the coefficients is not enough to get
unique continuation for real second-order elliptic operators, a result precised later
by K. Miller ([26]) and N. Filonov [7] with counterexamples in divergence form. We
know thus that for real second-order operator, Lipschitz continuity is enough to get
unique continuation under a pseudo-convexity hypothesis via a Carleman estimate,
whereas Holder continuity alone could ruin unique continuation. However for elliptic
operators, coefficients jumping on a smooth hypersurface can be handled, and some
Carleman estimate can be proven in that case (see [18] and the references therein).

For operators with smooth complex coefficients, principal normality plays an im-
portant role and can be seen as a strengthening of Nirenberg-Treves condition (P).
In fact, a Carleman estimate will imply local solvability which is characterized by
condition (P) for differential operators of principal type. The first counterexample
to Cauchy uniqueness was found by P. Cohen (see e.g [31] and the references therein)
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and is a complex vector field violating condition (P) (and thus principal normality);
in particular that vector field is not locally solvable’. On the contrary, the coun-
terexample by Alinhac & Baouendi [2] is the wave-operator in two dimensions with
respect to a timelike hypersurface: there exist smooth 1,V in R? such that

(07 — 07, — 02 ))u+V(t,z1,22)u=0, suppu= {z; >0}.

Note that V' is complex-valued and that feature is important in the construction
(no counterexample is known for V real-valued for second-order operators). Of
course pseudo-convexity is violated since the characteristics are straight lines and
the tangent ones stay in the “initial” hypersurface {z; = 0}. On the other hand
the paper [30] (see also the references therein) implies Cauchy uniqueness for the
operator & hypersurface above as soon as V' is analytic with respect to ¢.

3.3 Conditional pseudo-convexity

3.3.1 The result

Definition 3.3.1. Let 2 be an open subset of R", P, be a second order differential
operator with real Lipschitz-continuous coefficients and principal symbol ps, 3 be a
smooth hypersurface noncharacteristic with respect to P, and xg € ». Let P; be a
first-order differential operator with continuous coefficients and principal symbol p;.
We shall say that X is strongly pseudo-convex with respect to P, conditionally with
respect to P at xg if for all £ € R™, £ #£ 0,

p2(70,§) = {p2, ¢} (0, &) = p1(20,§) =0 = Hi(@)(iﬁo,f) <0,
where ¥, = {2z € Q, ¢(z) > 0}.

Theorem 3.3.2. Let ), Py, P, X, p,xq as in Definition 3.3.1. Then there exists a
neighborhood V' of x¢ and a neighborhood V of ¢ in C*(V') such that for any ¥ € V,
there exists a constant C' > 0 such that for allv € CX(V), all T > C,

CHeiTwPQ’UH[g + 071/2H€7T¢P1’UHL2 > T3/2H€7TwUHL2 + 7'1/2H€7T¢VUHL2.

Corollary 3.3.3. Let Q, Py, P1, %, v, xg as in Definition 3.3.1. Then there exists a
netghborhood W of xo such that if on W

|(Pu)(2)] < [Vo(z)u(z)] + [Vi(z)Vu(z)],  [(Pru)(z)] < [Vo(z)u(z)]

with V; € L2 () and if suppu C X4, then u =0 on W.

loc

2Paul Cohen’s achievement in finding a smooth vector field without Cauchy uniqueness with
respect to a non-characteristic hypersurface remains a landmark in the history of mathematics and
we leave to the reader the philosophical question about the relevance of uniqueness for operators
without (much) solutions.
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3.3.2 A more general result

Definition 3.3.4. Let (2 be an open subset of R", P,, be a differential operator
of order m with C'* coefficients, principally normal (i.e. satisfying (3.2.4)) with
principal symbol p,,, ¥ be a smooth hypersurface and zo € ». Let P,_; be a
differential operator with C'*° coefficients, of order m — 1 with principal symbol
Pm—1-

We shall say that 3 is strongly pseudo-convex with respect to P,, conditionally
with respect to P,,_; at xq if for all £ € R™ & # 0 such that p,,_1(zo,&) = 0, (3.2.5)
implies (3.2.6) where ¥, = {x € Q, p(x) > 0}.

Theorem 3.3.5. Let ), P,,, Py,—1,%, ¢, x¢ as in Definition 3.3.4. Then there exists
a neighborhood V' of xo and a neighborhood V of @ in C*(V') such that for any+ € V,
there ezists a constant C > 0 such that for all v e CX(V), all T > C,

Clle™ Pz + C72 e ™ Prcyolle > Y 77773 ]e VI .
0<j<m-—1

Corollary 3.3.6. Let ), P,,, P1, X, p, x9 as in Definition 5.5./. Then there exists a
netghborhood W' of xo such that if on W

(Pou)(@)| < ) V(@) V7u(@)l, [(Puow)@)] < ) [Vi(@)VVulx)],

0<j<m—1 0<j<m—2

with V; € L2 () and if suppu C X4, then u =10 on W.

loc

3.4 Proofs

3.4.1 Proof of theorem 3.3.5

The most general result deals with operators with C'*° coefficients and can be proven
using Fefferman-Phong inequality, following the standard argument using pseudodif-
ferential calculus with large parameter. We assume that X is strongly pseudo-convex
with respect to P,, conditionally with respect to P,,_1 at ¢ € ¥. We introduce the

weight function
P+

where ¢ is a defining function for the oriented ¥ and p is a positive parameter.

|£L‘—[E0|2

() = p(z) =

We note that there exists a neighborhood 2, of zy in €2 such that the level surface
{z € Q,,x # xo,9¥(x) = 0} is included in ¥_NQ, = {z € Q,, p(z) < 0} and that
for b > 0 small enough, there exists a > 0 such that

{z,0 <]z —20| <20} NEy C {x € Q,,¥(x) > a}.
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Figure 3.2: Convexification: level surfaces of the weight 1 and ¥ (a > 0).

We consider the symbol
a(a:, f? T) = pm('rug - ZTd¢<x>>

and assuming as we may that a is defined globally on R} x Rf X [1,4+00),, we note
that we can as well assume that a € §™, i.e.

(0207 a)(x,€,7)] < Cap(1 + [¢] + 7)™V, (3.4.1)
Now, considering

G_Twpmew _ Z aa(ff)(Dac — degO(I))a,

la=m

we see that the Weyl symbol of e™™ P,,e™ is equal to p,,(z, € — iTdy(x)) modulo
S™1. Similarly the Weyl symbol of 71/2¢="Y P, _1e™ is equal to

bz, &,7) = 7 pn_1 (2, € —iTdip(x)) modulo S™3/2,

6572:1/2

We need to calculate (afib is the composition of symbols, corresponding to the com-
position of operators)

- 1
ata + ubth = |a|® + % {@,a} + plb|* = ¢ mod S 2.
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We have

Com—1(2,€,7) = pm (2, € — irdp(2))[* + p | (2, C)
¢

Opm Opm e OPm Opm
w000 B 0.0)) - o (o) B, ) B 0.0),

so that using
' =" — e — " + 2,
we get

Com—1 = |pm<x g)’2 + /J’T‘pmfl (xu C)‘2 + :u7-| {pm7 (P} (I C)‘Q

apm apm 8pm apm
1 (B2 0,0 20,0) ) = (0= i) B 0,0 2 0.)
Opm
— §§ (2,0 (3.4.2)

Lemma 3.4.1. There exists u > 1 such that for all (z,&,7) with |z — x| < p=2,€ €
R™, 72> 1,

Com—1(w,&,7) Z (€ + 7)™
with copm—1 defined in (3.4.2).

Proof. Reductio ad absurdum: otherwise for all £ > 1, we would find xy, &, 7 with
|op — 20| < k72, & € R, 7, > k3 so that

Com—1(Ths &y ) < kT (|&k)” + )™ (3.4.3)

We note first that

W (xx) = @' (2r) — k()@ (2x) + k72 (2, — x0),

and since ¢(zy) = 0, we have (z;) = O(k™?), we get that limy, ¢/(x;,) = ¢/ (1) =
Ny and we may assume that |Ng| = 1. On the other hand, we may assume by

compactness (extracting a subsequence) that limk% = (Z0,00) € S, s0
© k
that with

&) :ZOZEO—Z.O-ON[), 0-0207 ’EO|2+0321

|G|
Multiplying the inequality (3.4.3) by |(x|~*™, we obtain

G = & — it (1), liiﬂ(Zk =

[P, Z)* + O(kIGI ) < O Gl ™),
and since |(| > 7, > k3, this gives

pm (%0, Zo) = 0. (3.4.4)
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Multiplying the inequality (3.4.3) by k=7 !|¢x|?>~2™, we obtain

1P (2, Zi) PR NG A+ [Pt (2, Zi) 2+ | {Dms 0} (2, Zi) |2
+ k7' el gomt (s Zi)

~ 7 ) (L opln)) T o, Z0)

O(k—1)

(a1, 2) = k7| 2 0 20)

< k72,

with ¢opm—1(z,() = Im (a—g‘(x q) - apm (1, C)) so that, with

Zy = Zg — 10Ny,

(hmk Nk = No, hmk Zk = Z() = E(] - iUONo)

P (ks Zi) PR 7 Gl A+ [P (20, Z) P+ [{Pms 0} (205 Z)|?
+ k_lo'k_lchm_l(il?k, Zk) § O(k_l)

If g > 0, we get

Pm-1(%0, Zo) =0, {pm, ¢} (w0, Zo) = 0. (3.4.5)
If 0y = 0, then |Z5] = 1 we know by the principal normality that near (zq, =) in
R"™ x S*1,
Gom-1(7, ) = —Co|pm(, =)
and thus

Qom—-1(Tk, Zi) > —Colpm(xk, Zk)| + O(ok) > —Co|pm(xk, Zi)| + O(0ok),
implying

P (21, Z) P 0 Gl + [Pt (s Z0) 1P+ | {Dmsy 0} (2, Z1) |
— Cok ™oy M pm(wr, Zi)| < O(K™H),

so that
m (2r, Zi) P 0 Gl 4 pm—1 (ke Ze) P 4 [ {Pms 3 (0 Zi)|?

1., _ 1 1 _ _
— S (e, Z)PIG] - SO oIl < O,
N———

—7.—1,—1
=k T

implying as well (3.4.5). From the hypothesis, we obtain

Pm (20, Z0 — 100Ng) = {Dm, ¢} (0, Z0) = Pm-1(x0, Zp) = 0 = (3.2.6) > 0.
Zo
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|272m

Multiplying the inequality (3.4.3) by 7, *|(k , we obtain

(i (@, Zi) P Gl + 1o (2, Z0)* + [{pms 0} (2, Ze) |

OPm OPm _
+ 0} Gom—1(Th, Zi) — SOH(J%)L(M, Zk)i(l‘k, Zp) < O(k™),
o0& o0&
which is impossible if og > 0 since the limit
Opm OPm
% o1 (20, Z0) = " (w0) 52 (v, Z) 5 (0, Z0) > 0

If 09 = 0, we get

P (2, Zi) P, Gkl + Pt (2, Z0) P + [ {pms 0} (2, Zi) |
+ 03 qom—1 (ks Zi) — " (w1)
and we know also

Qm—1(Tks Zk) = Gam-1(Tk, Zk) + aroy + O(a,%) > aioy — Co|lpm Tk, Zk)| + O(a,%)

with
Opm

Opm

23

To handle the next term, we note that

lilgn ap — ¢ (xo) == (20, Z0) ——(x0, Zo) > 0. (3.4.6)

_ _ 1 _ c? _
Con1|pm($k,:k)\ < —UlekHPm(ﬂ?k,:kﬂQ + —20 0k1|Ck| 1,
N———

2
_7.*1
'k
and we obtain
1
§|Pm($k7 Zi) 27 G P 4 pm—1 (e, Ze) P+ | {pms €} (0, Zie)|?
OPm Opm, _
+ o+ O(o3) + O(rY) — (1) ;’5 (zx, Zi) gg (24, Z1) < O(K™),
which is impossible from (3.4.6) O

Lemma 3.4.2. The operator ¢y | with Weyl symbol c(x,&,T) is such that
Gy = (DL + 72770 2 —C(ID,P + %)

when acting on functions supported near xy and p is large enough.
Proof. A simple consequence of the Fefferman-Phong inequality. m

Theorem 3.3.5 is then an immediate consequence of the last lemma.
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3.4.2 Less generality

The proof above may seem to have two different downsides.

First of all, who cares about complex coefficients and why do you make your life
difficult with this principal normality business? Well, clearly complex coefficients
are not useful for many applications but Paul Cohen’s counterexample to Cauchy
uniqueness as well as Hans Lewy’s counterexample to local solvability where both
vector fields with smooth complex-valued coefficients and it sounds worth while to
understand the geometric defects explaining these pathologies.

Next, using the Fefferman-Phong inequality looks like an unnecessary refinement.
This is probably true and anyhow for non-characteristic second-order operators with
real coefficients, elementary proofs are already available (see e.g. [¢], Theorems 8.3.1,
8.4.1); Lipschitz continuity should be sufficient.

3.4.3 Lorentzian geometry setting

We refer the reader to the appendix 4.5 for a reminder on Lorentzian geometry. The
principal symbol of the wave operator is

p(r.€) = {g(x) '€, &) = (X.X) . (3.4.7)
N——

=X

and for a function ¢ of the variable x, we have

Hy(¢) = ag Hdo(x) = 29(2) 7' - do(w) = 2(g(0) 7€, Vo), = 2(X, Vo) . (34.8)

Moreover, we have

H2(¢) = 297 ()¢ - 8%(2(9(56)1& W)g)

I (gl e, 6))
(

— 4Dx ((9(2)7'€, V9), ) — 296 ({g(2) '€, €))
= 4(DxVe,X) +4(Ve, Dxg(x)'€)  — 2Dvs((g(2)7¢,€))
= 4(Dx Ve, X), = 4(V?9)(X, X)

3¢ (29ta) ¢ dot))

since Dy (g) = 0. The pseudo-convexity hypothesis in this Lorentzian setting is thus
VX #£0, (X, X), = (X,Vp), =0= (V)(X,X) <0. (3.4.9)

Let’s perform a coordinate-dependent calculation:
2, ) 1 ke 00
H,¢ = { &, 29’ 5 }

sg-le - (g kaﬂﬁ)g 3(9_152) 097" 9;0k)
ox ox o0&

= 4¢"¢,,01(97%0,;0) &k — 20,(g"")EpE,97 0
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= &8 (49" 01(g™)050 + 49" " 01010 — 201(6"™)9"'0,0)

. . 1 ,
= 494, X700, X1 (4006700160 + 901036 — D19 010)
_AxP X m ) (%)), m k5 9. 4 _ 3 (F™) D),
=4XPX (gkpgmqg 0(9")0j® + GkpGmad ™" 9" 00 b = 5 9kpImaOi(9™" )" 0
= 4X2X g1y, ()05 + 910”000, — £ 0rynaPi (57010

1 .
_gkpgmqal(ngn)gﬂ) @gb) .

— 4XP X (aqapgb + (9rn0a(9™) = 5

We have in factor of 0;¢

1 i
—gkpal (gmq)gk gﬂ

1 o |
—gkpgmqal(gk )gﬂ = _aq(gkp)gjk - 2

gkpaq(gjk) D)

= _aq(gkp)gjk + §8l<gpq)g]l

so that

12(6) = 4X7X%(9,0,0 — 0,0[0,(41)o” —%ak@pq) o)
1

940,00 — ( J¢)9Jk[ o (Grq) + a o (Grp) — 28k<gpq)})

- 4Xqu(
= 4X7X(9,0,6 — (959) pq) = 4V ¢><X,X>, qed.
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Chapter 4

Appendix

4.1 Fourier transformation

4.1.1 Fourier Transform of tempered distributions
The Fourier transformation on . (R")

Definition 4.1.1. Let n > 1 be an integer. The Schwartz space .(R") is defined
as the vector space of C* functions u from R" to C such that, for all multi-indices.
o, € N,

sup |2*0%u(z)| < +oo.

TeR™
Here we have used the multi-index notation: for a = (ay,...,a,) € N" we define
P =gt g, O =00 ol = ) o (4.1.1)

1<j<n

A simple example of such a function is e~ /**, (|| is the Euclidean norm of )
and more generally, if A is a symmetric positive definite n x n matrix, the function

va(z) = e ™HAT) (4.1.2)

belongs to the Schwartz class. The space . (R"™) is a Fréchet space equipped with
the countable family of semi-norms (pg)gen

pi(u) = sup [290%u(z)|. (4.1.3)
zeR"
ol Bl

Definition 4.1.2. For u € ./(R"), we define its Fourier transform @ as

() = / e~y (1) (4.1.4)
Lemma 4.1.3. The Fourier transform sends continuously . (R™) into itself.

95
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Proof. Just notice that
erofale) = [ 20 (au) a)da(2im) P (-1)
and since sup,ega (1 + |2])"10%(2Pu) (z)| < 400, we get the result. O
Lemma 4.1.4. For a symmetric positive definite n X n matriz A, we have
Ua(€) = (det A)~ /2 ™ATIES (4.1.5)
where v is given by (4.1.2).

Proof. In fact, diagonalizing the symmetric matrix A, it is enough to prove a one-
dimensional version, i.e. to check

/6—2i7r;tfe—7rx2dx — /e—ﬂ($+i£)2dxe—7r£2 — e—7r§2’

where the second equality is obtained by taking the ¢-derivative of [ e~ (@) o .
we have indeed

d%</ e_”(‘”+i§)2dx) = /e_”(”ig)g(—%w)(ﬂs + if)dx
= —3 / %(e_”(”i@z)dx =0.

For a > 0, we obtain fR e 2imel g—maz? . — ail/Qe*’m_léz, which is the sought result
in one dimension. If n > 2, and A is a positive definite symmetric matrix, there
exists an orthogonal n x n matrix P (i.e. ‘PP = Id) such that

D ='PAP, D =diag(\,...,\,), all \; > 0.

As a consequence, we have, since |det P| =1,
/ 672i7r:v-£€77r<Ax,ac) dr = / 672i7r(Py)-§€77r<APy,Py) dy

:/ 6—2i7ry-(tP€)€—7r<Dy7y)dy
RTL

(with n ='P¢) = H /€2iﬂymj€—7r>\jyf-dyj — H )\;1/26—70\].‘17;]2.
1<j<n /R 1<j<n
= (det A)~V2e=mP 70 — (det A)~V/2emmIPATIE TPEPE)
= (det A)71/2€77T<A71€’£>,
O]

Proposition 4.1.5. The Fourier transformation is an tsomorphism of the Schwartz
class and for v € S (R™), we have

() = / €2 () e (4.1.6)
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Proof. Using (4.1.5) we calculate for u € .(R") and € > 0, dealing with absolutely
converging integrals,

u(r) = / emat g (€)e 1 g
= [[ e iy
- / u(y)e ™ e dy
_ / (ulz + ey) — u(x)) e dy + u(x).

J/

TV
with absolute value<e|y|||w'|| oo

Taking the limit when e goes to zero, we get the Fourier inversion formula

u(x) = /eZi”%(g)d@ (4.1.7)

We have also proven for u € .(R") and u(z) = u(—x)

¢

(4.1.8)

u =

Since u — @ and u — @ are continuous homomorphisms of .%’(R"), this completes
the proof of the proposition. m

Proposition 4.1.6. Using the notation

]' a a - aj N _ n
2 :ﬂﬁ_xj’ D3 —jl;[lej with o = (o, ..., ) € N, (4.1.9)
we have, for u € ./ (R")
Dgu(¢) = €"a(€),  (Dga)() = (~1)zou(x)(€) (4.1.10)

Proof. We have for u € ./ (R"), 0(¢) = [ e 2™ %y(z)dz and thus

proving both formulas. O]

N.B. The normalization factor # leads to a simplification in Formula (4.1.10), but
the most important aspect of these formulas is certainly that the Fourier transfor-
mation exchanges the operation of derivation with the operation of multiplication.
For instance with

P(D)= )  a.D5,

laj<m
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we have for u € .(R"), 15&(5) = D jaj<m @& 0(§) = P(§)u(€), and thus

(Pu)(z) = / ) X TEP(E)a(€)dE. (4.1.11)

Proposition 4.1.7. Let ¢, be functions in .7 (R™). Then the convolution ¢ * 1)
belongs to the Schwartz space and the mapping

S(R") x L (R") 3 (¢,9) = ¢*¢p € S(R")
18 continuous. Moreover we have
o * 1 = . (4.1.12)

Proof. The mapping (x,y) — F(x,y) = ¢(x — y)1(y) belongs to . (R*") since z,y
derivatives of the smooth function F are linear combinations of products (0%¢)(x —
y)(0%1)(y) and moreover

(1 + |z + [y)™M(9*¢) (z — ) (2"¥) (y)]
< (L+Jz = y)M(0%¢) (@ = »)I(1 + 2ly)V(0") (y)]
< p(@)q(¥),

where p, ¢ are semi-norms on .#(R™). This proves that the bilinear mapping (¢, ¢) —
F(¢,%) is continuous from .#(R") x .(R") into . (R?*"). We have now directly

95 (¢ x ) = (079) * ¢ and

(L + [2)¥]02(6 % )] < / F (0%, ) (. )| (1 + [e]) Vdy

< [ 1F@ 0. 0)(wp)I(1 + o) (4 )"0+ o)™y

<p(F)

where p is a semi-norm of F' (thus bounded by a product of semi-norms of ¢ and
1), proving the continuity property. Also we obtain from Fubini’s Theorem

(G 0)(E) = / / ATV €2 (1 () dydr = HE)D(E),

completing the proof of the proposition. O

The Fourier transformation on ./(R")

Definition 4.1.8. Let n be an integer > 1. We define the space ./(R") as the topo-
logical dual of the Fréchet space ./(R"): this space is called the space of tempered
distributions on R".
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We note that the mapping

SR 30 5= € SR,

is continuous since for all k& € N, py(0¢/0z;) < pr11(¢), where the semi-norms py,
are defined in (4.1.3). This property allows us to define by duality the derivative of
a tempered distribution.

Definition 4.1.9. Let v € .’/(R"). We define du/0z; as an element of ./(R"™) by

ou B N
<(‘9—x]~’ ¢)rz = —(u, G—%M/,y- (4.1.13)

The mapping u +— du/0z; is a well-defined endomorphism of .#’(R") since the
estimates

ou

0

ensure the continuity on .%/(R") of the linear form Ju/0x;.

Definition 4.1.10. Let u € .#’(R") and let P be a polynomial in n variables with
complex coefficients. We define the product Pu as an element of ./(R") by

(Pu,§) 51,9 = (u, P) 715 (4.1.14)

The mapping u — Pu is a well-defined endomorphism of ./(R™) since the
estimates

\V/Qb € ‘Sﬂ(Rn)7 |<PU, ¢>| < Oupku (P¢) < Cupk1L+D(¢)7

where D is the degree of P, ensure the continuity on .(R") of the linear form Pu.

Lemma 4.1.11. Let Q be an open subset of R, f € L .(Q2) such that, for all
p € C(Q), [ f(x)p(x)dx =0. Then we have f = 0.

Proof. Let K be a compact subset of 2 and let xy € C°(Q2) equal to 1 on a neigh-
borhood of K. With p € C'2° with integral 1, we get that

lim pex (xf) = x/f in L'(R").

We have (pe * (xf))(z) = /f(y)gc(y)p((w —y)e”')e " dy, with supp o, C supp

g

=¢z(y)
¢, € C°(Q), and from the assumption of the lemma, we obtain (p. * (xf))(z) = 0

for all x, implying yf = 0 from the convergence result and thus f = 0, a.e. on K;
the conclusion of the lemma follows since €2 is a countable union of compact sets. [
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Definition 4.1.12 (support of a distribution). For u € .#/(R™), we define the
support of u and we note supp u the closed subset of R™ defined by

(suppu)® = {x € R",3V open € ¥;, wuy =0}, (4.1.15)
where 7, stands for the set of neighborhoods of x and ujy = 0 means that for all
¢ € Cx(V), (u,9) =0.

Proposition 4.1.13.

(1) We have " (R™) D Ui<p<tooLP(R™), with a continuous injection of each LP(R™)
into ' (R™). As a consequence .’ (R™) contains as well all the derivatives in the
sense (4.1.13) of all the functions in some LP(R™).

(2) For u € CY(R") such that

(Ju(z)| + |du(z)]) (1 + |z[)~™ € L'(R™), (4.1.16)

for some non-negative N, the derivative in the sense (4.1.13) coincides with the
ordinary derivative.

Proof. (1) For u € LP(R") and ¢ € . (R™), we can define

(u, @) 7,9 = / u(z)¢(r)d, (4.1.17)
which is a continuous linear form on .7 (R"):

[{u, @) r.7| < lull Lo @m0l Lo emy

n+l n+1

[ Lo mny < Sellﬂg((l +2]) * 6(2)]) Crp < Cruppi(9), for k > ki = T
with pp given by (4.1.3) (when p = 1, we can take £ = 0). We indeed have a
continuous injection of LP(R™) into .#/(R™): in the first place the mapping described

above is well-defined and continuous from the estimate

[{u, )| < Nlull Lo Crppr, , (0)-

Moreover, this mapping is linear and injective from Lemma 4.1.11.
(2) We have for ¢ € Z(R"), xo € C(R"), xo = 1 near the origin,

0 0 0
A= <8_;L~’ ¢) .y = —(u, aj)ycy =— /Rn u(x)a—j(x)dx,

so that, using Lebesgue’s dominated convergence theorem, we find

: 9¢
A=— 615& - u(x)a—%(x)xg(ex)dx.

Performing an integration by parts on C! functions with compact support, we get

A=t { [ @u@swleds+c [

e—04

u(x)(b(x)(@on)(ex)dx},

n
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with 0;u standing for the ordinary derivative. We have also

W@W@M@XM@@W$SH@MMHWW%/W@NQ+Wﬂ)MMPN@)<+W7

R

so that 5
(5 O =l | @su)(@)(a)olea)da.
Since the lhs is a continuous linear form on .#(R™) so is the rhs. On the other hand

for ¢ € C(R™), the rhs is [, (9;u)(x)p(x)dz. Since C°(R™) is dense in S (R™)
(Exercise), we find that
ou
(5o 9)r = [ (@u)@ola)da,
xZ; Rn

since the mapping ¢ — [g,(0;u)(z)¢(x)dx belongs to .#’(R"™), thanks to the as-
sumption on du in (4.1.16). This proves that 2“ = d;u. O

The Fourier transformation can be extended to ./(R"™). We start with noticing
that for T, ¢ in the Schwartz class we have, using Fubini Theorem,

[ T©o© = [ [ T@o@e = dsic = [ T(@)éta)aa

and we can use the latter formula as a definition.

Definition 4.1.14. Let T be a tempered distribution ; the Fourier transform 7 of
T is the tempered distribution defined by the formula

(T, )50 = (T, @) 71, (4.1.18)

The linear form 7 is obviously a tempered distribution since the Fourier transforma-
tion is continuous on .¥’. Thanks to Lemma 4.1.11, if T' € ., the present definition
of T"and (4.1.4) coincide.

This definition gives that, with dy standing as the Dirac mass at 0, (dy, ¢).9.» = ¢(0)
(obviously a tempered distribution), we have

5o = 1, (4.1.19)
since (3o, ¢) = (8o, @) = [p(z)dz = (1, ).

Theorem 4.1.15. The Fourier transformation is an isomorphism of %' (R"). Let
T be a tempered distribution. Then we have'

>«

T = T=T. (4.1.20)

Y

With obvious notations, we have the following extensions of (4.1.10),

DT (&) = &T(€),  (DET)(€) = (—1) T (2)(€). (4.1.21)

'We define T as the distribution given by (T, ¢) = (T, ¢) and if T € .#’, T is also a tempered
distribution since ¢ — ¢ is an involutive isomorphism of ..
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Proof. We have for T € .

X ~
~ ~ ~ N

(T,0) 10 = (T, Q) 1.0 =T, Q) 1.0 = (T, @) r.0 = (T, p) 1 7,

where the last equality is due to the fact that ¢ — ¢ commutes® with the Fourier
transform and (4.1.7) means

S«

=

a formula also proven true on . by the previous line of equality. Formula (4.1.10)
is true as well for T' € .%” since, with ¢ € . and (&) = £*p(§), we have

(DT, 0) 1.0 = (T, (=) D®) 5 5o = (T, 00) 1.0 = (T, 00) 1.7,

and the other part is proven the same way. O

4.1.2 The Fourier transformation on L!(R") and L?(R")
Theorem 4.1.16. The Fourier transformation is linear continuous from L'(R™)
into L™®(R") and for u € L'(R"), we have

a(e) = / 2y () dr,  |al| ey < [l ge- (4.1.22)

Proof. Formula (4.1.4) can be used to define directly the Fourier transform of a
function in L'(R™) and this gives an L>*(R™) function which coincides with the
Fourier transform: for a test function ¢ € .#(R"), and u € L'(R"), we have by the
definition (4.1.18) above and Fubini theorem

(i)rnr = [ule)pta)dn = [ [ utyple)e 2o dnds = [T©)(c)at

with a(§) = [ e %™ fu(z)dr which is thus the Fourier transform of w. O

Theorem 4.1.17 (Plancherel formula).

The Fourier transformation can be extended to a unitary operator of L*(R™), i.e.
there exists a unique bounded linear operator F : L*(R™) — L*(R"™), such that for
u e L (R"), Fu=1 and we have F*F = FF* = Id2@ny. Moreover

F*=CF=FC, FC=Idpgn, (4.1.23)

where C' is the involutive isomorphism of L*(R™) defined by (Cu)(z) = u(—xz). This
gives the Plancherel formula: for u,v € L*(R™),

/R a(€)(EdE = / w(z)o(@)dz. (4.1.24)

’If p € #, we have 3(€) = [ e Cp(—a)dw = [ 2 Ep(z)dr = §(=€) = S(£).
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Proof. For test functions ¢, € #(R"), using Fubini theorem and (4.1.7), we get®

by = [ G2 = [ [ b G@idnd = (0,0,

Next, the density of .# in L? shows that there is a unique continuous extension
F of the Fourier transform to L? and that extension is an isometric operator (i.e.
satisfying for all u € L*(R"), ||Ful|z2 = ||ul|z2, i.e. F*F =1d;2). We note that the
operator C' defined by C'u = % is an involutive isomorphism of L*(R") and that for
ue SR,

CF*u=u=FCFu= F*Cu.
By the density of (R") in L*(R"), the bounded operators

CF?, Idjegny, FCF, F?C,

are all equal. On the other hand for u, ¢ € .Z(R"), we have

(Fuo)e = (1, For = [ u()Fods
/ / 2™ dxdé = (CFu, )12

so that F*u = C'Fu for all u € .% and by continuity F™* = C'F' as bounded operators
on L*(R"), thus FF* = FCF = Id. The proof is complete. O

4.1.3 Some standard examples of Fourier transform

Let us consider the Heaviside function defined on R by H(z) = 1 forz > 0, H(z) =0
for z < 0 ; as a bounded measurable function, it is a tempered distribution, so that
we can compute its Fourier transform. With the notation of this section, we have,

with &y the Dirac mass at 0, H(z) = H(—z),

~
o~ —

~ <> N > 1 — —
H+H=1=¢,, H— H =sign, — = —250(5) = Dsign(&) = Esigné.
T 2
We note that R + In|z| belongs to .#/(R) and* we define the so-called principal
value of 1/z on R by

pv(l) = C%(ln |z]), (4.1.25)

1
so that, (pv —, ¢) = /gzﬁ )In|z|dr = — lim @' (z) In |x|dz
T

6—>0+ ‘I|Z€

= lim ( ‘$|>E¢( x)— d:L’ + (¢( ) — ¢(—¢)) lne)

€—>0+

-~

—0

= lim gb(a:)ldw (4.1.26)

6*)0+ |I‘26 xr

3We have to pay attention to the fact that the scalar product (u,v)r> in the complex Hilbert
space L?(R™) is linear with respect to u and antilinear with respect to v: for A\, u € C, (\u, puv) 2 =
A(u,v)pz.

*For ¢ € (R), we have (In |z], d(2)) o/ (r),7®) = [z ¢(x) In|z|dz.
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This entails f(s/lg\ng — Lpu(1/€)) = 0 and we get

— 1
signg — %pv(l/f) = ¢do,

with ¢ = 0 since the lhs is odd®. We obtain
— 1 1

sign(§) = —pv—, (4.1.27)
€
/(T) sign § (4.1.28)
v(—) = —isign 1.
p - gng,
s 11 11
H=—+4+—p(=s)= — . 4.1.29
>t 5P T G0 2 (4.1.29)
Let us consider now for 0 < a < n the Ll _(R") function uy(z) = |z|*™ (|z| is

the Euclidean norm of z); since u, is also bounded for |z| > 1, it is a tempered
distribution. Let us calculate its Fourier transform v,. Since u, is homogeneous of
degree o — n, we get that v, is a homogeneous distribution of degree —«a. On the
other hand, if S € O(R™) (the orthogonal group), we have in the distribution sense®
since u,, is a radial function, i.e. such that

Va(S€) = va(§). (4.1.30)

The distribution |£]|*v, () is homogeneous of degree 0 on R™\{0} and is also “radial”,
i.e. satisfies (4.1.30). Moreover on R™\{0}, the distribution v, is a C'! function which
coincides with”

/ e~ o (@) |2 + €7 / e Dy PN (X () ] ) ey

where xo € C°(R") is 1 near 0 and x; =1 —xo, N € NJa+1 < 2N. As a result
|€]%v0 (€) = ¢ on R™\{0} and the distribution on R™ (note that oo < n)

T = v(§) — calé]™

is supported in {0} and homogeneous (on R™) with degree —«. The condition
0 < a <n gives v, = c,|&]7. To find ¢,, we compute

207" dr = (U, e ™) = co [ €]V dE
R” R”

®A distribution 7' on R” is said to be odd (resp. even) when T'= —T (resp. T).
SFor M € Gl(n,R), T € '(R™), we define (T'(Mz),¢(z)) = (T(y), (M ~1y))|det M|~L.
7 We have Uy = XoUa + X1ta and for ¢ supported in R™\{0} we get,

(Xilia, 8) = (TUale2N, $(O)1E]72N) = (| D, PN X1, 6(€) €] 72V,
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which yields

o
2

N1}

2710 ()™

+oo ) +oo )
— / T,a—le—m" dr = Ca/ Tn—a—le—m" dr
0 0

= ca2_1F(n — %)

2

We have proven the following lemma.

Lemma 4.1.18. Letn € N* and « € (0,n). The function u,(x) = |z|* ™ is L]

loc

(R")
and also a temperate distribution on R™. Its Fourier transform v, is also Lj, (R™)
and given by

L)

r(55)

2

val€) = €] e

Fourier transform of Gaussian functions

Proposition 4.1.19. Let A be a symmetric nonsingular n X n matriz with complex
entries such that Re A > 0. We define the Gaussian function va on R™ by va(z) =

e~™ A1) - The Fourier transform of va is
Ta(€) = (det A)~1/2e ™A, (4.1.31)
where (det A)~Y/2 is defined according above. In particular, when A = —iB with a

symmetric real nonsingular matrix B, we get
Fourier(e™ 52 (&) = 05(€) = | det B| /2! sign Be—im(B7168) (4.1.32)

Proof. Let us define T7 as the set of symmetric n X n complex matrices with a
positive definite real part (naturally these matrices are nonsingular since Az = 0 for
x € C" implies 0 = Re(Az, ) = ((Re A)x, z), so that T3 C T,).

Let us assume first that A € T7; then the function v, is in the Schwartz class
(and so is its Fourier transform). The set Y% is an open convex subset of C"("1)/2
and the function Y% > A +— v;(€) is holomorphic and given on T* N R™M" /2 by
(4.1.31). On the other hand the function

Tj— 35 A 6—%tracelogAe—7r(A*1$,§>7

n+1)/2 By analytic con-

is also holomorphic and coincides with previous one on R™
tinuation this proves (4.1.31) for A € T*.

If Ae T, and ¢ € S(R"), we have (Va,¢)s v = [va(z)p(x)dz so that
YT, > A (Ua,¢p) is continuous and thus (note that the mapping A — A~! is an
homeomorphism of T ), using the previous result on Y%,

<EZ7 90> — 111(1)1 <@’ 90> = lim e—%tracelog(A-i—eI)6—7r<(A—i—eI)*1§,§)(lp(é~>d£7
e—U4

6—)0+

and by continuity of log on T, and dominated convergence,

o —1L tracelo —m(A1
<UA>90>:/6 z tracelor AemmATE D o (€)de,

which is the sought result. O]
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4.1.4 Multipliers of .7/(R")

Definition 4.1.20. The space &) (R") of multipliers of .(R") is the subspace of
the functions f € C*°(R™) such that,

Va € N*,3C, > 0,IN, €N, Vz eR", [(02f)(2)] < Co(1 + |z[)™. (4.1.33)

It is easy to check that, for f € &) (R"™), the operator u — fu is continuous
from .(R") into itself, and by transposition from .#”(R") into itself: we define for
Te R, feOyR),

(fT,0) 9.9 =T, fp)s o,

and if p is a semi-norm of ., the continuity on . of the multiplication by f implies
that there exists a semi-norm ¢ on . such that for all ¢ € .77, p(fy) < q(p). A
typical example of a function in @, (R") is e'”(*) where P is a real-valued polynomial:
P@) are of type Q(z)e'f'®

in fact the derivatives of e ) where @ is a polynomial so

that (4.1.33) holds.

Definition 4.1.21. Let T, S be tempered distributions on R™ such that T belongs
to Oy (R™). We define the convolution 7"+ S by

— A A

T+38=T8. (4.1.34)

Note that this definition makes sense since 7" is a multiplier so that TS is indeed
a tempered distribution whose inverse Fourier transform is meaningful. We have

— <

(T % S, 8) 1 (@mny, 7@y = (T * S, ) 1 (@mny, @y = (S, TP) 51 (n). o @mn)-

Proposition 4.1.22. Let T be a distribution on R™ such that T is compactly sup-
ported. Then T is a multiplier which can be extended to an entire function on C"
such that if supp T C B(0, Ry),

3Cy, Ny > 0,¥¢ € C*,  |T(¢)]| < Co(1 + [¢[)Noe?rToltmel, (4.1.35)

In particular, for S € #'(R"), we may define according to (4.1.34) the convolution
TxS.

Proof. Let us first check the case Ry = 0: then the distribution T is supported at {0}
and is a linear combination of derivatives of the Dirac mass at 0. Formulas (4.1.19),
(4.1.21) imply that T is a polynomial, so that the conclusions of Proposition 4.1.22
hold in that case.

Let us assume that Ry > 0 and let us consider a function x is equal to 1 in
neighborhood of supp 7" (this implies x7' = T") and

(T.0) .9 = (XT, ) 1.9 = (T, x) 7.5 (4.1.36)
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On the other hand, defining for ( € C" (with z - { =Y z;(; for z € R"),
F(¢) = (T(x), x(x)e ™) 51 5, (4.1.37)
we see that I is an entire function (i.e. holomorphic on C"): calculating

F(C+h) = F(¢) = (T(x), x(x)e 2™ (e~ 2™ — 1))
= (T(x), x(x)e 2™ (—2irxz - h))

+ (T (z), X(x)e_%m'C/O (1 —0)e 20m=hdg(—2imz - h)?),

and applying to the last term the continuity properties of the linear form 7', we
obtain that the complex differential of F' is

D (T(@), x(w)e ™ (=2ima;))d(;.

1<j<n
Moreover the derivatives of (4.1.37) are

FO(Q) = (T(x), x(w)e ™ (=2imz)*) 51 5. (4.1.38)

72i7ra:-g”(

To evaluate the semi-norms of x — y(z)e —2imx)* in the Schwartz space, we

have to deal with a finite sum of products of type

‘xv(aax)(a:)e*Q"”'C(—QZ'WC)'B‘ < (1 + ‘C‘)'Bl sup ‘x'y<aax>(x)e27r|x|\1m§||.
r€ER™

Ro+2e

We may now choose a function xo equal to 1 on B(0,1), supported in B(0, o )

such that [|0%xo |z~ < c(B)e P! with ¢ = %. We find with

X(x) = xo(z/(Ro+¢€)) (which is 1 on a neighborhood of B(0, Ry)),

sup |IW(8aX)(x)627r|:c||ImCl| < (RO + 26)Iv| sup |(aaxo)(y)€2w(R0+25)|Img\|
PISIING yeR”
< (Ro + 26)|v|627r(Ro+2e)|ImC\c(a)e—lal

R

R0 27 (Ro+2-7%)| Im (| 1+ ’C'
= (Ry + 2——— )l tHor2 g —
( 0+ 1+ |C|) € C(O[)( RO

< (3R0)|7|627rR0\Im(|€4wRoc(a>Ra|a|<1 + |C|)|a|

)Iocl

yielding
[FB(Q)] < errfulimildy (1 + [¢))™,

which implies that R" 5 £ — F'(£) is indeed a multiplier. We have also

(T, x¢) s = (T (), x(x) 5 G(€)e2mEdE) 41 .
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Since the function F' is entire we have for ¢ € C2°(R"), using (4.1.38) and Fubini
Theorem on ¢((N) x L'(R"),

/ F(©(€)d = 3 (T (), x(w)(~2ima)) / S o(€)de. (4.1.39)

|
k>0 supp ¢ k!

On the other hand, since gg is also entire (from the discussion on F' or directly from
the integral formula for the Fourier transform of ¢ € C°(R™)), we have

(T, x9) = (T(x), x(2) Y ()™ (0)a" /k!)

k>0
= (T(@),x(@) Jim > (6)P(0)* /)

convergence in C2°(R™)

= lim Y (T(x),x(z)z"/k!) / B(€)(—2imE)*de.

Thanks to (4.1.39), that quantity is equal to [5, F(£)@(£)dé. As a result, the tem-
pered distributions 7' and F coincide on C2°(R"), which is dense in .%(R") and so
T=F, concluding the proof. O

4.2 Garding’s inequality

4.2.1 The Wick calculus of pseudodifferential operators
Wick quantization

We recall here some facts on the so-called Wick quantization, as used in [21], [22],

[23].

Definition 4.2.1. Let Y = (y,7) be a point in R” x R”. The operator ¥y is defined
s [2"6*2’”'*”2}“}. Let a be in L>®(R*"). The Wick quantization of a is defined as

a™Vick = / a(Y)SydY. (4.2.1)
R2n

Remark 4.2.2. The operator Yy is a rank-one orthogonal projection: we have

Eyu = (WU)(Y)TygDO with (WU)(Y) = <u,7y(p0>L2(Rn), (422)
where ¢o(z) = 2% ™ and (Tymp0) () = oz — y)eXm@=5m, (4.2.3)
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In fact we get from the definition of ¥y that, for u € .7 (R")

5yte) // p2im(x—2)Egn —2m| HZ —y|? —2m|g—n|> dzd¢

/ (Z) 2im(z—2)- 772n/2 —27r\m+z —y|? —7|:(: 2|2 dz

Yy

- /u(z)e%ﬂ(zg)'n2"/46”|zy|2dz on/4o=mlz—y|? 2im(z—4)n
= (U, Ty,nP0) TynPo-

Proposition 4.2.3.

(1) Let a be in L=®(R*™). Then a"'* = W*a*W and 1"W'* = Id2gny where W is
the isometric mapping from L*(R™) to L?*(R*") given above, and a* the operator of
multiplication by a in L*(R*"). The operator w7y = WW* is the orthogonal projection
on a closed proper subspace H of L*(R*") and has the kernel

[I(X,Y) = e~ sX-YPgmimlXy] (4.2.4)
where [,] is the symplectic form. Moreover, we have

HCLWiCkHE(Lz(Rn)) S HCLHLOO(R27L), (425)
a(X) >0 for all X implies aV* > 0.

(2) Let m be a real number, and p € S(A™, A7'T), where T is the Euclidean norm

on R?". Then p"ick = pv + r(p)¥, with r(p) € S(A™1, A~'T") so that the mapping
p— r(p) is continuous. More precisely, one has

/ / (X +0Y)Y2e 2 TV)onqyqg.
RQn

Note that r(p) = 0 if p is affine and r(p) = Siﬂtracep” if p is a polynomial with
degree < 2.

(3) For a € L>®(R®), the Weyl symbol of a"Vick is
a * 2" exp —2rL, which belongs to S(1,T) with k™-seminorm c(k)||a|p~. (4.2.7)

(4) Let R o t — a(t,X) € R such that, fort < s, a(t,X) < a(s,X). Then, for
u € CHRy, LA(R™)), assuming a(t,-) € L=(R?™),

/ Re(Dyu(t),ia(t) V" *u(t)) p2gnydt > 0. (4.2.8)
R
(5) With the operator Xy given in Definition J.2.1, we have the estimate

||Eyzz||£(L2(Rn)) < ezl (Y=2) (429)



110 CHAPTER 4. APPENDIX

(6) More precisely, the Weyl symbol of XyX 7 is, as a function of the variable X €
R?*", setting T(T) = |T|?

o~ 5IY =27 j-2in[X Y, X~Z] 2ne—2w\X—¥|2‘ (4.2.10)

Remark 4.2.4. Part of this proposition is well summarized by the following dia-
gram:

L2 (R2n) a N L2 (RQn)

(multiplication by a)

w] [ -

LX(R") — L2(R")

aWick

Proof. For u,v € #(R"), we have
(™%, v) = /R _a(Y)(Syu, v)ragedY = /R _a(Y)(Wu)(Y)(Wo)(Y)dY,
which gives
a™Vik = W*aHW. (4.2.11)

Also we have from (4.2.1) that 1Vi%k = Id, since

1 Wick :/ YydY has Weyl symbol/ e XYy — 1.
R2n i

2n

This implies that
W*W = 1d,

i.e. W is isometric from L?(R") into L?(R?*"). The operator WIW* is bounded
selfadjoint and is a projection since WW*WW* = WW*. Defining H as ran W,
we get that WIW™* is the orthogonal projection onto H, since the range of WW* is
included in the range of W, and for ® € H, we have

¢ =Wu=WW"Wu € ran(WW¥).

Moreover ran W' is closed since W is isometric, that latter property implying also,
using (4.2.11), the property (4.2.5), whereas (4.2.6) follows from (4.2.1) and ¥y >0
as an orthogonal projection. The kernel of the operator WW* is, from (4.2.2),
(4.2.3), with X = (x,¢),Y = (y,n),

I(X,Y) = (v @0, Tx o) L2(r)
_ 2n/2 / e—w\t—x\Qe—7r|t—y|2€2i7r(t—%)vne—2i7r(t—%)-ﬁdt
— e—glx—ylggnﬂ/ 6—%|2t—w—y\2€2i7rt~(n—£)dteiﬂ(xf—yﬂ)
_ o~ BlaylPon/2 / o222 (£ (1-6) gy im(a-E—y)

— o5l o= FlEn? gim(zty) (=€) gim(z-E—y-n)

_ —Zle—y]2 —Z|¢—n|? Jin(zn—yt) _ —Z|X-Y|? _—in[X)Y
_ o lomyl? (—FlemnP in(an—s6) _ o~ FIX-YP —in[XY],
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which is (4.2.4). Postponing the proof of H # L*(R?") until after the proof of (2),
we have proven (1). To obtain (2), we note that (4.2.1) gives directly that

aV'% = (a % 2" exp —27T)"

and the second order Taylor expansion gives (2) while (3) is obvious from the
convolution formula. Note also that v € (R") implies Wu € .(R?") since
e~ "™1(Wu)(y,n) is the partial Fourier transform with respect to x of R" x R™ 5
(z,y) — u(x)24e~m=v”: this gives also another proof of W isometric since

// |u(:zc)|22"/2€—27T|x—y\2dzdy — ||u||%2(Rn),

We calculate now, for u € . (R") with L? norm 1, using the already proven (2) on
the Wick quantization of linear forms,

2Re(mu&aWu, iz Wu) 2meny = 2Re(W*EWu, iW* 1 W) r2mn)

= 2 Re(&V"u, i)' u) 2 gny = 2Re(D1u, izqu) 2@ny = 1/27.

If H were the whole L?(R*"), the projection 73 would be the identity and we would
have

0 = 2Re(&GWu, iz Wu) r2@eny = 2 Re(mu&i W, iz W) p2(reny = 1/27.

Let us prove (4). We have from the Lebesgue dominated convergence theorem,

o= /R Re(Dyu(t), ia(t) ¥ u(t)) o endi

: 1 ic
= — hlg& o Re(u(t + h) — u(t), a(t)V'*u(t + h)) p2@n)dt

= ﬁ (_ /R Re(u(t), a(t — b)Y *u(t)) p2nydt
+ /R Re(u(). o) *ul + 1) ey

— lim {Lh /R Re((a(t) — a(t — b))V “u(t), u(t)) 2@ dt

2

-

=B(h)

+\/]RRG<2;;L’L' (u(t+h) — u(t)),m(t)Wicku(t))LQ(Rn)dt}.

J/

~
with limit —«

The previous calculation shows that §(h) has a limit when h — 0, and 2o =
limy,_,o, B(h). Since the function a(t) — a(t — h) is non-negative, the already proven
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(4.2.6) implies that the operator (a(t) — a(t — h))WVi* is also non-negative, imply-
ing $(h) > 0 which gives @ > 0, i.e. (4.2.8)%. Since for the Weyl quantization,
la® ||l ze2mny) < 27||al[L1(reny, We get the result (4.2.9) from (4.2.10). Let us finally
prove the latter formula. From the composition formula (4.3.5), we obtain that the
Weyl symbol w of ¥y > is

M(X) _ 22n // 6—4i7r[X—X1,X—X2}22n€—27r|X1—Y|2€—27r|X2—Z|2dX1dX2
— 9dn // 6—4i7r[X—Y7X—X2]6—2i7r(X1,20(X—X2))€—27r|X1\26—27r|X2—Z\2dX1dX2
_ 93n / 6—41'71-[X—Y,X—X2}e—27r\X—X2\26—27T|X2—Z|2dX2
_ 23n677r|X7Z|2 /e4i7r[XY,XX2]€7rX+Z2X2|2dX2

_ 2 os _ _ Y v _ 9
:23716 | X—Z| e 2 X-Y, X Z]/6 4in[X-Y, X2]€ 47| X2 | dX2

— gn—mlX—2? ~2in[X-Y.X~Z] j—n| XY ]?

_ 2n6—2m[X—Y,X—Z]6—27r\X—%\2€—g|Y—Z\2‘

Fock-Bargmann spaces

There are also several links with the so-called Fock-Bargmann spaces (the space H
above), that we can summarize with the following definitions and properties.

Proposition 4.2.5. With H defined in Proposition /.2.5 we have
T . .
H ={®e L*R), ©=f(z) exp—§|z|2, z=mn+1y , [ entire}, (4.2.12)
i.e. H =ranW = L*(R*) Nker(d + %2).

Proof. For v € L*(R"), we have, with the notation 22 = > i<i<n 27 for z € C",

(Wo)(y,n) :/ U(x)Q”/‘le*ﬂ(a:fy)Q6727?#(96*%)776&

n

:/ v(x)?"/4e_”(m_y+i")2dme_g(ygﬂg)e_g(”ﬂy)z (4.2.13)

and we see that Wo € L*(R*")Nker(0+2z). Conversely, if ® € L*(R*")Nker(0+2z),

8 Note that (4.2.8) is simply a way of writing that % (a(t)WiCk) > 0, which is a consequence of
(4.2.6) and of the non-decreasing assumption made on t — a(t, X).



4.2. GARDING’S INEQUALITY 113

we have ®(z,§) =e —5 (@) f(€ +ix) with ® € L*(R?*") and [ entire. This gives
(WW*®)(x,€) = / / (oot saien2im) gy, ) dyay
= ¢ 3(E+Y) / / F 0P =260+ ~2ay+2iy—20m2) § (o 1) dydln
= ¢ 3E+ / / Sl gy, y)aydy
— o5 (&%) / / e~ T(Wn?) g (n—iy)(§+ix) f(n +iy)dydn

=i // 6_”'4‘26”5zf(6)dyd77 (C=mn+iy, z=E+ix)

e 10 T

1<j<n
1

S d s
=e 2 (1) T1 %(m)’e”“ €™"%) g1 (mon), 7 (R2n)

1<j<n
= T f(2),

since f is entire. This implies WW*® = & and ® € ran W, completing the proof of
the proposition. O

Proposition 4.2.6. Defining
H = ker(d + gz) n.7' (R, (4.2.14)

the operator W given by (4.2.2) can be extended as a continuous mapping from
S'(R™) onto A (the L*(R™) dot-product is replaced by a bracket of (anti)duality).
The operator I with kernel 11 given by (4.2.4) defines a continuous mapping from
S (R?") into itself and can be extended as a continuous mapping from ' (R*") onto
FC. It verifies

M2 =T, Tu=Idy. (4.2.15)

Proof. As above we use that e~ (Wwv)(y,n) is the partial Fourier transform w.r.t.
x of the tempered distribution on R2",

v(z) 2" e @Y
Since ™7 are in the space €)(R?™) of multipliers of .%(R?"), that transformation
is continuous and injective from ./(R™) into .#/(R*"). Replacing in (4.2.13) the

integrals by brackets of duality, we see that W (./(R")) C 4. Conversely, if & €
S, the same calculations as above give (4.2.15) and (4.2.14). O

4.2.2 The Garding inequality with gain of one derivative

We want to prove in this section that a non-negative symbol of order 1, related to an
admissible metric, is quantized by an operator which is semi-bounded from below.
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To be of order 1 for a symbol a means that a € S(\g, g). The main point in this
generalization is that the non-negativity for the operator as a consequence of the
non-negativity of its symbol holds true as well for any admissible metric g.

However, we want also to deal with systems, including infinite-dimensional sys-
tems and prove our inequality in that framework. So far we have dealt only with
scalar-valued (complex-valued) symbols ; let us first consider a symbol a defined
on R?" but valued in the algebra of N x N matrices. It means simply that a =
(ajk)1<jk<n Where each a;j, belongs to S(m, g) for some g-admissible weight m. Al-
though many results can be extended without much change to this “matrix-valued”
case, it is very important to keep in mind that %(H) is not commutative as soon
as dimH > 1 and that the composition formula and the Poisson bracket should be
given the proper definition, taking into account the position of the various terms.
Anyhow, we shall skip checking all the details of that calculus for systems of pseu-
dodifferential operators and take advantage of the very simple proof using the Wick
calculus to extend the result to that case.

Theorem 4.2.7. Let g be an admissible metric on R?", H be a Hilbert space, a be
a symbol in S(N,, g) valued in the non-negative symmetric bounded operators on H.
Then the operator a® is semi-bounded from below, and more precisely, there exists
I € N and C depending only on n such that

n w l
Vue S (RYH),  (a"u,u)+ Cllalgy, o lull?e@nm > 0. (4.2.16)
Under the same hypothesis, the same result is true with
(a"u,u) replaced by Re(a(z, D)u,u).

Proof. We can find a family (¢y )yegze of functions uniformly in S(1, g) supported
in Uy, nonnegative, such that [ ¢y|gy|2dY = 1. With (y)ycgz uniformly in
S(1, g) and real-valued, supported in Uy ,, equal to 1 on Uy,., we have

Yyipyalyy = pya+ry, (4.2.17)

and we get that (ry)yegrz« is a uniformly confined family of symbols, so that

a’ = V¥ (pya) ¥ gy|2dY, mod .Z(L*(R")). (4.2.18)
RZn

The symbol pya belongs uniformly to S(A\,(Y),gy) C S(A(Y), Ay(Y) '¢%), and

(e

9 = (9v)".
(pya)® is unitary equivalent to some o* with 0 < a € S(u, u~|dX|?) with semi-
norms bounded above independently of Y and p = A\, (Y). Proposition 4.2.3(1)(2)
imply that ¥ + C' > 0, where C' is a seminorm of « and thus of a, so that
(apy)* + C > 0. Plugging this in (4.2.18), we get the result since

Using a linear symplectic mapping and Segal’s formula, we get that

/Wﬁlgylmdi/ € ZL(L*(R™)), (4.2.19)

thanks to Cotlar’s lemma. O]



4.3. WEYL QUANTIZATION 115

Remark 4.2.8. The reader may think that we did not pay much attention to the
fact that the symbol was valued in Z(H); in fact, since the ¢y, xy are scalar-
valued, the formulas (4.2.17), (4.2.18) hold without change (except that L*(R™)
becomes L?*(R™; H)) and it is a simple matter to check that the %(H)-valued version
of Proposition 4.2.3 holds true, with the non-negativity condition a(X) > 0 meaning
a(X) nonnegative symmetric bounded operator in H.

4.3 Weyl quantization

A much more detailed account is given in the book [2/] (see in particular Section
2.1.3). We are given a function a defined on the phase space R" x R™ (a is a
“Hamiltonian”) and we wish to associate to this function an operator. For instance,
we may introduce the one-parameter formulas, op, for t € R,

(op,(a // 2@ La (1 — t)z + ty, £ uly)dydé. (4.3.1)

When ¢ = 0, we recognize the standard quantization, quantizing a(z)¢; in a(x)D,,.
However, one may wish to multiply first and take the derivatives afterwards: this is
what the choice ¢t = 1 does, quantizing a(x)§; in D,;a(x). The more symmetrical
choice t = 1/2 was done by Hermann Weyl: we have

(0py /5 () / / 2ine—0)eq (T Y e)uy)dyde, (4.3.2)

2

and thus 1
Opl/z(@(x)gj) D) (a(x)Dzj + ija(x)) :

This quantization is widely used in quantum mechanics, because a real-valued Hamil-

9

tonian gets quantized by a (formally) selfadjoint operator.” The reader may be

embarrassed by the fact that we did not bother about the convergence of the inte-
grals above. Before providing a definition, we may assume that a € . (R*"),u,v €
< (R™),t € R and compute

((opsa)u,v) = ///a((l — )z + ty,f)eQi”(x_y)'fu(y)@(x)dydfdx

/// (2,8)e ™ u(z + (1~ 1)s)0(z — ts)dzdéds

/// (a, )™ Su(a + (1 — t)2)0(x — tz)dwdédz,

so that with

Qo (t) (2, ) = / 2y (g 4 (1 — 1)) (x — t2)dz, (4.3.3)

9The most important property of that quantization remains its symplectic invariance.
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which is easily seen'” to be in . (R**) when u,v € . (R"), we can give the following
definition.

Definition 4.3.1. Let a € .%/(R*") be a tempered distribution and ¢ € R. We
define the operator op,a : ./ (R") — .*(R") by the formula

((opra)u, v).7+®n), 7 ®n) == @, Quw(t) = o m2n) o @2n)s
where .#*(R™) is the antidual of .(R™) (continuous antilinear forms).

Proposition 4.3.2. Let a € %' (R*) be a tempered distribution and t € R. We
have

opi(a) = opy(J'a) = (J'a)(z, D),
with Jt — eQimﬁDz-Dg'
Proof. Let u,v € (R™). With the .%(R*") function ©,,(t) given above, we have
for t # 0,
(7' 2u0(0)) (z,€) = [t / / e~ e, L(0) (y, m)dydn
= |t~ // e D)o (y) et Tdydn

_//emz (&E=n) 5 (77)17(.1'-152) 2im(x— tz)ndzdn

_ / e (e 4 (1 — 1)2)0(x — t2)dz = Qu(t) (. €), (4.3.4)
so that
<(Opta)u, U)y*(Rn)’y(Rn) =< a, Quﬂ) (lf) > (R2n),. (R2n) (definition 4.3.1)
== a, JtQuﬂ)(O) }y!(R2n)7y(R2n) (proerty (4.3.4))
== Jta, QU,U(O) >~ 1 (R2n), 7 (R2) (easy identity for J*)
= ((J'a)(z, D)u, v) 7 rn), o (mm)
completing the proof. O
Remark 4.3.3. We get in particular that
a(x, D)* - Opl(d) = (J@)([E, D)?

a formula which in fact motivates the study of the group J¢. On the other hand,
using the Weyl quantization simplifies somewhat the matter of taking adjoints since
we have,

(0P1/2(a))* = (Opo(‘]lﬂa))* = OPO(J(m)) = Opo(Jl/Qd) = OP1/2(5L)

and in particular if a is real-valued, op,,(a) is formally selfadjoint.

10Tn fact the linear mapping R” xR™ 3 (z,2) + (x—tz, 2+ (1—t)z) has determinant 1 and €2, ,,(¢)
appears as the partial Fourier transform of the function R” xR"™ 3 (z, 2) — 0(x —tz)u(z+ (1 —t)2),
which is in the Schwartz class.
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Composition formula

It is easy to see that the operator a™ is continuous from .(R™) into itself whenever
a € C°(R*) and thus in particular when a € . (R*"). For a,b € Z(R*"), we
obtain

a’b" = / / a(Y)b(Z2)2* oy o zdY dZ.
R2n x R27

We get a”b" = (afb)™ with
(afb)(X) = 22" / / e~ MmN YX=Z 0 (Y\(Z)dY dZ. (4.3.5)
R2n xR2n

We can compare this with the classical composition formula, a namely op(a)op(b) =
op(a ¢ b) with

@on@ &= [[ e alag +nbly + 2.y

Another method to perform that calculation would be to use the kernels of the
operators av, b"™. For future reference, we note that the distribution kernel k, of the
operator a(x, D) (for a € .#'(R*")) is

ka(z,y) = /62”(1_”'%(% §)d¢ = a*(z,y — x) (4.3.6)
so that @?(x,y) = k.(x,y + x) and in the distribution sense
a(z, &) = /emy'éka(%y +x)dy. (4.3.7)

The distribution kernel x, of the operator a* (for a € .%'(R?")) is (in the distribution
sense)

Ka(,y) = /eQiﬂ(my)'éa(x ;_ y,f)df (4.3.8)

so that ke(x — 5,2+ §) = [ e *™%a(x, &)d¢ = a*(z,t) and thus

a(z,§) = /ﬁa(az - % T+ %)emﬁdt. (4.3.9)

Remark 4.3.4. For a; € S, j = 1,2 we have

1
aifas = aras + E{al, as} mod S{:‘(}JFWQ_Q, (4.3.10)
arflas + asfay = 2a1as  mod STET T2 (4.3.11)
1
arfay — asta; = —{ay, a2} mod ST5+m2_3. (4.3.12)

i
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4.4 Fefferman-Phong inequality

The Fefferman-Phong inequality would deserve a full lecture and is certainly too
difficult to be thoroughly treated in a simple appendix. We refer the reader to the
detailed treatment given in Section 2.5.3 of [24] or to Theorem 18.6.8 in [13]. For the
reader interested solely in Carleman estimates, it should be noted that Fefferman-
Phong’s inequality was used only to tackle the class of principally normal operators
with complex coefficients.

4.5 Riemannian-Lorentzian geometry glossary

4.5.1 Differential geometry

We assume that the reader is familiar with the notion of differentiable manifold,
exterior differentiation and tensors. Let X be a vector field and w be a p-form. We
define the Lie derivative Zx(w) as

Zx(w) =dw|X) +dw| X, (4.5.1)
where | stands for the interior product: for a p-form w and vector fields X, Ys, ..., Y,
(WX, YaN--ANYy) =(w,XAYaA---AY,)

In particular if f is a function, we have Zx(f) = (df, X) = X f. The Lie derivative

preserves tensor type and acts as a derivation on tensor products:
Lx(ST)=2Zx(S)T + 5 ® ZLx(T). (4.5.2)

For X, Y vector fields, we have

Zx(Y)=[X,Y]. (4.5.3)

Indeed for a function f, using that the Lie derivative obeys Leibniz’ rule with respect
to contraction, we get

(df, Zx(Y)) = Zx({df,Y)) = (Zx(df),Y) = XY [ = (d(df | X),Y) = XY f -V X[.

On the other hand, the Lie derivative commutes with the exterior differentiation:
for w a p-form, we have
This follows from (4.5.1): d(Zxw) = d(dw|X) = Lx (dw).

4.5.2 Riemaniann-Lorentzian geometry

Let (M, g) be a Riemannian (resp. Lorentzian) manifold, i.e. a differentiable mani-
fold equipped with a section of the bundle of (0, 2) tensors which is positive definite
(resp. non degenerate with index 1). In a coordinate chart W it means that we are
given a smooth mapping W > = — g¢(z) which is a symmetric n X n matrix, positive
definite in the Riemaniann case, with signature (n — 1,1) in the Lorentzian case.
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The Laplace-Beltrami operator A, in the Riemannian case, the wave op-
erator [, in the Lorentzian case

are given in a coordinate chart by
_ 0 ; .
gl > oo J|g|1/2 Ha)ops Lol =Idetgl, (¢"(2) =g(@)™"  (45.5)
1<j,k<n

We note the formal selfadjointness of that operator: for w,v smooth compactly
supported in a coordinate chart W, we have, using Einstein convention,

0 , ou
Oguv)izon = [ 9@ 55 (926 @) 5 5 Jo@lg(e) da
ou 0v
= - l9'%g ]k(x)mmdf
0v

[ o) (2 @) s gt o
= (u, ng>L2(M)-
The Levi-Civita connection D

acts linearly on tensors, is a derivation with respect to contraction, preserves the
metric Dg = 0, and is torsion-free: for X,Y vector fields

Dx(Y)— Dy(X) =[X,Y]. (4.5.6)
For X, Y, Z vector fields, we have

X(g(Y,2))+Y(9(Z, X)) — Z(9(X,Y))
=g(Dx(Y),Z) + g(Y, Dx(Z)) + g(Dy(Z), X) + g(Z, Dy (X))

—9(Dz(X),Y) — g(X, Dz(Y))
= (Dx(Y) + Dy(X),Z) + ([X,2],Y) + ([Y. 2], X),
= (2Dx(Y) - [X,Y], Z) + (X, 2].Y), + ([Y. 2], X),

so that
(2Dx(Y), Z), = X(9(Y, 2)) + Y (9(Z, X)) = Z(9(X,Y))
—(x,21,Y), - (V. 2], X), + ([X,Y], Z) ,

proving the determination of the Levi-Civita connection by the previous axioms. We
may define the Christoffel symbols

D, (ex) = Fékel, (note that (4.5.6) implies Fék = Fiﬁj).

Since we have from the previous formula

1
5 (82, (Gkm) + 02, (9im) = D2 (936)) = (Do en) m)y = Thigin
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we obtain

g m
N (azj (grm) + Oz, (Gjm) — Oa,, (gjk)) =T gimg™ =T

so that
. glm
Pl = 2= (00, (9me) + Or, (gmg) — D, (g1 ). (4.5.7)

The gradient, the Hessian.

Let f be a smooth function we define the vector field V f by the identity satisfied
for any vector field X,

(Vf, X)g = (df,X) = Xf, sothat Vf =g 'df.
The Hessian of f is V2f which is a (0,2) tensor: for X, Y vector fields, we have

Dx(V1Y),= (DxV/Y), + (V[ DxY)

g7

so that (DxVf, Y)g = XY f — Dx(Y)f. This gives as well
(DyVf, X)g =YX[—Dy(X)f.

and we note that
XYf—=Dx(Y)f =YX[f—Dy(X)f,

since the Levi-Civita connection is torsion free (see (4.5.6)): [X,Y] = Dx(Y) —
Dy (X). As a result

VX,)Y)=(XY+YX —Dx(Y)—Dy(X))f=XY[—Dx(Y)f. (4.58)

DN | —

In coordinate, we get

0*f of

We have also indeed a (0,2) symmetric tensor since

0 0 0*f Oay, Of

G g U gpr) = L% gk T Y g, O

VQf( - Dajej(akek>f

Cwa S OaOf o Of  Oa, Of
— IR ri ok T 0w Oxy, T GRTR 1027 Oxy’

which coincides with (4.5.9).
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