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Chapter 1

Fourier Analysis

1.1 Preliminaries

The Fourier transform of a function u ∈ L1(Rn) can be defined as

û(ξ) =

∫
Rn
u(x)e−2iπx·ξdx. (1.1.1)

Lemma 1.1.1 (Riemann-Lebesgue Lemma). Let u be in L1(Rn). Then we have

û(ξ) −→
|ξ|→∞

0.

Moreover the function û is uniformly continuous on Rn.

Proof. We note first that (1.1.1) is meaningful as the integral of an L1 function and

we have also

sup
ξ∈Rn
|û(ξ)| ≤ ‖u‖L1(Rn). (1.1.2)

Let ϕ ∈ C∞c (Rn). With α = (α1, . . . , αn) ∈ Nn, we define

Dα = Dα1
1 . . . Dαn

n , Dj =
1

2iπ

∂

∂xj
, ξα = ξα1

1 . . . ξαnn . (1.1.3)

We find the identities

ξ1ϕ̂(ξ) = D̂1ϕ(ξ), D̂αϕ(ξ) = ξαϕ̂(ξ), (1.1.4)

entailing
(
1 + |ξ|2

)
ϕ̂(ξ) = Fourier

(
ϕ+

∑
1≤j≤nD

2
jϕ
)
. We find thus

(
1 + |ξ|2

)
|ϕ̂(ξ)| ≤ ‖ϕ+

∑
1≤j≤n

D2
jϕ‖L1(Rn),

which implies lim|ξ|→+∞ ϕ̂(ξ) = 0. For u ∈ L1(Rn), we have

|û(ξ)| ≤ | ̂(u− ϕ)(ξ)|+ |ϕ̂(ξ)| ≤ ‖u− ϕ‖L1(Rn) + |ϕ̂(ξ)|,
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6 CHAPTER 1. FOURIER ANALYSIS

so that for all ϕ ∈ C∞c (Rn),

lim sup
|ξ|→∞

|û(ξ)| ≤ ‖u− ϕ‖L1(Rn) =⇒ lim sup
|ξ|→∞

|û(ξ)| ≤ inf
ϕ∈C∞c (Rn)

‖u− ϕ‖L1(Rn) = 0.

We have also û(ξ + η)− û(ξ) =
∫
Rn e

−2iπx·ξ(e−2iπx·η − 1
)
u(x)dx, so that

|û(ξ + η)− û(ξ)| ≤
∫
Rn
|u(x)| |e−2iπx·η − 1|︸ ︷︷ ︸

≤2

dx,

and Lebesgue’s dominated convergence Theorem shows that, for all ξ ∈ Rn,

lim
η→0
|û(ξ + η)− û(ξ)| = 0,

proving continuity.We have also for R > 1, |η| ≤ 1,

|û(ξ + η)− û(ξ)| ≤ sup
|ξ|≤R
|û(ξ + η)− û(ξ)|+ 2 sup

|ξ|≥R−1

|û(ξ)|

so that for 0 < ε < 1, if ωρ is a modulus of continuity1 of the continuous function û

on the compact set {|x| ≤ ρ}

sup
|η|≤ε,ξ∈Rm

|û(ξ + η)− û(ξ)| ≤ ωR+1(ε) + 2 sup
|ξ|≥R−1

|û(ξ)|,

proving that the lim sup of the lhs when ε goes to 0 is smaller than

2 sup
|ξ|≥R−1

|û(ξ)|, for all R > 1.

Since that quantity is already proven to go to 0 when R goes to +∞, we obtain the

uniform continuity of û.

We need to extend this transformation to various other situations and it turns

out that L. Schwartz’ point of view to define the Fourier transformation on the

very large space of tempered distributions is the simplest. However, the cost of

the distribution point of view is that we have to define these objects, which is not

a completely elementary matter. We have chosen here to limit our presentation

to the tempered distributions, topological dual of the so-called Schwartz space of

rapidly decreasing functions; this space is a Fréchet space, so its topology is defined

by a countable family of semi-norms and is much less difficult to understand than

the space of test functions with compact support on an open set. Proving the

Fourier inversion formula on the Schwartz space is a truly elementary matter, which

yields almost immediately the most general case for tempered distributions, by a

duality abstract nonsense argument. This chapter may also serve to the reader as a

motivation to the explore the more difficult local theory of distributions.

1For a continuous function v defined on a compact subset K of Rm, the modulus of continuity
ω is defined on R+ by ω(ρ) = sup x,y∈K

|x−y|≤ρ
|v(x)− v(y)|. We have limρ→0+ ω(ρ) = 0.
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1.2 Fourier Transform of tempered distributions

The Fourier transformation on S (Rn)

Definition 1.2.1. Let n ≥ 1 be an integer. The Schwartz space S (Rn) is defined

as the vector space of C∞ functions u from Rn to C such that, for all multi-indices.

α, β ∈ Nn,

sup
x∈Rn
|xα∂βxu(x)| < +∞.

Here we have used the multi-index notation: for α = (α1, . . . , αn) ∈ Nn we define

xα = xα1
1 . . . xαnn , ∂αx = ∂α1

x1
. . . ∂αnxn , |α| =

∑
1≤j≤n

αj. (1.2.1)

A simple example of such a function is e−|x|
2
, (|x| is the Euclidean norm of x)

and more generally, if A is a symmetric positive definite n× n matrix, the function

vA(x) = e−π〈Ax,x〉 (1.2.2)

belongs to the Schwartz class. The space S (Rn) is a Fréchet space equipped with

the countable family of semi-norms (pk)k∈N

pk(u) = sup
x∈Rn
|α|,|β|≤k

|xα∂βxu(x)|. (1.2.3)

Lemma 1.2.2. The Fourier transform sends continuously S (Rn) into itself.

Proof. Just notice that

ξα∂βξ û(ξ) =

∫
e−2iπxξ∂αx (xβu)(x)dx(2iπ)|β|−|α|(−1)|β|,

and since supx∈Rn(1 + |x|)n+1|∂αx (xβu)(x)| < +∞, we get the result.

Lemma 1.2.3. For a symmetric positive definite n× n matrix A, we have

v̂A(ξ) = (detA)−1/2e−π〈A
−1ξ,ξ〉, (1.2.4)

where vA is given by (1.2.2).

Proof. In fact, diagonalizing the symmetric matrix A, it is enough to prove the

one-dimensional version of (1.2.4), i.e. to check∫
e−2iπxξe−πx

2

dx =

∫
e−π(x+iξ)2dxe−πξ

2

= e−πξ
2

,

where the second equality is obtained by taking the ξ-derivative of
∫
e−π(x+iξ)2dx :

we have indeed

d

dξ

(∫
e−π(x+iξ)2dx

)
=

∫
e−π(x+iξ)2(−2iπ)(x+ iξ)dx

= i

∫
d

dx

(
e−π(x+iξ)2

)
dx = 0.
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For a > 0, we obtain
∫
R e
−2iπxξe−πax

2
dx = a−1/2e−πa

−1ξ2 , which is the sought result

in one dimension. If n ≥ 2, and A is a positive definite symmetric matrix, there

exists an orthogonal n× n matrix P (i.e. tPP = Id) such that

D =tPAP, D = diag(λ1, . . . , λn), all λj > 0.

As a consequence, we have, since | detP | = 1,∫
Rn
e−2iπx·ξe−π〈Ax,x〉dx =

∫
Rn
e−2iπ(Py)·ξe−π〈APy,Py〉dy

=

∫
Rn
e−2iπy·(tPξ)e−π〈Dy,y〉dy

(with η = tPξ) =
∏

1≤j≤n

∫
R
e−2iπyjηje−πλjy

2
j dyj =

∏
1≤j≤n

λ
−1/2
j e−πλ

−1
j η2j

= (detA)−1/2e−π〈D
−1η,η〉 = (detA)−1/2e−π〈

tPA−1P tPξ,tPξ〉

= (detA)−1/2e−π〈A
−1ξ,ξ〉.

Proposition 1.2.4. The Fourier transformation is an isomorphism of the Schwartz

class and for u ∈ S (Rn), we have

u(x) =

∫
e2iπxξû(ξ)dξ. (1.2.5)

Proof. Using (1.2.4) we calculate for u ∈ S (Rn) and ε > 0, dealing with absolutely

converging integrals,

uε(x) =

∫
e2iπxξû(ξ)e−πε

2|ξ|2dξ

=

∫∫
e2iπxξe−πε

2|ξ|2u(y)e−2iπyξdydξ

=

∫
u(y)e−πε

−2|x−y|2ε−ndy

=

∫ (
u(x+ εy)− u(x)

)︸ ︷︷ ︸
with absolute value≤ε|y|‖u′‖L∞

e−π|y|
2

dy + u(x).

Taking the limit when ε goes to zero, we get the Fourier inversion formula

u(x) =

∫
e2iπxξû(ξ)dξ. (1.2.6)

We have also proven for u ∈ S (Rn) and ǔ(x) = u(−x)

u =
ˇ̂
û. (1.2.7)

Since u 7→ û and u 7→ ǔ are continuous homomorphisms of S (Rn), this completes

the proof of the proposition.
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Proposition 1.2.5. Using the notation

Dxj =
1

2iπ

∂

∂xj
, Dα

x =
n∏
j=1

Dαj
xj

with α = (α1, . . . , αn) ∈ Nn, (1.2.8)

we have, for u ∈ S (Rn)

D̂α
xu(ξ) = ξαû(ξ), (Dα

ξ û)(ξ) = (−1)|α|x̂αu(x)(ξ) (1.2.9)

Proof. We have for u ∈ S (Rn), û(ξ) =
∫
e−2iπx·ξu(x)dx and thus

(Dα
ξ û)(ξ) = (−1)|α|

∫
e−2iπx·ξxαu(x)dx,

ξαû(ξ) =

∫
(−2iπ)−|α|∂αx

(
e−2iπx·ξ)u(x)dx =

∫
e−2iπx·ξ(2iπ)−|α|(∂αxu)(x)dx,

proving both formulas.

N.B. The normalization factor 1
2iπ

leads to a simplification in Formula (1.2.9), but

the most important aspect of these formulas is certainly that the Fourier transfor-

mation exchanges the operation of derivation with the operation of multiplication.

For instance with

P (D) =
∑
|α|≤m

aαD
α
x ,

we have for u ∈ S (Rn), P̂ u(ξ) =
∑
|α|≤m aαξ

αû(ξ) = P (ξ)û(ξ), and thus

(Pu)(x) =

∫
Rn
e2iπx·ξP (ξ)û(ξ)dξ. (1.2.10)

Proposition 1.2.6. Let φ, ψ be functions in S (Rn). Then the convolution φ ∗ ψ
belongs to the Schwartz space and the mapping

S (Rn)×S (Rn) 3 (φ, ψ) 7→ φ ∗ ψ ∈ S (Rn)

is continuous. Moreover we have

φ̂ ∗ ψ = φ̂ψ̂. (1.2.11)

Proof. The mapping (x, y) 7→ F (x, y) = φ(x− y)ψ(y) belongs to S (R2n) since x, y

derivatives of the smooth function F are linear combinations of products

(∂αφ)(x− y)(∂βψ)(y)

and moreover

(1 + |x|+ |y|)N |(∂αφ)(x− y)(∂βψ)(y)|
≤ (1 + |x− y|)N |(∂αφ)(x− y)|(1 + 2|y|)N |(∂βψ)(y)| ≤ p(φ)q(ψ),
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where p, q are semi-norms on S (Rn). This proves that the bilinear mapping (φ, ψ) 7→
F (φ, ψ) is continuous from S (Rn) × S (Rn) into S (R2n). We have now directly

∂αx (φ ∗ ψ) = (∂αxφ) ∗ ψ and

(1 + |x|)N |∂αx (φ ∗ ψ)| ≤
∫
|F (∂αφ, ψ)(x, y)|(1 + |x|)Ndy

≤
∫
|F (∂αφ, ψ)(x, y)|(1 + |x|)N(1 + |y|)n+1︸ ︷︷ ︸

≤p(F )

(1 + |y|)−n−1dy,

where p is a semi-norm of F (thus bounded by a product of semi-norms of φ and

ψ), proving the continuity property. Also we obtain from Fubini’s Theorem

(φ̂ ∗ ψ)(ξ) =

∫∫
e−2iπ(x−y)·ξe−2iπy·ξφ(x− y)ψ(y)dydx = φ̂(ξ)ψ̂(ξ),

completing the proof of the proposition.

The Fourier transformation on S ′(Rn)

Definition 1.2.7. Let n be an integer ≥ 1. We define the space S ′(Rn) as the topo-

logical dual of the Fréchet space S (Rn): this space is called the space of tempered

distributions on Rn.

We note that the mapping

S (Rn) 3 φ 7→ ∂φ

∂xj
∈ S (Rn),

is continuous since for all k ∈ N, pk(∂φ/∂xj) ≤ pk+1(φ), where the semi-norms pk
are defined in (1.2.3). This property allows us to define by duality the derivative of

a tempered distribution.

Definition 1.2.8. Let u ∈ S ′(Rn). We define ∂u/∂xj as an element of S ′(Rn) by

〈 ∂u
∂xj

, φ〉S ′,S = −〈u, ∂φ
∂xj
〉S ′,S . (1.2.12)

The mapping u 7→ ∂u/∂xj is a well-defined endomorphism of S ′(Rn) since the

estimates

∀φ ∈ S (Rn), |〈 ∂u
∂xj

, φ〉| ≤ Cupku(
∂φ

∂xj
) ≤ Cupku+1(φ),

ensure the continuity on S (Rn) of the linear form ∂u/∂xj.

Definition 1.2.9. Let u ∈ S ′(Rn) and let P be a polynomial in n variables with

complex coefficients. We define the product Pu as an element of S ′(Rn) by

〈Pu, φ〉S ′,S = 〈u, Pφ〉S ′,S . (1.2.13)



1.2. FOURIER TRANSFORM OF TEMPERED DISTRIBUTIONS 11

The mapping u 7→ Pu is a well-defined endomorphism of S ′(Rn) since the

estimates

∀φ ∈ S (Rn), |〈Pu, φ〉| ≤ Cupku(Pφ) ≤ Cupku+D(φ),

where D is the degree of P , ensure the continuity on S (Rn) of the linear form Pu.

Lemma 1.2.10. Let Ω be an open subset of Rn, f ∈ L1
loc(Ω) such that, for all

ϕ ∈ C∞c (Ω),
∫
f(x)ϕ(x)dx = 0. Then we have f = 0.

Proof. Let K be a compact subset of Ω and let χ ∈ C∞c (Ω) equal to 1 on a neighbor-

hood of K (see e.g. Exercise 2.8.7 in [11]). With ρ ∈ C∞c (Rn) such that
∫
ρ(t)dt = 1,

and for ε > 0, ρε(x) = ρ(x/ε)ε−n, we get that

lim
ε→0+

ρε ∗ (χf) = χf in L1(Rn),

since for w ∈ L1(Rn),

‖ρε ∗ w − w‖L1(Rn) =

∫
Rn

∣∣∣∣∫
Rn
ρε(y)

(
w(x− y)− w(x)

)
dy

∣∣∣∣ dx
≤
∫∫
|ρ(z)||w(x− εz)− w(x)|dzdx =

∫
|ρ(z)|‖τεzw − w‖L1(Rn)dz.

We know2 that limh→0 ‖τhw − w‖L1(Rn) = 0 and ‖τhw − w‖L1(Rn) ≤ 2‖w‖L1(Rn) so

that Lebesgue’s dominated convergence theorem provides

lim
ε→0
‖ρε ∗ w − w‖L1(Rn) = 0.

We have
(
ρε ∗ (χf)

)
(x) =

∫
f(y)χ(y)ρ

(
(x− y)ε−1

)
ε−n︸ ︷︷ ︸

=ϕx(y)

dy, with suppϕx ⊂ suppχ,

ϕx ∈ C∞c (Ω), and from the assumption of the lemma, we obtain
(
ρε ∗ (χf)

)
(x) = 0

for all x, implying χf = 0 from the convergence result and thus f = 0, a.e. on K;

the conclusion of the lemma follows since Ω is a countable union of compact sets

(see e.g. Exercise 2.8.10 in [11]).

Definition 1.2.11 (support of a distribution). For u ∈ S ′(Rn), we define the

support of u and we note suppu the closed subset of Rn defined by

(suppu)c = {x ∈ Rn,∃V open ∈ Vx, u|V = 0}, (1.2.14)

where Vx stands for the set of neighborhoods of x and u|V = 0 means that for all

φ ∈ C∞c (V ), 〈u, φ〉 = 0.

2For φ ∈ C0
c (Rn), we have ‖τhw−w‖L1(Rn) ≤ ‖τhw−τhφ‖L1(Rn)+‖τhφ−φ‖L1(Rn)+‖φ−w‖L1(Rn),

so that for |h| ≤ 1,

‖τhw − w‖L1(Rn) ≤ 2‖φ− w‖L1(Rn) +

∫
|φ(x− h)− φ(x)|dx

≤ 2‖φ− w‖L1(Rn) + | suppφ+ Bn| sup |φ(x− h)− φ(x)|

which implies that lim suph→0 ‖τhw − w‖ ≤ 2 infφ∈C0
c (Rn) ‖φ− w‖L1(Rn) = 0.
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Proposition 1.2.12.

(1) We have S ′(Rn) ⊃ ∪1≤p≤+∞L
p(Rn), with a continuous injection of each Lp(Rn)

into S ′(Rn). As a consequence S ′(Rn) contains as well all the derivatives in the

sense (1.2.12) of all the functions in some Lp(Rn).

(2) For u ∈ C1(Rn) such that(
|u(x)|+ |du(x)|

)
(1 + |x|)−N ∈ L1(Rn), (1.2.15)

for some non-negative N , the derivative in the sense (1.2.12) coincides with the

ordinary derivative.

Proof. (1) For u ∈ Lp(Rn) and φ ∈ S (Rn), we can define

〈u, φ〉S ′,S =

∫
Rn
u(x)φ(x)dx, (1.2.16)

which is a continuous linear form on S (Rn):

|〈u, φ〉S ′,S | ≤ ‖u‖Lp(Rn)‖φ‖Lp′ (Rn),

‖φ‖Lp′ (Rn) ≤ sup
x∈Rn

(
(1 + |x|)

n+1
p′ |φ(x)|

)
Cn,p ≤ Cn,ppk(φ), for k ≥ kn,p =

n+ 1

p′
,

with pk given by (1.2.3) (when p = 1, we can take k = 0). We indeed have a

continuous injection of Lp(Rn) into S ′(Rn): in the first place the mapping described

by (1.2.16) is well-defined and continuous from the estimate

|〈u, φ〉| ≤ ‖u‖LpCn,ppkn,p(φ).

Moreover, this mapping is linear and injective from Lemma 1.2.10.

(2) We have for φ ∈ S (Rn), χ0 ∈ C∞c (Rn), χ0 = 1 near the origin,

A = 〈 ∂u
∂xj

, φ〉S ′,S = −〈u, ∂φ
∂xj
〉S ′,S = −

∫
Rn
u(x)

∂φ

∂xj
(x)dx

so that, using Lebesgue’s dominated convergence theorem, we find

A = − lim
ε→0+

∫
Rn
u(x)

∂φ

∂xj
(x)χ0(εx)dx.

Performing an integration by parts on C1 functions with compact support, we get

A = lim
ε→0+

{∫
Rn

(∂ju)(x)φ(x)χ0(εx)dx+ ε

∫
Rn
u(x)φ(x)(∂jχ0)(εx)dx

}
,

with ∂ju standing for the ordinary derivative. We have also∫
Rn
|u(x)φ(x)(∂jχ0)(εx)|dx ≤ ‖∂jχ0)‖L∞(Rn)

∫
|u(x)|(1 + |x|)−Ndx pN(φ) < +∞,

so that

〈 ∂u
∂xj

, φ〉S ′,S = lim
ε→0+

∫
Rn

(∂ju)(x)φ(x)χ0(εx)dx.
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Since the lhs is a continuous linear form on S (Rn) so is the rhs. On the other hand

for φ ∈ C∞c (Rn), the rhs is
∫
Rn(∂ju)(x)φ(x)dx. Since C∞c (Rn) is dense in S (Rn) (cf.

Exercise 1.5.3), we find that

〈 ∂u
∂xj

, φ〉S ′,S =

∫
Rn

(∂ju)(x)φ(x)dx,

since the mapping φ 7→
∫
Rn(∂ju)(x)φ(x)dx belongs to S ′(Rn), thanks to the as-

sumption on du in (1.2.15). This proves that ∂u
∂xj

= ∂ju.

The Fourier transformation can be extended to S ′(Rn). We start with noticing

that for T, φ in the Schwartz class we have, using Fubini Theorem,∫
T̂ (ξ)φ(ξ)dξ =

∫∫
T (x)φ(ξ)e−2iπx·ξdxdξ =

∫
T (x)φ̂(x)dx,

and we can use the latter formula as a definition.

Definition 1.2.13. Let T be a tempered distribution ; the Fourier transform T̂ of

T is the tempered distribution defined by the formula

〈T̂ , ϕ〉S ′,S = 〈T, ϕ̂〉S ′,S . (1.2.17)

The linear form T̂ is obviously a tempered distribution since the Fourier transforma-

tion is continuous on S . Thanks to Lemma 1.2.10, if T ∈ S , the present definition

of T̂ and (1.1.1) coincide.

This definition gives that, with δ0 standing as the Dirac mass at 0, 〈δ0, φ〉S ′,S = φ(0)

(obviously a tempered distribution), we have

δ̂0 = 1, (1.2.18)

since 〈δ̂0, ϕ〉 = 〈δ0, ϕ̂〉 = ϕ̂(0) =
∫
ϕ(x)dx = 〈1, ϕ〉.

Theorem 1.2.14. The Fourier transformation is an isomorphism of S ′(Rn). Let

T be a tempered distribution. Then we have3

T =
ˇ̂
T̂,

ˇ̂
T = ˆ̌T . (1.2.19)

With obvious notations, we have the following extensions of (1.2.9),

D̂α
xT (ξ) = ξαT̂ (ξ), (Dα

ξ T̂ )(ξ) = (−1)|α|x̂αT (x)(ξ). (1.2.20)

Proof. We have for T ∈ S ′

〈
ˇ̂
T̂, ϕ〉S ′,S = 〈 ˆ̂T , ϕ̌〉S ′,S = 〈T̂ , ˆ̌ϕ〉S ′,S = 〈T, ˆ̌̂ϕ〉S ′,S = 〈T, ϕ〉S ′,S ,

3We define Ť as the distribution given by 〈Ť , ϕ〉 = 〈T, ϕ̌〉 and if T ∈ S ′, Ť is also a tempered
distribution since ϕ 7→ ϕ̌ is an involutive isomorphism of S .
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where the last equality is due to the fact that ϕ 7→ ϕ̌ commutes4 with the Fourier

transform and (1.2.6) means
ˇ̂
ϕ̂ = ϕ,

a formula also proven true on S ′ by the previous line of equality. Formula (1.2.9)

is true as well for T ∈ S ′ since, with ϕ ∈ S and ϕα(ξ) = ξαϕ(ξ), we have

〈D̂αT , ϕ〉S ′,S = 〈T, (−1)|α|Dαϕ̂〉S ′,S = 〈T, ϕ̂α〉S ′,S = 〈T̂ , ϕα〉S ′,S ,

and the other part is proven the same way.

The Fourier transformation on L1(Rn)

Theorem 1.2.15. The Fourier transformation is linear continuous from L1(Rn)

into L∞(Rn) and for u ∈ L1(Rn), we have

û(ξ) =

∫
e−2iπx·ξu(x)dx, ‖û‖L∞(Rn) ≤ ‖u‖L1(Rn). (1.2.21)

Proof. Formula (1.1.1) can be used to define directly the Fourier transform of a

function in L1(Rn) and this gives a L∞(Rn) function which coincides with the Fourier

transform: for a test function ϕ ∈ S (Rn), and u ∈ L1(Rn), we have by the definition

(1.2.17) above and Fubini theorem

〈û, ϕ〉S ′,S =

∫
u(x)ϕ̂(x)dx =

∫∫
u(x)ϕ(ξ)e−2iπx·ξdxdξ =

∫
ũ(ξ)ϕ(ξ)dξ

with ũ(ξ) =
∫
e−2iπx·ξu(x)dx which is thus the Fourier transform of u.

The Fourier transformation on L2(Rn)

Theorem 1.2.16 (Plancherel formula).

The Fourier transformation can be extended to a unitary operator of L2(Rn), i.e.

there exists a unique bounded linear operator F : L2(Rn) −→ L2(Rn), such that for

u ∈ S (Rn), Fu = û and we have F ∗F = FF ∗ = IdL2(Rn). Moreover

F ∗ = CF = FC, F 2C = IdL2(Rn), (1.2.22)

where C is the involutive isomorphism of L2(Rn) defined by (Cu)(x) = u(−x). This

gives the Plancherel formula: for u, v ∈ L2(Rn),∫
Rn
û(ξ)v̂(ξ)dξ =

∫
u(x)v(x)dx. (1.2.23)

Proof. For test functions ϕ, ψ ∈ S (Rn), using Fubini theorem and (1.2.6), we get5

(ψ̂, ϕ̂)L2(Rn) =

∫
ψ̂(ξ)ϕ̂(ξ)dξ =

∫∫
ψ̂(ξ)e2iπx·ξϕ(x)dxdξ = (ψ, ϕ)L2(Rn).

4If ϕ ∈ S , we have ̂̌ϕ(ξ) =
∫
e−2iπx·ξϕ(−x)dx =

∫
e2iπx·ξϕ(x)dx = ϕ̂(−ξ) = ˇ̂ϕ(ξ).

5We have to pay attention to the fact that the scalar product (u, v)L2 in the complex Hilbert
space L2(Rn) is linear with respect to u and antilinear with respect to v: for λ, µ ∈ C, (λu, µv)L2 =
λµ̄(u, v)L2 .
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Next, the density of S in L2 shows that there is a unique continuous extension

F of the Fourier transform to L2 and that extension is an isometric operator (i.e.

satisfying for all u ∈ L2(Rn), ‖Fu‖L2 = ‖u‖L2 , i.e. F ∗F = IdL2). We note that the

operator C defined by Cu = ǔ is an involutive isomorphism of L2(Rn) and that for

u ∈ S (Rn),

CF 2u = u = FCFu = F 2Cu.

By the density of S (Rn) in L2(Rn), the bounded operators

CF 2, IdL2(Rn), FCF, F
2C,

are all equal. On the other hand for u, ϕ ∈ S (Rn), we have

(F ∗u, ϕ)L2 = (u, Fϕ)L2 =

∫
u(x)ϕ̂(x)dx

=

∫∫
u(x)ϕ̄(ξ)e2iπx·ξdxdξ = (CFu, ϕ)L2 ,

so that F ∗u = CFu for all u ∈ S and by continuity F ∗ = CF as bounded operators

on L2(Rn), thus FF ∗ = FCF = Id. The proof is complete.

Some standard examples of Fourier transform

Let us consider the Heaviside function defined on R by H(x) = 1 for x > 0, H(x) = 0

for x ≤ 0 ; as a bounded measurable function, it is a tempered distribution, so that

we can compute its Fourier transform. With the notation of this section, we have,

with δ0 the Dirac mass at 0, Ȟ(x) = H(−x),

Ĥ + ̂̌H = 1̂ = δ0, Ĥ − ̂̌H = ŝign,
1

iπ
=

1

2iπ
2δ̂0(ξ) = D̂ sign(ξ) = ξŝignξ.

We note that R 7→ ln |x| belongs to S ′(R) and6 we define the so-called principal

value of 1/x on R by

pv
(1

x

)
=

d

dx
(ln |x|), (1.2.24)

so that, 〈pv
1

x
, φ〉 = −

∫
φ′(x) ln |x|dx = − lim

ε→0+

∫
|x|≥ε

φ′(x) ln |x|dx

= lim
ε→0+

(∫
|x|≥ε

φ(x)
1

x
dx+

(
φ(ε)− φ(−ε)

)
ln ε︸ ︷︷ ︸

→0

)
= lim

ε→0+

∫
|x|≥ε

φ(x)
1

x
dx. (1.2.25)

This entails ξ
(
ŝignξ − 1

iπ
pv(1/ξ)

)
= 0 and from Remark 1.2.17 below, we get

ŝignξ − 1

iπ
pv(1/ξ) = cδ0,

with c = 0 since the lhs is odd7.
6For φ ∈ S (R), we have 〈ln |x|, φ(x)〉S ′(R),S (R) =

∫
R φ(x) ln |x|dx.

7A distribution T on Rn is said to be odd (resp. even) when Ť = −T (resp. T ).
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Remark 1.2.17. Let T ∈ S ′(R) such that xT = 0. Then we have T = cδ0. Let

φ ∈ S (R) and let χ0 ∈ C∞c (Rn) such that χ0(0) = 1. We have

φ(x) = χ0(x)φ(x) + (1− χ0(x))φ(x).

Applying Taylor’s formula with integral remainder, we define the smooth function

ψ by

ψ(x) =
(1− χ0(x))

x
φ(x)

and, applying Leibniz’ formula, we see also that ψ belongs to S (R). As a result

〈T, φ〉S ′(R),S (R) = 〈T, χ0φ〉 = 〈T, χ0

(
φ− φ(0)

)
〉+ φ(0)〈T, χ0〉 = φ(0)〈T, χ0〉,

since the function x 7→ χ0(x)
(
φ(x) − φ(0)

)
/x belongs to C∞c (R). As a result T =

〈T, χ0〉δ0.

We obtain

ŝign(ξ) =
1

iπ
pv

1

ξ
, (1.2.26)

̂
pv(

1

πx
) = −i sign ξ, (1.2.27)

Ĥ =
δ0

2
+

1

2iπ
pv(

1

ξ
) =

1

(x− i0)

1

2iπ
. (1.2.28)

Let us consider now for 0 < α < n the L1
loc(Rn) function uα(x) = |x|α−n (|x| is

the Euclidean norm of x); since uα is also bounded for |x| ≥ 1, it is a tempered

distribution. Let us calculate its Fourier transform vα. Since uα is homogeneous

of degree α − n, we get (Exercise 1.5.9) that vα is a homogeneous distribution of

degree −α. On the other hand, if S ∈ O(Rn) (the orthogonal group), we have in

the distribution sense8 since uα is a radial function, i.e. such that

vα(Sξ) = vα(ξ). (1.2.29)

The distribution |ξ|αvα(ξ) is homogeneous of degree 0 on Rn\{0} and is also “radial”,

i.e. satisfies (1.2.29). Moreover on Rn\{0}, the distribution vα is a C1 function which

coincides with9∫
e−2iπx·ξχ0(x)|x|α−ndx+ |ξ|−2N

∫
e−2iπx·ξ|Dx|2N

(
χ1(x)|x|α−n

)
dx,

where χ0 ∈ C∞c (Rn) is 1 near 0 and χ1 = 1 − χ0, N ∈ N, α + 1 < 2N . As a result

|ξ|αvα(ξ) = cα on Rn\{0} and the distribution on Rn (note that α < n)

T = vα(ξ)− cα|ξ|−α

8For M ∈ Gl(n,R), T ∈ S ′(Rn), we define 〈T (Mx), φ(x)〉 = 〈T (y), φ(M−1y)〉|detM |−1.
9 We have ûα = χ̂0uα + χ̂1uα and for φ supported in Rn\{0} we get,

〈χ̂1uα, φ〉 = 〈χ̂1uα|ξ|2N , φ(ξ)|ξ|−2N 〉 = 〈 ̂|Dx|2Nχ1uα, φ(ξ)|ξ|−2N 〉.
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is supported in {0} and homogeneous (on Rn) with degree −α. From Exercises

1.5.7(1), 1.5.5, 1.5.8, the condition 0 < α < n gives vα = cα|ξ|−α. To find cα, we

compute ∫
Rn
|x|α−ne−πx2dx = cα

∫
Rn
|ξ|−αe−πξ2dξ

which yields

2−1Γ(
α

2
)π−

α
2 =

∫ +∞

0

rα−1e−πr
2

dr = cα

∫ +∞

0

rn−α−1e−πr
2

dr

= cα2−1Γ(
n− α

2
)π−(n−α

2
).

We have proven the following lemma.

Lemma 1.2.18. Let n ∈ N∗ and α ∈ (0, n). The function uα(x) = |x|α−n is L1
loc(Rn)

and also a temperate distribution on Rn. Its Fourier transform vα is also L1
loc(Rn)

and given by

vα(ξ) = |ξ|−απ
n
2
−α Γ(α

2
)

Γ(n−α
2

)
.

Fourier transform of Gaussian functions

Proposition 1.2.19. Let A be a symmetric nonsingular n×n matrix with complex

entries such that ReA ≥ 0. We define the Gaussian function vA on Rn by vA(x) =

e−π〈Ax,x〉. The Fourier transform of vA is

v̂A(ξ) = (detA)−1/2e−π〈A
−1ξ,ξ〉, (1.2.30)

where (detA)−1/2 is defined according to Formula (1.6.8). In particular, when A =

−iB with a symmetric real nonsingular matrix B, we get

Fourier(eiπ〈Bx,x〉)(ξ) = v̂−iB(ξ) = | detB|−1/2ei
π
4

signBe−iπ〈B
−1ξ,ξ〉. (1.2.31)

Proof. We use the notations of Section 1.6 (in the subsection Logarithm of a non-

singular symmetric matrix). Let us define Υ∗+ as the set of symmetric n×n complex

matrices with a positive definite real part (naturally these matrices are nonsingular

since Ax = 0 for x ∈ Cn implies 0 = Re〈Ax, x̄〉 = 〈(ReA)x, x̄〉, so that Υ∗+ ⊂ Υ+).

Let us assume first that A ∈ Υ∗+; then the function vA is in the Schwartz class

(and so is its Fourier transform). The set Υ∗+ is an open convex subset of Cn(n+1)/2

and the function Υ∗+ 3 A 7→ v̂A(ξ) is holomorphic and given on Υ∗+ ∩ Rn(n+1)/2 by

(1.2.30). On the other hand the function

Υ∗+ 3 A 7→ e−
1
2

trace LogAe−π〈A
−1ξ,ξ〉,

is also holomorphic and coincides with previous one on Rn(n+1)/2. By analytic con-

tinuation this proves (1.2.30) for A ∈ Υ∗+.
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If A ∈ Υ+ and ϕ ∈ S (Rn), we have 〈v̂A, ϕ〉S ′,S =
∫
vA(x)ϕ̂(x)dx so that

Υ+ 3 A 7→ 〈v̂A, ϕ〉 is continuous and thus (note that the mapping A 7→ A−1 is an

homeomorphism of Υ+), using the previous result on Υ∗+,

〈v̂A, ϕ〉 = lim
ε→0+
〈v̂A+εI , ϕ〉 = lim

ε→0+

∫
e−

1
2

trace Log(A+εI)e−π〈(A+εI)−1ξ,ξ〉ϕ(ξ)dξ,

and by continuity of Log on Υ+ and dominated convergence,

〈v̂A, ϕ〉 =

∫
e−

1
2

trace LogAe−π〈A
−1ξ,ξ〉ϕ(ξ)dξ,

which is the sought result.

Multipliers of S ′(Rn)

Definition 1.2.20. The space OM(Rn) of multipliers of S (Rn) is the subspace of

the functions f ∈ C∞(Rn) such that,

∀α ∈ Nn,∃Cα > 0,∃Nα ∈ N, ∀x ∈ Rn, |(∂αx f)(x)| ≤ Cα(1 + |x|)Nα . (1.2.32)

It is easy to check that, for f ∈ OM(Rn), the operator u 7→ fu is continuous

from S (Rn) into itself, and by transposition from S ′(Rn) into itself: we define for

T ∈ S ′(Rn), f ∈ OM(Rn),

〈fT, ϕ〉S ′,S = 〈T, fϕ〉S ′,S ,

and if p is a semi-norm of S , the continuity on S of the multiplication by f implies

that there exists a semi-norm q on S such that for all ϕ ∈ S , p(fϕ) ≤ q(ϕ). A

typical example of a function in OM(Rn) is eiP (x) where P is a real-valued polynomial:

in fact the derivatives of eiP (x) are of type Q(x)eiP (x) where Q is a polynomial so

that (1.2.32) holds.

Definition 1.2.21. Let T, S be tempered distributions on Rn such that T̂ belongs

to OM(Rn). We define the convolution T ∗ S by

T̂ ∗ S = T̂ Ŝ. (1.2.33)

Note that this definition makes sense since T̂ is a multiplier so that T̂ Ŝ is indeed

a tempered distribution whose inverse Fourier transform is meaningful. We have

〈T ∗ S, φ〉S ′(Rn),S (Rn) = 〈T̂ ∗ S, ˆ̌φ〉S ′(Rn),S (Rn) = 〈Ŝ, T̂ ˆ̌φ〉S ′(Rn),S (Rn).

Proposition 1.2.22. Let T be a distribution on Rn such that T is compactly sup-

ported. Then T̂ is a multiplier which can be extended to an entire function on Cn

such that if suppT ⊂ B̄(0, R0),

∃C0, N0 ≥ 0,∀ζ ∈ Cn, |T̂ (ζ)| ≤ C0(1 + |ζ|)N0e2πR0| Im ζ|. (1.2.34)

In particular, for S ∈ S ′(Rn), we may define according to (1.2.33) the convolution

T ∗ S.
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Proof. Let us first check the case R0 = 0: then the distribution T is supported at {0}
and from Exercise 1.5.5 is a linear combination of derivatives of the Dirac mass at

0. Formulas (1.2.18), (1.2.20) imply that T̂ is a polynomial, so that the conclusions

of Proposition 1.2.22 hold in that case.

Let us assume that R0 > 0 and let us consider a function χ is equal to 1 in

neighborhood of suppT (this implies χT = T ) and

〈T̂ , φ〉S ′,S = 〈χ̂T , φ〉S ′,S = 〈T, χφ̂〉S ′,S . (1.2.35)

On the other hand, defining for ζ ∈ Cn (with x · ζ =
∑
xjζj for x ∈ Rn),

F (ζ) = 〈T (x), χ(x)e−2iπx·ζ〉S ′,S , (1.2.36)

we see that F is an entire function (i.e. holomorphic on Cn): calculating

F (ζ + h)− F (ζ) = 〈T (x), χ(x)e−2iπx·ζ(e−2iπx·h − 1)〉
= 〈T (x), χ(x)e−2iπx·ζ(−2iπx · h)〉

+ 〈T (x), χ(x)e−2iπx·ζ
∫ 1

0

(1− θ)e−2iθπx·hdθ(−2iπx · h)2〉,

and applying to the last term the continuity properties of the linear form T , we

obtain that the complex differential of F is∑
1≤j≤n

〈T (x), χ(x)e−2iπx·ζ(−2iπxj)〉dζj.

Moreover the derivatives of (1.2.36) are

F (k)(ζ) = 〈T (x), χ(x)e−2iπx·ζ(−2iπx)k〉S ′,S . (1.2.37)

To evaluate the semi-norms of x 7→ χ(x)e−2iπx·ζ(−2iπx)k in the Schwartz space, we

have to deal with a finite sum of products of type∣∣xγ(∂αχ)(x)e−2iπx·ζ(−2iπζ)β
∣∣ ≤ (1 + |ζ|)|β| sup

x∈Rn
|xγ(∂αχ)(x)e2π|x|| Im ζ||.

We may now choose a function χ0 equal to 1 on B(0, 1), supported in B(0, R0+2ε
R0+ε

)

such that ‖∂βχ0‖L∞ ≤ c(β)ε−|β| with ε = R0

1+|ζ| . We find with

χ(x) = χ0(x/(R0 + ε)) (which is 1 on a neighborhood of B(0, R0)),

sup
x∈Rn
|xγ(∂αχ)(x)e2π|x|| Im ζ|| ≤ (R0 + 2ε)|γ| sup

y∈Rn
|(∂αχ0)(y)e2π(R0+2ε)| Im ζ||

≤ (R0 + 2ε)|γ|e2π(R0+2ε)| Im ζ|c(α)ε−|α|

= (R0 + 2
R0

1 + |ζ|
)|γ|e2π(R0+2

R0
1+|ζ| )| Im ζ|c(α)(

1 + |ζ|
R0

)|α|

≤ (3R0)|γ|e2πR0| Im ζ|e4πR0c(α)R
−|α|
0 (1 + |ζ|)|α|
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yielding

|F (k)(ζ)| ≤ e2πR0| Im ζ|Ck(1 + |ζ|)Nk ,
which implies that Rn 3 ξ 7→ F (ξ) is indeed a multiplier. We have also

〈T, χφ̂〉S ′,S = 〈T (x), χ(x)

∫
Rn
φ(ξ)e−2iπxξdξ〉S ′,S .

Since the function F is entire we have for φ ∈ C∞c (Rn), using (1.2.37) and Fubini

Theorem on `1(N)× L1(Rn),∫
Rn
F (ξ)φ(ξ)dξ =

∑
k≥0

〈T (x), χ(x)(−2iπx)k〉
∫

suppφ

ξk

k!
φ(ξ)dξ. (1.2.38)

On the other hand, since φ̂ is also entire (from the discussion on F or directly from

the integral formula for the Fourier transform of φ ∈ C∞c (Rn)), we have

〈T, χφ̂〉 = 〈T (x), χ(x)
∑
k≥0

(φ̂)(k)(0)xk/k!〉

= 〈T (x), χ(x) lim
N→+∞

∑
0≤k≤N

(φ̂)(k)(0)xk/k!︸ ︷︷ ︸
convergence in C∞c (Rn)

〉

= lim
N→+∞

∑
0≤k≤N

〈T (x), χ(x)xk/k!〉
∫
Rn
φ(ξ)(−2iπξ)kdξ.

Thanks to (1.2.38), that quantity is equal to
∫
Rn F (ξ)φ(ξ)dξ. As a result, the tem-

pered distributions T̂ and F coincide on C∞c (Rn), which is dense in S (Rn) (see

Exercise 1.5.3) and so T̂ = F , concluding the proof.

1.3 The Poisson summation formula

Wave packets

We define for x ∈ Rn, (y, η) ∈ Rn × Rn

ϕy,η(x) = 2n/4e−π(x−y)2e2iπ(x−y)·η = 2n/4e−π(x−y−iη)2e−πη
2

, (1.3.1)

where for ζ = (ζ1, . . . , ζn) ∈ Cn, ζ2 =
∑

1≤j≤n

ζ2
j . (1.3.2)

We note that the function ϕy,η is in S (Rn) and with L2 norm 1. In fact, ϕy,η appears

as a phase translation of a normalized Gaussian. The following lemma introduces

the wave packets transform as a Gabor wavelet.

Lemma 1.3.1. Let u be a function in the Schwartz class S (Rn). We define

(Wu)(y, η) = (u, ϕy,η)L2(Rn) = 2n/4
∫
u(x)e−π(x−y)2e−2iπ(x−y)·ηdx (1.3.3)

= 2n/4
∫
u(x)e−π(y−iη−x)2dxe−πη

2

. (1.3.4)
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For u ∈ L2(Rn), the function Tu defined by

(Tu)(y + iη) = eπη
2

Wu(y,−η) = 2n/4
∫
u(x)e−π(y+iη−x)2dx (1.3.5)

is an entire function. The mapping u 7→ Wu is continuous from S (Rn) to S (R2n)

and isometric from L2(Rn) to L2(R2n). Moreover, we have the reconstruction for-

mula

u(x) =

∫∫
Rn×Rn

(Wu)(y, η)ϕy,η(x)dydη. (1.3.6)

Proof. For u in S (Rn), we have

(Wu)(y, η) = e2iπyηΩ̂
1

(η, y)

where Ω̂
1

is the Fourier transform with respect to the first variable of the S (R2n)

function Ω(x, y) = u(x)e−π(x−y)22n/4. Thus the function Wu belongs to S (R2n). It

makes sense to compute

2−n/2(Wu,Wu)L2(R2n) =

lim
ε→0+

∫
u(x1)u(x2)e−π[(x1−y)2+(x2−y)2+2i(x1−x2)η+ε2η2]dydηdx1dx2. (1.3.7)

Now the last integral on R4n converges absolutely and we can use the Fubini theorem.

Integrating with respect to η involves the Fourier transform of a Gaussian function

and we get ε−ne−πε
−2(x1−x2)2 . Since

2(x1 − y)2 + 2(x2 − y)2 = (x1 + x2 − 2y)2 + (x1 − x2)2,

integrating with respect to y yields a factor 2−n/2. We are left with

(Wu,Wu)L2(R2n)

= lim
ε→0+

∫
u(x1) u(x2)e−π(x1−x2)2/2ε−ne−πε

−2(x1−x2)2dx1dx2. (1.3.8)

Changing the variables, the integral is

lim
ε→0+

∫
u(s+ εt/2) u(s− εt/2)e−πε

2t2/2e−πt
2

dtds = ‖u‖2
L2(Rn)

by Lebesgue’s dominated convergence theorem: the triangle inequality and the es-

timate |u(x)| ≤ C(1 + |x|)−n−1 imply, with v = u/C,

|v(s+ εt/2) v(s− εt/2)| ≤ (1 + |s+ εt/2|)−n−1(1 + |s+ εt/2|)−n−1

≤ (1 + |s+ εt/2|+ |s− εt/2|)−n−1

≤ (1 + 2|s|)−n−1.

Eventually, this proves that for u ∈ S (Rn),

‖Wu‖2
L2(R2n) = ‖u‖2

L2(Rn) (1.3.9)
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so that by density of S (Rn) in L2(Rn),

W : L2(Rn)→ L2(R2n) with W ∗W = idL2(Rn). (1.3.10)

Noticing first that
∫∫

Wu(y, η)ϕy,ηdydη belongs to L2(Rn) (with a norm smaller

than ‖Wu‖L1(R2n)) and applying Fubini’s theorem, we get from the polarization of

(1.3.9) for u, v ∈ S (Rn),

(u, v)L2(Rn) = (Wu,Wv)L2(R2n) =

∫∫
Wu(y, η)(ϕy,η, v)L2(Rn)dydη

= (

∫∫
Wu(y, η)ϕy,ηdydη, v)L2(Rn),

yielding u =
∫∫

Wu(y, η)ϕy,ηdydη, which is the result of the lemma.

Poisson’s formula

The following lemma is in fact the Poisson summation formula for Gaussian functions

in one dimension.

Lemma 1.3.2. For all complex numbers z, the following series are absolutely con-

verging and ∑
m∈Z

e−π(z+m)2 =
∑
m∈Z

e−πm
2

e2iπmz. (1.3.11)

Proof. We set ω(z) =
∑

m∈Z e
−π(z+m)2 . The function ω is entire and 1-periodic since

for all m ∈ Z, z 7→ e−π(z+m)2 is entire and for R > 0,

sup
|z|≤R

|e−π(z+m)2| ≤ sup
|z|≤R

|e−πz2|e−πm2

e2π|m|R ∈ `1(Z).

Consequently, for z ∈ R, we obtain, expanding ω in Fourier series10,

ω(z) =
∑
k∈Z

e2iπkz

∫ 1

0

ω(x)e−2iπkxdx.

We also check, using Fubini’s theorem on L1(0, 1)× `1(Z)∫ 1

0

ω(x)e−2iπkxdx =
∑
m∈Z

∫ 1

0

e−π(x+m)2e−2iπkxdx

=
∑
m∈Z

∫ m+1

m

e−πt
2

e−2iπktdt

=

∫
R
e−πt

2

e−2iπkt = e−πk
2

.

10 Note that we use this expansion only for a C∞ 1-periodic function. The proof is simple and

requires only to compute 1 + 2 Re
∑

1≤k≤N e
2iπkx = sinπ(2N+1)x

sinπx . Then one has to show that for a
smooth 1-periodic function ω such that ω(0) = 0,

lim
λ→+∞

∫ 1

0

sinλx

sinπx
ω(x)dx = 0,

which is obvious since for a smooth ν (here we take ν(x) = ω(x)/ sinπx), |
∫ 1

0
ν(x)sin(λx)dx| =

O(λ−1) by integration by parts.
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So the lemma is proven for real z and since both sides are entire functions, we

conclude by analytic continuation.

It is now straightforward to get the n-th dimensional version of the previous

lemma: for all z ∈ Cn, using the notation (1.3.2), we have∑
m∈Zn

e−π(z+m)2 =
∑
m∈Zn

e−πm
2

e2iπm·z. (1.3.12)

Theorem 1.3.3 (Poisson summation formula). Let n be a positive integer and let

u be a function in S (Rn). Then we have∑
k∈Zn

u(k) =
∑
k∈Zn

û(k), (1.3.13)

where û stands for the Fourier transform of u. In other words the tempered distri-

bution D0 =
∑

k∈Zn δk is such that D̂0 = D0.

Proof. We write, according to (1.3.6) and to Fubini’s theorem

∑
k∈Zn u(k) =

∑
k∈Zn

∫∫
Wu(y, η)ϕy,η(k)dydη

=

∫∫
Wu(y, η)

∑
k∈Zn

ϕy,η(k)dydη.

Now, (1.3.12), (1.3.1) give ∑
k∈Zn

ϕy,η(k) =
∑
k∈Zn

ϕ̂y,η(k),

so that (1.3.6) and Fubini’s theorem imply the result.

1.4 Periodic distributions

The Dirichlet kernel

For N ∈ N, the Dirichlet kernel DN is defined on R by

DN(x) =
∑

−N≤k≤N

e2iπkx

= 1 + 2 Re
∑

1≤k≤N

e2iπkx =︸︷︷︸
x/∈Z

1 + 2 Re

(
e2iπx e

2iπNx − 1

e2iπx − 1

)
= 1 + 2 Re

(
e2iπx−iπx+iπNx

)sin(πNx)

sin(πx)
= 1 + 2 cos(π(N + 1)x)

sin(πNx)

sin(πx)

= 1 +
1

sin(πx)

(
sin
(
πx(2N + 1)

)
− sin(πx)

)
=

sin
(
πx(2N + 1)

)
sin(πx)

,
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and extending by continuity at x ∈ Z that 1-periodic function, we find that

DN(x) =
sin
(
πx(2N + 1)

)
sin(πx)

. (1.4.1)

Now, for a 1-periodic v ∈ C1(R), with

(DN ? u)(x) =

∫ 1

0

DN(x− t)u(t)dt, (1.4.2)

we have

lim
N→+∞

∫ 1

0

DN(x− t)v(t)dt = v(x) + lim
N→+∞

∫ 1

0

sin(πt(2N + 1))

(
v(x− t)− v(x)

)
sin(πt)

dt,

and the function θx given by θx(t) = v(x−t)−v(x)
sin(πt)

is continuous on [0, 1], and from the

Riemann-Lebesgue Lemma 1.1.1, we obtain

lim
N→+∞

∑
−N≤k≤N

e2iπkx

∫ 1

0

e−2iπktv(t)dt = lim
N→+∞

∫ 1

0

DN(x− t)v(t)dt = v(x).

On the other hand if v is 1-periodic and C1+l, the Fourier coefficient

ck(v) =

∫ 1

0

e−2iπktv(t)dt

for k 6= 0︷︸︸︷
=

1

2iπk
[e−2iπktv(t)]t=0

t=1 +

∫ 1

0

1

2iπk
e−2iπktv′(t)dt,

and iterating the integration by parts, we find ck(v) = O(k−1−l) so that for a 1-

periodic C2 function v, we have∑
k∈Z

e2iπkxck(v) = v(x). (1.4.3)

Pointwise convergence of Fourier series

Lemma 1.4.1. Let u : R −→ R be a 1-periodic L1
loc(R) function and let x0 ∈ [0, 1].

Let us assume that there exists w0 ∈ R such that the Dini condition is satisfied, i.e.∫ 1/2

0

|u(x0 + t) + u(x0 − t)− 2w0|
t

dt < +∞. (1.4.4)

Then, limN→+∞
∑
|k|≤N ck(u)e2iπkx0 = w0 with ck(u) =

∫ 1

0
e−2iπtku(t)dt.

Proof. Using the above calculations, we find

∑
|k|≤N

ck(u)e2iπkx0 = (DN ? u)(x0) = w0 +

∫ 1

0

sin
(
πt(2N + 1)

)
sin(πt)

(
u(x0 − t)− w0

)
dt,
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so that, using the periodicity of u and the fact that DN is an even function , we get

(DN ? u)(x0)− w0 =

∫ 1/2

0

sin
(
πt(2N + 1)

)
sin(πt)

(
u(x0 − t) + u(x0 + t)− 2w0

)
dt.

Thanks to the hypothesis (1.4.4), the function

t 7→ 1[0, 1
2

](t)
u(x0 − t) + u(x0 + t)− 2w0

sin(πt)

belongs to L1(R) and Riemann-Lebesgue Lemma 1.1.1 gives the conclusion.

Theorem 1.4.2. Let u : R −→ R be a 1-periodic L1
loc function.

(1) Let x0 ∈ [0, 1], w0 ∈ R. We define ωx0,w0(t) = |u(x0 + t) + u(x0 − t)− 2w0| and

we assume that ∫ 1/2

0

ωx0,w0(t)
dt

t
< +∞. (1.4.5)

Then the Fourier series (DN ? u)(x0) converges with limit w0. In particular, if

(1.4.5) is satisfied with w0 = u(x0), the Fourier series (DN ? u)(x0) converges with

limit u(x0). If u has a left and right limit at x0 and is such that (1.4.5) is satisfied

with w0 = 1
2

(
u(x0 + 0) + u(x0 − 0)

)
, the Fourier series (DN ? u)(x0) converges with

limit 1
2

(
u(x0 − 0) + u(x0 + 0)

)
.

(2) If the function u is Hölder-continuous11, the Fourier series (DN ?u)(x) converges

for all x ∈ R with limit u(x).

(3) If u has a left and right limit at each point and a left and right derivative at each

point, the Fourier series (DN ? u)(x) converges for all x ∈ R with limit

1

2

(
u(x− 0) + u(x+ 0)

)
.

Proof. (1) follows from Lemma 1.4.1; to obtain (2), we note that for a Hölder con-

tinuous function of index θ ∈]0, 1], we have for t ∈]0, 1/2]

t−1ωx,u(x)(t) ≤ Ctθ−1 ∈ L1([0, 1/2]).

(3) If u has a right-derivative at x0, it means that

u(x0 + t) = u(x0 + 0) + u′r(x0)t+ tε0(t), lim
t→0+

ε0(t) = 0.

As a consequence, for t ∈]0, 1/2], t−1|u(x0 + t)− u(x0 + 0)| ≤ |u′r(x0) + ε0(t)|. Since

limt→0+ ε0(t) = 0, there exists T0 ∈]0, 1/2] such that |ε0(t)| ≤ 1 for t ∈ [0, T0]. As a

result, we have∫ 1/2

0

t−1|u(x0 + t)− u(x0 + 0)|dt

≤
∫ T0

0

(|u′r(x0)|+ 1)dt+

∫ 1/2

T0

|u(x0 + t)− u(x0 + 0)|dtT−1
0 < +∞,

since u is also L1
loc. The integral

∫ 1/2

0
t−1|u(x0 − t) − u(x0 − 0)|dt is also finite and

the condition (1.4.5) holds with w0 = 1
2

(
u(x0 − 0) + u(x0 + 0)

)
. The proof of the

lemma is complete.

11 Hölder-continuity of index θ ∈]0, 1] means that ∃C > 0,∀t, s, |u(t)− u(s)| ≤ C|t− s|θ.
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Periodic distributions

We consider now a distribution u on Rn which is periodic with periods Zn. Let

χ ∈ C∞c (Rn;R+) such that χ = 1 on [0, 1]n. Then the function χ1 defined by

χ1(x) =
∑
k∈Zn

χ(x− k)

is C∞ periodic12 with periods Zn. Moreover since

Rn 3 x ∈
∏

1≤j≤n

[E(xj), E(xj) + 1[,

the bounded function χ1 is also bounded from below and such that 1 ≤ χ1(x). With

χ0 = χ/χ1, we have ∑
k∈Zn

χ0(x− k) = 1, χ0 ∈ C∞c (Rn).

For ϕ ∈ C∞c (Rn), we have from the periodicity of u

〈u, ϕ〉 =
∑
k∈Zn
〈u(x), ϕ(x)χ0(x− k)〉 =

∑
k∈Zn
〈u(x), ϕ(x+ k)χ0(x)〉,

where the sums are finite. Now if ϕ ∈ S (Rn), we have, since χ0 is compactly

supported (say in |x| ≤ R0),

|〈u(x), ϕ(x+ k)χ0(x)〉| ≤ C0 sup
|α|≤N0,|x|≤R0

|ϕ(α)(x+ k)|

≤ C0 sup
|α|≤N0,|x|≤R0

|(1 +R0 + |x+ k|)n+1ϕ(α)(x+ k)|(1 + |k|)−n−1

≤ p0(ϕ)(1 + |k|)−n−1,

where p0 is a semi-norm of ϕ (independent of k). As a result u is a tempered

distribution and we have for ϕ ∈ S (Rn), using Poisson’s summation formula,

〈u, ϕ〉 = 〈u(x),
∑
k∈Zn

ϕ(x+ k)χ0(x)︸ ︷︷ ︸
ψx(k)

〉 = 〈u(x),
∑
k∈Zn

ψ̂x(k)〉.

Now we see that ψ̂x(k) =
∫
Rn ϕ(x+ t)χ0(x)e−2iπktdt = χ0(x)e2iπkxϕ̂(k), so that

〈u, ϕ〉 =
∑
k∈Zn
〈u(x), χ0(x)e2iπkx〉ϕ̂(k),

which means

u(x) =
∑
k∈Zn
〈u(t), χ0(t)e2iπkt〉e−2iπkx =

∑
k∈Zn
〈u(t), χ0(t)e−2iπkt〉e2iπkx.

12Note that the sum is locally finite since for K compact subset of Rn, (K − k) ∩ suppχ0 = ∅
except for a finite subset of k ∈ Zn.
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Theorem 1.4.3. Let u be a periodic distribution on Rn with periods Zn. Then u is a

tempered distribution and if χ0 is a C∞c (Rn) function such that
∑

k∈Zn χ0(x−k) = 1,

we have

u =
∑
k∈Zn

ck(u)e2iπkx, (1.4.6)

û =
∑
k∈Zn

ck(u)δk, with ck(u) = 〈u(t), χ0(t)e−2iπkt〉, (1.4.7)

and convergence in S ′(Rn). If u is in Cm(Rn) with m > n, the previous formulas

hold with uniform convergence for (1.4.6) and

ck(u) =

∫
[0,1]n

u(t)e−2iπktdt. (1.4.8)

Proof. The first statements are already proven and the calculation of û is immediate.

If u belongs to L1
loc we can redo the calculations above choosing χ0 = 1[0,1]n and get

(1.4.6) with ck given by (1.4.8). Moreover, if u is in Cm with m > n, we get by

integration by parts that ck(u) is O(|k|−m) so that the series (1.4.6) is uniformly

converging.

Theorem 1.4.4. Let u be a periodic distribution on Rn with periods Zn. If u ∈ L2
loc

(i.e. u ∈ L2(Tn) with Tn = (R/Z)n), then

u(x) =
∑
k∈Zn

ck(u)e2iπkx, with ck(u) =

∫
[0,1]n

u(t)e−2iπktdt, (1.4.9)

and convergence in L2(Tn). Moreover ‖u‖2
L2(Tn) =

∑
k∈Zn |ck(u)|2. Conversely, if the

coefficients ck(u) defined by (1.4.7) are in `2(Zn), the distribution u is L2(Tn)

Proof. As said above the formula for the ck(u) follows from changing the choice of

χ0 to 1[0,1]n in the discussion preceding Theorem 1.4.3. Formula (1.4.6) gives the

convergence in S ′(Rn) to u. Now, since∫
[0,1]n

e2iπ(k−l)tdt = δk,l

we see from Theorem 1.4.3 that for u ∈ Cn+1(Tn),

〈u, u〉L2(Tn) =
∑
k∈Zn
|ck(u)|2.

As a consequence the mapping L2(Tn) 3 u 7→ (ck(u))k∈Zn ∈ `2(Zn) is isometric

with a range containing the dense subset `1(Zn) (if (ck(u))k∈Zn ∈ `1(Zn), u is a

continuous function); since the range is closed13, the mapping is onto and is an

isometric isomorphism from the open mapping theorem (see e.g. Theorem 2.1.10 in

[10]).

13If A : H1 → H2 is an isometric linear mapping between Hilbert spaces and (Auk) is a converging
sequence in H2, then by linearity and isometry, the sequence (uk) is a Cauchy sequence in H1, thus
converges. The continuity of A implies that if u = limk uk, we have

v = lim
k
Auk = Au, proving that the range of A is closed.
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1.5 Exercises

Exercise 1.5.1. Let A be a positive definite n × n symmetric matrix. Prove that

the function ψA defined by ψA(x) = e−〈Ax,x〉 belongs to S (Rn).

Answer. The function ψA is smooth and such that

xα(∂βxψA)(x) = Pα,β(x)ψA(x),

where Pα,β is a polynomial (obvious induction). Since 〈Ax, x〉 ≥ δ‖x‖2 with a

positive δ and |Pα,β(x)| ≤ C(1 + ‖x‖2)d/2, where d is the degree of P , we obtain the

boundedness of xα(∂βxψA)(x), proving the sought result.

Exercise 1.5.2. The Schwartz class of functions is defined by

S (Rn) = {u ∈ C∞(Rn),∀α, β ∈ Nn, sup
x∈Rn
|xα∂βxu(x)| = pαβ(u) <∞},

where α = (α1, . . . , αn) ∈ Nn, xα = xα1
1 . . . xαnn , β ∈ Nn, ∂βx = ∂β1x1 . . . ∂

βn
xn . Show that

the pαβ are semi-norms on S (Rn), making this space a Fréchet space.

Answer. The pαβ are semi-norms, i.e. valued in R+ such that pαβ(λu) = |λ|pαβ(u)

and they satisfy the triangle inequality. We consider a Cauchy sequence (uk)k∈N. It

means that for all α, β, for all ε > 0, there exists kαβε such that for all k ≥ kαβε, l ≥ 0

pαβ(uk+l − uk) ≤ ε.

Using the case α = β = 0, we find a continuous function u uniform limit of uk.

Using the uniform convergence of the sequence (∂αxuk)k∈N, we get that u is C∞ and

that the sequences (∂αxuk)k∈N are uniformly converging towards ∂αxu. We write then

|xα∂βx (uk − u)(x)| = lim
l→+∞

|xα∂βx (uk − ul)(x)| ≤ lim sup
l

pαβ(uk − ul) ≤ ε

for k ≥ kαβε. We get pαβ(uk − u) ≤ ε for k ≥ kαβε, proving the convergence in

S (Rn).

Exercise 1.5.3. Prove that C∞c (Rn) is dense in the Schwartz class S (Rn).

Answer. Let χ0 ∈ C∞c (Rn) equal to 1 on the unit ball. Let φ ∈ S (Rn) and let us

define for k ∈ N∗

φk(x) = χ0(x/k)φ(x), φk ∈ C∞c (Rn), φk(x)− φ(x) = φ(x)
(
χ0(x/k)− 1

)
,

and with the pαβ defined in Exercise 1.5.2, we have

pαβ
(
φk − φ

)
= sup

x∈Rn
|xα

∑
β′+β′′=β
|β′′|≥1

β!

β′!β′′!
∂β
′

x φ(x)∂β
′′

x χ0(x/k)k−|β
′′||

+ sup
x∈Rn,|x|≥k

|xα(∂βxφ)(x)(χ0(
x

k
)− 1)|,

≤ Ck−1pmax(|α|,|β|)(φ)pmax(|α|,|β|)(χ0) + k−1 sup
x∈Rn
||x|xα(∂βxφ)(x)|,



1.5. EXERCISES 29

with pk defined in (1.2.3), proving the convergence towards φ in the Schwartz space

of the sequence (φk)k∈N.

Exercise 1.5.4. Let T ∈ S ′(R) such that xT = 0. Prove that T = cδ0.

Answer. Let φ ∈ S (R) and let χ0 ∈ C∞c (Rn) such that χ0(0) = 1. We have

φ(x) = χ0(x)φ(x) + (1− χ0(x))φ(x).

Applying Taylor’s formula with integral remainder, we define the smooth function

ψ by

ψ(x) =
(1− χ0(x))

x
φ(x)

and, applying Leibniz’ formula, we see also that ψ belongs to S (R). As a result

〈T, φ〉S ′(R),S (R) = 〈T, χ0φ〉 = 〈T, χ0

(
φ− φ(0)

)
〉+ φ(0)〈T, χ0〉 = φ(0)〈T, χ0〉,

since the function x 7→ χ0(x)
(
φ(x) − φ(0)

)
/x belongs to C∞c (R). As a result T =

〈T, χ0〉δ0.

Exercise 1.5.5. Prove that a distribution with support {0} is a linear combination

of derivatives of the Dirac mass at 0, i.e.

u =
∑
|α|≤N

cαδ
(α)
0 ,

where the cα are some constants.

Answer. Let N0 ∈ N such that |〈u, ϕ〉| ≤ CpN0(ϕ), where the semi-norms pk are

given by (1.2.3). For ϕ ∈ S (Rn), we have

ϕ(x) =
∑
|α|≤N0

(∂αxϕ)(0)

α!
xα +

∫ 1

0

(1− θ)N0

N0!
ϕ(N0+1)(θx)dθ︸ ︷︷ ︸

ψ(x), ψ∈C∞(Rn)

xN0+1,

and thus for χ0 ∈ C∞c (Rn), χ0 = 1 near 0,

〈u, ϕ〉 = 〈u, χ0ϕ〉 =
∑
|α|≤N0

(∂αxϕ)(0)

α!
〈u, χ0(x)xα〉+ 〈u, χ0(x)ψ(x)xN0+1〉. (1.5.1)

We note that

|〈u, χ0(x)ψ(x)xN0+1〉| ≤ C0 sup
|α|≤N0

|∂αx
(
χ0(x)ψ(x)xN0+1

)
|. (1.5.2)

We can take χ0(x) = ρ(x/ε), where ρ ∈ C∞c (Rn) is supported in the unit ball B1,

ρ = 1 in 1
2
B1 and ε > 0. We have then

χ0(x)ψ(x)xN0+1 = εN0+1ρ(
x

ε
)ψ
(
ε
x

ε

)xN0+1

εN0+1
= εN0+1ρ1(

x

ε
),
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with ρ1(t) = ρ(t)ψ(εt)tN0+1, so that ρ1 ∈ C∞c (Rn) is supported in the unit ball B1

has all its derivatives bounded independently of ε. From (1.5.2), we get for all ε > 0,

|〈u, χ0(x)ψ(x)xN0+1〉| ≤ C0 sup
|α|≤N0

εN0+1−|α||(∂αt ρ1)(
x

ε
)| ≤ C1ε,

which implies that the left-hand-side of (1.5.2) is zero.

Exercise 1.5.6. Let u ∈ S ′(Rn) and λ ∈ C. The distribution u is said to be

homogeneous with degree λ if for all t > 0, u(t·) = tλu(·). Prove that the distribution

u is homogeneous of degree λ if and only if Euler’s equation is satisfied, namely∑
1≤j≤n

xj∂xju = λu. (1.5.3)

Answer. A distribution u on Rn is homogeneous of degree λ means:

∀ϕ ∈ C∞c (Rn),∀t > 0, 〈u(y), ϕ(y/t)t−n〉 = tλ〈u(x), ϕ(x)〉,

which is equivalent to ∀ϕ ∈ C∞c (Rn),∀s > 0, 〈u(y), ϕ(sy)sn+λ〉 = 〈u(x), ϕ(x)〉, also

equivalent to

∀ϕ ∈ C∞c (Rn),
d

ds

(
〈u(y), ϕ(sy)sn+λ〉

)
= 0 on s > 0. (1.5.4)

The differentiability property is easy to derive14 and that

〈u(y), ϕ(sy)sn+λ〉 = 〈u(x), ϕ(x)〉 at s = 1.

As a consequence, we get that the homogeneity of degree λ of u is equivalent to

∀s > 0, 〈u(y), sn+λ−1
(
(n+ λ)ϕ(sy) +

∑
1≤j≤n

(∂jϕ)(sy)syj
)
〉 = 0,

also equivalent to 0 = 〈u(y), (n+ λ+
∑

1≤j≤n yj∂j)
(
ϕ(sy)

)
〉 and by the definition of

the differentiation of a distribution, it is equivalent to

(n+ λ)u−
∑

1≤j≤n

∂j(yju) = 0,

which is (1.5.3) by Leibniz’ rule.

14We have for s > 0,

ϕ((s+ h)y)− ϕ(sy) = ϕ′(sy)hy +

∫ 1

0

(1− θ)ϕ′′
(
(s+ θh)y

)
dθh2y2.

It is enough to prove that for σ in a neighborhood V of s, the function y 7→ ϕ(l)(σy) is bounded in
S (Rn). This is obvious, choosing for instance V = (s/2, 2s).
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Exercise 1.5.7.

(1) Prove that the Dirac mass at 0 in Rn is homogeneous of degree −n.

(2) Prove that if T is an homogeneous distribution of degree λ, then ∂αxT is also

homogeneous with degree λ− |α|.
(3) Prove that the distribution pv( 1

x
) is homogeneous of degree −1 as well as

1/(x± i0).

(4) For λ ∈ C with Reλ > −1 we define the L1
loc(R) functions

xλ+ =

{
xλ if x > 0,

0 if x ≤ 0,
χλ+ =

xλ+
Γ(λ+ 1)

. (1.5.5)

Prove that the distributions χλ+ and xλ+ are homogeneous of degree λ.

Answer. (1) We have for t > 0

〈δ0(tx), ϕ(x)〉 = 〈δ0(y), ϕ(y/t)t−n〉 = t−nϕ(0) = t−n〈δ0, ϕ〉.

(2) Taking the derivative of the Euler equation (1.5.3), we get

∂xku+
∑

1≤j≤k

xj∂xj∂xku− λ∂xku = 0,

proving that ∂xku is homogeneous of degree λ− 1 and the result by iteration.

(3) It follows immediately from the definition (1.2.25) that the distribution pv( 1
x
) is

homogeneous of degree −1. The same is true for the distributions 1
x±i0 as it is clear

from

1

x± i0
=

d

dx

(
Log(x± i0)

)
=

d

dx

(
ln |x| ± iπȞ(x)

)
= pv

1

x
∓ iπδ0. (1.5.6)

(4) The distributions χλ+ and xλ+ are homogeneous of degree λ and by an analytic

continuation argument, we can prove that χλ+ may be defined for any λ ∈ C, is an

homogeneous distribution of degree λ and satisfies

χλ+ = (
d

dx
)k(χλ+k

+ ), χ−k+ = δ
(k−1)
0 , k ∈ N∗.

Exercise 1.5.8. Let (uj)1≤j≤m be non-zero homogeneous distributions on Rn with

distinct degrees (λj)1≤j≤m (j 6= k implies λj 6= λk). Prove that they are independent

in the complex vector space S ′(Rn).

Answer. We assume that m ≥ 2 and that there exists some complex numbers

(cj)1≤j≤m such that
∑

1≤j≤m cjuj = 0. Then applying the (Euler) operator

E =
∑

1≤j≤m

xj∂xj ,
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we get for all k ∈ N, 0 =
∑

1≤j≤m cjEk(uj) =
∑

1≤j≤m cjλ
k
juj. We consider now the

Vandermonde matrix m×m

Vm =


1 1 . . . 1
λ1 λ2 . . . λm

. . . .
λm−1

1 λm−1
2 . . . λm−1

m

 , detVm =
∏

1≤j<k≤m

(λk − λj) 6= 0.

We note that for ϕ ∈ C∞c (Rn), and X ∈ Cm given by

X =


c1〈u1, ϕ〉
c2〈u2, ϕ〉
. . . . . . . . .
cm〈um, ϕ〉

 ,

we have VmX = 0, so that X = 0, i.e. ∀j,∀ϕ ∈ C∞c (Rn), cj〈uj, ϕ〉 = 0, i.e. cjuj = 0

and since uj is not the zero distribution, we get the sought conclusion cj = 0 for all

j.

Exercise 1.5.9. Let T ∈ S ′(Rn) be a homogeneous distribution of degree m. Prove

that its Fourier transform is a homogeneous distribution of degree −m− n.

Answer. We check

(ξ ·Dξ)T̂ = −ξ · x̂T = − ̂(Dx · xT ) = − n

2iπ
T̂ − 1

2iπ
̂(x · ∂xT ) = −(n+m)

2iπ
T̂ ,

so that Euler’s equation ξ · ∂ξT̂ = −(n+m)T̂ is satisfied.

Exercise 1.5.10. Let u ∈ S ′(Rn) such that ∇u = (∂1u, . . . , ∂nu) = 0. Prove that

u is a constant.

Answer. For all j, we have ξjû(ξ) = 0 and since a polynomial is a multiplier of S ,

we have also |ξ|2û(ξ) = 0, which implies that supp û ⊂ {0}. From Exercise 1.5.5,

we find that û is a linear combination of derivatives of the Dirac mass at 0 and

(1.2.18) implies along with (1.2.20) that u is a polynomial. Now a polynomial with

a vanishing gradient is a constant (use Taylor’s formula).

1.6 Appendix: The Complex Logarithm

Logarithm on C\R−

The set C\R− is star-shaped with respect to 1, so that we can define the principal

determination of the logarithm for z ∈ C\R− by the formula

Log z =

∮
[1,z]

dζ

ζ
=

∫ 1

0

(z − 1)dt

(1− t) + tz
. (1.6.1)
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The function Log is holomorphic on C\R− and we have Log z = ln z for z ∈ R∗+ and

by analytic continuation

eLog z = z = eRe Log zei Im Log z,

{
|z| = eRe Log z,

Arg z = Im Log z,

for z ∈ C\R−. For z = reiθ, |θ| < π, we have for r > 0,

Log(reiθ) =

∮
[1,reiθ]

dζ

ζ
= ln r +

∫ θ

0

ireit

reit
dt = ln r + iθ, Im Log z = θ.

We get also by analytic continuation, that Log ez = z for | Im z| < π. Note also that

for |z| < 1, we have

Log(1 + z) = z

∫ 1

0

dt

1 + tz
=
∑
k≥0

z(−1)k
zk

k + 1
=
∑
l≥1

(−1)l+1 z
l

l
. (1.6.2)

Note that we have also for |z| = 1, z 6= −1,

Log(1 + z) = z

∫ 1

0

dt

1 + tz
= z

∫ 1

0

lim
N

( ∑
0≤k≤N

(−1)ktkzk
)
dt.

Since with z = eiθ, |θ| < π, t ∈ [0, 1],∣∣∣∣∣ ∑
0≤k≤N

(−1)ktkzk =
1 + (−1)N(tz)1+N

1 + tz

∣∣∣∣∣ ≤ 2

|1 + tz|
=

2√
1 + 2t cos θ + t2

≤ 21{cos θ ≥ 0}√
1 + t2

+
21{−1 < cos θ ≤ 0}√

1− cos2 θ
∈ L1([0, 1]t),

so that Lebesgue’s dominated convergence implies

Log(1 + z) = z lim
N

∑
0≤k≤N

(−1)k
zk

k + 1
,

implying that (1.6.2) holds as well for |z| = 1, z 6= −1. We consider the following

open subset of C

{z ∈ C, exp z /∈ R∗−} = {z ∈ C, Im z 6≡ π(2π)}
= ∪k∈Z {z ∈ C, (2k − 1)π < Im z < (2k + 1)π}︸ ︷︷ ︸

ωk

.

Let k ∈ Z. On the open set ωk, the function z 7→ Log(exp z) − z is holomorphic

with a null derivative. As a result for z ∈ ωk,

Log(exp z)− z = Log
(

exp(2ikπ)
)
−2ikπ = ln(1)− 2ikπ = −2ikπ,

i.e. Log(exp z) = z − 2ikπ.

We sum-up these results as follows.
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Theorem 1.6.1. For z ∈ C\R−, we define Log z by (1.6.1). This is an holomorphic

function on C\R−, with derivative 1/z, and Log coincides with ln on R∗+.

For z ∈ C\R−, eLog z = z = reiθ,

r = |z| = eRe Log z, θ = Arg z = Im Log z ∈ (−π, π). (1.6.3)

For k ∈ Z, z ∈ C, (2k − 1)π < Im z < (2k + 1)π, Log(ez) = z − 2ikπ. (1.6.4)

For z ∈ C\{−1}, |z| ≤ 1, Log(1 + z) =
∑
l≥1

(−1)l+1 z
l

l
. (1.6.5)

Logarithm of a nonsingular symmetric matrix

Let Υ+ be the set of symmetric nonsingular n × n matrices with complex entries

and nonnegative real part. The set Υ+ is star-shaped with respect to the Id: for

A ∈ Υ+, the segment [1, A] =
(
(1 − t) Id +tA

)
t∈[0,1]

is obviously made with sym-

metric matrices with nonnegative real part which are invertible, since for 0 ≤ t < 1,

Re
(
(1− t) Id +tA

)
≥ (1 − t) Id > 0 and for t = 1, A is assumed to be invertible15.

We can now define for A ∈ Υ+

LogA =

∫ 1

0

(A− I)
(
I + t(A− I)

)−1
dt. (1.6.6)

We note that A commutes with (I + sA) (and thus with LogA), so that, for θ > 0,

d

dθ
Log(A+ θI) =

∫ 1

0

(
I + t(A+ θI − I)

)−1
dt

−
∫ 1

0

(
A+ θI − I

)
t
(
I + t(A+ θI − I)

)−2
dt,

and since

d

dt

{(
I + t(A+ θI − I)

)−1
}

= −
(
I + t(A+ θI − I)

)−2
(A+ θI − I),

we obtain by integration by parts d
dθ

Log(A+ θI) = (A+ θI)−1. As a result, we find

that for θ > 0, A ∈ Υ+, since all the matrices involved are commuting,

d

dθ

(
(A+ θI)−1eLog(A+θI)

)
= 0,

15If A is a n×n symmetric matrix with complex entries such that ReA is positive definite, then
A is invertible: if AX = 0, then,

0 = 〈AX, X̄〉 = 〈AReX,ReX〉+ 〈A ImX, ImX〉+

=0 since A symmetric︷ ︸︸ ︷
〈AReX,−i ImX〉+ 〈Ai ImX,ReX〉

and taking the real part give 〈ReAReX,ReX〉 + 〈ReA ImX, ImX〉 = 0, implying X = 0 from
the positive-definiteness of ReA.
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so that, using the limit θ → +∞, we get16 that

∀A ∈ Υ+,∀θ > 0, eLog(A+θI) = (A+ θI),

and by continuity

∀A ∈ Υ+, eLogA = A, which implies detA = etrace LogA. (1.6.7)

Using (1.6.7), we can define for A ∈ Υ+,

(detA)−1/2 = e−
1
2

trace LogA = | detA|−1/2e−
i
2

Im(trace LogA). (1.6.8)

• When A is a positive definite matrix, LogA is real-valued and (detA)−1/2 =

| detA|−1/2.

• When A = −iB where B is a real nonsingular symmetric matrix, we note that

B = PDtP with P ∈ O(n) and D diagonal. We see directly on the formulas

(1.6.6), (1.6.1) that

LogA = Log(−iB) = P (Log(−iD))tP, trace LogA = trace Log(−iD),

and thus, with (µj) the (real) eigenvalues of B, we have Im (trace LogA) =

Im
∑

1≤j≤n Log(−iµj), where the last Log is given by (1.6.1). Finally we get,

Im (trace LogA) = −π
2

∑
1≤j≤n

signµj = −π
2

signB,

where signB is the signature of B. As a result, we have when A = −iB, B

real symmetric nonsingular matrix

(detA)−1/2 = | detB|−1/2ei
π
4

signB. (1.6.9)

16We have eLog(A+θ) = (A+ θ)BA and with τ = θ − 1,

eLog(A+θ)e− ln θ = eCθ , Cθ = A

∫ 1

0

(1 + tA+ tτ)−1(1 + tτ)−1dt.

For t, τ ∈ R+, the matrix 1 + tA+ tτ is invertible (see the footnote on page 34) and we have

Re〈(1 + tA+ tτ)X,X〉 ≥ (1 + tτ)‖X‖2, so that this implies ‖(1 + tA+ tτ)X‖ ≥ (1 + tτ)‖X‖

and thus ‖(1 + tA+ tτ)−1‖ ≤ (1 + tτ)−1. We get

‖Cθ‖ ≤ ‖A‖
∫ 1

0

(1 + tτ)−2dt =
‖A‖
1 + τ

=⇒ lim
θ→+∞

Cθ = 0

=⇒ BA = lim
θ→+∞

(A+ θ)BAe
− ln θ = lim

θ→+∞
eLog(A+θ)e− ln θ = lim

θ→+∞
eCθ = I.



36 CHAPTER 1. FOURIER ANALYSIS



Chapter 2

Basic Convolution Inequalities:
Young, Hardy-Littlewood-Sobolev

2.1 The Banach algebra L1(Rn)

Let u, v ∈ Cc(Rn). For all x ∈ Rn, the mapping y 7→ u(x−y)v(y) is continuous with

compact support ⊂ supp v. We may thus consider

(u ∗ v)(x) =

∫
Rn
u(x− y)v(y)dy. (2.1.1)

We shall say that u ∗ v is the convolution of u with v. For a given x, the change of

variables y′ = x−y show that u∗v = v∗u. We see easily that u∗v is continuous and

moreover if x /∈ suppu + supp v, then for all y ∈ supp v, x − y /∈ suppu (otherwise

x = x − y + y ∈ suppu + supp v) so that for all y ∈ Rn, u(x − y)v(y) = 0. As a

result, (suppu + supp v)c ⊂ {u ∗ v = 0} and thus {u ∗ v 6= 0} ⊂ suppu + supp v.

Since suppu+ supp v is compact (as a sum of compact sets), we have

supp(u ∗ v) ⊂ suppu+ supp v = {x+ y}x∈suppu
y∈supp v

(2.1.2)

and u ∗ v ∈ Cc(Rn). Moreover convolution is associative, since for u, v, w ∈ Cc(Rn),

we have

(
(u ∗ v) ∗ w

)
(x) =

∫
Rn

(u ∗ v)(x− y)w(y)dy =

∫∫
Rn×Rn

u(x− y − z)v(z)w(y)dydz

=

∫∫
Rn×Rn

u(x−z)v(z−y)w(y)dydz =

∫
Rn
u(x−z)(v∗w)(z)dz =

(
u∗(v∗w)

)
(x).

Proposition 2.1.1. The binary operation of Cc(Rn) given by (u, v) 7→ u ∗ v is

associative, commutative and distributive with respect to addition and such that

‖u ∗ v‖L1(Rn) ≤ ‖u‖L1(Rn)‖v‖L1(Rn). (2.1.3)

37
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Proof. The estimate is the only point to be proven. For u, v ∈ Cc(Rn), we have

‖u ∗ v‖L1(Rn) ≤
∫
Rn

∣∣∣∣∫
Rn
u(x− y)v(y)dy

∣∣∣∣ dx ≤ ∫∫
Rn×Rn

|u(x− y)||v(y)|dydx

= ‖u‖L1(Rn)

∫
Rn
|v(y)|dy = ‖u‖L1(Rn)‖v‖L1(Rn).

With u0(x) = exp−π|x|2 we have ‖u0‖L1(Rn) = 1 and

‖u0 ∗ u0‖L1(Rn) =

∫
|(u0 ∗ u0)(x)|dx =

∫∫
e−π|x−y|

2−π|y|2dydx = 1,

proving that the estimate (2.1.3) is optimal.

Proposition 2.1.2. Let k ∈ N, ϕ ∈ Ck
c (Rn) and let u ∈ L1

loc(Rn) (i.e. ∀K compact,

u1K ∈ L1(Rn)). We define

(ϕ ∗ u)(x) =

∫
Rn
ϕ(x− y)u(y)dy. (2.1.4)

The function ϕ ∗ u belongs to Ck(Rn) and if u ∈ L1(Rn), then ϕ ∗ u belongs to

L1(Rn) and is such that ‖ϕ ∗ u‖L1(Rn) ≤ ‖ϕ‖L1(Rn)‖u‖L1(Rn). Moreover, we have

supp(ϕ ∗ u) ⊂ suppϕ+ suppu, where the support of u is defined by

suppu = {x ∈ X, 6 ∃V ∈ Vx, u|V = 0, -a.e.}, (2.1.5)

Proof. Let x ∈ Rn be given. The function y 7→ u(y)ϕ(x − y) is supported in

x − suppϕ = {x − z}z∈suppϕ, a compact set (since suppϕ is compact). Since ϕ is

bounded, the function y 7→ u(y)ϕ(x−y) belongs to L1
comp(Rn), so that (2.1.4) makes

sense. We see that ϕ ∗ u belongs to Ck(Rn): indeed, we have

|ϕ(k)(x− y)u(y)| ≤ |u(y)|1suppϕ(x− y) sup |ϕ(k)|

so that for K compact, since K − suppϕ = {x− z}x∈K,z∈suppϕ is also compact, we

have

sup
x∈K
|ϕ(k)(x− y)u(y)| ≤ |u(y)|1K−suppϕ(y) sup |ϕ(k)| ∈ L1(Rn

y ).

Whenever u ∈ L1(Rn), the inequality on L1-norms is proven as (2.1.3).

Let us prove now the inclusion of supports. Since suppϕ is compact and suppu

is closed the set suppu + suppϕ is closed: if limk(yk + zk) = x, with yk ∈ suppu,

zk ∈ suppϕ, extracting a subsequence, we get liml zkl = z ∈ suppϕ and liml(ykl +

zkl) = x, so that the sequence ykl is converging and since suppu is closed suppu 3
liml ykl = x − z, proving x ∈ suppu + suppϕ. We consider now the open set V0 =

(suppu+ suppϕ)c. For all y ∈ Rn, we have

V0 − y ⊂ (suppϕ)c or y /∈ suppu, (2.1.6)

otherwise, we could find y0 such that V0 − y0 ∩ (suppϕ) 6= ∅ and y0 ∈ suppu. This

would imply the existence of x ∈ V0 such that x− y0 ∈ suppϕ and thus

V0 3 x = x− y0 + y0 ∈ suppϕ+ suppu = V c
0 ,
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which is impossible. As a result (2.1.6) implies that for x ∈ V0, and y ∈ Rn, we have

ϕ(x− y) = 0 or y /∈ suppu. Since the domain of integration in (2.1.4) is suppu, this

implies (ϕ ∗ u)(x) = 0 and (suppu + suppϕ)c ⊂
(
supp(ϕ ∗ u)

)c
, that is the sought

result.

Proposition 2.1.3. Let Ω be an open set of Rn, let u ∈ L1
loc(Ω) and let V be open

⊂ Ω. Then

u|V = 0⇐⇒ ∀ϕ ∈ Cc(V ),

∫
u(x)ϕ(x)dx = 0.

N.B. This result is important for distribution theory: a function in L1
loc(Ω) can be

viewed as a Radon measure on Ω, i.e. a continuous linear form on Cc(Ω). For

u ∈ L1
loc(Ω), we define the linear form lu

Cc(Ω) 3 ϕ 7→ lu(ϕ) =

∫
Ω

ϕ(x)u(x)dx,

which is continuous since

|
∫

Ω

ϕ(x)u(x)dx| ≤ sup |ϕ(x)|
∫

suppϕ

|u(x)|dx.

This proposition proves that the mapping u 7→ lu is injective.

Proof of the proposition. The condition is obviously necessary. Let us prove that

it is sufficient. Let K be a compact set included in V and let χK ∈ Cc(V ; [0, 1]),

χK = 1 on K. With

ρ ∈ C∞c (Rn;R+),

∫
ρ(x)dx = 1, supp ρ = {‖x‖ ≤ 1}, ε > 0, ρε(·) = ρ(·/ε)ε−n,

we obtain (ρε ∗ χKu)(x) =

∫
u(y)

∈Cc(V )︷ ︸︸ ︷
χK(y)ρε(x− y) dy = 0.

As a consequence, we have

‖χKu‖L1(Rn)

≤ ‖χKu− ϕ‖L1(Rn) + ‖ϕ− ϕ ∗ ρε‖L1(Rn) + ‖ϕ ∗ ρε − χKu ∗ ρε‖L1(Rn)

≤ 2‖χKu− ϕ‖L1(Rn) + ‖ϕ− ϕ ∗ ρε‖L1(Rn). (2.1.7)

Lemma 2.1.4. Let ϕ ∈ Ck
c (Rn). Then ϕ ∗ ρε ∈ C∞c (Rn) and ϕ ∗ ρε → ϕ in Ck

c (Rn)

when ε goes to 0.

Proof of the lemma. We have indeed (ϕ ∗ ρε)(x) =
∫
ϕ(x− εy)ρ(y)dy so that

|(ϕ ∗ ρε)(x)− ϕ(x)| ≤
∫
ρ(y)|ϕ(x− εy)− ϕ(x)|dy ≤ sup

|x1−x2|≤ε
|ϕ(x1)− ϕ(x2)|

which goes to 0 with ε. Similar estimates hold for derivatives of order ≤ k, and

moreover we have supp (ϕ ∗ ρε) ⊂ suppϕ+ εBn ⊂ suppϕ+ ε0Bn for ε ≤ ε0, yielding

the lemma.
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We go on with the proof of Proposition 2.1.3. From (2.1.7) and Lemma 2.1.4,

we obtain

‖χKu‖L1(Rn) ≤ 2 inf
ϕ∈Cc(V )

‖χKu− ϕ‖L1(Rn) = 0,

since χKu ∈ L1(V ). Thus we have χKu = 0 for all compact sets K ⊂ V , and since

χK = 1 on K, and V is a countable union of compact sets, we find that u = 0 a.e.

on V .

Theorem 2.1.5. There exists a unique bilinear mapping

L1(Rn)× L1(Rn) → L1(Rn)
(u, v) 7→ u ∗ v

such that if u, v ∈ Cc(Rn), u ∗ v is the convolution of u and v and

‖u ∗ v‖L1(Rn) ≤ ‖u‖L1(Rn)‖v‖L1(Rn).

The space L1(Rn) is a commutative Banach algebra1 for addition and convolution.

Proof. Uniqueness: if ? is another mapping with the same properties, u, v ∈ L1(Rn),

ϕ, ψ ∈ Cc(Rn)

u ? v − u ∗ v =
(u− ϕ) ? v + ϕ ? (v − ψ) + ϕ ? ψ − (u− ϕ) ∗ v − ϕ ∗ (v − ψ)− ϕ ∗ ψ,

using ϕ ∗ ψ = ϕ ? ψ, and with L1(Rn) norms,

‖u ? v − u ∗ v‖ ≤ 2‖u− ϕ‖‖v‖+ 2‖v − ψ‖‖ϕ‖.

The density of Cc(Rn) in L1(Rn) and the above inequality entail u ∗ v = u ? v. To

prove existence, we consider sequences (ϕk), (ψk) in Cc(Rn), converging in L1(Rn):

it is easily proven that ϕk ∗ ψk are Cauchy sequences since (with L1(Rn) norms),

‖ϕk+l ∗ ψk+l − ϕk ∗ ψk‖ ≤ ‖ϕk+l − ϕk‖‖ψk+l‖+ ‖ψk+l − ψk‖‖ϕk‖

Moreover, using the same inequality, we prove that the limit does not depend on

the choice of the sequences ϕk, ψκ but only on their limits.

Proposition 2.1.6. Let u, v ∈ L1(Rn). Then for almost all x∫
|u(x− y)v(y)|dy < +∞.

Defining h(x) =
∫
u(x− y)v(y)dy, we have h ∈ L1(Rn),

‖h‖L1(Rn) ≤ ‖u‖L1(Rn)‖v‖L1(Rn) and h = u ∗ v .
1A complex Banach space B equipped with a multiplication ∗ which is associative, distributive

with respect to the addition, such that for λ ∈ C and x, y ∈ B, (λx) ∗ y = λ(x ∗ y) = x ∗ (λy)
and so that ‖x ∗ y‖ ≤ ‖x‖‖y‖ is called a Banach algebra. When the multiplication is commutative
the Banach algebra is said to be commutative. When the multiplication has a unit element, the
Banach algebra is said to be unital.
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Proof. We consider the measurable function F on R2n, given by F (x, y) = u(x −
y)v(y). We have∫ (∫

|F (x, y)|dx
)
dy =

∫ (∫
|u(x− y)|dx

)
|v(y)|dy

= ‖u‖L1(Rn)‖v‖L1(Rn) < +∞.

As a result F ∈ L1(R2n) and Fubini Theorem implies that

h(x) =

∫
F (x, y)dy

is an L1 function of x. We have also proven that ‖h‖L1(Rn) ≤ ‖u‖L1(Rn)‖v‖L1(Rn).

Since for u, v ∈ Cc(Rn), we have h = u ∗ v, Theorem 2.1.5 yields the conclusion.

Lemma 2.1.7. The Banach algebra L1(Rn) is not unital.

Proof. Let us assume that L1(Rn) has a unit ν. We would have for all x ∈ Rn,

e−π|x|
2

=
∫
e−π|x−y|

2
ν(y)dy and thus for all ξ ∈ Rn,

(†)
∫
e−π|x|

2

e−2iπx·ξdx =

∫
e−π|x|

2

e−2iπx·ξdx

∫
e−2iπy·ξν(y)dy.

Claim: for τ ∈ R, ∫
R
e−πt

2

e−2iπtτdt = e−πτ
2

. (2.1.8)

To prove this claim, we note that

F (τ) =

∫
R
e−πt

2

e−2iπtτeπτ
2

dt =

∫
R
e−π(t+iτ)2dt,

so that F ′(τ) =
∫
R

d
idt

(
e−π(t+iτ)2

)
dt = 0 and F (τ) = F (0) = 1, proving the Claim.

Applying this to (†), we get e−π|ξ|
2

= e−π|ξ|
2 ∫

e−2iπy·ξν(y)dy. Thanks to the Riemann-

Lebesgue Lemma 1.1.1, ξ 7→
∫
e−2iπy·ξν(y)dy is a continuous function with limit 0

at infinity, so we cannot have
∫
e−2iπy·ξν(y)dy = 1 which is a consequence of the

previous equality.

2.2 Young’s inequality

Lemma 2.2.1. Let (X,M, µ) be a measure space where µ is a σ-finite positive

measure. Let 1 ≤ r ≤ ∞, 1/r+ 1/r′ = 1. For u ∈ Lr(µ), w ∈ Lr′(µ), the product uw

belongs to L1(µ). Moreover we have

‖u‖Lr(µ) = sup
‖w‖

Lr
′
(µ)

=1

|〈u,w〉|, with 〈u,w〉 =

∫
X

uw̄dµ.
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Proof. The first statement follows from Hölder’s inequality. Also that inequality

implies for ‖w‖Lr′ = 1∣∣∣∣∫
X

uw̄dµ

∣∣∣∣ ≤ ‖u‖Lr(µ) =⇒ ‖u‖Lr(µ) ≥ sup
‖w‖

Lr
′
(µ)

=1

∣∣∣∣∫
X

uw̄dµ

∣∣∣∣ .
We assume first that 1 < r < +∞. Taking w = α|u|r−1, with u = α|u|, |α| ≡ 1 (we

define α = u/|u| on {u 6= 0}, α = 1 on {u = 0}: α is easily seen to be a measurable

function), we find for u 6= 0 in Lr,

‖w‖r′
Lr′

=

∫
X

|u|(r−1)r′=rdµ = ‖u‖rLr > 0,

and
∫
X
uw̄ =

∫
X
uᾱ|u|r−1 =

∫
X
|u|αᾱ|u|r−1 = ‖u‖rLr . We obtain thus

〈u,w/‖w‖Lr′ 〉 = ‖u‖r−
r
r′=r(1−

1
r′ )=1

Lr ,

proving the result.

We assume now r = 1. We take w = 1u6=0
u
|u| , so that we find for u 6= 0 in L1,

‖w‖L∞ = 1,

∫
X

uw̄dµ =

∫
|u|dµ = ‖u‖L1 , proving the result in that case.

We assume r = +∞, µ(X) < +∞. Let u ∈ L∞(µ), u 6= 0, and let ε > 0: then we

have

+∞ > µ
(
{x ∈ X, |u(x)| ≥ ‖u‖L∞(µ) − ε}︸ ︷︷ ︸

Gε

)
> 0.

We define for ε ∈ (0, ‖u‖L∞(µ)), w =
ū1Gε
|u|µ(Gε)

, so that ‖w‖L1(µ) = 1. We have also

〈u,w〉 =

∫
X

|u| 1Gε
µ(Gε)

dµ ≥ ‖u‖L∞(µ) − ε,

so that sup‖w‖L1=1 |〈u,w〉| ≥ ‖u‖L∞(µ) − ε. Since the latter is true for all ε > 0, this

gives the result.

We assume r = +∞, µ σ-finite. Let X = ∪NXN , µ(XN) < +∞. We may assume

that the sequence (XN)N∈N is increasing. Let u ∈ L∞(µ), u 6= 0. We define for

ε ∈ (0, ‖u‖L∞(µ)),

Gε,N = {x ∈ XN , |u(x)| ≥ ‖u‖L∞(µ) − ε}.

Since Gε = ∪N∈NGε,N = {x ∈ X, |u(x)| ≥ ‖u‖L∞(µ) − ε} which has a positive

measure, Proposition 1.4.4 (2) in [11] implies

lim
N
µ(Gε,N) = µ(Gε) > 0 =⇒ ∃Nε, ∀N ≥ Nε, µ(Gε,N) > 0.

We define w =
ū1Gε,Nε
|u|µ(Gε,Nε )

, so that ‖w‖L1(µ) = 1, and we have

〈u,w〉 =

∫
X

|u|
1Gε,Nε
µ(Gε,Nε)

dµ ≥ ‖u‖L∞(µ) − ε,

proving the result in that case as well. The proof of the lemma is complete.
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Theorem 2.2.2 (Young’s inequality). Let p, q, r ∈ [1,+∞] such that

1− 1

r
= 1− 1

p
+ 1− 1

q
. (2.2.1)

Then for u, v ∈ Cc(Rn), we have

‖u ∗ v‖Lr(Rn) ≤ ‖u‖Lp(Rn)‖v‖Lq(Rn). (2.2.2)

Moreover the bilinear mapping Cc(Rn)2 3 (u, v) 7→ u ∗ v ∈ Lr(Rn) can be extended

to a bilinear mapping from Lp(Rn)× Lq(Rn) into Lr(Rn) satisfying (2.2.2).

Proof. (1) We note first that if r = 1, then p = q = 1 and the inequality is already

proven as well as the unique extension property.

(2) Moreover if r = +∞, then 1/p+ 1/q = 1, the requested inequality is

‖u ∗ v‖L∞(Rn) ≤ ‖u‖Lp(Rn)‖v‖Lq(Rn),

which follows immediately from Hölder’s inequality. The extension property holds

obviously for 1 ≤ p, q < +∞. If p = +∞ = r, then q = 1 and

(u ∗ v)(x) =

∫
u(x− y)v(y)dy,

and (u, v) 7→ u∗v is a bilinear continuous mapping from L∞×L1 into L∞ satisfying

(2.2.2).

(3) We may thus assume that r ∈]1,+∞[. If p = +∞ (resp. q = +∞), we have

1 + 1/r = 1/q (resp. 1 + 1/r = 1/p), so that r = +∞, a case now excluded. If p = 1

we have q = r ; if q = r = 1, the inequality is proven. We thus may assume that

1 ≤ p < +∞, 1 < q, r < +∞. Let w ∈ Cc(Rn). We consider

(u ∗ v ∗ w)(0) =

∫
(u ∗ v)(y)w(−y)dy =

∫∫
u(y − x)v(x)w(−y)dydx,

we define

t =
1

p
, s =

1

q
, σ = 1− 1

r
, u0 = |u|p, v0 = |v|q, w0 = |w|1/σ,

and we find

(]) |(u ∗ v ∗ w)(0)| ≤
∫∫

ut0(y − x)vs0(x)wσ0 (−y)dydx.

We note that

1− t+ 1− s = σ, i.e. 1− t+ 1− s+ 1− σ = 1, 1− t, 1− s, 1− σ ≥ 0.

Lemma 2.2.3. Let u0, v0, w0 be nonnegative functions in L1(Rn) with norm 1. Let

s, t, σ ∈ [0, 1] such that 1− t+ 1− s+ 1− σ = 1. Then∫∫
ut0(y − x)vs0(x)wσ0 (−y)dydx ≤ 1.
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Proof of the lemma. We have for u0(y − x), v0(x), w0(−y) positive,

tLog u0(y − x) + sLog v0(x) + σ Logw0(−y)

=

(1− t)

0
1
1


︸ ︷︷ ︸
a1

+(1− s)

1
0
1


︸ ︷︷ ︸
a2

+(1− σ)

1
1
0


︸ ︷︷ ︸
a3

 ·
Log u0(y − x)

Log v0(x)
Logw0(−y)


︸ ︷︷ ︸

L

.

Consequently, we obtain, using the convexity of the exponential function,

ut0(y − x)vs0(x)wσ0 (−y)

= exp
[
(1− t)(a1 · L) + (1− s)(a2 · L) + (1− σ)(a3 · L)

]
≤ (1− t) exp(a1 · L) + (1− s) exp(a2 · L) + (1− σ) exp(a3 · L),

so that∫∫
ut0(y − x)vs0(x)wσ0 (−y)dydx ≤∫∫ {

(1− t)v0(x)w0(−y) + (1− s)u0(y − x)w0(−y)

+ (1− σ)u0(y − x)v0(x)
}
dydx = 1, (2.2.3)

concluding the proof of the lemma.

Going back to the proof of the theorem, we note that the previous lemma and

(]) imply

|(u ∗ v ∗ w)(0)| ≤
∫∫ {

(1− t)v0(x)w0(−y) + (1− s)u0(y − x)w0(−y)

+ (1− σ)u0(y − x)v0(x)
}
dydx. (2.2.4)

We get thus with 1/r + 1/r′ = 1, w̌(x) = w(−x), 〈u, v〉 =
∫
uv̄,

|〈u ∗ v, w̌〉| ≤ (1− t)‖v‖qLq‖w‖
r′

Lr′
+ (1− s)‖u‖pLp‖w‖

r′

Lr
′ + (1− σ)‖u‖qLp‖v‖

q
Lq .

Let us assume ‖u‖Lp = ‖v‖Lq = ‖w‖Lr′ = 1. We have then |〈u ∗ v, w̌〉| ≤ 1 so that

by homogeneity,

|〈u ∗ v, w〉| ≤ ‖u‖Lp‖v‖Lq‖w‖Lr′ . (2.2.5)

Since we have assumed that r ∈ (1,+∞], we know that r′ ∈ [1,+∞) and Cc(Rn) is

dense in Lr
′
(Rn). Inequality (2.2.5) implies for u, v, w ∈ Cc(Rn), W ∈ Lr′(Rn),∣∣∣∫ (u ∗ v)︸ ︷︷ ︸

Cc(Rn)
⊂Lr(Rn)

(x) W (x)︸ ︷︷ ︸
Lr′ (Rn)

dx
∣∣∣ ≤ |〈u ∗ v,W − w〉|+ |〈u ∗ v, w〉|

≤ ‖u ∗ v‖Lr‖W − w‖Lr′ + ‖u‖Lp‖v‖Lq‖w‖Lr′ .
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As a result for u, v ∈ Cc(Rn),W ∈ Lr′(Rn), and ε > 0, there exists w ∈ Cc(Rn) such

that ‖W − w‖Lr′ ≤ ε and thus

|〈u ∗ v,W 〉| ≤ ε‖u ∗ v‖Lr + ‖u‖Lp‖v‖Lq(‖W‖Lr′ + ε),

which implies |〈u ∗ v,W 〉| ≤ ‖u‖Lp‖v‖Lq‖W‖Lr′ and from Lemma 2.2.1 this gives

‖u ∗ v‖Lr ≤ ‖u‖Lp‖v‖Lq .
To prove that the mapping (u, v) 7→ u ∗ v can be continuously extended from

Cc(Rn)2 into Lr(Rn) to a continuous mapping from Lp×Lq into Lr, we may assume

that p, q ∈ [1,+∞). For (u, v) ∈ Lp×Lq and (uk, vk) sequences in Cc(Rn) converging

towards u, v respectively in Lp, Lq, we note that the sequence (uk ∗ vk) is a Cauchy

sequence in Lr since

‖uk+l ∗ vk+l − uk ∗ vk‖Lr = ‖(uk+l − uk) ∗ vk+l + uk ∗ (vk+l − vk)‖Lr
≤ ‖uk+l − uk‖Lp‖vk+l‖Lq + ‖vk+l − vk‖Lq‖uk‖Lp ,

and the numerical sequences (‖vk‖Lq)k, (‖vk‖Lq)k are bounded. We may define u ∗ v
for (u, v) ∈ Lp × Lq as the limit in Lr of uk ∗ vk. That limit does not depend

on the approximating sequences, thanks to the same inequality: with ũk, ṽk other

approximating sequences, we have

uk ∗ vk − ũk ∗ ṽk = (uk − ũk) ∗ vk + ũk ∗ (vk − ṽk),

and thus ‖uk ∗ vk − ũk ∗ ṽk‖Lr ≤ ‖uk − ũk‖Lp‖vk‖Lq + ‖ũk‖Lp‖vk − ṽk‖Lq , entailing

that limk uk ∗ vk = limk ũk ∗ ṽk in Lr.

There is a more constructive approach to the definition of the convolution product

between Lp(Rn) and Lq(Rn) for p, q, r satisfying (2.2.1). The case r = +∞ is settled

directly by Hölder’s inequality. We assume in the sequel that 1 ≤ r < +∞.

Let u ∈ Lp(Rn), v ∈ Lq(Rn), both non-negative functions. Then the function

(x, y) 7→ u(y − x)v(x) is measurable and Tonelli Theorem implies that

(u ∗ v)(y) =

∫
u(y − x)v(x)dx

is a measurable non-negative function of y. Moreover choosing w(y) = 1Bn(y/k),

inequalities (2.2.4), (2.2.5) entail that
∫
|y|≤k(u∗v)(y)dy is finite for all k. As a result

the non-negative function u ∗ v is locally integrable (thus almost everywhere finite).

We use now Lemma 2.2.1: for B with finite measure and λ > 0(∫
B∩{y,(u∗v)(y)≤λ}

(
(u ∗ v)(y)

)r
dy

)1/r

= sup
w≥0

‖w‖
Lr
′=1

∫
B∩{y,(u∗v)(y)≤λ}

(u ∗ v)(y)w(y)dy,
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and inequality (2.2.5) implies∫
B∩{y,(u∗v)(y)≤λ}

(
(u ∗ v)(y)

)r
dy ≤ ‖u‖rLp(Rn)‖v‖rLq(Rn),

which proves that for u, v non-negative respectively in Lp(Rn) and Lq(Rn) for p, q, r

satisfying (2.2.1), we find that u ∗ v belongs to Lr(Rn) and (2.2.2) holds. Now if u, v

are respectively in Lp(Rn) and Lq(Rn), we may write

u = (Reu)+ − (Reu)− + i(Imu)+ − i(Imu)−,

and define u ∗ v = (Reu)+ ∗ (Re v)+ + . . . The bilinearity is obvious as well as the

continuity Lp ∗ Lq ⊂ Lr. To obtain the inequality (2.2.2) , we use again inequalities

(2.2.4), (2.2.5). We sum-up our discussion.

Definition 2.2.4. Let p, q, r ∈ [1,+∞] satisfying (2.2.1). For u ∈ Lp(Rn) and

v ∈ Lq(Rn), we define

(u ∗ v)(y) =

∫
u(y − x)v(x)dx

which is a locally integrable function (thus a.e. finite).

Theorem 2.2.5. Let p, q, r ∈ [1,+∞] satisfying (2.2.1). The mapping

Lp(Rn)× Lq(Rn) 3 (u, v) 7→ u ∗ v ∈ Lr(Rn),

is continuous and (2.2.2) holds.

2.3 Weak Lp spaces

Definition 2.3.1. Let p ∈ [1,+∞). We define the weak-Lp(Rn) space Lpw(Rn) as

the set of measurable functions u : Rn → C such that

sup
t>0

tpλn
(
{x ∈ Rn, |u(x)| > t}

)
= Ωp(u) < +∞, (2.3.1)

where λn is the Lebesgue measure on Rn.

Remark 2.3.2. (1) We have Lp(Rn) ⊂ Lpw(Rn): let u ∈ Lp(Rn). We have for t > 0

tpλn({|u| > t}) =

∫
|u|>t

tpdx ≤
∫
|u|>t
|u(x)|pdx ≤ ‖u‖pLp(Rn),

so that, with Ωp(u) defined in (2.3.1), we have

Ωp(u) ≤ ‖u‖pLp(Rn). (2.3.2)

(2) For x ∈ Rn, we define vp(x) = |x|−n/p (a measurable function). For R > 0, we

have ∫
B(0,R)

vp(x)pdx =

∫
B(0,R)

|x|−ndx ≥ |Sn−1|
∫ R

0

dr/r = +∞,
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so that vp is not in Lploc(Rn). On the other hand, we have for t > 0

tpλn
(
{|x|−n/p > t}

)
= tpt−

p
n
nλn(Bn) = λn(Bn),

so that vp belongs to Lpw(Rn).

Lemma 2.3.3. Let p ∈ [1,+∞). Then Lpw(Rn) is a C-vector space. For u, v ∈
Lpw(Rn), α ∈ C, we have(

Ωp(αu)
) 1
p = |α|

(
Ωp(u)

) 1
p ,

(
Ωp(u+ v)

) 1
p ≤ 2

1
p
(
Ωp(u)

1
p + Ωp(v)

1
p
)
.

Remark 2.3.4. The mapping Lpw(Rn) 3 u 7→
(
Ωp(u)

) 1
p is a quasi-norm: it satisfies the

properties of separation and homogeneity, but fails to satisfy the triangle inequality,

although a substitute is available with a constant 21/p > 1. We shall see below

(Lemma 2.3.5) that when p ∈ (1,+∞), we can find a true norm equivalent to this

quasi-norm.

Proof of the lemma. Let α, β be non-zero complex numbers and let u, v ∈ Lpw. Since

for t > 0, |αu| ≤ t/2 and |βv| ≤ t/2 imply |αu+ βv| ≤ t, we have

{|αu+ βv| > t} ⊂ {|αu| > t/2} ∪ {|βv| > t/2},

and thus

tpλn
(
{|αu+ βv| > t}

)
≤ (2|α|)p

(
t

2|α|

)p
λn
(
{|αu| > t/2}

)
+ (2|β|)p

(
t

2|β|

)p
λn({|βv| > t/2})

≤ (2|α|)pΩp(u) + (2|β|)pΩp(v),

so that Ωp(αu+ βv) ≤ (2|α|)pΩp(u) + (2|β|)pΩp(v) < +∞, proving the vector space

property. The first homogeneity equality in the lemma is obvious, let us prove the

second one. We may of course assume that both quantities Ωp(u),Ωp(v) are positive

(Ωp(u) = 0 implies u = 0 a.e.). Let θ ∈ (0, 1). Since for t > 0, |u| ≤ (1 − θ)t and

|βv| ≤ θt imply |u+ v| ≤ t, we have

{|u+ v| > t} ⊂ {|u| > t(1− θ)} ∪ {|v| > tθ},

so that

tpλn({|u+ v| > t})
≤ (1− θ)−ptp(1− θ)pλn({|u| > t(1− θ)}) + θ−ptpθpλn({|v| > tθ})

≤ (1− θ)−pΩp(u) + θ−pΩp(v). (∗)

We consider now the function (0, 1) 3 θ 7→ (1 − θ)−pa + θ−pb = φa,b(θ), where a, b

are positive parameters. We have

φ′a,b(θ) = p(1− θ)−p−1a− pθ−p−1b,



48 CHAPTER 2. BASIC CONVOLUTION INEQUALITIES

and the minimum of φ is attained at θ such that (1− θ)−p−1a = θ−p−1b, i.e

θ

1− θ
= (b/a)

1
p+1 , i.e. θ =

(b/a)
1
p+1

1 + (b/a)
1
p+1

=
b

1
p+1

a
1
p+1 + b

1
p+1

,

with φa,b = (1 − θ)−pa + θ−pb = (a
1
p+1 + b

1
p+1 )p+1 at this point. We infer from (∗)

that (
Ωp(u+ v)

) 1
p ≤

(
Ωp(u)

1
p+1 + Ωp(v)

1
p+1
) p+1

p ≤ 2
1
p
(
Ωp(u)

1
p + Ωp(v)

1
p
)
,

where the last inequality comes from the sharp elementary2

(a
1
p+1 + b

1
p+1 )

p+1
p ≤ 2

1
p
(
a

1
p + b

1
p
)
.

Lemma 2.3.5. Let p ∈ (1,+∞) and let p′ be its conjugate exponent. For u ∈
Lpw(Rn), we define

Np(u) = sup
A measurable

with finite positive
measure

λn(A)−1/p′
∫
A

|u(x)|dx. (2.3.3)

Then Np is a norm on Lpw(Rn) which is equivalent to the quasi-norm Ωp(·)1/p.

Proof. Tonelli’s Theorem gives for a measurable subset A of Rn,∫
A

|u(x)|dx =

∫∫
1A(x)H(|u(x)| − t)H(t)dtdx, with H = 1R+ .

As a result, for T ≥ 0 and A measurable with finite measure, we have∫
A

|u(x)|dx =

∫ +∞

0

λn
(
A ∩ {|u| > t}

)
dt

=

∫ T

0

λn
(
A ∩ {|u| > t}

)
dt+

∫ +∞

T

λn
(
A ∩ {|u| > t}

)
dt

≤ Tλn(A) +

∫ +∞

T

λn
(
{|u| > t}

)
dt.

≤ Tλn(A) +

∫ +∞

T

Ωp(u)t−pdt = Tλn(A) + Ωp(u)
T 1−p

p− 1
.

2We have from Hölder’s inequality for a, b positive,

a
1
p+1 + b

1
p+1 ≤

(
(a

1
p+1 )

p+1
p + (b

1
p+1 )

p+1
p

) p
p+1 (

1
p+1
1 + 1

p+1
1

) 1
p+1 = 2

1
p+1
(
a

1
p + b

1
p
) p
p+1 .

The constant 2
1
p+1 is easily shown to be sharp by taking a = b.
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We choose T = λn(A)−1/pΩp(u)1/p and we find∫
A

|u(x)|dx ≤ λn(A)1/p′Ωp(u)1/p +
1

p− 1
λn(A)−

1
p

+1Ωp(u)1+ 1
p
−1

= λn(A)1/p′Ωp(u)1/p p

p− 1
,

proving

Np(u) ≤ p

p− 1
Ωp(u)1/p. (2.3.4)

For t > 0, and Xk measurable with finite measure, we have

tpλn
(
{|u| > t} ∩Xk

)
= tp

∫
{|u|>t}∩Xk

dx

≤ tp−1

∫
{|u|>t}∩Xk

|u(x)|dx ≤ tp−1Np(u)λn
(
{|u| > t} ∩Xk

)1/p′
,

so that tλn
(
{|u| > t} ∩Xk

)1/p ≤ Np(u). Since λn is σ-finite, this implies

Ωp(u) ≤ Np(u)p. (2.3.5)

We see now that Np is finite ≥ 0 on Lpw from (2.3.4). Moreover Np(u) = 0 implies

from (2.3.5) that λn({|u| > t}) = 0 for all t > 0 and since

{u 6= 0} = ∪n≥1{|u| > 1/n},

we find u = 0, a.e. Moreover, for α ∈ C and u ∈ Lpw, we have

Np(αu) = sup
A measurable

with finite measure>0

λn(A)−1/p′
∫
A

|αu(x)|dx = |α|Np(u).

Eventually, for u, v ∈ Lpw and A measurable with finite measure, we have

λn(A)−1/p′
∫
A

|u(x) + v(x)|dx

≤ λn(A)−1/p′
∫
A

|u(x)|dx+ λn(A)−1/p′
∫
A

|v(x)|dx ≤ Np(u) +Np(v),

which implies Np(u+v) ≤ Np(u) +Np(v), proving that Np is a norm on Lpw(Rn) and

concluding the proof of the lemma.

Proposition 2.3.6. Let p ∈ (1,+∞). Then Lpw(Rn) is a Banach space for the norm

(2.3.3).

Proof. Let us consider a Cauchy sequence (uk)k∈N in Lpw(Rn): in particular for every

measurable subset A with finite measure, we find that (uk |A)k∈N is a Cauchy sequence
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in L1(A), thus convergent with limit vA. Since the Lebesgue measure on Rn is σ-

finite, we find a measurable function u such that for every A measurable with finite

measure, limk ‖uk − u‖L1(A) = 0. We check now for a measurable subset A with

finite measure,

λn(A)−1/p′
∫
A

|uk(x)− u(x)|dx

≤ λn(A)−1/p′
∫
A

|uk(x)− ul(x)|dx+ λn(A)−1/p′
∫
A

|ul(x)− u(x)|dx

≤ Np(uk − ul) + λn(A)−1/p′‖ul − u‖L1(A).

Let ε > 0 be given. There existsNε such that for k, l ≥ Nε, we haveNp(uk−ul) ≤ ε/2.

We know also that for l ≥ Lε,A, we have λn(A)−1/p′‖ul − u‖L1(A) ≤ ε/2. We take

k ≥ Nε and we choose l = max(Nε, Lε,A): we find

λn(A)−1/p′
∫
A

|uk(x)− u(x)|dx ≤ ε.

As a result u belongs to Lpw(Rn) and Np(uk − u) ≤ ε for k ≥ Nε, proving the

completeness of Lpw(Rn).

2.4 The Hardy-Littlewood-Sobolev inequality

We begin with a lemma, following [13].

Lemma 2.4.1. Let p, q, r > 1 be real numbers such that

1− 1

p
+ 1− 1

q
= 1− 1

r
=

1

r′

and let f, g be non-negative measurable functions such that

‖f‖Lp(Rn) = 1 = ‖g‖Lr′ (Rn).

Setting τ = n/q, we define

Tτ (f, g) =

∫∫
f(x)|x− y|−τg(y)dydx

and we have

Tτ (f, g) = τ

∫
R3
+×Rn×Rn

t−τ−1
3 H(t3 − |x− y|)

H(f(x)− t1)H(g(y)− t2)dt1dt2dt3dxdy. (2.4.1)

Setting for tj ≥ 0,

u1(t1) =

∫
Rn
H(f(x)− t1)dx, u2(t2) =

∫
Rn
H(g(y)− t2)dy, u3(t3) = βnt

n
3 ,
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with βn = |Bn|, and

m(t1, t2, t3) = max
(
u1(t1), u2(t2), u3(t3)

)
,

we have

Tτ (f, g) ≤ τ

∫
R3
+

t−τ−1
3

u1(t1)u2(t2)u3(t3)

m(t)
dt1dt2dt3, (2.4.2)

p

∫ +∞

0

tp−1
1 u1(t1)dt1 = r′

∫ +∞

0

tr
′−1

2 u2(t2)dt2 = 1. (2.4.3)

Proof. We have for τ > 0,

τ

∫ +∞

0

t−τ−1H(t− |x|)dt = τ

∫ +∞

|x|
t−τ−1dt = [t−τ ]

t=|x|
t=+∞ = |x|−τ

and thus

Tτ (f, g) =

∫∫
f(x)|x− y|−τg(y)dydx

=

∫
Rn×Rn×R+

f(x)g(y)τt−τ−1
3 H(t3 − |x− y|)dxdydt3

= τ

∫
R3
+×Rn×Rn

t−τ−1
3 H(t3 − |x− y|)H(f(x)− t1)H(g(y)− t2)dt1dt2dt3dxdy,

proving (2.4.1). We have thus

Tτ (f, g) ≤ τ

∫
R3
+×Rn×Rn

m(t)=u3(t3)

t−τ−1
3 H(f(x)− t1)H(g(y)− t2)dt1dt2dt3dxdy

+ τ

∫
R3
+×Rn×Rn

m(t)=u2(t2)
m(t)>u3(t3)

t−τ−1
3 H(t3 − |x− y|)H(f(x)− t1)dt1dt2dt3dxdy

+ τ

∫
R3
+×Rn×Rn

m(t)=u1(t1)
m(t)>max(u2(t2),u3(t3))

t−τ−1
3 H(t3 − |x− y|)H(g(y)− t2)dt1dt2dt3dxdy,

so that with

A3 = {t ∈ R3
+,m(t) = u3(t3)}

A2 = {t ∈ R3
+,m(t) = u2(t2),m(t) > u3(t3)},

A1 = {t ∈ R3
+,m(t) = u1(t1),m(t) > max(u2(t2), u3(t3))},

we have

Tτ (f, g) ≤ τ

∫
A3

t−τ−1
3 u1(t1)u2(t2)dt

+ τ

∫
A2

t−τ−1
3 βnt

n
3u1(t1)dt

+ τ

∫
A1

t−τ−1
3 βnt

n
3u2(t2)dt

= τ

∫
R3
+

t−τ−1
3

u1(t1)u2(t2)u3(t3)

m(t)
dt1dt2dt3.
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Moreover, we have

p

∫ +∞

0

tp−1
1 u1(t1)dt1 =

∫
Rn

∫ +∞

0

ptp−1
1 H(f(x)− t1)dxdt1 =

∫
Rn
f(x)pdx = 1

and

r′
∫ +∞

0

tr
′−1

2 u2(t2)dt2 =

∫
Rn

∫ +∞

0

r′tr
′−1

2 H(g(y)− t2)dydt2 =

∫
Rn
g(y)r

′
dx = 1,

completing the proof of the lemma.

Lemma 2.4.2. Let p, q, r, f, g, τ, Tτ , βn, u1, u2 as in the previous lemma. Then we

have

Tτ (f, g) ≤ nβ
τ/n
n

n− τ

∫
R2
+

min
(
u1(t1)1− τ

nu2(t2),u1(t1)u2(t2)1− τ
n

)
dt1dt2. (2.4.4)

Proof. For t ∈ R3
+, we set V (t) = u1(t1)u2(t2)u3(t3)

m(t)
.

Let us assume that u1(t1) ≥ u2(t2). In that case we have∫ +∞

0

t−τ−1
3 V (t1, t2, t3)dt3 =

∫ +∞

0

t−τ−1
3

u1(t1)u2(t2)u3(t3)

max(u1(t1), u3(t3))
dt3

= u1(t1)u2(t2)
(∫

R+,βntn3≤u1(t1)

t−τ−1+n
3 βndt3u1(t1)−1 +

∫
R+,βntn3>u1(t1)

t−τ−1
3 dt3

)

= u1(t1)u2(t2)βn

(
u1(t1)−1

[ tn−τ3

n− τ

]t3=u1(t1)1/nβ
−1/n
n

t3=0
+ β−1

n

[t−τ3

τ

]t3=u1(t1)1/nβ
−1/n
n

t3=+∞

)

= u1(t1)u2(t2)βn

(
u1(t1)−1+n−τ

n
β
−1+ τ

n
n

n− τ
+ τ−1β

−1+ τ
n

n u1(t1)−τ/n
)

= u1(t1)1− τ
nu2(t2)βτ/nn

n

τ(n− τ)
.

If we have instead u1(t1) ≤ u2(t2), we find∫ +∞

0

t−τ−1
3 V (t1, t2, t3)dt3 = u2(t2)1− τ

nu1(t1)βτ/nn

n

τ(n− τ)
.

From (2.4.2) and the previous estimates, we obtain

Tτ (f, g) ≤ nβ
τ/n
n

n− τ

∫
R2
+

1
(
u1(t1) ≥ u2(t2)

)
u1(t1)1− τ

nu2(t2)1− τ
nu2(t2)

τ
ndt1dt2

+
nβ

τ/n
n

n− τ

∫
R2
+

1
(
u1(t1) ≤ u2(t2)

)
u1(t1)1− τ

nu2(t2)1− τ
nu1(t1)

τ
ndt1dt2

=
nβ

τ/n
n

n− τ

∫
R2
+

u1(t1)1− τ
nu2(t2)1− τ

n

(
min

(
u1(t1), u2(t2)

))τ/n
dt1dt2,

which is (2.4.4).
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Lemma 2.4.3. Let p, q, r, f, g, τ, Tτ , βn, u1, u2 as in the previous lemmas. We define

J =

∫
R2
+

min
(
u1(t1)1− τ

nu2(t2),u1(t1)u2(t2)1− τ
n

)
dt1dt2. (2.4.5)

Then with

J1 =

∫ +∞

0

u1(t1)

∫ t
p/r′
1

0

u2(t2)1− τ
ndt2dt1, J2 =

∫ +∞

0

u2(t2)

∫ t
r′/p
2

0

u1(t1)1− τ
ndt1dt2,

we have J ≤ J1 + J2. Moreover, we have

J1 ≤
1

pr′

(
p′τ

n

)τ/n
, J2 ≤

1

pr′

(rτ
n

)τ/n
.

Proof. We have

J ≤
∫∫

0≤t1,0≤t2≤tp/r
′

1

(
u1(t1)u2(t2)

)1− τ
n min

(
u1(t1), u2(t2)

)τ/n
dt1dt2

+

∫∫
0≤t2,0≤t1≤tr

′/p
2

(
u1(t1)u2(t2)

)1− τ
n min

(
u1(t1), u2(t2)

)τ/n
dt1dt2

and thus

J ≤
∫ +∞

0

u1(t1)

∫ t
p/r′
1

0

u2(t2)1− τ
ndt2

 dt1

+

∫ +∞

0

u2(t2)

∫ t
r′/p
2

0

u1(t1)1− τ
ndt1

 dt2.

From Hölder’s inequality, since 1− τ
n

= 1/q′, we find, choosing m = r′−1
q′

∫ t
p/r′
1

0

u2(t2)1− τ
ndt2 =

∫ t
p/r′
1

0

tm2 u2(t2)1− τ
n t−m2 dt2

≤
( ∫ t

p/r′
1

0

tmq
′

2 u2(t2)dt2︸ ︷︷ ︸
=1/r′ from (2.4.3)

)1/q′

∫ t
p/r′
1

0

t−mq2 dt2

1/q

.

We note also that

mq =
r′ − 1

q′
q < 1⇐⇒ r′ − 1

q′
< 1/q ⇐⇒ r′ < q′ which holds since

1

p′
+

1

q′
=

1

r′
.

As a result, we have

J1 ≤
∫ +∞

0

u1(t1)
( 1

r′
)1/q′(

(t
p/r′

1 )1−mq(1−mq)−1
)1/q

dt1.



54 CHAPTER 2. BASIC CONVOLUTION INEQUALITIES

Since

p(1−mq)
r′q

=
p

r′q

(
1− (r′ − 1)

q′
q
)

=
p

r′
(
1− r′

q′
)

= p
( 1

r′
− 1

q′
)

=
p

p′
= p− 1,

we obtain, using (2.4.3),

J1 ≤
∫ +∞

0

u1(t1)tp−1
1 dt1

( 1

r′
)1/q′

(1−mq)−1/q

=
1

p

( 1

r′
)1/q′

(1−mq)−1/q =
1

pr′
(

1

r′
− mq

r′
)−1/q =

1

pr′
(

1

r′
− q

q′r
)−1/q

=
1

pr′
(

1

r′
− (q − 1)

r
)−1/q =

1

pr′
(1− q

r
)−1/q =

1

pr′
(
1

q
− 1

r
)−1/qq−1/q

=
1

pr′
(

1

p′
)−1/qq−1/q =

1

pr′
(
p′

q
)1/q =

1

pr′
(
p′τ

n
)τ/n.

To estimate J2 from above is analogous: we have, choosing µ = p−1
q′
,

∫ t
r′/p
2

0

u1(t1)1− τ
ndt1 =

∫ t
r′/p
2

0

tµ1u1(t1)1− τ
n t−µ1 dt1

≤
(∫ t

r′/p
2

0

tµq
′

1 u1(t1)dt1︸ ︷︷ ︸
=1/p

)1/q′(∫ t
r′/p
2

0

t−µq1 dt1

)1/q

.

We check µq < 1 by the same calculation, exchanging the roles of p and r′: p′ is

replaced by r and pr′ replaced by r′p is unchanged.

Theorem 2.4.4 (Hardy-Littlewood-Sobolev inequality). Let p, q, r ∈ (1,+∞) such

that 1
p′

+ 1
q′

= 1
r′

. There exists C > 0 such that, for all F ∈ Lp(Rn),

‖(F ∗ | · |−n/q)‖Lr(Rn) ≤ C‖F‖Lp(Rn).

The constant C can be taken as q′β
1/q
n

1
pr′

((
p′

q

)1/q

+
(
r
q

)1/q
)

.

Proof. For f = |F |/‖F‖Lp , ‖g‖Lr′ = 1, we have proven from (2.4.4) and Lemma

2.4.3,

Tτ (f, g) ≤ nβ
τ/n
n

n− τ
1

pr′

((p′
q

)1/q
+
(r
q

)1/q
)

= β1/q
n q′

1

pr′

((p′
q

)1/q
+
(r
q

)1/q
)
,

providing the sought result.
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2.5 Riesz-Thorin Interpolation Theorem

Theorem 2.5.1 (Hadamard three-lines theorem). Let a < b be real numbers, let

Ω = {z ∈ C, a < Re z < b} and let f : Ω → C be a bounded continuous function

which is holomorphic on Ω. We define for x ∈ [a, b],

M(x) = sup
y∈R
|f(x+ iy)|.

Then the function M is log-convex on [a, b], i.e.

M(x) ≤M(a)
b−x
b−aM(b)

x−a
b−a . (2.5.1)

N.B. We note here that this proposition implies in particular that if f vanishes

identically on the vertical line {Re z = a} or on {Re z = b}, then it should vanish

identically on Ω. If M(a),M(b) are both positive, then (2.5.1) reads

(lnM)
(
(1− θ)a+ θb

)
≤ (1− θ) lnM(a) + θ lnM(b),

which means convexity of lnM on [a, b], i.e. log-convexity. Defining ln 0 = −∞, we

recover the fact that if f vanishes on one vertical line, it vanishes on Ω.

Proof. We may of course assume without loss of generality that a = 0, b = 1: given

a < b real numbers, and f as in the proposition above, we may consider

f̃(z) = f
(
(b− a)z + a

)
,

which is defined on {z ∈ C, 0 ≤ Re z ≤ 1}. If we get the result for f̃ , it will read for

θ ∈ [0, 1]

sup
{Re ζ=a+θ(b−a)=x}

|f(ζ)| = sup
{Re z=θ}

|f̃(z)|

≤
(
sup
y∈R
|f̃(iy)|

)1−θ(
sup
y∈R
|f̃(1 + iy)|

)θ
=
(
sup
y∈R
|f(a+ (b− a)iy)|

)1−θ(
sup
y∈R
|f(a+ b− a+ (b− a)iy)|

)θ
=
(

sup
Re ζ=a

|f(ζ)|
) b−x
b−a
(

sup
Re ζ=b

|f(ζ)|
)x−a
b−a ,

which is the sought result.

We assume first that M(0) = M(1) = 1. We define for ε > 0 the holomorphic

function hε on Re z > −1/ε given by

hε(z) =
1

1 + εz
.

We note that ∀z ∈ ∂Ω, |f(z)hε(z)| ≤ 1 (in fact |f(z)| ≤ 1 there as well as hε(z))

and moreover with C = supΩ̄ |f |, we have for 0 ≤ Re z ≤ 1, | Im z| ≥ C/ε,

|f(z)hε(z)| ≤ C|1 + εz|−1 ≤ Cε−1| Im z|−1 ≤ 1. (2.5.2)
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As a result, considering the rectangle Rε = {0 ≤ Re z ≤ 1, | Im z| ≤ C/ε}, we see

that the continuous function fhε : Rε → C is bounded above by 1 on the boundary

and is holomorphic in the interior. Applying the maximum principle, we obtain that

(]) ∀z ∈ Rε, |f(z)hε(z)| ≤ 1.

On the other hand if z ∈ Ω̄ with | Im z| > C/ε, we get from (2.5.2) the same

inequality (]). Consequently, we have for all ε > 0 and all z ∈ Ω̄, |f(z)hε(z)| ≤ 1,

which implies the sought result |f(z)| ≤ 1 for z ∈ Ω̄.

We assume now that M(0),M(1) are both positive, and we introduce the function

F (z) = M(0)−(1−z)M(1)−zf(z) = f(z)ez(lnM(0)−lnM(1))M(0)−1. (2.5.3)

The function F is holomorphic on Ω = {0 < Re z < 1}, is bounded on Ω̄ since

sup
z∈Ω̄

|F (z)| ≤M(0)−1e| lnM(0)−lnM(1)| sup
Ω̄

|f |.

Moreover, on the vertical lines Re z = 0, 1, |F | is bounded above respectively by

M(0)M(0)−1 = 1, M(1)M(0)M(1)−1M(0)−1 = 1,

so that we may apply the previous result to obtain

∀z ∈ Ω̄, |M(0)−(1−z)M(1)−zf(z)| ≤ 1,

which is precisely the sought result.

We assume now that M(0) ≥ 0,M(1) ≥ 0. Let ε > 0 be given. We introduce the

function

Fε(z) = (M(0) + ε)−(1−z)(M(1) + ε)−zf(z). (2.5.4)

Then, using the previous result, we obtain

∀ε > 0, ∀z ∈ Ω̄, |f(z)| ≤ |(M(0) + ε)(1−z)(M(1) + ε)z|,

which implies the result, letting ε→ 0+. The proof of the theorem is complete.

Theorem 2.5.2 (Riesz-Thorin Interpolation Theorem).

Let (X,M, µ) be a measure space where µ is a σ-finite positive measure. Let

p0, p1, q0, q1 ∈ [1,+∞] and let T : Lpj(µ) −→ Lqj(µ), j = 0, 1, be a linear map

such that

‖Tu‖Lqj (µ) ≤Mj‖u‖Lpj (µ), j = 0, 1.

For θ ∈ [0, 1] we define 1
pθ

= 1−θ
p0

+ θ
p1
, 1

qθ
= 1−θ

q0
+ θ

q1
. Then T is a bounded linear

map from Lpθ(µ) into Lqθ(µ) and

∀u ∈ Lpθ(µ), ‖Tu‖Lqθ (µ) ≤M1−θ
0 M θ

1‖u‖Lpθ (µ). (2.5.5)
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Proof. We may of course assume that θ ∈ (0, 1).

[1] Let us first assume that pθ = +∞, so that p0 = p1 = +∞.

Let u be a function in L∞(µ): Tu belongs to Lq0(µ) ∩ Lq1(µ).

Claim: for θ ∈ (0, 1), we have Lq0(µ)∩Lq1(µ) ⊂ Lqθ(µ). This is obvious if qθ = +∞
(implying q0 = q1 = +∞) and if qθ < +∞, assuming that q0, q1 are both finite (and

distinct), we find some t ∈ (0, 1) such that

qθ = (1− t)q0 + tq1, so that with
1

r
= 1− t,

∫
X

|v|qθdµ =

∫
X

|v|q0(1−t)|v|q1tdµ

≤ ‖|v|q0(1−t)‖Lr‖|v|q1t‖Lr′ = ‖v‖q0(1−t)
Lq0 ‖v‖q1tLq1 . (2.5.6)

If q0 = +∞, 1 ≤ q1 < +∞, we have qθ = q1/θ and∫
X

|v|qθdµ ≤ ‖v‖q1( 1
θ
−1)

L∞

∫
X

|v|q1dµ, (2.5.7)

proving the claim in that case as well.

We find thus that Tu ∈ Lqθ and when q0, q1 are both finite, applying (2.5.6),

‖Tu‖qθqθ ≤ ‖Tu‖
q0(1−t)
q0

‖Tu‖q1tq1 ≤M
q0(1−t)
0 M q1t

1 ‖u‖qθ∞,

and since

tq1

qθ
=
qθ − q0

q1 − q0

q1

qθ
=

1− q0
qθ

1− q0
q1

=
q−1

0 − q−1
θ

q−1
0 − q−1

1

= θ, so that
(1− t)q0

qθ
= 1− θ,

proving (2.5.5). If q0 = +∞, 1 ≤ q1 < +∞, we have qθ = q1/θ and applying (2.5.7)

‖Tu‖qθqθ ≤ ‖Tu‖
q1( 1

θ
−1)

q0 ‖Tu‖q1q1 ≤M
q1( 1

θ
−1)

0 M q1
1 ‖u‖qθ∞,

and since
qθ − q1

qθ
= 1− q−1

θ

q−1
1 − q−1

0

= 1− θ, so that
q1

qθ
= θ,

this implies (2.5.5) in that case as well.

[2] We assume now that 1 ≤ pθ < +∞, qθ > 1. Let u be a function in S, defined by

S = {s : X → C,measurable, s(X) finite with µ
(
{s 6= 0}

)
< +∞}. (2.5.8)

We have

u =
∑

1≤j≤m

αje
iφj1Aj , αj > 0, φj ∈ R, µ(Aj) < +∞, (2.5.9)

where the Aj are pairwise disjoint elements of M. Then Tu makes sense, belongs

to Lqθ(µ) and since S is dense in Lpθ(µ) (Proposition 3.2.11 in [11]), it is enough to

prove that

∀v ∈ L(qθ)′ ,

∣∣∣∣∫ (Tu)vdµ

∣∣∣∣ ≤M1−θ
0 M θ

1‖u‖pθ‖v‖(qθ)′ . (2.5.10)
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In fact, if we prove the above inequality, thanks to Lemma 2.2.1, this will imply

that ‖Tu‖qθ ≤ M1−θ
0 M θ

1‖u‖pθ . Now since T is a linear operator, and S is dense in

Lpθ(µ), there is a unique extension of T to a bounded linear operator from Lpθ(µ)

into Lqθ(µ) with operator-norm bounded above by M1−θ
0 M θ

1 . To obtain (2.5.10), it

is enough to prove that

∀v ∈ S,
∣∣∣∣∫ (Tu)vdµ

∣∣∣∣ ≤M1−θ
0 M θ

1‖u‖pθ‖v‖(qθ)′ , (2.5.11)

since qθ > 1 (S is dense in L(qθ)′). We may thus assume that

v =
∑

1≤k≤N

βke
iψk1Bk , βk > 0, ψk ∈ R, µ(Bk) < +∞, (2.5.12)

where the Bk are pairwise disjoint elements of M. We define the entire functions

u(z) =
∑

1≤j≤m

α
a(z)/a(θ)
j eiφj1Aj , a(z) =

1− z
p0

+
z

p1

, (2.5.13)

v(z) =
∑

1≤k≤N

β
(1−b(z))/(1−b(θ))
k eiψk1Bk , b(z) =

1− z
q0

+
z

q1

, (2.5.14)

F (z) =

∫
X

(
Tu(z)

)
v(z)dµ, (2.5.15)

and we note that a(θ) = 1/p(θ), b(θ) = 1/q(θ) ∈ (0, 1) since θ ∈ (0, 1). The function

F is bounded on {z ∈ C, 0 ≤ Re z ≤ 1}: we have to deal with a finite sum and

Re a(z) ∈ [0, 1], Re(1− b(z)) ∈ [0, 1].

Moreover, for y ∈ R, we have

F (iy) =

∫
X

T
( ∑

1≤j≤m

α
a(iy)
a(θ)

j eiφj1Aj

)( ∑
1≤k≤m

1Bkβ
(1−b(iy))
(1−b(θ))
k eiψk

)
dµ,

and thus

|F (iy)| ≤M0‖
∑

1≤j≤m

α
a(iy)
a(θ)

j eiφj1Aj‖p0‖
∑

1≤k≤m

1Bkβ
(1−b(iy))
(1−b(θ))
k eiψk‖q′0 .

Since the (Aj)1≤j≤m (and the (Bk)1≤k≤N) are pairwise disjoint, we have

‖
∑

1≤j≤m

α
a(iy)
a(θ)

j eiφj1Aj‖p0 = ‖
∑

1≤j≤m

α
Re a(iy)
a(θ)

j 1Aj‖p0 = ‖
∑

1≤j≤m

α
p(θ)
p0
j 1Aj‖p0

=

(∫
X

( ∑
1≤j≤m

α
p(θ)
j 1Aj

)
dµ

)1/p0

=

(∫
X

|u(θ)|p(θ)dµ
)1/p0

= ‖u(θ)‖pθ/p0p(θ) ,
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and

‖
∑

1≤k≤N

1Bkβ
(1−b(iy))
(1−b(θ))
k eiψk‖q′0 = ‖

∑
1≤k≤N

β
1−Re b(iy)

1−b(θ)
k 1Bk‖q′0 =‖

∑
1≤k≤N

β

q′(θ)
q′0

k 1Bk‖q′0

=

(∫
X

( ∑
1≤k≤N

β
q′(θ)
k 1Bk

)
dµ

)1/q′0

=

(∫
X

|v(θ)|q′(θ)dµ
)1/q′0

= ‖v(θ)‖q
′
θ/q
′
0

q′(θ) ,

so that, for y ∈ R, |F (iy)| ≤M0‖u(θ)‖pθ/p0p(θ) ‖v(θ)‖q
′
θ/q
′
0

q′(θ) . We obtain similarly that

|F (1 + iy)| ≤M1‖u(θ)‖pθ/p1p(θ) ‖v(θ)‖q
′
θ/q
′
1

q′(θ) .

The last two inequalities and Theorem 2.5.1 imply for Re z ∈ [0, 1]

|F (z)| ≤
(
M0‖u(θ)‖

pθ
p0

p(θ)‖v(θ)‖
q′θ
q′0
q′(θ)

)1−Re z(
M1‖u(θ)‖pθ/p1p(θ) ‖v(θ)‖q

′
θ/q
′
1

q′(θ)

)Re z

,

so that for Re z = θ, since

pθ
p0

(1− θ) +
pθ
p1

θ = 1 =
q′θ
q′0

(1− θ) +
q′θ
q′1
θ,

we get ∣∣∣∣∫ (Tu)vdµ

∣∣∣∣ = |F (θ)| ≤M1−θ
0 M θ

1‖u‖p(θ)‖v‖q′(θ),

which is indeed (2.5.11), concluding the proof in this case.

[3] We assume now that 1 ≤ pθ < +∞, qθ = 1 (and thus q0 = q1 = 1, q′0 = q′1 = +∞).

It is enough to prove (2.5.10)(from Proposition 3.2.11 in [11]), and to get it, (2.5.11)

should be modified so that S is replaced by S∞ (see Proposition 3.2.13 in [11]),

meaning that (2.5.12) must be modified so that µ(Bk) could be +∞. We modify

(2.5.14) and take v(z) = v. The rest of the proof is unchanged, following case [2].

The proof of Theorem 2.5.2 is complete.

The Riesz-Thorin interpolation theorem appears as a direct consequence of Ha-

damard’s three-lines theorem and is a typical example of a complex interpolation

method based on a version of the maximum principle for holomorphic functions on

unbounded domains. Of course holomorphic functions in an unbounded domain Ω,

continuous in Ω̄, may fail to satisfy the maximum principle3. However Phragmén-

Lindelöf principle’s is asserting that a maximum principle result holds true, provided

we impose some restriction on the growth of the class of functions: Hadamard’s three

lines theorem, in which we have assumed boundedness for the holomorphic function,

is a good example of this technique. We give below some classical consequences of

Theorem 2.5.2.

3 The function ez on Ω = {z ∈ C,Re z > 0} is unbounded on Ω although it has modulus 1 on
∂Ω.
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Theorem 2.5.3 (Generalized Young’s inequality). Let p, q, r ∈ [1,+∞] such that

(2.2.1) holds. Let (X1,M1, µ1) and (X2,M2, µ2) be measure spaces where each µj
is a σ-finite positive measure and let k : X1 × X2 → C be a measurable mapping

(the product X1×X2 is equipped with the σ-algebraM1⊗M2) such that there exists

M ≥ 0 with

sup
x1∈X1

(∫
X2

|k(x1, x2)|pdµ2(x2)

)1/p

≤M, (2.5.16)

sup
x2∈X2

(∫
X1

|k(x1, x2)|pdµ1(x1)

)1/p

≤M. (2.5.17)

The linear operator L defined by

(Lu2)(x1) =

∫
X2

k(x1, x2)u2(x2)dµ2(x2) (2.5.18)

can be extended to a bounded linear operator from Lq(µ2) into Lr(µ1) with operator-

norm less than M .

Remark 2.5.4. The first (resp. second) supremum can be replaced by an esssup in

the µ1 (resp. µ2) sense. If p = +∞ (which implies q = 1, r = +∞), the hypothesis

reads as

esssup(x1,x2)∈X1×X2
|k(x1, x2)| ≤M = M,

and the result in that case is trivial since

|(Lu2)(x1)| ≤M‖u2‖L1(µ2) =⇒ ‖Lu2‖L∞(µ1) ≤M‖u2‖L1(µ2).

We may thus assume that 1 ≤ p < +∞. If q = +∞ (which implies p = 1, r = +∞),

we get also trivially

|(Lu2)(x1)| ≤
∫
X2

|k(x1, x2)||u2(x2)|dµ2(x2) ≤M‖u2‖L∞(µ2)

=⇒ ‖Lu2‖L∞(µ1) ≤M‖u2‖L∞(µ2).

We may thus assume that p and q are finite. We may define (2.5.18) for u2 = 1A2 ,

where A2 ∈M, with µ2(A2) < +∞. Then we have∫
A2

|k(x1, x2)|dµ2(x2) ≤M‖1A2‖Lp′ (µ2) ≤Mµ2(A2)1/p′ < +∞.

As a result for u2 ∈ Sq(µ2) (the space Sp(µ) is defined by (2.5.8)), we may define Lu2

as an L∞(µ1) function. Since for 1 ≤ q < +∞, Sq(µ2) is dense in Lq(µ2) (Proposition

3.2.11 in [11]), the statement of Theorem 2.5.3 can be rephrased as follows: the linear

operator L defined from Sq(µ2) into L∞(µ1) can be uniquely extended as a bounded

linear operator from Lq(µ2) into Lr(µ1) with operator-norm less than M .

N.B. Young’s inequality (Theorem 2.2.2) is indeed a consequence of the above result,

taking k(x1, x2) = a(x1 − x2) with xj ∈ Rn, µj equal to the Lebesgue measure on

Rn, M = ‖a‖Lp(Rn).
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Proof of the theorem. As noted in the above remark, we may assume that p, q are

both finite. For u2 ∈ Sq(µ2) (also if p′ = +∞ for u2 ∈ S∞(µ2), where S∞(µ) is

defined in Proposition 3.2.13 in [11]), we have

‖Lu2‖L∞(µ1) ≤M‖u2‖Lp′ (µ2). (2.5.19)

This implies that L can be extended uniquely as a bounded linear operator from

Lp
′
(µ2) into L∞(µ1) so that (2.5.19) holds true. Moreover, for u2 ∈ Sq(µ2), we have

if p > 1 (thus p′ < +∞),

‖Lu2‖Lp(µ1) =︸︷︷︸
Lemma 2.2.1

sup
‖w‖

Lp
′
(µ1)

=1

w∈Sp′ (µ1)

∣∣∣∣∫
X1

(Lu2)(x1)w(x1)dµ(x1)

∣∣∣∣
≤ sup
‖w‖

Lp
′
(µ1)

=1

w∈Sp′ (µ1)

∫∫
X1×X2

|k(x1, x2)||u2(x2)||w(x1)|dµ1(x1)dµ2(x2)

≤M sup
‖w‖

Lp
′
(µ1)

=1

w∈Sp′ (µ1)

‖w‖Lp′ (µ1)

∫
X2

|u2(x2)|dµ2(x2) = M‖u2‖L1(µ2).

This implies that if p > 1, L can be extended uniquely as a bounded linear operator

from L1(µ2) into Lp(µ1) so that

‖Lu2‖Lp(µ1) ≤M‖u2‖L1(µ2). (2.5.20)

Applying the Riesz-Thorin interpolation Theorem 2.5.2 to the inequalities (2.5.19)-

(2.5.20), we find that the linear operator L sends continuously Lq̃(µ2) into Lr̃(µ2)

(with operator norm M) with

1

q̃
=

1− θ
1

+
θ

p′
,

1

r̃
=

1− θ
p

+
θ

∞
,

for all θ ∈ [0, 1]. From (2.2.1), we have 1/p′ + 1/q′ = 1/r′ so that p′ ≥ r′ and

1 ≤ p ≤ r: thus we may choose

[0, 1] 3 θ = 1− p

r
=⇒ 1− θ

p
=

1

r
, r̃ = r,

1− θ
1

+
θ

p′
= 1− 1

p
+

1

r
=

1

q
, q̃ = q.

This completes the proof for p > 1. Note that if p = 1 then r = q (which can be

assumed finite from Remark 2.5.4), we have directly∫
X1

(∫
X2

|k(x1, x2)||u2(x2)|dµ2(x2)

)q
dµ1(x1)

≤
∫
X1

(∫
X2

(
|k(x1, x2)|

1
q |u2(x2)|

)q
dµ2(x2)

)(∫
X2

|k(x1, x2)|
q′
q′ dµ2(x2)

) q
q′

dµ1(x1)

≤M q/q′
∫∫

X1×X2

|k(x1, x2)||u2(x2)|qdµ2(x2)dµ1(x1)

≤M
q
q′+1‖u2‖qLq(µ2),
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so that in this case as well, we find that

‖Lu2‖Lq(µ1) ≤M‖u2‖Lq(µ2). (2.5.21)

The proof of Theorem 2.5.3 is complete.

2.6 Hausdorff-Young Inequality

Theorem 2.6.1 (Hausdorff-Young). Let n ≥ 1 be an integer. The Fourier transform

F maps injectively and continuously Lp(Rn) into Lp
′
(Rn) for 1 ≤ p ≤ 2 and

∀u ∈ Lp(Rn), ‖û‖Lp′ (Rn) ≤ ‖u‖Lp(Rn). (2.6.1)

Proof. Note first that we have defined the Fourier transformation on the space of

tempered distributions (see Definition 1.2.13), so that Proposition 1.2.12(1) provides

a definition of the Fourier transform for any function in Lp(Rn) and that this trans-

formation is injective on S ′(Rn), since it is an isomorphism (see Theorem 1.2.14).

We have seen as well in Theorem 1.2.15 that the Fourier transformation on L1(Rn)

is given by the explicit formula (1.2.21) and satisfies the inequality

∀u ∈ L1(Rn),we have û ∈ L∞(Rn) and ‖û‖L∞(Rn) ≤ ‖u‖L1(Rn).

Moreover, Theorem 1.2.16 shows that the Fourier transformation is a unitary trans-

formation of L2(Rn) so that

∀u ∈ L2(Rn),we have û ∈ L2(Rn) and ‖û‖L2(Rn) = ‖u‖L2(Rn).

Applying the Riesz-Thorin interpolation Theorem 2.5.2 yields readily that the Fou-

rier transformation is a bounded linear map from Lp(Rn) into Lp
′
(Rn) for 1 ≤ p ≤ 2

since for θ ranging in [0, 1], we have

1

p
=

1− θ
1

+
θ

2
= 1− θ

2
=⇒ 1

p′
=
θ

2
.

N.B. The constant 1 in (2.6.1) is not sharp. The best constant can be found in a

paper by E. Lieb [12] who proved that for 1 < p < 2,

sup
‖u‖Lp(Rn)=1

‖û‖Lp′ (Rn) =
(
p1/pp′−1/p′

)n/2
. (2.6.2)

Remark 2.6.2. The mapping L1(Rn) 3 u 7→ û ∈ L∞(Rn) is one-to-one and not

onto: if it were onto it would be a bijective continuous mapping from L1(Rn) onto

L∞(Rn) and thus, from the Open Mapping Theorem (a direct consequence of Baire

Theorem, see e.g Theorem 2.1.10 in [10]), it would be an isomorphism. Since

ˆ̌̂v = v for a tempered distribution v,
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the inverse isomorphism from L∞(Rn) onto L1(Rn) would be the inverse Fourier

transform ˆ̌· and this would imply that the Fourier transform of an L∞(Rn) function

belongs to L1(Rn). However the latter is not true since the Fourier transform of

1[−1,1](a function in L∞ ∩ L1) is∫ 1

−1

e−2iπxξdx =
[e−2iπxξ

−2iπξ

]x=1

x=−1
=
e2iπξ − e−2iπξ

2iπξ
=

sin(2πξ)

πξ
,

which does not belong to L1(R).
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Chapter 3

Sobolev Injections Theorems

3.1 Marcinkiewicz Interpolation Theorem

Definition 3.1.1. Let p, q ∈ [1,+∞]. A (not necessarily linear) mapping

T : Lp(Rn) −→ Lqw(Rn) = Lq,∞(Rn),

such that ∃C ≥ 0,∀u ∈ Lp(Rn), ‖Tu‖Lq,∞(Rn) ≤ C‖u‖Lp(Rn),

where the Lorentz space Lq,∞(Rn) is defined in Definition 2.3.1 is said to be of

weak-type (p, q).

N.B. When q = +∞, this means:

∃C ≥ 0,∀u ∈ Lp(Rn), ‖Tu‖L∞(Rn) ≤ C‖u‖Lp(Rn). (3.1.1)

For 1 ≤ q < +∞ this means: ∃C ≥ 0,∀u ∈ Lp(Rn),∀t > 0,

λn

({
x ∈ Rn, |(Tu)(x)| > t

})
≤
(
C‖u‖Lp(Rn)t

−1
)q
, (3.1.2)

where λn stands for the Lebesgue measure on Rn.

Definition 3.1.2. A bounded mapping T : Lp(Rn) −→ Lq(Rn), i.e. such that

∃C ≥ 0,∀u ∈ Lp(Rn), ‖Tu‖Lq(Rn) ≤ C‖u‖Lp(Rn), (3.1.3)

will be said of strong-type (p, q).

Of course, a strong-type (p, q) mapping is also of weak-type (p, q), since the

notions are identical for q = +∞ and if 1 ≤ q < +∞, this follows from Inequality

(2.3.2) (and the related inclusion Lq ⊂ Lqw).

Theorem 3.1.3 (Marcinkiewicz Interpolation Theorem). Let r ∈ (1,+∞] and let

T : L1(Rn) + Lr(Rn) −→ {mesurable functions} be a mapping such that

|T (u+ v)| ≤ |Tu|+ |Tv|. (3.1.4)

We assume that T is of weak-type (1, 1) and (r, r) (see Definition 3.1.1). Then T is

of strong-type (p, p) for all p ∈ (1, r) (see (3.1.3)).

65
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Lemma 3.1.4. Let (X,M, µ) be a measure space where µ is a positive measure and

let

1 ≤ p1 ≤ p ≤ p2 ≤ +∞.

Then we have Lp(µ) ⊂ Lp1(µ) + Lp2(µ).

Proof. We may of course assume that p1 < p < p2. We note then that, for u ∈ Lp(µ),

µ
(
{x ∈ X, |u(x)| > 1}

)
=

∫
{|u(x)|>1}

dµ ≤
∫
{|u(x)|>1}

|u(x)|pdµ ≤ ‖u‖pLp(µ) < +∞.

We have u = u1{|u|>1} + u1{|u|≤1} and u1{|u|≤1} ∈ L∞(µ). We have also with q =

p/p1 ≥ 1, 1/q′ = 1− p1/p,∫
X

|u1{|u|>1}|p1dµ ≤
(∫

X

|u|p1qdµ
)1/q(∫

X

1{|u|>1}
p1q′dµ

)1/q′

= ‖u‖p1Lp(µ)µ
(
{|u| > 1}

)1− p1
p ≤ ‖u‖

p1+(1− p1
p

)p

Lp(µ) = ‖u‖pLp(µ) < +∞,

so that we have proven that u1{|u|>1} ∈ Lp1(µ). If p2 = +∞, we use u1{|u|≤1} ∈ L∞(µ)

to conclude. If p2 < +∞, we estimate∫
X

|u1{|u|≤1}|p2dµ =

∫
X

|u1{|u|≤1}|p2−p|u|pdµ ≤
∫
X

|u|pdµ = ‖u‖pLp(µ) < +∞.

Finally we have proven more precisely that for u ∈ Lp(µ),

u = u1{|u|>1}︸ ︷︷ ︸
u1

+u1{|u|≤1}︸ ︷︷ ︸
u2

, ‖u1‖Lp1 (µ) ≤ ‖u‖p/p1Lp(µ), ‖u2‖Lp2 (µ) ≤ ‖u‖p/p2Lp(µ). (3.1.5)

N.B. From the inclusion Lp ⊂ L1 + Lr (see Lemma 3.1.4 above), we see that T is

indeed defined on Lp. This very useful theorem (see [15] for the 1939 original paper

and [14] for a historical perspective) is also very remarkable by the fact that it is

providing a strong-type information from a weak-type assumption.

Notation. Let (X,M, µ) be a measure space where µ is a positive measure; we shall

use the following notation, for a measurable function u and t > 0:

ω(t, u) = µ
(
{x ∈ Rn, |u(x)| > t}

)
. (3.1.6)

With Ωp(u) given by Definition 2.3.1, we find that Ωp(u) = supt>0 t
pω(t, u). For

p ∈ [1,+∞) and u ∈ Lp(µ), we have, using Fubini Theorem,∫ +∞

0

ptp−1ω(t, u)dt =

∫ +∞

0

ptp−1
(∫
{x,|u(x)|>t}

dµ
)
dt

=

∫∫
R+×X

ptp−1H(|u(x)| − t)dµ(x)dt

=

∫
X

∫ |u(x)|

0

ptp−1dtdµ(x) =

∫
X

|u(x)|pdµ(x),
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so that ‖u‖Lp(µ) = p1/p‖tω(t, u)1/p‖Lp(R+,
dt
t

). (3.1.7)

On the other hand for u ∈ L∞(µ) we have

‖u‖L∞(µ) = inf{t > 0, ω(t, u) = 0}.

Proof of Theorem 3.1.3. We use the above notations with µ = λn, the Lebesgue

measure on Rn. Let us assume first r = +∞. The weak type (∞,∞) hypothesis

means ‖Tu‖L∞ ≤ C‖u‖L∞ and we may assume that C = 1. We write for u ∈
L1 + L∞, t > 0,

u = u1{|u|>t/2}︸ ︷︷ ︸
u1

+u1{|u|≤t/2}︸ ︷︷ ︸
u2

and this gives

|(Tu)(x)| ≤ |(Tu1)(x)|+ |(Tu2)(x)| ≤ |(Tu1)(x)|+ ‖u2‖L∞ ≤ |(Tu1)(x)|+ t

2
,

so that we find the inclusion

(]) {x, |(Tu)(x)| > t} ⊂ {x, |(Tu1)(x)| > t/2}.

The weak-type (1, 1) assumption reads tω(t, Tv) ≤ c11‖v‖L1 so that

([)
t

2
λn
(
{x, |(Tu1)(x)| > t

2
}
)
≤ c11‖u1‖L1 =⇒ ω(

t

2
, Tu1) ≤ 2c11

t

∫
|u|>t/2

|u|dx.

Applying Formula (3.1.7) to Tu, we find, using Tonelli Theorem and 1 < p < +∞,

‖Tu‖pLp = p

∫ +∞

0

tp−1ω(t, Tu)dt

(from (])) ≤ p

∫ +∞

0

tp−1ω(
t

2
, Tu1)dt

(from ([)) ≤ p

∫ +∞

0

tp−1 2c11

t

∫
|u|>t/2

|u|dxdt

= 2pc11

∫∫
R+×Rn

tp−2H(2|u(x)| − t)|u(x)|dtdx

=
2pc11

p− 1

∫
Rn

(2|u(x)|)p−1|u(x)|dx =
2ppc11

p− 1
‖u‖pLp ,

which gives the strong-type (p, p) for T .

We assume now 1 < r < +∞. Let u ∈ Lp, let t > 0 and let u1, u2 be defined as

above. Since |(Tu)(x)| ≤ |(Tu1)(x)|+ |(Tu2)(x)|, we find

{x, |(Tu)(x)| > t} ⊂ {x, |(Tu1)(x)| > t/2} ∪ {x, |(Tu2)(x)| > t/2},

and thus ω(t, Tu) ≤ ω( t
2
, Tu1) + ω( t

2
, Tu2). Following (3.1.5), we see that u1 ∈

L1, u2 ∈ Lr. The weak-type assumptions imply with fixed positive constants c1, cr

t

2
ω(
t

2
, Tu1) ≤ c1‖u1‖L1 , (

t

2
)rω(

t

2
, Tu2) ≤ crr‖u2‖rLr .
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We obtain thus

(\) ω(t, Tu) ≤ 2c1

t

∫
|u(x)|H(2|u(x)| − t)dx+

2rcrr
tr

∫
0<|u(x)|≤t/2

|u(x)|rdx.

Tonelli’s theorem implies∫ +∞

0

ptp−1ω(t, Tu)dt ≤
∫∫

R+×Rn
ptp−1 2c1

t
|u(x)|H(2|u(x)| − t)dtdx

+

∫∫
R+×Rn

ptp−1 2rcrr
tr

1{0<|u|≤t/2}|u(x)|rdtdx

=
2pc1

p− 1

∫
|u(x)|(2|u(x)|)p−1dx+ 2rcrrp

∫
|u(x)|>0

|u(x)|r
∫ +∞

2|u(x)|
tp−1−rdt︸ ︷︷ ︸

note that p−r<0

dx

=
2ppc1

p− 1

∫
|u(x)|pdx+ 2rcrrp

∫
|u(x)|r (2|u(x)|)p−r

r − p
dx

= ‖u‖pLp
(2ppc1

p− 1
+

2pcrrp

r − p
)
,

so that ‖Tu‖Lp ≤ ‖u‖Lp2p1/p
(

c1
p−1

+ crr
r−p

)1/p

, concluding the proof.

3.2 Maximal Function

Definition 3.2.1. Let f be a function in L1
loc(Rn). The maximal function of f ,

denoted by Mf , is defined on Rn by

Mf (x) = sup
t>0

1

|B(x, t)|

∫
B(x,t)

|f(y)|dy, (3.2.1)

where |B(x, t)| is the Lebesgue measure of the ball with center x and radius t.

Using the notation

—

∫
A

fdµ =

∫
A

fdµ/µ(A),

we find

Mf (x) = sup
t>0

—

∫
B(x,t)

|f(y)|dy = sup
t>0

—

∫
Bn
|f(x+ tz)|dz.

We note also that the maximal function (of a measurable function) is measurable

(see Exercise 3.6.3).

Remark 3.2.2. Let us evaluate M1Bn . Let x ∈ Rn. For t ≥ 1 + |x|, we have

|y| ≤ 1 =⇒ |y − x| ≤ 1 + |x| =⇒ y ∈ B̄(x, t).

We have thus for t ≥ 1 + |x|, t−n|Bn|−1
∫
B(x,t)

1Bn(y)dy = t−n, implying

M1Bn (x) ≥ (1 + |x|)−n =⇒M1Bn /∈ L1(Rn),
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proving that the mapping f 7→ Mf does not send L1 into itself. We shall see below

that the maximal function of an L1(Rn) function is nevertheless in L1
w(Rn), proving

that the mapping f 7→ Mf is of weak-type (1, 1).

Theorem 3.2.3 (Hardy-Littlewood maximal inequality). The mapping f 7→ Mf

is of weak-type (1, 1) and of strong-type (p, p) for all p ∈ (1 +∞] (see Definitions

3.1.1, 3.1.2).

Proof. Since the mapping f 7→ Mf is obviously of strong-type (∞,∞) (since

‖Mf‖L∞ ≤ ‖f‖L∞), according1 to the Marcinkiewicz interpolation Theorem 3.1.3,

it is enough to prove the weak-type (1, 1) property:

∃Cn,∀f ∈ L1(Rn), sup
t>0

t
∣∣{x ∈ Rn,Mf (x) > t}

∣∣ ≤ Cn‖f‖L1(Rn). (3.2.2)

Note that from Remark 3.2.2, Riesz-Thorin Theorem 2.5.2 cannot be used since the

mapping fails to be of strong-type (1, 1). We start with a lemma.

Lemma 3.2.4 (Wiener covering lemma). Let E be measurable subset of Rn such

that E ⊂ ∪j∈JBj where (Bj)j∈J is a family of open balls such that

2ρ0 = sup
j∈J

diamBj < +∞.

Then there exists a countable subfamily (Bj)j∈D of pairwise disjoint balls such that

λn(E) ≤ 5n
∑
j∈D

λn(Bj).

Proof of the lemma. Let Bj0 = B(x0, r0) be a ball2 such that diamBj0 = 2r0 > ρ0.

Next, we define

J0 = J, J1 = {j ∈ J0, Bj ∩Bj0 = ∅}.

If j /∈ J1, then Bj ∩Bj0 6= ∅, so that ∃y0 ∈ Bj ∩Bj0 and

x ∈ Bj =⇒ |x− x0| ≤ |x− y0|︸ ︷︷ ︸
x,y0∈Bj

+ |y0 − x0|︸ ︷︷ ︸
y0∈B(x0,r0)

≤ 2ρ0 + r0 < 5r0,

entailing j /∈ J1 =⇒ Bj ⊂ B∗j0 which is defined as the ball with same center as Bj0

and a diameter equal to five times the diameter of Bj0 .

• For the family (Bj)j∈J0 of open balls with bounded diameters,

∃j0 ∈ J0, with J1 = {j ∈ J0, Bj ∩Bj0 = ∅},

{
j ∈ J1 =⇒ Bj ∩Bj0 = ∅,
j /∈ J1 =⇒ Bj ⊂ B∗j0 .

1Note that the subadditivity property is fulfilled since

0 ≤ (Mf+g)(x) = sup
t>0

—

∫
Bn
|(f + g)(x+ tz)|dz ≤ sup

t>0
—

∫
Bn
|f(x+ tz)|dz + sup

t>0
—

∫
Bn
|g(x+ tz)|dz.

2We may of course assume that E has positive measure, which implies that J is not empty and
ρ0 > 0.
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• Let us assume that we have found J0 ⊃ J1 ⊃ · · · ⊃ Jk, k ≥ 1, j0 ∈ J0, . . . , jk ∈ Jk
such that

(1) diamBj0 >
1

2
sup
j∈J0

diamBj, . . . . . . . . . . . , diamBjk >
1

2
sup
j∈Jk

diamBj,

(2)
{
j ∈ J0, j /∈ J1 =⇒ Bj ⊂ B∗j0

}
, (3)

{
j ∈ J1 =⇒ Bj ∩Bj0 = ∅

}
,

. . . . . . . . .

(2)
{
j ∈ Jk−1, j /∈ Jk =⇒ Bj ⊂ B∗jk−1

}
, (3)

{
j ∈ Jk =⇒ Bj ∩Bjk−1

= ∅
}
.

We define then Jk+1 = {j ∈ Jk, Bj ∩ Bjk = ∅} and if Jk+1 6= ∅ we find jk+1 ∈ Jk+1

such that

diamBjk+1
>

1

2
sup
j∈Jk+1

diamBj,

fulfilling (1) for k+ 1 as well. Moreover (3) holds true for k+ 1 by construction and

if j ∈ Jk\Jk+1, we have Bj ∩Bjk 6= ∅, so that ∃yk ∈ Bj ∩Bjk , Bjk = B(xk, rk), and

x ∈ Bj =⇒ |x− xk| ≤ |x− yk|︸ ︷︷ ︸
x,yk∈Bj

+ |yk − xk|︸ ︷︷ ︸
yk∈B(xk,rk)

≤ diamBj︸ ︷︷ ︸
j∈Jk

+rk < 2 diamBjk + rk = 5rk,

entailing Bj ⊂ B∗jk , proving (2) for k + 1.

• As a result, assuming that all the Jk are non-empty, we find

J0 ⊃ J1 ⊃ · · · ⊃ Jk ⊃ . . . , jk ∈ Jk,

such that

{
k ≥ 1 : j ∈ Jk−1\Jk =⇒ Bj ⊂ B∗jk−1

,

k ≥ 1 : j ∈ Jk =⇒ Bj ∩Bjk−1
= ∅.

The family (Bjk)k≥0 is pairwise disjoint: we consider k′ ≥ k′′ + 1. We have jk′ ∈
Jk′ ⊂ Jk′′+1 and jk′′ ∈ Jk′′ so that

Bjk′︸︷︷︸
jk′∈Jk′′+1

∩Bjk′′
= ∅.

Claim. If
∑

k≥0 |Bjk | < +∞ we have for all j ∈ J0, Bj ⊂ ∪k≥1B
∗
jk−1

.

The Claim is obvious if j ∈ ∪k≥1(Jk−1\Jk). Otherwise we have

j ∈ ∩k≥1(J ck−1 ∪ Jk), which means j ∈ ∩k≥1Jk:

in fact, we have ∩k≥1(J ck−1 ∪ Jk) = ∩k≥1Jk since

{∀k ≥ 1, j ∈ Jk ∪ J ck−1} and {∃k0 ≥ 1, j /∈ Jk0}
=⇒ j ∈ J ck0−1, k0 ≥ 2, since J c0 = ∅,

=⇒ j ∈ J ck0−2, k0 ≥ 3 . . . . =⇒ j ∈ J c1 =⇒ j ∈ J c0 = ∅,
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which is impossible. If j ∈ ∩k≥1Jk, we have ∀k ≥ 1, 2 diamBjk > diamBj and since

the series
∑

k≥0 |Bjk | converges, this implies limk diamBjk = 0, and diamBj = 0 so

that the open ball Bj is empty. The Claim is proven.

• Finally, we have either
∑

k≥0 |Bjk | = +∞ (a case where the conclusion of the

lemma is reached trivially) or
∑

k≥0 |Bjk | < +∞ and the above Claim is implying

that

E ⊂ ∪k≥1B
∗
jk−1

,

providing the sought answer.

• When Jk0 = ∅ for some k0 ≥ 1, we find that J0 = ∪1≤k≤k0(Jk−1\Jk) and we have

obviously ∀j ∈ J0, Bj ⊂ ∪k≥1B
∗
jk−1

, obtaining the conclusion as well in that case.

The proof of the Wiener covering lemma is complete.

Let us go back to the proof of Theorem 3.2.3. Let s > 0 be given. If x ∈ Rn is

such that Mf (x) > s, we can find ts,x > 0 such that

1

|B(x, ts,x)|

∫
B(x,ts,x)

|f(y)|dy > s =⇒ |B(x, ts,x)| ≤ s−1‖f‖L1(Rn) < +∞.

We consider the measurable set

Es = {x ∈ Rn,Mf (x) > s} ⊂ ∪x∈EsB(x, ts,x)

and we note that tns,x|Bn| ≤ s−1‖f‖L1(Rn) so that we may apply Wiener covering

Lemma 3.2.4. We find a sequence (xk)k∈N in Rn such that the balls B(xk, ts,xk) are

pairwise disjoint and

|Es = {x ∈ Rn,Mf (x) > s}| ≤ 5n
∑
k∈N

|B(xk, ts,xk)|

≤ s−15n
∑
k∈N

∫
B(xk,ts,xk )

|f(y)|dy

≤ s−15n
∫
Rn
|f(y)|dy,

proving s|Es| ≤ 5n‖f‖L1(Rn) and the weak-type (1, 1) property.

Remark 3.2.5. Note that with the result of Exercise 3.6.2, this implies

for 1 < p ≤ +∞, ‖Mf‖Lp(Rn) ≤
p1+ 1

p

p− 1
5
n
p ‖f‖Lp(Rn). (3.2.3)

A result due to E.M. Stein and J.-O. Stromberg [17] shows that the Lp to Lp norm

of M can be chosen independently of the dimension n.
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3.3 Lebesgue differentiation theorem

Theorem 3.3.1 (Lebesgue Differentiation Theorem).

Let f be a function in L1(Rn). Then, there exists a Borel set Lf such that λn(Lcf ) = 0

such that

∀x ∈ Lf , lim
r→0+

1

λn(B(x, r))

∫
B(x,r)

|f(y)− f(x)|dy = 0. (3.3.1)

The set Lf is called the set of Lebesgue points of f .

Remark 3.3.2. Note that this implies that for f ∈ L1(Rn), for all x ∈ Lf ,

lim
r→0

—

∫
B(x,r)

f(y)dy = f(x).

Proof. For ρ > 0 we define the measurable set

Eρ = {x ∈ Rn, lim sup
t→0+

1

|B(x, t)|

∫
B(x,t)

|f(y)− f(x)|dy︸ ︷︷ ︸
Nf (t,x)

> ρ}. (3.3.2)

Let φ ∈ C0
c (Rn). We have

Nf (t, x) ≤—

∫
B(x,t)

|f(y)− φ(y)|dy + —

∫
B(x,t)

|φ(y)− φ(x)|dy + |φ(x)− f(x)|

≤ Mφ−f (x) + —

∫
B(x,t)

|φ(y)− φ(x)|dy + |φ(x)− f(x)|.

Since φ is uniformly continuous, we get

lim sup
t→0

Nf (t, x) ≤Mφ−f (x) + |f(x)− φ(x)|.

As a result the set Eρ defined by (3.3.2) is such that

Eρ ⊂ {x, |f(x)− φ(x)| > ρ/2} ∪ {x,Mφ−f (x) > ρ/2},

and this implies |Eρ| ≤ |{x, |f(x) − φ(x)| > ρ/2}| + |{x,Mφ−f (x) > ρ/2}|. Using

now Theorem 3.2.3, we obtain for any φ ∈ C0
c (Rn),

|Eρ| ≤
2

ρ

∫
Rn
|f(x)− φ(x)|dx+ Cn

2

ρ
‖f − φ‖L1(Rn) =

2(1 + Cn)

ρ
‖f − φ‖L1(Rn).

The density of C0
c (Rn) in L1(Rn) implies that |Eρ| = 0 for all ρ > 0 and since

{x ∈ Rn, lim sup
t→0+

Nf (t, x) > 0} = ∪k≥1E1/k,

this gives as well that |E0| = 0. We define Lf = Ec
0 and we have for x ∈ Lf ,

limt→0Nf (t, x) = 0, which is the sought result.
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Theorem 3.3.3. Let f ∈ L1
loc(R). We define for x ∈ R, F (x) =

∫ x
0
f(y)dy.

(1)Then the function F is continuous on R, differentiable almost everywhere with

derivative f(x).

(2) The weak derivative of F is f .

Proof. (1) The continuity of F is obvious since for h ≥ 0,

F (x+ h)− F (x) =

∫
[x,x+h]

f(y)dy,

and for h ≤ 0, F (x+ h)− F (x) = −
∫

[x+h,x]
f(y)dy. Proposition 3.3.4 below implies

limh→0(F (x+ h)− F (x)) = 0. We consider now for h 6= 0,∣∣∣F (x+ h)− F (x)

h
− f(x)

∣∣∣ ≤ 1

|h|

∫
[x,x+h]∪[x+h,x]

|f(y)− f(x)|dy

≤ 2

2|h|

∫
[x−|h|,x+|h|]

|f(y)− f(x)|dy.

Applying the previous theorem if f ∈ L1(R), we find that F is differentiable at the

Lebesgue points of f , with derivative f .

(2) We have for φ ∈ C∞c (Rn), using Fubini Theorem,

〈F ′, φ〉 = −
∫
F (x)φ′(x)dx

= −
∫
φ′(x)

∫ (
H(x)1[0,x](y)−H(−x)1[x,0](y)

)
f(y)dydx

=

∫
f(y)

(
−
∫

0≤y≤x
φ′(x)dx+

∫
x≤y≤0

φ′(x)dx
)
dy

=

∫
f(y)

(
H(y)φ(y) +H(−y)φ(y)

)
dy = 〈f, φ〉,

proving the result.

Proposition 3.3.4. Let (X,M, µ) be a measure space where µ is a positive measure.

Let f : X −→ R+ be a measurable mapping such that
∫
X
fdµ <∞.

(1) The set N = {x ∈ X, f(x) = +∞} ∈M and µ(N) = 0.

(2) For any ε > 0, there exists α > 0 such that for all E ∈ M satisfying µ(E) ≤ α,

we have
∫
E
fdµ < ε. In other words, limµ(E)→0

E∈M

∫
E
fdµ = 0.

In particular, for u ∈ L1(µ), we have

lim
µ(E)→0
E∈M

∫
E

|u|dµ = 0. (3.3.3)

Proof. (1) The set N = {x ∈ X, f(x) = +∞} belongs to M as the inverse image

of the closed set {+∞} by the measurable f . For all integers k, k1N ≤ f , so that

kµ(N) ≤
∫
X
fdµ < +∞. The nonnegative sequence (kµ(N))k∈N is bounded so that

µ(N) = 0.
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(2) Let E ∈M and n ∈ N: since µ(N) = 0, we have

(\)

∫
E

fdµ =

∫
E∩Nc

fdµ =

∫
E∩Nc∩{f≤n}

fdµ+

∫
E∩Nc∩{f>n}

fdµ

≤ nµ(E) +

∫
f1E∩Nc∩{f>n}dµ ≤ nµ(E) +

∫
f1n<f<+∞dµ.

The sequence gn = f1{n<f<+∞} is such that gn(x) = 0 for n ≥ f(x), which is verified

for x ∈ N c if n is large enough. Since gn(x) = 0 for x ∈ N , we find

([) ∀x ∈ X, gn(x)→ 0.

Moreover

(]) 0 ≤ gn ≤ f1Nc and f1Nc ∈ L1(µ).

Lebesgue dominated convergence Theorem shows that ([) and (]) imply the conver-

gence of gntowards 0 in L1(µ). From (\),we get

0 ≤
∫
E

fdµ ≤ nµ(E) + θn, with θn −→
n→+∞

0+.

Let ε > 0 be given : ∃N ∈ N such that θN < ε/2. Defining α = ε
2N+1

(we have

indeed α > 0), we get for µ(E) ≤ α

0 ≤
∫
E

fdµ ≤ Nε

2N + 1
+ θN < ε/2 + ε/2 = ε, qed.

A slightly shorter reasoning from (\) would be

∀n ∈ N, 0 ≤ lim sup
µ(E)→0

∫
E

fdµ ≤ θn =⇒ 0 ≤ lim sup
µ(E)→0

∫
E

fdµ ≤ lim
n
θn = 0.

Remark 3.3.5. Almost everywhere differentiability is a very weak piece of informa-

tion. Almost everywhere differentiability of a function F is a very weak property

that does not tell much about the function F : in the first place the trivial example

of the Heaviside function shows that a bounded function can be differentiable almost

everywhere in R with a zero derivative without being a constant. The much more

elaborate example of the Cantor function shows that a continuous function can be

differentiable almost everywhere with a null derivative without being a constant, so

is not the integral of its a.e. derivative.

Remark 3.3.6. It may also happen that a continuous function is differentiable ev-

erywhere but with a derivative which is not integrable in the Lebesgue sense (see

Exercise 3.6.4).
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The distribution (or weak) derivative does not miss jumps and singularities as

the notion of everywhere differentiability. Here the reader may consider only tem-

pered distributions as in Chapter 8, but the statements are true as well for general

distributions defined as local objects.

Lemma 3.3.7. Let T be a distribution on R such that T ′ = 0. Then T is a constant.

Proof. Let φ ∈ C∞c (R) and let χ0 ∈ C∞c (R) with integral 1. Denoting I(φ) =∫
R φ(y)dy, the function ψ defined by

ψ(x) = φ(x)− I(φ)χ0(x),

belongs to C∞c (R) and is the derivative of Ψ(x) =
∫ x
−∞ ψ(y)dy. Note that Ψ is C∞

and with compact support, since for x large enough

Ψ(x) =

∫
R
φ(y)dy − I(φ)

∫
R
χ0(y)dy = 0.

As a result, we find

〈T, φ〉 = 〈T, ψ〉+ I(φ)〈T, χ0〉 = 〈T,Ψ′〉+ I(φ)〈T, χ0〉 = −〈T ′,Ψ〉+ I(φ)〈T, χ0〉,

so that T = 〈T, χ0〉

Theorem 3.3.8. Let F be a locally integrable function in R such that its distribution

derivative F ′ is locally integrable. Then the function F is bounded continuous and

for all a ∈ R
F (x) = F (a) +

∫ x

a

F ′(y)dy. (3.3.4)

The function F is also a.e. differentiable with (ordinary) derivative F ′(x).

Proof. We define G(x) =
∫ x
a
F ′(y)dy and from Theorem 3.3.3, we find that the

distribution derivative G′ of G is equal to F ′ (and that G is continuous). Thus the

distribution derivative of F −G is zero, so that F −G is the constant F (a)−G(a) =

F (a). The last statement follows from Theorem 3.3.3.

3.4 Gagliardo-Nirenberg Inequality

Proposition 3.4.1. For all φ ∈ C1
c (Rn), we have

‖φ‖
L

n
n−1 (Rn)

≤ 1

2

∏
1≤j≤n

∥∥ ∂φ
∂xj

∥∥1/n

L1(Rn)
. (3.4.1)

Proof. The cases n = 1, 2 are very easy: for n = 1, we have

2φ(x) =

∫ x

−∞
φ′(t)dt+

∫ x

+∞
φ′(t)dt =⇒ 2‖φ‖L∞(R) ≤ ‖φ′‖L1(R).
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For n = 2, we have, using the previous result,

|φ(x1, x2)| ≤ 1

2

∫
R
|∂1φ(t1, x2)|dt1, |φ(x1, x2)| ≤ 1

2

∫
R
|∂2φ(x1, t2)|dt2,

so that

4‖φ‖2
L2(R2) ≤

∫
R4

|∂1φ(t1, x2)||∂2φ(x1, t2)|dt1dt2dx1dx2 = ‖∂1φ‖L1(R2)‖∂2φ‖L1(R2).

The cases n ≥ 3 are more complicated and we need to start with a couple of lemmas.

Lemma 3.4.2. Let (X,M, µ) be a measure space where µ is a positive measure. Let

f1, . . . , fN be non-negative measurable functions and let p1, . . . , pN ∈ [1,+∞] such

that ∑
1≤j≤N

1

pj
= 1.

Then we have ∫
X

f1 . . . fNdµ ≤
∏

1≤j≤N

‖fj‖Lpj (µ).

Proof. When N = 2, this is Hölder’s inequality. We may assume that all fj are not

vanishing µ-a.e. (otherwise the lhs is 0) and that each fj belongs to Lpj(µ) (otherwise

the rhs is +∞ as the product of positive quantities in R+ with one of them +∞).

Induction on N : let N ≥ 2 and p1, . . . , pN+1 ∈ [1,+∞] with
∑

1≤j≤N+1
1
pj

= 1.

Applying Hölder’s inequality we find

(])

∫
X

f1 . . . fNfN+1dµ ≤ ‖
∏

1≤j≤N

fj‖
L
p′
N+1 (µ)

‖fN+1‖LpN+1 (µ).

Since
∑

1≤j≤N
p′N+1

pj
= 1 (ensuring that pj/p

′
N+1 ≥ 1) and

‖
∏

1≤j≤N

fj‖
L
p′
N+1 (µ)

= ‖
∏

1≤j≤N

f
p′N+1

j ‖
1

p′
N+1

L1(µ) ,

we may use the induction hypothesis to obtain

‖
∏

1≤j≤N

fj‖
L
p′
N+1 (µ)

≤
( ∏

1≤j≤N

‖fp
′
N+1

j ‖
L
pj/p

′
N+1

) 1
p′
N+1 .

The rhs of that inequality equals
∏

1≤j≤N ‖fj‖Lpj , and with (]) this provides the

answer.

Lemma 3.4.3. Let n ≥ 2 be an integer and let ω1, . . . , ωn be non-negative measurable

functions on Rn−1 so that ωj is a function of (xk)1≤k≤n,k 6=j. Then, we have∫
Rn
ω

1
n−1

1 . . . ω
1

n−1
n dx1 . . . dxn ≤

n∏
j=1

(∫
Rn−1

ωjdx̂j

) 1
n−1

,

where dx̂j =
∏

1≤k≤n
k 6=j

dxk.
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Proof of the lemma. For n = 2 we have indeed∫
R2

ω1(x2)ω2(x1)dx1dx2 = ‖ω1‖L1(R)‖ω2‖L1(R).

Let us assume now that n ≥ 3: we have

In =

∫
Rn
ω

1
n−1

1 . . . ω
1

n−1
n dx1 . . . dxn =

∫
Rn−1

does not
depend on x1︷︸︸︷
ω

1
n−1

1

(∫
R

∏
2≤j≤n

ω
1

n−1

j dx1

)
dx̂1,

and since 1
n−1

+ n−2
n−1

= 1, Hölder’s inequality implies

In ≤ ‖ω1‖
1

n−1

L1(Rn−1)

{∫
Rn−1

(∫
R

∏
2≤j≤n

ω
1

n−1

j dx1

)n−1
n−2

dx̂1

}n−2
n−1

.

We have, using the generalized Hölder’s inequality of Lemma 3.4.2,∫
R

∏
2≤j≤n

ω
1

n−1

j dx1 ≤
∏

2≤j≤n

(∫
R
(ω

1
n−1

j )n−1dx1

) 1
n−1

=
( ∏

2≤j≤n

∫
R
ωjdx1

) 1
n−1

.

This gives

In ≤ ‖ω1‖
1

n−1

L1(Rn−1)

{∫
Rn−1

∏
2≤j≤n

(∫
R
ωjdx1

) 1
n−2

︸ ︷︷ ︸
=Ω

1
n−2
j

dx̂1

}n−2
n−1

,

with Ωj independent of x1, xj (here 1 6= j since j ≥ 2). We may apply the induction

hypothesis to obtain

In ≤ ‖ω1‖
1

n−1

L1(Rn−1)

{ ∏
2≤j≤n

‖Ωj‖
1

n−2

L1(Rn−2)

}n−2
n−1

= ‖ω1‖
1

n−1

L1(Rn−1)

{ ∏
2≤j≤n

‖Ωj‖L1(Rn−2)

} 1
n−1

,

and since for 2 ≤ j ≤ n,

‖Ωj‖L1(Rn−2) =

∫
Rn−2

∫
R
ωjdx1

∏
2≤k≤n,k 6=j

dxk = ‖ωj‖L1(Rn−1),

this proves the lemma.

Let us go back to the proof of Proposition 3.4.1. We have

2|φ(x)| ≤
∫
R
|∂jφ(x1, . . . , xj−1, tj, xj+1, . . . , xn)|dtj = ωj(x),
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where ωj does not depend on xj. This implies that

2
n
n−1 |φ(x)|

n
n−1 ≤

∏
1≤j≤n

ωj(x)
1

n−1 ,

and from Lemma 3.4.3, this implies

2
n
n−1

∫
|φ(x)|

n
n−1dx ≤

( ∏
1≤j≤n

‖ωj‖L1(Rn−1)

) 1
n−1

=
( ∏

1≤j≤n

‖∂jφ‖L1(Rn)

) 1
n−1

,

which is (3.4.1), concluding the proof.

Proposition 3.4.4. The space W 1,1(Rn) is defined as the set of functions u ∈
L1(Rn) such that the distribution ∇u belongs as well to L1(Rn). This space is a

Banach space for the norm

‖u‖W 1,1(Rn) = ‖u‖L1(Rn) + ‖∇u‖L1(Rn).

Proof. Let (uk)k∈N be a Cauchy sequence in W 1,1(Rn). Then, we find u, V ∈ L1 such

that limk uk = u, lim∇uk = V in the space L1(Rn). Now for φ ∈ C∞c (Rn), we have∫
V φdx = lim

k

∫
φ∇ukdx = lim

k
〈∇uk, φ〉 = − lim

k
〈uk,∇φ〉

= − lim
k

∫
uk∇φdx = −

∫
u∇φdx = 〈∇u, φ〉,

proving V = ∇u.

Theorem 3.4.5 (Gagliardo-Nirenberg inequality). Let u ∈ W 1,1(Rn). Then u be-

longs to L
n
n−1 (Rn) and is such that

‖u‖
L

n
n−1 (Rn)

≤ 1

2

∏
1≤j≤n

‖∂ju‖1/n

L1(Rn). (3.4.2)

Proof. Let ρ ∈ C∞c (Rn;R+) such that
∫
ρ(x)dx = 1. For ε > 0, we define ρε(x) =

ρ(x/ε)ε−n. The function (u∗ρε)(x) =
∫
u(y)ρε(x−y)dy is smooth, belongs to L1(Rn)

(Proposition 2.1.1) and converges to u in L1(Rn): for φ ∈ C0
c (Rn), we have

u ∗ ρε − u = (u− φ) ∗ ρε + φ ∗ ρε − φ+ φ− u,

so that with L1 norms, using (2.1.3), for ε ≤ 1,

‖u ∗ ρε − u‖ ≤ 2‖u− φ‖+

∫
K

|(φ ∗ ρε)(x)− φ(x)|dx,

where K is the compact set suppφ + supp ρ. From Lemma 2.1.4, we find uniform

convergence of the sequence of continuous functions φ ∗ ρε and this implies

∀φ ∈ C0
c (Rn), lim sup

ε→0
‖u ∗ ρε − u‖ ≤ 2‖u− φ‖.
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The density of C0
c (Rn) in L1(Rn) entails that limε ‖u ∗ ρε − u‖ = 0. We have also

ρε ∗ ∇u = ∇(ρε ∗ u) (3.4.3)

since for φ ∈ C∞c (Rn),∫
Rn

(ρε ∗ ∇u)(x)φ(x)dx =

∫∫
ρε(x− y)(∇u)(y)φ(x)dxdy

= 〈∇u, ρ̌ε ∗ φ〉 = −〈u, ρ̌ε ∗ ∇φ〉 = −
∫

(ρε ∗ u)(x)∇φ(x)dx = 〈∇(ρε ∗ u), φ〉,

proving (3.4.3).

Let us assume first that u belongs to W 1,1(Rn) and is compactly supported. We

may apply (3.4.1) to the smooth compactly supported ρε ∗ u. We note that the

sequence ∂j(ρε ∗ u) = ρε ∗ ∂ju converges in L1(Rn) towards ∂ju. Moreover the

inequality (3.4.1) applied to ρε1 ∗u−ρε2 ∗u implies that ρε∗u is a Cauchy sequence in

Ln/n−1(Rn) thus converges with a limit v; since that sequence is converging towards

u in L1(Rn), and for φ ∈ C0
c (Rn), we have∫

v(x)φ(x)dx = lim
ε

∫
(ρε ∗ u)(x)φ(x)dx =

∫
u(x)φ(x)dx,

Lemma 1.2.10 implies u = v which belongs to Ln/n−1. Inequality (3.4.2) holds true

by taking the limits in (3.4.1).

Let us assume now that u belongs to W 1,1(Rn). Let χ be in C∞c (Rn; [0, 1]), equal

to 1 on B(0, 1) and supported in B(0, 2). For ε > 0 we have obviously (dominated

convergence)

lim
ε→0

χ(εx)u(x) = u(x) in L1(Rn).

Let us calculate for χε(x) = χ(εx), ∇(uχε) = χε∇u+ u∇χε. We have

lim
ε→0

∫
Rn
|u(x)χ′(εx)|dxε = 0 = lim

ε→0

∫
Rn
|u(x)|(1− χ(εx))dx,

where the first equality is obvious (domination by ‖u‖L1ε‖χ′‖L∞) as well as the next

one since ∫
Rn
|u(x)|(1− χ(εx))dx ≤

∫
|x|≥1/ε

|u(x)|dx.

We have thus

lim
ε→0

χεu = u, lim
ε→0
∇(χεu) = ∇u in L1.

Since uε = χεu is compactly supported in W 1,1, we may apply the previous result

to get Inequality (3.4.2) for uε. That inequality implies as well that uε is a Cauchy

sequence in Ln/n−1 and thus converges in that space towards a function v. Since the

sequence uε converges in L1 towards u, the same reasoning as above shows v = u

and the result.
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Remark 3.4.6. Gagliardo-Nirenberg inequality (3.4.2) has some interesting proper-

ties, beyond the most remarkable of being true. In the first place, this inequality

has a scaling invariance: take u ∈ W 1,1(Rn) and A ∈ Gl(n,R), and consider the

function

uA(x) = u(Ax)| detA|
n−1
n , so that (∇uA)(x) = (∇u)(Ax)A| detA|

n−1
n .

We have

‖uA‖L n
n−1 (Rn)

=
(∫
|u(Ax)|

n
n−1 | detA|dx

)n−1
n

= ‖u‖
L

n
n−1 (Rn)

,

and

‖∇uA‖L1(Rn) =

∫
|(∇u)(Ax)A|| detA|

n−1
n dx =

∫
|(∇u)(y)A|| detA|−

1
ndx.

Considering (∇u)(x) as a linear form on Rn, and A as a linear endomorphism of Rn,

we have

‖(∇u)(x)A‖ = sup
|T |=1

‖(∇u)(x)AT‖.

Let us assume now that A = αΩ, where α ∈ R∗,Ω ∈ O(n). We get then

‖(∇u)(x)A‖ = |α|‖(∇u)(x)‖, | detA| = |α|n,

so that ‖∇uA‖L1(Rn) = ‖∇u‖L1(Rn). Inequality (3.4.2) implies

‖u‖
L

n
n−1 (Rn)

≤ 1

2n

∑
1≤j≤n

∫
|(∂ju)(x)|dx ≤ 1

2
√
n

∫ ( ∑
1≤j≤n

|(∂ju)(x)|2
)1/2

dx

=
1

2
√
n

∫
‖∇u(x)‖︸ ︷︷ ︸
Euclidean

norm on Rn

dx =
1

2
√
n
‖∇u‖L1(Rn), (3.4.4)

and the latter is invariant by affine similarities (generated by homothetic transfor-

mations x 7→ x0 + αx, α ∈ R∗, and linear isometries x 7→ Ωx, Ω ∈ O(n)).

On the other hand, we shall use Theorem 3.4.5 to prove the so-called Sobolev

inequalities of next section. Although these inequalities can be handled via some

Fourier analysis methods, this is not the case of Gagliardo-Nirenberg inequality

above which involves the L1-norm of the gradient (L1 is not so friendly to Fourier

analysis). It is thus an interesting reminder that a clever but elementary combinato-

rial argument such as Lemma 3.4.3 can find its way into proving a statement which

is not accessible to Fourier analysis.
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3.5 Sobolev spaces, Sobolev injection theorems

We begin with a lemma.

Lemma 3.5.1. Let n ≥ 1 be an integer and let p, q ∈ [1,+∞) such that 1
q

= 1
n

+ 1
p
.

Then there exists a constant C(p, n) such that for all v ∈ C1
c (Rn),

‖v‖Lp(Rn) ≤ C(p, n)‖∇v‖Lq(Rn).

Proof. When n = 1, we find that the sought estimate is true as well for p = +∞, q =

1 (this is (3.4.1)) and for 1 ≤ p < +∞, we cannot have q ≥ 1. We may thus assume

that n ≥ 2.

Let us first suppose that v ≥ 0. We define u = v
p(n−1)
n : we note that

1

p
+

1

n
≤ 1 =⇒ 1

p
≤ n− 1

n
=⇒ p(n− 1)

n
≥ 1,

so that we have with ordinary differentiation, ∂ju = p(n−1)
n

v
p(n−1)
n
−1∂jv, and the

function u is also C1
c . On the other hand we have, using (3.4.1),

‖v‖pLp = ‖u‖
n
n−1

L
n
n−1
≤ 2−

n
n−1

∏
1≤j≤n

‖∂ju‖
1

n−1

L1

≤ 2−
n
n−1

(p(n− 1)

n

) n
n−1

( ∏
1≤j≤n

∫
|∂jv||v|p−

p
n
−1dx

) 1
n−1

︸ ︷︷ ︸
term I

, (3.5.1)

and this implies

‖v‖p(n−1)
Lp ≤ 2−n

(p(n− 1)

n

)n ∏
1≤j≤n

(
‖∂jv‖Lq‖v

np−p−n
n ‖Lq′

)
.

We note that (np−p−n)
n

= p(1− 1
n
− 1

p
) = p

q′
, so that if q > 1 we have proven

‖v‖p(n−1)
Lp ≤ 2−n

(p(n− 1)

n

)n( ∏
1≤j≤n

‖∂jv‖Lq
)
‖vp‖

n
q′

L1 ,

which gives (the result) for v 6≡ 0,

‖v‖nLp = ‖v‖
p(n−1)−np

q′

Lp ≤ 2−n
(p(n− 1)

n

)n ∏
1≤j≤n

‖∂jv‖Lq ,

since p(n − 1) − np
q′

= pn(1 − 1
n
− 1

q′
) = pn(1

q
− 1

n
) = n. If q = 1, we have in term

I above, p− p
n
− 1 = p(1− 1

n
− 1

p
) = 0, so that (3.5.1) gives the answer in the case

q = 1.

We drop now the non-negativity assumption on v.
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For ε > 0, and χ ∈ C∞c (Rn; [0, 1]) equal to 1 near the support of v, we define the C1
c

function uε by

uε(x) =
(
v(x)2 + ε2

) 1
2
p(n−1)
n χ(x).

We have limε→0 ‖uε‖
n
n−1

L
n
n−1

= limε→0

∫ (
v(x)2 + ε2

) p
2χ(x)

n
n−1dx = ‖v‖pLp , and calculat-

ing

∇uε = (∇χ)
(
v2 + ε2

) 1
2
p(n−1)
n + χ

p(n− 1)

2n
(v2 + ε2)

p(n−1)
2n

−12v∇v,

using p(n− 1)/n ≥ 1, we get that

lim
ε→0

(∇uε)(x) = χ(x)
p(n− 1)

2n
|v(x)|

p(n−1)
n
−22v(x)(∇v)(x),

so that with dominated convergence, we obtain

lim
ε→0
‖∇uε‖L1 =

p(n− 1)

n

∫
|v|

p(n−1)−n
n |∇v|dx.

Applying Gagliardo-Nirenberg (3.4.4) to uε we find

‖v‖
p(n−1)
n

Lp = lim
ε
‖uε‖L n

n−1
≤ 1

2
√
n

lim
ε
‖∇uε‖L1 =

p(n− 1)

2n3/2

∫
|v|

p(n−1)−n
n |∇v|dx.

If q = 1, we have p(n − 1) − n = pn(1 − 1
n
− 1

p
) = pn

q′
= 0, p(n − 1) = n and the

previous inequality gives the answer. If q > 1, we have p(n − 1) − n = pn
q′

and

Hölder’s inequality implies

‖v‖
p(n−1)
n

Lp ≤ p(n− 1)

2n3/2
‖v‖

p
q′

Lp‖∇v‖Lq .

Since p(n−1)
n
− p

q′
= p(1− 1

n
− 1

q′
) = p(1

q
− 1

n
) = 1, this completes the proof of Lemma

3.5.1.

Proposition 3.5.2. Let p ∈ [1,+∞] and s ∈ N. We define the Sobolev space

W s,p(Rn) as the set of functions u ∈ Lp(Rn) such that the distribution derivatives

∂αu belong to Lp(Rn) when the multi-index α ∈ Nn is such that |α| ≤ s. This space

is a Banach space for the norm

‖u‖W s,p(Rn) =
∑
|α|≤s

‖∂αu‖Lp(Rn).

When p = 2, it is a Hilbert space with dot-product

(u, v)W s,2(Rn) =
∑
|α|≤s

(∂αu, ∂αv)L2(Rn).

Proof. This set is obviously a vector space. Let (uk)k∈N be a Cauchy sequence in

W s,p(Rn). Then, we find u, vα ∈ Lp such that limk uk = u, limk ∂
αuk = vα in the

Banach space Lp(Rn). Now for φ ∈ C∞c (Rn), we have∫
vαφdx = lim

k

∫
φ∂αukdx = lim

k
〈∂αuk, φ〉 = (−1)|α| lim

k
〈uk, ∂αφ〉

= (−1)|α| lim
k

∫
uk∂

αφdx = (−1)|α|
∫
u∂αφdx = 〈∂αu, φ〉,

proving vα = ∂αu.
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Lemma 3.5.3. Let p ∈ [1,+∞) and k ∈ N. Then C∞c (Rn) is dense in W k,p(Rn).

More precisely, defining for ε > 0, ρ ∈ C∞c (Rn) such that
∫
ρ(t)dt = 1, χ ∈ C∞c (Rn)

equal to 1 on a neighborhood of 0, ρε(x) = ε−nρ(x/ε), χε(x) = χ(εx) and

Rεu = ρε ∗ χεu, (3.5.2)

we have limε→0Rεu = u with convergence in W k,p(Rn).

Proof. Let u ∈ W k,p(Rn). The sequence of compactly supported functions (χεu)

converges in Lp(Rn) towards u. We have also

Rεu− u = ρε ∗ (χεu− u) + ρε ∗ u− u,

so that ‖Rεu − u‖Lp ≤ ‖χεu − u‖Lp + ‖ρε ∗ u − u‖Lp and the result for k = 0. For

|α| ≤ k, we have

∂αRεu− ∂αu = ρε ∗ ∂α(χεu)− ∂αu = ρε ∗ ([∂α, χε]u) + ρε ∗ (χε∂
αu)− ∂αu,

entailing

‖∂αRεu− ∂αu‖Lp ≤ ‖Rε∂
αu− ∂αu‖Lp +

∑
β≤α
|β|≥1

α!

β!
ε|β|‖ρε ∗ ((∂βχ)ε∂

α−βu‖Lp ,

which implies convergence in W k,p(Rn) of Rεu.

Theorem 3.5.4. Let n ≥ 2 be an integer and let p, q ∈ [1,+∞) such that 1
p

= 1
n

+ 1
q
.

Then we have the continuous embedding

W 1,p(Rn) ↪→ Lq(Rn) = W 0,q(Rn),

and there exists C(p, n) > 0 such that for all u ∈ W 1,p(Rn),

‖u‖Lq(Rn) ≤ C(p, n)‖∇u‖Lp(Rn). (3.5.3)

Remark 3.5.5. Note that when p ranges in the interval [1, n), we have q = np
n−p

ranging in [ n
n−1

,+∞). We shall use the notation

p∗(n) =
np

n− p
for the Sobolev conjugate exponent. (3.5.4)

We may note here that in the limiting case p = n, q = +∞, the above inclusion

does not hold for n ≥ 2 (however Remark 3.5.6 shows that it is true for n = 1). Let

β ∈ ( 1
n
, 1) and w(x) = χ(x)(ln |x|)1−β/(1 − β), where χ ∈ C∞c (Rn) is equal to 1 on

B(0, 1/4) and is supported in B(0, 1/2). We have

(∇w)(x) = (ln |x|)−β|x|−1 x

|x|
χ(x) + C∞c (Rn) =⇒

‖∇w‖nLn ≤ C + C

∫ 1/2

0

rn−1r−n| ln r|−βndr = C +

∫ +∞

2

dR

R| lnR|βn
< +∞,

since nβ > 1. The function w is also in Ln(Rn) since

‖w‖nLn ≤ C1

∫ 1/2

0

rn−1| ln r|(1−β)ndr = C1

∫ +∞

2

(lnR)(1−β)ndR

Rn+1
< +∞.

However w does not belong to L∞ since β < 1.
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Remark 3.5.6. In the case n = 1, we have then p = 1, q = +∞ and it is indeed true

that W 1,1(R) ↪→ L∞(R). Let u ∈ W 1,1(R). In the proof of Theorem 3.4.5, we have

shown the density of C1
c (R) in W 1,1(R): let (φk) be a sequence of functions of C1

c (R)

converging in W 1,1(R). We have

u(x) = u(x)− φk(x) +

∫ x

−∞
φ′k(t)dt =⇒ |u(x)| ≤ |u(x)− φk(x)|+ ‖φ′k‖L1(R),

and thus |u(x)| ≤ |u(x)− φk(x)|+ ‖φ′k − u′‖L1(R) + ‖u′‖L1(R). We may find a subse-

quence of (φk) converging almost everywhere to u so that we have a.e.

|u(x)| ≤ ‖u′‖L1(R) =⇒ u ∈ L∞(R), ‖u‖L∞(R) ≤ ‖u′‖L1(R).

Proof of Theorem 3.5.4. Let u ∈ W 1,p(Rn). Then from Lemma 3.5.3, we have

limεRεu = u in W 1,p(Rn). Moreover from Lemma 3.5.1, we find that

‖Rεu‖Lq(Rn) ≤ C(p, n)‖∇Rεu‖Lp(Rn).

This inequality proves that (Rεu) is a Cauchy sequence in Lq(Rn), thus converging

towards some v ∈ Lq(Rn). Since (Rεu) converges towards u in W 1,p(Rn), we find for

φ ∈ C∞c (Rn),

〈v, φ〉 = lim
ε

∫
(Rεu)φdx = 〈u, φ〉 =⇒ v = u, u ∈ Lq(Rn).

Passing to the limit with respect to ε in the inequality above gives (3.5.3).

Theorem 3.5.7. Let 0 ≤ l < k be integers, and let 1 ≤ p < q < +∞ be real numbers

such that
k − l
n

=
1

p
− 1

q
. Then W k,p(Rn) ↪→ W l,q(Rn).

Proof. If n = 1, we should have p = 1, q = +∞, k = l+ 1, and we have already seen

that W 1,1(R) ↪→ W 0,∞(R), with

‖u‖L∞ ≤
1

2
‖u′‖L1 for u, u′ ∈ L1

=⇒ for l ∈ N and u(l), u(l+1) ∈ L1(R), ‖u(l)‖L∞ ≤
1

2
‖u(l+1)‖L1 ,

which implies for l ∈ N, W 1+l,1(R) ↪→ W l,∞(R). We assume now n ≥ 2 and we note

that Theorem 3.5.4 tackles the case k = 1, l = 0 with the estimate

∀u ∈ W 1,p(Rn), ‖u‖Lq(Rn) ≤ C(p, n)‖∇u‖Lp(Rn),
1

p
− 1

q
=

1

n
.

We note that this implies

∀u ∈ W 1+l,p(Rn), ‖∇lu‖Lq(Rn) ≤ C(p, n)‖∇l+1u‖Lp(Rn),
1

p
− 1

q
=

1

n
,
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which deals with the case k = l + 1. Let us assume that for k − l = ν ≥ 1, we have

proven

∀u ∈ W ν+l,p(Rn), ‖∇lu‖Lq(Rn) ≤ C(p, n)‖∇l+νu‖Lp(Rn),
1

p
− 1

q
=
ν

n
.

This implies that for

1

pν+1

− 1

q ν+1

=
ν + 1

n
,

1

pν+1

− 1

q ν+1

− 1

n
=
ν

n
,

∀u ∈ W ν+l+1,pν+1(Rn), ‖∇l+1u‖Lqν (Rn) ≤ C(pν+1, n)‖∇l+1+νu‖Lpν+1 (Rn),

with 1
pν+1

− 1
q ν

= ν
n
, qν = nqν+1

n+qν+1
. But we have

‖∇lu‖Lr(Rn) ≤ C(qν , n)‖∇l+1u‖Lqν (Rn),
1

q ν
− 1

r
=

1

n
,

so that 1
r

= 1
q ν+1

+ 1
n
− 1

n
, i.e. r = qν+1. We have thus proven by induction on ν

that

∀u ∈ W ν+l,p(Rn), ‖∇lu‖Lq(Rn) ≤ C(p, n)‖∇l+νu‖Lp(Rn),
1

p
− 1

q
=
ν

n
,

proving the sought result.

Remark 3.5.8. We have proven above that

W k,p(Rn) ↪→ W l,q(Rn), for
k − l
n

=
1

p
− 1

q
, 1 ≤ p < q < +∞.

Note that in this formula, we have k > l but p < q so that the functions in W k,p have

more derivatives but less Lebesgue regularity than the functions in W l,q. This means

that we can somehow trade some regularity in terms of derivatives (first index k > l)

to buy some Lq regularity according to the fixed exchange rate given by k−l
n

= 1
p
− 1

q
.

We see also that Lebesgue regularity is a non-convertible currency which cannot buy

a derivative regularity.

3.6 Exercises

Exercise 3.6.1. Let p, q, r ∈ [1, 2] such that (2.2.1) holds. Let u ∈ Lp(Rn), v ∈
Lq(Rn). Prove that û ∈ Lp

′
(Rn), v ∈ Lq

′
(Rn) and that the product ûv̂ belongs to

Lr
′
(Rn). Show that

u ∗ v ∈ Lr(Rn) and û ∗ v = ûv̂.

Answer. The fact that u ∗ v belongs to Lr follows from Young’s inequality and we

have û ∈ Lp′ , v̂ ∈ Lq′ from Hausdorff-Young Theorem. This implies from Hölder’s

inequality that the product ûv̂ belongs to Lr
′

since∫
|û|r′ |v̂|r′dξ ≤

(∫
|û|sr′dξ

)1/s(∫
|v̂|s′r′dξ

)1/s′

,
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where we may choose

s =
p′

r′
=⇒ 1

s′
= 1− r′

p′
= r′

( 1

r′
− 1

p′
)

=
r′

q′
=⇒ r′s′ = q′.

The above argument extends when r′ = +∞ (which implies p′ = q′ = +∞ so that

p = q = r = 1 and û, v̂ belong to L∞). We have thus

‖û ∗ v‖Lr′ (Rn) ≤ ‖û‖Lp′ (Rn)‖v̂‖Lq′ (Rn) ≤ ‖u‖Lp(Rn)‖v‖Lq(Rn). (3.6.1)

To get that û ∗ v = ûv̂, it is enough to prove it for u, v in the Schwartz space since

then we shall obtain with ϕk, ψk ∈ S (Rn) such that limk ϕk = u in Lp, limk ψk = v

in Lq, thanks to (3.6.1),

ûv̂ = lim
k
ϕ̂k︸ ︷︷ ︸

limit
in Lp

′

lim
l
ψ̂l︸ ︷︷ ︸

limit
in Lq

′

= lim
k
ϕ̂k ∗ ψk︸ ︷︷ ︸
limit

in Lr
′

= û ∗ v.

Formula (1.2.11) gives the result.

Exercise 3.6.2. Show that if T satisfies the assumptions of Theorem 3.1.3 with

r = +∞ and

tω(t, Tu) ≤ c1‖u‖L1 , ‖Tu‖L∞ ≤ c∞‖u‖L∞ ,

then for 1 < p < +∞, we have

‖Tu‖Lp ≤
p1+ 1

p

p− 1
c

1/p
1 c1/p′

∞ ‖u‖Lp .

Answer. We have only to revisit the proof of Theorem 3.1.3 with paying more

attention to the choice of the various constants. We write for u ∈ L1 + L∞, t > 0,

α > c∞,

u = u1{|u|>t/α}︸ ︷︷ ︸
u1

+u1{|u|≤t/α}︸ ︷︷ ︸
u2

, (3.6.2)

and this gives

|(Tu)(x)| ≤ |(Tu1)(x)|+ |(Tu2)(x)| ≤ |(Tu1)(x)|+ ‖u2‖L∞ ≤ |(Tu1)(x)|+ c∞t

α
,

so that we find the inclusion

(]) {x, |(Tu)(x)| > t} ⊂ {x, |(Tu1)(x)| > t(1− c∞α−1)}.

The weak-type (1, 1) assumption reads tω(t, Tv) ≤ c1‖v‖L1 so that

([) ω(t(1− c∞α−1), Tu1) ≤ c1

t(1− c∞α−1)

∫
|u|>t/α

|u|dx.
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Applying Formula (3.1.7) to Tu, we find, using Tonelli Theorem and 1 < p < +∞,

‖Tu‖pLp = p

∫ +∞

0

tp−1ω(t, Tu)dt

(from (])) ≤ p

∫ +∞

0

tp−1ω(t(1− c∞α−1), Tu1)dt

(from ([)) ≤ p

∫ +∞

0

tp−1 c1

t(1− c∞α−1)

∫
|u|>t/α

|u|dxdt

=
pc1

1− c∞α−1

∫∫
R+×Rn

tp−2H(α|u(x)| − t)|u(x)|dtdx

=
pc1

(1− c∞α−1)(p− 1)

∫
Rn

(α|u(x)|)p−1|u(x)|dx

=
αp−1pc1

(1− c∞α−1)(p− 1)
‖u‖pLp .

We check now for α = λc∞ with λ > 1 (assuming of course c∞ > 0),

αp−1pc1

(1− c∞α−1)(p− 1)
= p′c1

λpcp−1
∞

λ− 1
.

We have proven that for any λ > 1,

sup
‖u‖Lp=1

‖Tu‖Lp ≤ (p′c1)1/p λ

(λ− 1)1/p
c1/p′

∞ ,

so that choosing λ = p/(p− 1) gives the sought answer.

Exercise 3.6.3. Let f : Rn → C be an L1
loc function. Prove thatMf is a measurable

function (see Definition 3.2.1).

Answer. For each t > 0 the function Rn × Rn 3 (x, z) 7→ f(x + tz) is measurable

and Proposition 4.1.3 in [11] implies that

x 7→ |B(x, t)|−1

∫
B(x,t)

|f(y)|dy = |Bn|−1

∫
Bn
|f(x+ tz)|dz,

is measurable. Proposition 1.3.1 in [11] proves that

M̃f (x) = sup
t∈Q∗+

—

∫
Bn
|f(x+ tz)|dz

is measurable. Let ε > 0 be given. Let us consider t > 0 and 0 < s ∈ Q such that

t ≤ s ≤ t(1 + ε); we have

1

tn|Bn|

∫
B(x,t)

|f(y)|dy ≤ 1

tn|Bn|

∫
B(x,s)

|f(y)|dy ≤ (
s

t
)nM̃f (x) ≤ (1 + ε)nM̃f (x),

which implies Mf (x) ≤ (1 + ε)nM̃f (x). Since M̃f (x) ≤ Mf (x), we find that for

any ε > 0, Mf (x) ≤ (1 + ε)nM̃f (x) ≤ (1 + ε)nMf (x), proving that Mf is equal to

the measurable M̃f (this works in particular when Mf (x) = +∞).
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Exercise 3.6.4. Let F be defined on R by F (0) = 0 and for x 6= 0, F (x) =

x2 sin(x−2).

(1) Prove that F is differentiable everywhere and calculate its derivative F ′.

(2) Prove that F ′ is not locally integrable.

(3) Prove that the weak derivative of F is not a Radon measure.

Answer.(1) Differentiability outside 0 is obvious with

x 6= 0, F ′(x) = 2x sin(x−2)− 2x−1 cos(x−2), F ′(0) = lim
x→0

x sin(x−2) = 0.

We note in particular that F ′ is not continuous since F ′( 1√
2kπ

) = −2
√

2kπ for k ∈ N∗.
(2) Since 2x sin(x−2) is locally bounded, we have to prove that x−1 cos(x−2) is not

locally integrable: ∫ 1

0

| cos(x−2)|x−1dx =
1

2

∫ +∞

1

| cos t|dt
t

= +∞.

(3) The weak derivative f of F is defined as a linear form on C∞c (R) functions (or

as a tempered distribution, cf. Chapter 8 with Definition 1.2.7), with

〈F ′, ϕ〉 = −
∫
R
F (x)ϕ′(x)dx.

Let us assume that ϕ is supported in (0,+∞): we have then

〈F ′, ϕ〉 =

∫ (
2x sin(x−2)− 2x−1 cos(x−2)

)
ϕ(x)dx.

We choose now ϕk ∈ C∞c ((ak, bk); [0, 1]) with k ∈ N∗,

ak = (2πk +
π

4
)−1/2, bk = (2πk − π

4
)−1/2

so that x ∈ (ak, bk) =⇒ x−2 ∈ (2πk − π
4
, 2πk + π

4
) =⇒ cos(x−2) ∈ (2−1/2, 1]. As a

result, we have∫ bk

ak

x−1 cos(x−2)ϕk(x)dx ≥ 2−1/2(2πk − π

4
)1/2

∫ bk

ak

ϕk(x)dx.

We may also assume that ϕk equals 1 on
[
(2πk + π

6
)−1/2, (2πk − π

6
)−1/2

]
, implying∫ bk

ak

x−1 cos(x−2)ϕk(x)dx ≥ 2−1/2(2πk − π

4
)1/2π

3

1

2
(2πk +

π

6
)−3/2 ≥ c0k

−1.

Since the intervals (ak, bk) are pairwise disjoint, the function

ΦN(x) =
∑

1≤k≤N

ϕk(x),

is such that ΦN ∈ C∞c ((0,+∞); [0, 1]) and

〈F ′,ΦN〉 ≤ −c0

∑
1≤k≤N

1

k
+

∫ 1

0

2xdx −→
N→+∞

−∞.



Chapter 4

Introduction to pseudodifferential
operators

4.1 Prolegomena

A differential operator of order m on Rn can be written as

a(x,D) =
∑
|α|≤m

aα(x)Dα
x ,

where we have used the notation (1.2.8) for the multi-indices. Its symbol is a poly-

nomial in the variable ξ and is defined as

a(x, ξ) =
∑
|α|≤m

aα(x)ξα, ξα = ξα1
1 . . . ξαnn .

We have the formula

(a(x,D)u)(x) =

∫
Rn
e2iπx·ξa(x, ξ)û(ξ)dξ, (4.1.1)

where û is the Fourier transform. It is possible to generalize the previous formula

to the case where a is a tempered distribution on R2n.

Let u, v be in the Schwartz class S (Rn). Then the function

Rn × Rn 3 (x, ξ) 7→ û(ξ)v̄(x)e2iπx·ξ = Ωu,v(x, ξ) (4.1.2)

belongs to S (R2n) and the mapping (u, v) 7→ Ωu,v is sesquilinear continuous. Using

these notations, we can provide the following definition.

Definition 4.1.1. Let a ∈ S ′(R2n) be a tempered distribution. We define the

operator a(x,D) : S (Rn) −→ S ∗(Rn) by the formula

〈a(x,D)u, v〉S ∗(Rn),S (Rn) =≺ a,Ωu,v �S ′ (R2n),S (R2n),

where S ∗(Rn) is the antidual of S (Rn) (continuous antilinear forms). The distri-

bution a is called the symbol of the operator a(x,D).

89
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N.B. The duality product 〈u, v〉S ∗(R2n),S (R2n), is linear in the variable u and anti-

linear in the variable v. We shall use the same notation for the dot product in the

complex Hilbert space L2 with the notation

〈u, v〉L2 =

∫
u(x)v(x)dx.

The general rule that we shall follow is to always use the sesquilinear duality as

above, except if specified otherwise. For the real duality, as in the left-hand-side of

the formula in Definition 4.1.1, we shall use the notation ≺ u, v �=
∫
u(x)v(x)dx,

e.g. for u, v ∈ S (Rn).

Although the previous formula is quite general, since it allows us to quantize1

any tempered distribution on R2n, it is not very useful, since we cannot compose

this type of operators. We are in fact looking for an algebra of operators and the

following theorem is providing a simple example.

In the sequel we shall denote by C∞b (R2n) the (Fréchet) space of C∞ functions

on R2n which are bounded as well as all their derivatives.

Theorem 4.1.2. Let a ∈ C∞b (R2n). Then the operator a(x,D) is continuous from

S (Rn) into itself.

Proof. Using Definition 4.1.1, we have for u, v ∈ S (Rn), a ∈ C∞b (R2n),

〈a(x,D)u, v〉S ∗(Rn),S (Rn) =

∫∫
e2iπx·ξa(x, ξ)û(ξ)v̄(x)dxdξ.

On the other hand the function U(x) =
∫
e2iπx·ξa(x, ξ)û(ξ)dξ is smooth and such

that, for any multi-indices α, β,

xβDα
xU(x) = (−1)|β|

∑
α′+α′′=α

α!

α′!α′′!

∫
e2iπx·ξDβ

ξ

(
ξα
′
(Dα′′

x a)(x, ξ)û(ξ)
)
dξ

= (−1)|β|
∑

α′+α′′=α

α!

α′!α′′!

∫
e2iπx·ξDβ

ξ

(
(Dα′′

x a)(x, ξ)D̂α′u(ξ)
)
dξ

and thus

sup
x∈Rn
|xβDα

xU(x)| ≤
∑

α′+α′′=α
β′+β′′=β

α!

α′!α′′!

β!

β′!β′′!
‖Dβ′

ξ D
α′′

x a‖L∞(R2n)‖Dβ′′D̂αu‖L1(Rn).

Since the Fourier transform and ∂xj are continuous on S (Rn), we get that the

mapping u 7→ U is continuous from S (Rn) into itself. The above defining formula

for a(x,D) ensures that a(x,D)u = U .

1We mean simply here that we are able to define a linear mapping from S ′(R2n) to the set of
continuous operators from S (Rn) to S ′(Rn).
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The Schwartz space S (R2n) is not dense in the Fréchet space C∞b (R2n) (e.g.

∀ϕ ∈ S (R2n), supx∈R2n |1 − ϕ(x)| ≥ 1) but, in somewhat pedantic terms, one may

say that this density is true for the bornology on C∞b (R2n); in simpler terms, let a

be a function in C∞b (R2n) and take for instance

ak(x, ξ) = a(x, ξ)e−(|x|2+|ξ|2)k−2

.

It is easy to see that each ak belongs to S (R2n), that the sequence (ak) is bounded

in C∞b (R2n) and converges in C∞(R2n) to a. This type of density will be enough for

the next lemma.

Lemma 4.1.3. Let (ak) be a sequence in S (R2n) such that (ak) is bounded in the

Fréchet space C∞b (R2n) and (ak) is converging in C∞(R2n) to a function a. Then a

belongs to C∞b (R2n) and for any u ∈ S (Rn), the sequence (ak(x,D)u) converges to

a(x,D)u in S (Rn).

Proof. The fact that a belongs to C∞b (R2n) is obvious. Using the identities in the

proof of Theorem 4.1.2 we see that

xβDα
x

(
ak(x,D)u− a(x,D)u

)
= xβDα

x

(
(ak − a)(x,D)u

)
= (−1)|β|

∑
α′+α′′=α
β′+β′′=β

α!

α′!α′′!

β!

β′!β′′!

∫
e2iπx·ξ(Dβ′

ξ D
α′′

x (ak − a)
)
(x, ξ)Dβ′′

ξ D̂
α′u(ξ)dξ

=
∑

α′+α′′=α
β′+β′′=β

α!

α′!α′′!

β!

β′!β′′!
(1 + |x|2)−1

×
∫

(1 + |Dξ|2)
(
e2iπx·ξ)(Dβ′

ξ D
α′′

x (ak − a)
)
(x, ξ)Dβ′′

ξ D̂
α′u(ξ)dξ,

that is a (finite) sum of terms of type Vk(x) = (1 + |x|2)−1
∫
e2iπx·ξbk(x, ξ)wu(ξ)dξ

with the sequence (bk) bounded in C∞b (R2n) and converging to 0 in C∞(R2n), u 7→ wu
linear continuous from S (Rn) into itself. As a consequence we get that, with R1, R2

positive parameters,

|Vk(x)| ≤ sup
|x|≤R1

|ξ|≤R2

|bk(x, ξ)|
∫
|ξ|≤R2

|wu(ξ)|dξ1|x|≤R1

+

∫
|ξ|≥R2

|wu(ξ)|dξ sup
k∈N
‖bk‖L∞(R2n)1|x|≤R1

+R−2
1 1|x|≥R1 sup

k∈N
‖bk‖L∞(R2n)

∫
|wu(ξ)|dξ,

implying

|Vk(x)| ≤ εk(R1, R2)

∫
|wu(ξ)|dξ + η(R2) sup

k∈N
‖bk‖L∞(R2n)

+ θ(R1) sup
k∈N
‖bk‖L∞(R2n)

∫
|wu(ξ)|dξ,
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with limk→+∞ εk(R1, R2) = 0, limR→+∞ η(R) = limR→+∞ θ(R) = 0. Thus we have

for all positive R1, R2,

lim sup
k→+∞

‖Vk‖L∞ ≤ η(R2) sup
k∈N
‖bk‖L∞(R2n) + θ(R1) sup

k∈N
‖bk‖L∞(R2n)

∫
|wu(ξ)|dξ,

entailing (by taking the limit when R1, R2 go to infinity) that limk→+∞ ‖Vk‖L∞ = 0

which gives the result of the lemma.

Theorem 4.1.4. Let a ∈ C∞b (R2n): the operator a(x,D) is bounded on L2(Rn).

Proof. Since S (Rn) is dense in L2(Rn), it is enough to prove that there exists a

constant C such that for all u, v ∈ S (Rn),

|〈a(x,D)u, v〉S ∗(Rn),S (Rn)| ≤ C‖u‖L2(Rn)‖v‖L2(Rn).

We introduce the polynomial on Rn defined by Pk(t) = (1 + |t|2)k/2, where k ∈ 2N,

and the function

Wu(x, ξ) =

∫
u(y)Pk(x− y)−1e−2iπy·ξdy.

The function Wu is the partial Fourier transform of the function Rn×Rn 3 (x, y) 7→
u(y)Pk(x − y)−1 and if k > n/2 (we assume this in the sequel), we obtain that

‖Wu‖L2(R2n) = ck‖u‖L2(Rn). Moreover, since u ∈ S (Rn), the function Wu belongs to

C∞(R2n) and satisfies for all multi-indices α, β, γ

sup
(x,ξ)∈R2n

Pk(x)ξγ|(∂αx∂
β
ξWu)(x, ξ)| <∞.

In fact we have

ξγ(∂αx∂
β
ξWu)(x, ξ) =

∫ ∈S (Rn)︷ ︸︸ ︷
u(y)(−2iπy)β ∂α(1/Pk)(x− y)(−1)|γ|Dγ

y (e−2iπy·ξ)dy

=
∑

γ′+γ′′=γ

γ!

γ′!γ′′!

∫
Dγ′

y

(
u(y)(−2iπy)β

)
(−2iπ)−|γ

′′|

∂γ
′′+α(1/Pk)(x− y)(e−2iπy·ξ)dy

and

|∂α(1/Pk)(x− y)| ≤ Cα,k(1 + |x− y|)−k ≤ Cα,k(1 + |x|)−k(1 + |y|)k.

From Definition 4.1.1, we have

〈a(x,D)u, v〉S ∗(Rn),S (Rn) =

∫∫
Rn×Rn

e2iπx·ξa(x, ξ)û(ξ)v̄(x)dxdξ,

and we obtain, using an integration by parts justified by the regularity and decay of

the functions W above,

〈a(x,D)u, v〉

=

∫∫
a(x, ξ)Pk(Dξ)

(∫
u(y)Pk(x− y)−1e2iπ(x−y)·ξdy

)
v̄(x)dxdξ

=

∫∫
a(x, ξ)Pk(Dξ)

(
e2iπx·ξWu(x, ξ)v̄(x)︸ ︷︷ ︸

∈S (R2n)

)
dxdξ
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=

∫∫
(Pk(Dξ)a)(x, ξ)Wu(x, ξ)Pk(Dx)

(∫
e2iπx·(ξ−η)Pk(ξ − η)−1v̂(η)dη

)
dxdξ

=

∫∫
(Pk(Dξ)a)(x, ξ)Wu(x, ξ)Pk(Dx)

(
W¯̂v(ξ, x)e2iπx·ξ) dxdξ

=
∑

0≤l≤k/2

C l
k/2

∫∫
|Dx|2l

(
(Pk(Dξ)a)(x, ξ)Wu(x, ξ)

)
W¯̂v(ξ, x)e2iπx·ξdxdξ

=
∑
|α|≤k
|β|+|γ|≤k

cαβγ

∫∫
(Dα

ξD
β
xa)(x, ξ)︸ ︷︷ ︸

bounded

Dγ
x(Wu)(x, ξ) W¯̂v(ξ, x)︸ ︷︷ ︸

∈ L2(R2n) with norm

ck‖v‖L2(Rn)

e2iπx·ξdxdξ.

Checking now the x-derivatives of Wu, we see that

Dγ
x(Wu)(x, ξ) =

∫
u(y)Dγ(1/Pk)(x− y)e−2iπy·ξdy,

and since Dγ(1/Pk) belongs to L2(Rn) (since k > n/2), we get that the L2(R2n) norm

of Dγ
x(Wu) is bounded above by cγ‖u‖L2(Rn). Using the Cauchy-Schwarz inequality,

we obtain that

|〈a(x,D)u, v〉| ≤
∑
|α|≤k
|β|+|γ|≤k

cαβγ‖∂αξ ∂βxa‖L∞(R2n)‖Dγ
xWu‖L2(R2n)‖W¯̂v‖L2(R2n)

≤ Cn‖u‖L2(Rn)‖v‖L2(Rn) sup
|α|≤k
|β|≤k

‖∂αξ ∂βxa‖L∞(R2n),

where Cn depends only on n and 2N 3 k > n/2, which is the sought result.

The next theorem gives us our first algebra of pseudodifferential operators.

Theorem 4.1.5. Let a, b be in C∞b (R2n). Then the composition a(x,D)b(x,D)

makes sense as a bounded operator on L2(Rn) (also as a continuous operator from

S (Rn) into itself), and a(x,D)b(x,D) = (a�b)(x,D) where a�b belongs to C∞b (R2n)

and is given by the formula

(a � b)(x, ξ) = (exp 2iπDy ·Dη)(a(x, ξ + η)b(y + x, ξ))|y=0,η=0, (4.1.3)

(a � b)(x, ξ) =

∫∫
e−2iπy·ηa(x, ξ + η)b(y + x, ξ)dydη, (4.1.4)

when a and b belong to S (R2n). The mapping a, b 7→ a � b is continuous for the

topology of Fréchet space of C∞b (R2n). Also if (ak), (bk) are sequences of functions

in S (R2n), bounded in C∞b (R2n), converging in C∞(R2n) respectively to a, b, then a

and b belong to C∞b (R2n), the sequence (ak�bk) is bounded in C∞b (R2n) and converges

in C∞(R2n) to a � b.

Remark 4.1.6. From Lemma 4.1.2 in [9], we know that the operator e2iπDy ·Dη is an

isomorphism of C∞b (R2n), which gives a meaning to the formula (4.1.3), since for

a, b ∈ C∞b (R2n), (x, ξ) given in R2n, the function (y, η) 7→ a(x, ξ + η)b(y + x, ξ) =

Cx,ξ(y, η) belongs to C∞b (R2n) as well as JCx,ξ and we can take the value of the

latter at (y, η) = (0, 0).
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Proof. Let us first assume that a, b ∈ S (R2n). The kernels ka, kb of the operators

a(x,D), b(x,D) belong also to S (R2n) and the kernel kc of a(x,D)b(x,D) is given

by (we use Fubini’s theorem)

k(x, y) =

∫
ka(x, z)kb(z, y)dz =

∫∫∫
a(x, ξ)e2iπ(x−z)·ξb(z, ζ)e2iπ(z−y)·ζdζdξdz.

The function k belongs also to S (R2n) and we get, for u, v ∈ S (Rn),

〈a(x,D)b(x,D)u, v〉L2(Rn)

=

∫∫∫∫∫
a(x, ξ)e2iπ(x−z)·ξb(z, ζ)e2iπ(z−y)·ζu(y)v̄(x)dζdξdzdydx.

=

∫∫∫∫
a(x, ξ)e2iπ(x−z)·ξb(z, ζ)e2iπz·ζ û(ζ)dζdξdzv̄(x)dx.

=

∫∫∫∫
a(x, ξ)e2iπ(x−z)·ξb(z, ζ)e2iπ(z−x)·ζdξdze2iπx·ζ û(ζ)dζv̄(x)dx.

=

∫∫
c(x, ζ)e2iπx·ζ û(ζ)dζv̄(x)dx,

with

c(x, ζ) =

∫∫
a(x, ξ)e2iπ(x−z)·(ξ−ζ)b(z, ζ)dξdz

=

∫∫
a(x, ξ + ζ)e−2iπz·ξb(z + x, ζ)dξdz, (4.1.5)

which is indeed (4.1.4). With c = a � b given by (4.1.4), using that a, b ∈ S (R2n)

we get, using the notation (1.2.8) and Pk(t) = (1 + |t|2)1/2, k ∈ 2N,

c(x, ξ) =

∫∫
Pk(Dη)

(
e−2iπy·η

)
Pk(y)−1a(x, ξ + η)b(y + x, ξ)dydη

=

∫∫
e−2iπy·ηPk(y)−1(Pk(D2)a)(x, ξ + η)b(y + x, ξ)dydη

=

∫∫
Pk(Dy)

(
e−2iπy·η

)
Pk(η)−1Pk(y)−1(Pk(D2)a)(x, ξ + η)b(y + x, ξ)dydη

=
∑

0≤l≤k/2

C l
k/2

∫∫
e−2iπy·η|Dy|2l

(
Pk(y)−1b(y + x, ξ)

)
Pk(η)−1(Pk(D2)a)(x, ξ + η)dydη. (4.1.6)

We denote by a�̃b the right-hand-side of the previous formula and we note that, when

k > n, it makes sense as well for a, b ∈ C∞b (R2n), since |∂αt (1/Pk)(t)| ≤ Cα,k(1+|t|)−k.
We already know that a� b = a�̃b for a, b in the Schwartz class and we want to prove

that it is also true for a, b ∈ C∞b (R2n). Choosing an even k > n (take k = n + 1 or

n+ 2), we also get

‖a�̃b‖L∞(R2n) ≤ Cn sup
|α|≤n+2

‖∂αξ a‖L∞(R2n) sup
|β|≤n+2

‖∂βx b‖L∞(R2n).
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Moreover, we note from (4.1.6) that

∂ξj(a�̃b) = (∂ξja)�̃b+ a�̃(∂ξjb), ∂xj(a�̃b) = (∂xja)�̃b+ a�̃(∂xjb)

and as a result

‖∂αξ ∂βx (a�̃b)‖L∞(R2n)

≤ Cn,α,β sup
|α′|≤n+2,|β′|≤n+2

α′′+α′′′=α, β′′+β′′′=β

‖∂α′+α′′ξ ∂β
′′

x a‖L∞(R2n)‖∂β
′+β′′′

x ∂α
′′′

ξ b‖L∞(R2n), (4.1.7)

which gives also the continuity of the bilinear mapping C∞b (R2n) × C∞b (R2n) 3
(a, b) 7→ a�̃b ∈ C∞b (R2n). We have for u, v ∈ S (Rn), a, b ∈ C∞b (R2n),

ak(x, ξ) = e−(|x|2+|ξ|2)/k2a(x, ξ), bk(x, ξ) = e−(|x|2+|ξ|2)/k2b(x, ξ),

from Lemma 4.1.3 and Theorem 4.1.2, with limits in S (Rn),

a(x,D)b(x,D)u = lim
k
ak(x,D)b(x,D)u = lim

k

(
lim
l
ak(x,D)bl(x,D)u

)
,

and thus, with Ωu,v(x, ξ) = e2iπx·ξû(ξ)v̄(x) (which belongs to S (R2n)),

〈a(x,D)b(x,D)u, v〉L2 = lim
k

(
lim
l
〈(ak � bl)(x,D)u, v〉

)
= lim

k

(
lim
l

∫∫
(ak � bl)(x, ξ)Ωu,v(x, ξ)dxdξ

)
=

∫∫
(a�̃b)(x, ξ)Ωu,v(x, ξ)dxdξ,

which gives indeed a(x,D)b(x,D) = (a�̃b)(x,D). This property gives at once the

continuity properties stated at the end of the theorem, since the weak continuity

property follows immediately from (4.1.6) and the Lebesgue dominated convergence

theorem, whereas the Fréchet continuity follows from (4.1.7). Moreover, with the

same notations as above, we have with

C
(a,b)
x,ξ (y, η) = a(x, ξ + η)b(y + x, ξ)

(see Remark 4.1.6) for each (x, ξ) ∈ R2n,

(JC
(a,b)
x,ξ )(0, 0) = lim

k
(JC

(ak,bk)
x,ξ )(0, 0) = lim

k

(
(ak � bk)(x, ξ)

)
= (a�̃b)(x, ξ)

which proves (4.1.3). The proof of the theorem is complete.

Definition 4.1.7. Let A : S (Rn) −→ S ′(Rn) be a linear operator. The adjoint

operator A∗ : S (Rn) −→ S ′(Rn) is defined by

〈A∗u, v〉S ∗(Rn),S (Rn) = 〈Av, u〉S ∗(Rn),S (Rn),

where S ∗(Rn) is the antidual of S (Rn) (continuous antilinear forms).
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Lemma 4.1.8. Let n ≥ 1 be an integer and t ∈ R∗. We define the operator

J t = exp 2iπtDx ·Dξ (4.1.8)

on S ′(Rn
x×Rn

ξ ) by (FJ ta)(ξ, x) = e2iπtξ·xâ(ξ, x), where F stands here for the Fourier

transform in 2n dimensions. The operator J t sends also S (Rn
x × Rn

ξ ) into itself

continuously, satisfies (for s, t ∈ R) Js+t = JsJ t and is given by

(J ta)(x, ξ) = |t|−n
∫∫

e−2iπt−1y·ηa(x+ y, ξ + η)dydη. (4.1.9)

We have

J ta = eiπt〈BD,D〉a = |t|−ne−iπt−1〈B·,·〉 ∗ a, (4.1.10)

with the 2n×2n matrix B =

(
0 In
In 0

)
. The operator J t sends continuously C∞b (R2n)

into itself.

Proof. We have indeed (FJ ta)(ξ, x) = e2iπtξ·xâ(ξ, x) = eiπt〈BΞ,Ξ〉â(Ξ). Note that B

is a 2n × 2n symmetric matrix with null signature, determinant (−1)n and that

B−1 = B. According to the proposition 1.2.19, the inverse Fourier transform of

eiπt〈BΞ,Ξ〉 is |t|−ne−iπt−1〈BX,X〉 so that J ta = |t|−ne−iπt−1〈B·,·〉 ∗ a. Since the Fourier

multiplier eiπt〈BΞ,Ξ〉 is smooth bounded with derivatives polynomially bounded, it

defines a continuous operator from S (R2n) into itself.

In the sequel of the proof, we take t = 1, which will simplify the notations without

corrupting the arguments. Let us consider a ∈ S (R2n): we have with k ∈ 2N and

the polynomial on Rn defined by Pk(y) = (1 + |y|2)k/2

(Ja)(x, ξ) =

∫∫
e−2iπy·ηPk(y)−1Pk(Dη)

(
Pk(η)−1(Pk(Dy)a)(x+ y, ξ + η)

)
dydη,

so that, with |Tαβ(η)| ≤ Pk(η)−1 and constants cαβ, we obtain

(Ja)(x, ξ) =
∑
|β|≤k
|α|≤k

cαβ

∫∫
e−2iπy·ηPk(y)−1Tαβ(η)(Dα

ξD
β
xa)(x+y, ξ+η)dydη. (4.1.11)

Let us denote by J̃a the right-hand-side of (4.1.11). We already know that J̃a = Ja

for a ∈ S (R2n). We also note that, using an even integer k > n, the previous

integral converges absolutely whenever a ∈ C∞b (R2n); moreover we have

‖J̃a‖L∞ ≤ Cn sup
|α|≤n+2
|β|≤n+2

‖Dα
ξD

β
xa‖L∞ ,

and since the derivations are commuting with J and J̃ , we also get that

‖∂γJ̃a‖L∞ ≤ Cn sup
|α|≤n+2
|β|≤n+2

‖Dα
ξD

β
x∂

γa‖L∞ . (4.1.12)
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It implies that J̃ is continuous from C∞b (R2n) to itself. Let us now consider a ∈
C∞b (R2n × Rm); we define the sequence (ak) in S (R2n) by

ak(x, ξ) = e−(|x|2+|ξ|2)/k2a(x, ξ).

We have 〈Ja,Φ〉S ∗(R2n),S (R2n) =∫∫
a(x, ξ)(J−1Φ)(x, ξ)dxdξ = lim

k→+∞

∫∫
ak(x, ξ)(J−1Φ)(x, ξ)dxdξ

= lim
k→+∞

∫∫
(Jak)(x, ξ)Φ̄(x, ξ)dxdξ =

∫∫
(J̃a)(x, ξ)Φ̄(x, ξ)dxdξ,

so that we indeed have J̃a = Ja and from (4.1.12) the continuity property of the

lemma whose proof is now complete.

Theorem 4.1.9. Let a ∈ S ′(R2n) and A = a(x,D) be given by Definition 4.1.1.

Then the operator A∗ is equal to a∗(x,D), where a∗ = Jā (J is given in Lemma

4.1.8 above). If a belongs to C∞b (R2n), a∗ = Jā ∈ C∞b (R2n) and the mapping a 7→ a∗

is continuous from C∞b (R2n) into itself.

Proof. According to the definitions 4.1.7 and 4.1.1, we have for u, v ∈ S (Rn), with

Ωv,u(x, ξ) = e2iπx·ξv̂(ξ)ū(x),

〈A∗u, v〉S ∗(Rn),S (Rn) = 〈Av, u〉S ∗(Rn),S (Rn) = ≺ a,Ωv,u �S ′(R2n),S (R2n)

=≺ ā,Ωv,u �S ′(R2n),S (R2n) .

On the other hand, we have(
J−1(Ωv,u)

)
(x, ξ) =

∫∫
e2iπ(x−y)·(ξ−η)e−2iπy·η ¯̂v(η)u(y)dydη

= v̄(x)e2iπx·ξû(ξ) = Ωu,v(x, ξ),

so that, using (4.1.10), we get

〈A∗u, v〉S ∗(Rn),S (Rn) =≺ ā, JΩu,v �S ′(R2n),S (R2n)=≺ Jā,Ωu,v �S ′(R2n),S (R2n)

and finally A∗ = (Jā)(x,D). The last statement in the theorem follows from Lemma

4.1.8.

N.B. In this introductory section, we have seen a very general definition of quanti-

zation (Definition 4.1.1), an easy S continuity theorem (Theorem 4.1.2), a trickier

L2-boundedness result (Theorem 4.1.4), a composition formula (Theorem 4.1.5) and

an expression for the adjoint (Theorem 4.1.7). These five steps are somewhat typical

of the construction of a pseudodifferential calculus and we shall see many different

examples of this situation. The above prolegomena provide a quite explicit and ele-

mentary approach to the construction of an algebra of pseudodifferential operators

in a rather difficult framework, since we did not use any asymptotic calculus and

did not have at our disposal a “small parameter”. The proofs and simple methods

that we used here will be useful later as well as many of the results.
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4.2 Quantization formulas

We have already seen in Definition 4.1.1 and in the formula (4.1.1) a way to associate

to a tempered distribution a ∈ S ′(R2n) an operator from S (Rn) to S ′(Rn). This

question of quantization has of course many links with quantum mechanics and we

want here to study some properties of various quantizations formulas, such as the

Weyl quantization and the Feynman formula along with several variations around

these examples. We are given a function a defined on the phase space Rn×Rn (a is a

“Hamiltonian”) and we wish to associate to this function an operator. For instance,

we may introduce the one-parameter formulas, for t ∈ R,

(opt a)u(x) =

∫∫
e2iπ(x−y)·ξa

(
(1− t)x+ ty, ξ

)
u(y)dydξ. (4.2.1)

When t = 0, we recognize the standard quantization introduced in Definition 4.1.1,

quantizing a(x)ξj in a(x)Dxj (see (1.2.8)). However, one may wish to multiply first

and take the derivatives afterwards: this is what the choice t = 1 does, quantizing

a(x)ξj in Dxja(x). The more symmetrical choice t = 1/2 was done by Hermann

Weyl [21]: we have

(op 1
2
a)u(x) =

∫∫
e2iπ(x−y)·ξa

(x+ y

2
, ξ
)
u(y)dydξ, (4.2.2)

and thus op 1
2
(a(x)ξj) = 1

2

(
a(x)Dxj +Dxja(x)

)
. This quantization is widely used

in quantum mechanics, because a real-valued Hamiltonian gets quantized by a (for-

mally) selfadjoint operator. We shall see that the most important property of that

quantization remains its symplectic invariance, which will be studied in details in

Chapter 2; a different symmetrical choice was made by Richard Feynman who used

the formula ∫∫
e2iπ(x−y)·ξ (a(x, ξ) + a(y, ξ))

1

2
u(y)dydξ, (4.2.3)

keeping the selfadjointness of real Hamiltonians, but loosing the symplectic invari-

ance. The reader may be embarrassed by the fact that we did not bother about the

convergence of the integrals above. Before providing a definition, we may assume

that a ∈ S (R2n), u, v ∈ S (Rn), t ∈ R and compute

〈(opta)u, v〉 =

∫∫∫
a
(
(1− t)x+ ty, ξ

)
e2iπ(x−y)·ξu(y)v̄(x)dydξdx

=

∫∫∫
a(z, ξ)e−2iπs·ξu(z + (1− t)s)v̄(z − ts)dzdξds

=

∫∫∫
a(x, ξ)e−2iπz·ξu(x+ (1− t)z)v̄(x− tz)dxdξdz,

so that with

Ωu,v(t)(x, ξ) =

∫
e−2iπz·ξu(x+ (1− t)z)v̄(x− tz)dz, (4.2.4)
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which is easily seen2 to be in S (R2n) when u, v ∈ S (Rn), we can give the following

definition.3

Definition 4.2.1. Let a ∈ S ′(R2n) be a tempered distribution and t ∈ R. We

define the operator opta : S (Rn) −→ S ∗(Rn) by the formula

〈(opta)u, v〉S ∗(Rn),S (Rn) =≺ a,Ωu,v(t) �S ′ (R2n),S (R2n),

where S ∗(Rn) is the antidual of S (Rn) (continuous antilinear forms).

Proposition 4.2.2. Let a ∈ S ′(R2n) be a tempered distribution and t ∈ R. We

have

opt a = op0(J ta) = (J ta)(x,D),

with J t defined in Lemma 4.1.8.

Proof. Let u, v ∈ S (Rn). With the S (R2n) function Ωu,v(t) given above, we have

for t 6= 0, (
J tΩu,v(0)

)
(x, ξ) = |t|−n

∫∫
e−2iπt−1(x−y)·(ξ−η)Ωu,v(0)(y, η)dydη

= |t|−n
∫∫

e−2iπt−1(x−y)·(ξ−η)û(η)v̄(y)e2iπy·ηdydη

=

∫∫
e−2iπz·(ξ−η)û(η)v̄(x− tz)e2iπ(x−tz)·ηdzdη

=

∫
e−2iπz·ξu(x+ (1− t)z)v̄(x− tz)dz = Ωu,v(t)(x, ξ), (4.2.5)

so that

〈(opta)u, v〉S ∗(Rn),S (Rn) =≺ a,Ωu,v(t) �S ′(R2n),S (R2n) (definition 4.2.1)

=≺ a, J tΩu,v(0) �S ′(R2n),S (R2n) (property (4.2.5))

=≺ J ta,Ωu,v(0) �S ′(R2n),S (R2n) (easy identity for J t)

= 〈(J ta)(x,D)u, v〉S ∗(Rn),S (Rn) (definition 4.1.1),

completing the proof.

Remark 4.2.3. The theorem 4.1.9 and the previous proposition give in particular

that a(x,D)∗ = op1(ā) = (Jā)(x,D), a formula which in fact motivates the study of

the group J t. On the other hand, using the Weyl quantization simplifies somewhat

the matter of taking adjoints since we have(
op1/2(a)

)∗
=
(
op0(J1/2a)

)∗
= op0(J(J1/2a)) = op0(J1/2ā) = op1/2(ā)

2In fact the linear mapping Rn×Rn 3 (x, z) 7→ (x−tz, x+(1−t)z) has determinant 1 and Ωu,v(t)
appears as the partial Fourier transform of the function Rn×Rn 3 (x, z) 7→ v̄(x−tz)u(x+(1−t)z),
which is in the Schwartz class.

3The reader can check that this is consistent with Definition 4.1.1.
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and in particular if a is real-valued, op1/2(a) is formally selfadjoint. The Feynman

formula as displayed in (4.2.3) amounts to quantize the Hamiltonian a by

1

2
op0(a+ Ja)

and we see that
(
op0(a+Ja)

)∗
= op0(Jā+J(Ja)) = op0(Jā+ā), which also provides

selfadjointness for real-valued Hamiltonians.

Lemma 4.2.4. Let a ∈ S (R2n). Then for all t ∈ R, opt(a) is a continuous mapping

from S ′(Rn) in S (Rn).

Proof. Let a ∈ S (R2n): we have for u ∈ S ′(Rn), A = a(x,D),

xβ(Dα
xAu)(x) =

∑
α′+α′′=α

1

α′!α′′!
〈û(ξ), e2iπx·ξξα

′
xβ(Dα′′

x a)(x, ξ)〉S ′(Rnξ ),S (Rnξ ),

so that Au ∈ S (Rn) and the same property holds for opt(a) since J t is an isomor-

phism of S ′(R2n).

4.3 The Sm1,0class of symbols

Differential operators on Rn with smooth coefficients are given by a formula (see

(4.1.1))

a(x,D)u =
∑
|α|≤m

aα(x)Dα
x

where the aα are smooth functions. Assuming some behaviour at infinity for the aα,

we may require that they are C∞b (Rn) (see page 90) and a natural generalization is

to consider operators a(x,D) with a symbol a of type Sm1,0, i.e. smooth functions on

R2n satisfying

|(∂αξ ∂βxa)(x, ξ)| ≤ Cαβ〈ξ〉m−|α|, 〈ξ〉 = (1 + |ξ|2)1/2. (4.3.1)

The best constants Cαβ in (4.3.1) are the semi-norms of a in the Fréchet space Sm1,0.

We can define, for a ∈ Sm1,0, k ∈ N,

γk,m(a) = sup
(x,ξ)∈R2n,|α|+|β|≤k

|(∂αξ ∂βxa)(x, ξ)|〈ξ〉−m+|α|. (4.3.2)

Example. The function 〈ξ〉m belongs to Sm1,0: the function

R× Rn 3 (τ, ξ) 7→ (τ 2 + |ξ|2)m/2

is (positively) homogeneous of degree m on Rn+1\{0}, and thus ∂αξ
(
(τ 2 + |ξ|2)m/2

)
is homogeneous of degree m− |α| and bounded above by

Cα(τ 2 + |ξ|2)
m−|α|

2 .

Since the restriction to τ = 1 and the derivation with respect to ξ commute, it gives

the answer.
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We shall see that the class of operators Op(Sm1,0) is suitable (Op(b) is op0b, see

Proposition 4.2.2) to invert elliptic operators, and useful for the study of singularities

of solutions of PDE. We see that the elements of Sm1,0 are temperate distributions, so

that the operator a(x,D) makes sense, according to Definition 4.1.1. We have also

the following result.

Theorem 4.3.1. Let m ∈ R and a ∈ Sm1,0. Then the operator a(x,D) is continuous

from S (Rn) into itself.

Proof. With 〈D〉 = Op(〈ξ〉), we have a(x,D) = Op(a(x, ξ)〈ξ〉−m)〈D〉m. The func-

tion a(x, ξ)〈ξ〉−m belongs to C∞b (R2n) so that we can use Theorem 4.1.2 and the fact

that 〈D〉m is continuous on S (Rn) to get the result.

Theorem 4.3.2. Let a ∈ S0
1,0. Then the operator a(x,D) is bounded on L2(Rn).

Proof. Since S0
1,0 ⊂ C∞b (R2n), it follows from Theorem 4.1.4.

Theorem 4.3.3. Let m1,m2 be real numbers and a1 ∈ Sm1
1,0 , a2 ∈ Sm2

1,0 . Then the

composition a1(x,D)a2(x,D) makes sense as a continuous operator from S (Rn)

into itself and a1(x,D)a2(x,D) = (a1 � a2)(x,D) where a1 � a2 belongs to Sm1+m2
1,0

and is given by the formula

(a1 � a2)(x, ξ) = (exp 2iπDy ·Dη)
(
a1(x, ξ + η)a2(y + x, ξ)

)
|y=0,η=0

. (4.3.3)

N.B. From Lemma 4.1.5 in [9], we know that the operator e2iπDy ·Dη is an isomorphism

of Sm1,0(R2n), which gives a meaning to the formula (4.3.3), since for aj ∈ S
mj
1,0 (R2n),

(x, ξ) given in R2n, the function (y, η) 7→ a1(x, ξ+ η)a2(y+x, ξ) = Cx,ξ(y, η) belongs

to Sm1
1,0 (R2n) as well as JCx,ξ and we can take the value of the latter at (y, η) = (0, 0).

Proof. We assume first that both aj belong to S (R2n). The formula (4.1.4) provides

the answer. Now, rewriting the formula (4.1.6) for an even integer k, we get

(a1 � a2)(x, ξ) =
∑

0≤l≤k/2

C l
k/2

∫∫
e−2iπy·η|Dy|2l

(
〈y〉−ka2(y + x, ξ)

)
〈η〉−k(〈Dη〉ka1)(x, ξ + η)dydη. (4.3.4)

We denote by a1�̃a2 the right-hand-side of (4.3.4) and we note that, when k >

n+ |m1|, it makes sense (and it does not depend on k) as well for aj ∈ S
mj
1,0 , since

|∂αy 〈y〉−k| ≤ Cα,k〈y〉−k, |∂βy a2(y + x, ξ)| ≤ Cβ〈ξ〉m2 , |∂γηa1(x, ξ + η)| ≤ Cγ〈ξ + η〉m1

so that the absolute value of the integrand above is4 5

. 〈y〉−k〈η〉−k〈ξ〉m2〈ξ + η〉m1 . 〈y〉−k〈η〉−k+|m1|〈ξ〉m1+m2 .

4We use 〈ξ + η〉 ≤ 21/2〈ξ〉〈η〉 so that,

∀s ∈ R,∀ξ, η ∈ Rn, 〈ξ + η〉s ≤ 2|s|/2〈ξ〉s〈η〉|s|, (4.3.5)

a convenient inequality (to get it for s ≥ 0, raise the first inequality to the power s, and for s < 0,
replace ξ by −ξ − η) a.k.a. Peetre’s inequality.

5We use here the notation a . b for the inequality a ≤ Cb, where C is a “controlled” constant
(here C depends only on k,m1,m2).
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Remark 4.3.4. Note that this proves that the mapping

Sm1
1,0 × Sm2

1,0 3 (a1, a2) 7→ a1�̃a2 ∈ Sm1+m2
1,0

is bilinear continuous. In fact, we have already proven that

|(a1�̃a2)(x, ξ)| ≤ C〈ξ〉m1+m2 ,

and we can check directly that a1�̃a2 is smooth and satisfies

∂ξj
(
a1�̃a2

)
= (∂ξja1)�̃a2 + a1�̃(∂ξja2)

so that |∂ξj(a1�̃a2)(x, ξ)| ≤ C〈ξ〉m1+m2−1, and similar formulas for higher order

derivatives.

Remark 4.3.5. Let (ck) be a bounded sequence in the Fréchet space Sm1,0 converging

in C∞(R2n) to c. Then c belongs to Sm1,0 and for all u ∈ S (Rn), the sequence

(ck(x,D)u) converges to c(x,D)u in S (Rn). In fact, the sequence of functions

(ck(x, ξ)〈ξ〉−m) is bounded in C∞b (R2n) and we can apply Lemma 4.1.3 to get that

limk Op(ck(x, ξ)〈ξ〉−m)〈D〉mu = Op(c(x, ξ)〈ξ〉−m)〈D〉mu = Op(c)u in S (Rn).

The remaining part of the argument is the same than in the proof of Theorem

4.1.5, after (4.1.7).

Theorem 4.3.6. Let s,m be real numbers and a ∈ Sm1,0. Then the operator a(x,D)

is bounded from Hs+m(Rn) to Hs(Rn).

Proof. Let us recall that Hs(Rn) = {u ∈ S ′(Rn), 〈ξ〉sû(ξ) ∈ L2(Rn)}. From the

theorem 4.3.3, the operator 〈D〉sa(x,D)〈D〉−m−s can be written as b(x,D) with

b ∈ S0
1,0 and so from the theorem 4.3.2, it is a bounded operator on L2(Rn). Since

〈D〉σ is an isomorphism of Hσ(Rn) onto L2(Rn) with inverse 〈D〉−σ, it gives the

result.

Corollary 4.3.7. Let r be a symbol in S−∞1,0 = ∩mSm1,0. Then r(x,D) sends E ′(Rn)

into S (Rn).

Proof. We have for v ∈ E ′ and ψ ∈ C∞c (Rn) equal to 1 on a neighborhood of the

support of v, iterating

xjD
βr(x,D)v = [xj, D

βr(x,D)]ψv +Dβr(x,D)ψxjv = rj(x,D)v, rj ∈ S−∞1,0 ,

that xαDβr(x,D)v = rαβ(x,D)v, rαβ ∈ S−∞1,0 , and thus

xαDβr(x,D)v ∈ ∩sHs(Rn) ⊂ C∞b (Rn),

completing the proof.
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Theorem 4.3.8. Let m1,m2 be real numbers and a1 ∈ Sm1
1,0 , a2 ∈ Sm2

1,0 . Then

a1(x,D)a2(x,D) = (a1 � a2)(x,D), the symbol a1 � a2 belongs to Sm1+m2
1,0 and we

have the asymptotic expansion, for all N ∈ N,

a1 � a2 =
∑
|α|<N

1

α!
Dα
ξ a1∂

α
xa2 + rN(a1, a2), (4.3.6)

with rN(a1, a2) ∈ Sm1+m2−N
1,0 . Note that Dα

ξ a1∂
α
xa2 belong to S

m1+m2−|α|
1,0 .

Proof. We can use the formula (4.3.3) and apply that lemma to get the desired

formula with

rN(a1, a2)(x, ξ)

=

∫ 1

0

(1− θ)N−1

(N − 1)!
e2iπθDz ·Dζ(2iπDz ·Dζ)

N
(
a1(x, ζ)a2(z, ξ)

)
dθ|z=x,ζ=ξ . (4.3.7)

The function (z, ζ) 7→ bx,ξ(z, ζ) = 〈ξ〉−m2(2iπDz ·Dζ)
Na1(x, ζ)a2(z, ξ) belongs to

Sm1−N
1,0 (R2n

z,ζ) uniformly with respect to the parameters (x, ξ) ∈ R2n: it satisfies, using

the notation (4.3.2), for max(|α|, |β|) ≤ k,

|∂αζ ∂βz bx,ξ(z, ζ)| ≤ γk,m1(a1)γk,m2(a2)〈ζ〉m1−N−|α|.

Lemma 4.3.9. Let n ≥ 1 be an integer and m, t ∈ R. The operator J t sends

continuously Sm1,0(R2n) into itself and for all integers N ≥ 0,

(J ta)(x, ξ) =
∑
|α|<N

t|α|

α!
(Dα

ξ ∂
α
xa)(x, ξ) + rN(t)(x, ξ), rN(t) ∈ Sm−N1,0 ,

rN(t)(x, ξ) = tN
∫ 1

0

(1− θ)N−1

(N − 1)!

(
Jθt(Dξ · ∂x)Na

)
(x, ξ)dθ.

Proof. We apply Taylor’s formula on J t = exp 2iπtDx · Dξ to get for operators on

S ′(R2n),

J t =
∑

0≤k<N

tk

k!
(Dξ · ∂x)k +

∫ 1

0

(1− θ)N−1

(N − 1)!
Jθt(tDξ · ∂x)Ndθ, (4.3.8)

and since
1

k!
(Dξ · ∂x)k =

∑
α1+···+αn=k

αj∈N

(Dξ1∂x1)
α1

α1!
· · · (Dξn∂xn)αn

αn!
,

we obtain the above formulas for a ∈ S ′(R2n). On the other hand, we get from

(4.3.1) that the term Dα
ξ ∂

α
xa belongs to S

m−|α|
1,0 . It is thus enough that we show

that J t sends continuously Sm1,0 into itself. For that purpose, we can use the formula

(4.1.11) (and assume that t = 1) in the proof of the lemma 4.1.8; also the same

reasoning as in the proof of this lemma shows that the right-hand-side of (4.1.11) is
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meaningful for a ∈ Sm1,0 if k > n + |m| and is indeed the expression of Ja. We get,

for all k ∈ N,

|Ja(x, ξ)| ≤ Ck,n

∫∫
〈y〉−k〈η〉−k〈ξ + η〉mdξdη

so that Peetre’s inequality (4.3.5) yields, for k > n + |m|, |Ja(x, ξ)| ≤ C ′k,n〈ξ〉m.
The estimates for the derivatives are obtained similarly since they commute with J .

The terms involving integrals of J t can be handled via Remark 4.1.4 in [9], which

provides a polynomial control with respect to t.

Applying Lemma 4.3.9, we obtain that the function

ρx,ξ(z, ζ) =

∫ 1

0

(1− θ)N−1

(N − 1)!
(Jθbx,ξ)(z, ζ)dθ

belongs to Sm1−N
1,0 (R2n

z,ζ) uniformly with respect to x, ξ, so that in particular

sup
(x,ξ,z,ζ)∈R4n

|ρx,ξ(z, ζ)〈ζ〉−m1+N | = C0 < +∞.

Since rN(a1, a2)(x, ξ)〈ξ〉−m2 = ρx,ξ(x, ξ), we obtain

|rN(a1, a2)(x, ξ)| ≤ C0〈ξ〉m1+m2−N . (4.3.9)

Using the formula (4.3.7) above gives as well the smoothness of rN(a1, a2) and with

the identities (consequences of ∂xj(a1 � a2) = (∂xja1) � a2 + a1 � (∂xja2))

∂xj
(
rN(a1, a2)

)
= rN(∂xja1, a2) + rN(a1, ∂xja2)

∂ξj
(
rN(a1, a2)

)
= rN(∂ξja1, a2) + rN(a1, ∂ξja2),

it is enough to reapply (4.3.9) to get the result rN ∈ Sm1+m2−N
1,0 .

We have already seen in Theorem 4.1.9 that the adjoint (in the sense of Definition

4.1.7) of the operator a(x,D) is equal to a∗(x,D), where a∗ = Jā (J is given in

Lemma 4.1.8). Lemma 4.3.9 gives the following result.

Theorem 4.3.10. Let a ∈ Sm1,0. Then a∗ = Jā and the mapping a 7→ a∗ is continu-

ous from Sm1,0 into itself. Moreover, for all integers N , we have

a∗ =
∑
|α|<N

1

α!
Dα
ξ ∂

α
x ā+ rN(a), rN(a) ∈ Sm−N1,0 .

A consequence of the above results is the following.

Corollary 4.3.11. Let aj ∈ S
mj
1,0 , j = 1, 2. Then we have

a1 � a2 ≡ a1a2 mod Sm1+m2−1
1,0 , (4.3.10)

a1 � a2 − a2 � a1 ≡
1

2iπ
{a1, a2} mod Sm1+m2−2

1,0 , (4.3.11)

where the Poisson bracket {a1, a2} =
∑

1≤j≤n

∂a1

∂ξj

∂a2

∂xj
− ∂a1

∂xj

∂a2

∂ξj
. (4.3.12)

For a ∈ Sm1,0, a∗ ≡ ā mod Sm−1
1,0 . (4.3.13)
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Theorem 4.3.12. Let a be a symbol in Sm1,0 such that inf(x,ξ)∈R2n |a(x, ξ)|〈ξ〉−m > 0.

Then there exists b ∈ S−m1,0 such that

b(x,D)a(x,D) = Id +l(x,D),
a(x,D)b(x,D) = Id +r(x,D),

r, l ∈ S−∞1,0 = ∩νSν1,0.

Proof. We remark first that the smooth function 1/a belongs to S−m1,0 : it follows from

the Faà de Bruno formula or more elementarily, from the fact that, for |α|+ |β| ≥ 1,

∂αξ ∂
β
x ( 1

a
a) = 0, entailing with the Leibniz formula

a∂αξ ∂
β
x (1/a) =

∑
α′+α′′=α,β′+β′′=β
|α′|+|β′|<|α|+|β|

∂α
′

ξ ∂
β′

x (1/a)∂α
′′

ξ ∂β
′′

x (a)c(α′, β′),

with constants c(α′, β′). Arguing by induction on |α|+ |β|, we get

|a∂αξ ∂βx (1/a)| .
∑

α′+α′′=α

〈ξ〉−m−|α′|〈ξ〉m−|α′′| . 〈ξ〉−|α|

and from |a| & 〈ξ〉m, we get 1/a ∈ S−m1,0 . Now, we can compute, using Theorem

4.3.8,
1

a
� a = 1 + l1, l1 ∈ S−1

1,0 .

Inductively, we can assume that there exist (b0, · · · , bN) with bj ∈ S−m−j such that

(b0 + · · ·+ bN) � a = 1 + lN+1, lN+1 ∈ S−N−1
1,0 . (4.3.14)

We can now take bN+1 = −lN+1/a which belongs to S−m−N−1 and this gives

(b0 + · · ·+ bN + bN+1) � a = 1 + lN+1 − lN+1 + lN+2, lN+2 ∈ S−N−2
1,0 .

Lemma 4.3.13. Let µ ∈ R and (cj)j∈N be a sequence of symbols such that cj ∈ Sµ−j1,0 .

Then there exists c ∈ Sµ1,0 such that

c ∼
∑
j

cj, i.e. ∀N ∈ N, c−
∑

0≤j<N

cj ∈ Sµ−N1,0 .

Proof. The proof is based on a Borel-type argument similar to the one used to

construct a C∞ function with an arbitrary Taylor expansion. Let ω ∈ C∞b (Rn) such

that ω(ξ) = 0 for |ξ| ≤ 1 and ω(ξ) = 1 for |ξ| ≥ 2. Let (λj)j∈N be a sequence of

numbers ≥ 1. We want to define

c(x, ξ) =
∑
j≥0

cj(x, ξ)ω(ξλ−1
j ), (4.3.15)

and we shall show that a suitable choice of λj will provide the answer. We note that,

since λj ≥ 1, the functions ξ 7→ ω(ξλ−1
j ) make a bounded set in the Fréchet space

S0
1,0. Multiplying the cj by 〈ξ〉−µ, we may assume that µ = 0. We have then, using

the notation (4.3.2) (in which we drop the second index),

|cj(x, ξ)|ω(ξλ−1
j ) ≤ γ0(cj)〈ξ〉−j1|ξ|≥λj ≤ γ0(cj)λ

−j/2
j 〈ξ〉−j/2,
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so that,

∀j ≥ 1, λj ≥ 22γ0(cj)
2
j = µ

(0)
j =⇒ ∀j ≥ 1, |cj(x, ξ)|ω(ξλ−1

j ) ≤ 2−j〈ξ〉−j/2,

showing that the function c can be defined as above in (4.3.15) and is a continuous

bounded function. Let 1 ≤ k ∈ N be given. Calculating (with ωj(ξ) = ω(ξλ−1
j )) the

derivatives ∂αξ ∂
β
x (cjωj) for |α|+ |β| = k, we get

|∂αξ ∂βx (cjωj)| ≤ γk(cjωj)〈ξ〉−j−|α|1|ξ|≥λj ≤ γ̃k(cj)λ
−j/2
j 〈ξ〉−|α|−

j
2 ,

so that

∀j ≥ k, λj ≥ 22
(
γ̃k(cj)

) 2
j = µ

(k)
j =⇒ ∀j ≥ k, |∂αξ ∂βx (cjωj)| ≤ 2−j〈ξ〉−|α|−

j
2 , (4.3.16)

showing that the function c can be defined as above in (4.3.15) and is a Ck function

such that

|(∂αξ ∂βx c)(x, ξ)| ≤
∑

0≤j<k

γ̃k(cj)〈ξ〉−j−|α| +
∑
j≥k

2−j〈ξ〉−|α| ≤ Ck〈ξ〉−|α|.

It is possible to fulfill the conditions on the λj above for all k ∈ N: just take

λj ≥ sup
0≤k≤j

µ
(k)
j .

The function c belongs to S0
1,0 and

rN = c−
∑

0≤j<N

cj =
∑

0≤j<N

(ωj − 1)cj︸ ︷︷ ︸
∈S−∞1,0

+
∑
j≥N

cjωj,

and for |α|+ |β| = k, using the estimates (4.3.16), we obtain

∑
j≥N

|∂αξ ∂βx (cjωj)(x, ξ)| ≤
∑

N≤j<max(2N,k)

.〈ξ〉−|α|−j.〈ξ〉−|α|−N︷ ︸︸ ︷
|∂αξ ∂βx (cjωj)(x, ξ)|

+
∑

j≥max(2N,k)

|∂αξ ∂βx (cjωj)(x, ξ)|︸ ︷︷ ︸
.2−j〈ξ〉−|α|−

j
2.2−j〈ξ〉−|α|−N

,

proving that rN ∈ S−N1,0 . The proof of the lemma is complete.

Going back to the proof of the theorem, we can take, using Lemma 4.3.13,

S−m1,0 3 b ∼
∑

j≥0 bj, and for all N ∈ N,

b � a ∈
∑

0≤j<N

bj � a+ S−N−m1,0 � a = 1 + S−N1,0 ,

providing the first equality in Theorem 4.3.12. To construct a right approximate

inverse, i.e. to obtain the second equality in this theorem with an a priori different b
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follows the same lines (or can be seen as a direct consequence of the previous identity

by applying it to the adjoint a∗); however we are left with the proof that the right

and the left approximate inverse could be taken as the same. We have proven that

there exists b(1), b(2) ∈ S−m1,0 such that

b(1) � a ∈ 1 + S−∞1,0 , a � b(2) ∈ 1 + S−∞1,0 .

Now we calculate, using6 the theorem 4.1.5, (b(1) � a) � b(2) = b(2) mod S−∞1,0 which

is also b(1) � (a � b(2)) = b(1) mod S−∞1,0 so that b(1)− b(2) ∈ S−∞1,0 , providing the result

and completing the proof of the theorem.

Remark 4.3.14. The mapping S ′(R2n) 3 a 7→ a(x,D) is (obviously) linear and one-

to-one: if a(x,D) = 0, choosing v(x) = e−π|x−x0|
2
, û(ξ) = e−π|ξ−ξ0|

2
, we get that the

convolution of the distribution ã(x, ξ) = a(x, ξ)e2iπx·ξ with the Gaussian function

e−π(|x|2+|ξ|2) is zero, so that, taking the Fourier transform shows that the product of

the same Gaussian function with ̂̃a is zero, implying that ã and thus a is zero. It is

a consequence of a version of the Schwartz kernel theorem that the same mapping

S ′(R2n) 3 a 7→ a(x,D) ∈ continuous linear operators from S (Rn) to S ′(Rn) is

indeed onto. However the “onto” part of our statement is highly non trivial and a

version of this theorem can be found in the theorem 5.2.1 of [5].

An important consequence of the proof of the previous theorem is the possible

microlocalization of this result.

Theorem 4.3.15. Let χ be a symbol in S0
1,0 and let a be a symbol in Sm1,0 such

that inf(x,ξ)∈suppχ |a(x, ξ)|〈ξ〉−m > 0. Let ψ be a symbol in S0
1,0 such that suppψ ⊂

{χ = 1}◦. Then there exists b ∈ S−m1,0 such that

b(x,D)a(x,D) = ψ(x,D) + l(x,D), l ∈ S−∞1,0 .

Proof. We consider the symbol b0 = χ/a, which belongs obviously to S−m1,0 . We have

b0 � a = χ+ l1, l1 ∈ S−1
1,0 ,

(
−χl1
a

+
χ

a

)
� a = χ+ l1(1− χ) + l2, l2 ∈ S−2

1,0 .

Inductively, we may assume that there exists (b0, . . . , bN) with bj ∈ S−m−j such that

(b0 + b1 + · · ·+ bN) � a = χ+
∑

1≤j≤N

lj(1− χ) + lN+1, lN+1 ∈ S−1−N
1,0 .

Choosing bN+1 = −χlN+1/a, we get

(b0 + b1 + · · ·+ bN + bN+1) � a = χ+
∑

1≤j≤N+1

lj(1− χ) + lN+2, lN+2 ∈ S−2−N
1,0 .

6A consequence of Theorem 4.1.5 is the associativity of the “law” � since

Op(a � (b � c)) = Op(a)
(
Op(b)Op(c)

)
=
(
Op(a)Op(b)

)
Op(c) = Op((a � b) � c)

so that the injectivity property of Remark 4.3.14 gives the answer.
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Taking now a symbol ψ ∈ S0
1,0 such that suppψ ⊂ χ−1({1}), we obtain for all N ∈ N,

the existence of symbols b0, · · · , bN with bj ∈ S−m−j such that

ψ�(b0 +b1 + · · ·+bN)�a = ψ�χ+ψ�
∑

1≤j≤N

lj(1−χ)+ψ� lN+1 (lN+1 ∈ S−1−N
1,0 )

= ψ + rN+1, rN+1 ∈ S−1−N
1,0 .

Using now Lemma 4.3.13, we find a symbol b ∈ S−m1,0 such that, for all N ∈ N,

ψ � b � a ∈ ψ + S−1−N
1,0 , i.e. we find b̃ ∈ S−m1,0 such that b̃ � a ≡ ψ (mod S−∞1,0 ).

4.4 G̊arding’s inequality

We end this introduction with the so-called Sharp G̊arding inequality, a result proven

in 1966 by L. Hörmander [2] and extended to systems the same year by P. Lax and

L. Nirenberg [8].

Theorem 4.4.1. Let a be a nonnegative symbol in Sm1,0. Then there exists a constant

C such that, for all u ∈ S (Rn),

Re〈a(x,D)u, u〉+ C‖u‖2

H
m−1

2 (Rn)
≥ 0. (4.4.1)

Proof. First reductions. We may assume that m = 1: in fact, the statement for

m = 1 implies the result by considering, for a nonnegative a ∈ Sm1,0, the opera-

tor 〈D〉 1−m2 a(x,D)〈D〉 1−m2 which, according to Theorem 4.3.8 has a symbol in S1
1,0,

which belongs to 〈ξ〉1−ma(x, ξ) + S0
1,0. Applying the result for m = 1, and the L2-

boundedeness of operators with symbols in S0
1,0, we get for all u ∈ S (Rn),

Re〈〈D〉
1−m

2 a(x,D)〈D〉
1−m

2 u, u〉+ C‖u‖2
L2(Rn) ≥ 0,

which gives the sought result when applied to u = 〈D〉m−1
2 v. We may also replace

a(x,D) by aw, where aw is the operator with Weyl symbol a . In fact, according to

Lemma 4.1.8, J1/2a− a ∈ S0
1,0 and Op(S0

1,0) is L2-bounded.

Main step: a result with a small parameter. We consider a nonnegative a ∈ S1
1,0 and

ϕ ∈ C∞c ((0,+∞);R+) such that

∫ +∞

0

ϕ(h)
dh

h
= 1. (4.4.2)

This implies

a(x, ξ) =

∫ +∞

0

ϕ(〈ξ〉h)a(x, ξ)︸ ︷︷ ︸
=ah(x,ξ)

dh

h
. (4.4.3)

We have, with Γh(x, ξ) = 2n exp−2π(h−1|x|2 + h|ξ|2) and X = (x, ξ),

(ah ∗ Γh)(X) = ah(X) +

∫ 1

0

(1− θ)a′′h(X + θY )Y 2Γh(Y )dY dθ

= ah(X) + rh(X). (4.4.4)
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The main step of the proof is that (ah ∗ Γh)
w ≥ 0, a result following from the next

calculation (for u ∈ S (Rn)), due to Definition 4.2.1. We have, with Ωu,u defined in

(4.2.4),

〈(ah ∗ Γh)
wu, u〉 =

∫∫
(ah ∗ Γh)(x, ξ)

(∫
e−2iπz·ξu(x+

z

2
)ū(x− z

2
)dz

)
dxdξ

=

∫∫
a(y, η)(Ωu,u(1/2) ∗ Γh)(y, η)dydη,

and since (Ωu,u(1/2) ∗ Γh)(x, ξ) =∫∫∫
e−2iπz·(ξ−η)u(x− y +

z

2
)ū(x− y − z

2
)2n exp−2π(h−1|y|2 + h|η|2)dzdydη

=

∫∫
e−2iπz·ξu(x− y +

z

2
)ū(x− y − z

2
)2n/2e−2πh−1|y|2h−n/2e−

π
2h
|z|2dzdy

=

∫∫
u(x− y1)ū(x− y2)e−2iπ(y2−y1)·ξ2n/2h−n/2e−

π
2h
|y1+y2|2e−

π
2h
|y1−y2|2dy1dy2

= 2n/2h−n/2
∣∣∣∣∫ u(x− y1)e2iπy1·ξe−πh

−1|y1|2dy1

∣∣∣∣2 ≥ 0,

we get indeed (ah ∗ Γh)
w ≥ 0. From (4.4.3) and (4.4.4), we get

aw =

∫ +∞

0

awhh
−1dh =

∫ +∞

0

(ah ∗ Γh)
wh−1dh−

∫ +∞

0

rwh h
−1dh ≥

−
∫ +∞

0

rwh h
−1dh.

Last step:
∫ +∞

0
rwh h

−1dh is L2-bounded. This is a technical point, where the main

difficulty is coming from the integration in h. We have from (4.4.4) and the fact

that Γh is an even function,

rh(X) =
1

8π
traceh a

′′
h(X) +

1

3!

∫∫ 1

0

(1− θ)3a
(4)
h (X + θY )Y 4Γh(Y )dY dθ,

with traceh a
′′
h(X) = h trace ∂2

xah + h−1 trace ∂2
ξah. Since ϕ ∈ C∞c ((0,+∞)), we have∫ +∞

0

h trace ∂2
xahh

−1dh = trace ∂2
xa(x, ξ)

∫ +∞

0

ϕ(〈ξ〉h)dh = c trace ∂2
xa〈ξ〉−1,

with c =
∫ +∞

0
ϕ(t)dt. The symbol c trace ∂2

xa〈ξ〉−1 belongs to S0
1,0 as well as the

other term
∫ +∞

0
h−1 trace ∂2

ξah(x, ξ)h
−1dh: we have

(∂ξah)(x, ξ) = (∂ξa)(x, ξ)ϕ(h〈ξ〉) + a(x, ξ)ϕ′(h〈ξ〉)h〈ξ〉−1ξ

(∂2
ξah)(x, ξ) = (∂2

ξa)(x, ξ)ϕ(h〈ξ〉) + 2∂ξa(x, ξ)ϕ′(h〈ξ〉)h
+ a(x, ξ)ϕ′′(h〈ξ〉)h2〈ξ〉−2ξ2 + a(x, ξ)ϕ′(h〈ξ〉)h∂ξ

(
ξ〈ξ〉−1

)
,
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and checking for instance the term
∫ +∞

0
h−1(∂2

ξa)(x, ξ)ϕ(h〈ξ〉)dh
h

, we see that it is

equal to

(∂2
ξa)(x, ξ)

∫ +∞

0

h−1ϕ(h〈ξ〉)dh
h

= (∂2
ξa)(x, ξ)〈ξ〉

∫ +∞

0

h−1ϕ(h)
dh

h

= c1(∂2
ξa)(x, ξ)〈ξ〉 ∈ S0

1,0,

whereas the other terms are analogous. We are finally left with the term

ρ(X) =
1

3!

∫∫∫ 1

0

(1− θ)3a
(4)
h (X + θY )Y 4Γh(Y )dY h−1dhdθ,

and we note that on the integrand of (4.4.3), the product h〈ξ〉 is bounded above

and below by fixed constants and that integral can in fact be written as

a(x, ξ) =

∫ κ1〈ξ〉−1

κ0〈ξ〉−1

ϕ(〈ξ〉h)a(x, ξ)dh/h

with 0 < κ0 = min suppϕ < κ1 = max suppϕ. Consequently the symbol ah satisfies

the following estimates:

|∂αξ ∂βxah| ≤ Cαβh
−1+|α|

where the Cαβ are some semi-norms of a (and thus independent of h). As a result,

the above estimates can be written in a more concise and convenient way, using the

multilinear forms defined by the derivatives. We have, with T = (t, τ) ∈ Rn × Rn,

|a(l)
h (X)T l| ≤ Clh

−1gh(T )l/2, with gh(t, τ) = |t|2 + h2|τ |2.

We calculate

ρ(k)(X)T k =
1

3!

∫∫∫ 1

0

(1− θ)3a
(4+k)
h (X + θY )Y 4T kΓh(Y )dY h−1dhdθ,

which satisfies with ωh(t, τ) = h−1gh(t, τ),

|ρ(k)(X)T k|

≤ C4+k

4!

∫∫
1{h ≤ κ1}h−1gh(T )k/2 gh(Y )2︸ ︷︷ ︸

=h2ωh(Y )2

2ne−2πωh(Y )dY h−1dh

≤ C4+k

4!
gh(T )k/2

∫∫
ωh(Y )21{h ≤ κ1}2ne−2πωh(Y )dY dh ≤ C̃k(|t|+ |τ |)k

and this proves that the function ρ belongs to C∞b (R2n), as well as J1/2ρ (Lemma

4.1.8) and thus ρw = (J1/2ρ)(x,D) is bounded on L2 (Theorem 4.1.4). The proof is

complete.

Remark 4.4.2. Theorem 4.4.1 remains valid for systems, even in infinite dimension.

For definiteness, let us assume simply that a(x, ξ) is a N×N Hermitian non-negative

matrix of symbols in S1
1,0. Then for all u ∈ S (Rn;CN), the inequality (4.4.1)

holds. The vector space CN can be replaced in the above statement by an infinite-

dimensional complex Hilbert space H with a valued in L (H) and the proof above

requires essentially no change.



4.5. THE SEMI-CLASSICAL CALCULUS 111

4.5 The semi-classical calculus

A semiclassical symbol of order m is defined as a family of smooth functions a(·, ·, h)

defined on the phase space R2n, depending on a parameter h ∈ (0, 1], such that, for

all multi-indices α, β

sup
(x,ξ,h)∈Rn×Rn×(0,1]

|(∂αξ ∂βxa)(x, ξ, h)|hm−|α| < +∞. (4.5.1)

The set of semi-classical symbols of order m will be denoted by Smscl. A typical

example of such a symbol of order 0 is a function a1(x, hξ) where a1 belongs to

C∞b (R2n): we have indeed ∂αξ ∂
β
x

(
a1(x, hξ)

)
= (∂αξ ∂

β
xa1)(x, hξ)h|α|. It turns out that

this version of the semi-classical calculus is certainly the easiest to understand and

that Theorem 4.1.4 is implying the main continuity result for these symbols. The

reader has also to keep in mind that we are not dealing here with a single function

defined on the phase space, but with a family of symbols depending on a (small) pa-

rameter h, a way to express that the constants occurring in (4.5.1) are “independent

of h”. We shall review the results of the section on the Sm1,0 class of symbols and

show how they can be transferred to the semi-classical framework, mutatis mutandis

and almost without any new argument. To understand the correspondence between

symbols in Sm1,0 and semi-classical symbols, it is essentially enough to think of the

S1,0 calculus as a semi-classical calculus with small parameter 〈ξ〉−1.

We can define, for a ∈ Smscl, k ∈ N,

γk,m(a) = sup
(x,ξ,h)∈R2n×(0,1],|α|+|β|≤k

|(∂αξ ∂βxa)(x, ξ, h)|hm−|α|. (4.5.2)

Theorem 4.5.1. Let a ∈ Smscl. Then the operator a(x,D, h)hm is continuous from

S (Rn) into itself with constants independent of h ∈ (0, 1].

Proof. We have a(x,D, h) = Op(a(x, ξ, h)). The set
{
a(x, ξ, h)hm

}
h∈(0,1]

is bounded

in C∞b (R2n), so that we can use Theorem 4.1.2 to get the result.

Theorem 4.5.2. Let a ∈ Smscl. Then the operator a(x,D, h)hm is bounded on L2(Rn)

with a norm bounded above independently of h ∈ (0, 1].

Proof. The set
{
a(x, ξ, h)hm

}
h∈(0,1]

being bounded in C∞b (R2n), it follows from The-

orem 4.1.4.

Theorem 4.5.3. Let m1,m2 be real numbers and a1 ∈ Sm1
scl , a2 ∈ Sm2

scl . Then the

composition a1(x,D, h)a2(x,D, h) makes sense as a continuous operator from S (Rn)

into itself, as well as a bounded operator on L2(Rn) and

a1(x,D, h)a2(x,D, h) = (a1 � a2)(x,D, h)

where a1 � a2 belongs to Sm1+m2
scl and is given by the formula

(a1 � a2)(x, ξ, h) = (exp 2iπDy ·Dη)
(
a1(x, ξ + η, h)a2(y + x, ξ, h)

)
|y=0,η=0

. (4.5.3)
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Proof. This is a direct consequence of Theorem 4.1.5 since

∪j=1,2{hmjaj(x, ξ, h)}h∈(0,1] is bounded in C∞b (R2n).

Theorem 4.5.4. Let m1,m2 be real numbers and a1 ∈ Sm1
scl , a2 ∈ Sm2

scl . Then

a1(x,D, h)a2(x,D, h) = (a1 � a2)(x,D, h), the symbol a1 � a2 belongs to Sm1+m2
scl

and we have the asymptotic expansion, for all N ∈ N,

a1 � a2 =
∑
|α|<N

1

α!
Dα
ξ a1∂

α
xa2 + rN(a1, a2), (4.5.4)

with rN(a1, a2) ∈ Sm1+m2−N
scl . Note that Dα

ξ a1∂
α
xa2 belongs to S

m1+m2−|α|
scl .

Proof. Since hmjaj(x, ξ, h), j = 1, 2, belongs to S0
scl, we may assume that m1 = m2 =

0. We can use the formula (4.3.3) and apply the formula (4.3.8) to get the desired

formula with

rN(a1, a2)(x, ξ, h) =

∫ 1

0

(1− θ)N−1

(N − 1)!
e2iπθDz ·Dζ

(2iπDz ·Dζ)
N
(
a1(x, ζ, h)a2(z, ξ, h)

)
dθ|z=x,ζ=ξ . (4.5.5)

The function (z, ζ) 7→ bx,ξ,h(z, ζ) = (2iπDz · Dζ)
Na1(x, ζ, h)a2(z, ξ, h) belongs to

S−Nscl (R2n
z,ζ) uniformly with respect to the parameters (x, ξ) ∈ R2n: it satisfies, using

the notation (4.5.2), for max(|α|, |β|) ≤ k,

|∂αζ ∂βz bx,ξ,h(z, ζ)| ≤ γk,m1(a1)γk,m2(a2)hN+|α|.

Applying Lemma 4.1.8, we obtain that the function

ρx,ξ,h(z, ζ) =

∫ 1

0

(1− θ)N−1

(N − 1)!
(Jθbx,ξ,h)(z, ζ)dθ

belongs to S−Nscl (R2n
z,ζ) uniformly with respect to x, ξ, h, so that in particular

sup
(x,ξ,z,ζ)∈R4n,h∈(0,1]

|ρx,ξ,h(z, ζ)h−N | = C0 < +∞.

Since rN(a1, a2)(x, ξ) = ρx,ξ,h(x, ξ), we obtain

|rN(a1, a2)(x, ξ)| ≤ C0h
N . (4.5.6)

Using the formula (4.5.5) above gives as well the smoothness of rN(a1, a2) and with

the identities (consequences of ∂xj(a1 � a2) = (∂xja1) � a2 + a1 � (∂xja2))

∂xj
(
rN(a1, a2)

)
= rN(∂xja1, a2) + rN(a1, ∂xja2)

∂ξj
(
rN(a1, a2)

)
= rN(∂ξja1, a2) + rN(a1, ∂ξja2),

it is enough to reapply (4.5.6) to get the result rN ∈ S−Nscl .



4.5. THE SEMI-CLASSICAL CALCULUS 113

Lemma 4.1.8 and Taylor’s expansion (4.5.5) give the following result.

Theorem 4.5.5. Let a ∈ Smscl. Then a∗ = Jā and the mapping a 7→ a∗ is continuous

from Smscl into itself. Moreover, for all integers N , we have

a∗ =
∑
|α|<N

1

α!
Dα
ξ ∂

α
x ā+ rN(a), rN(a) ∈ Sm−Nscl .

Corollary 4.5.6. Let aj ∈ S
mj
scl , j = 1, 2. Then we have

a1 � a2 ≡ a1a2 mod Sm1+m2−1
scl , (4.5.7)

a1 � a2 − a2 � a1 ≡
1

2iπ
{a1, a2} mod Sm1+m2−2

scl , (4.5.8)

For a ∈ Smscl, a∗ ≡ ā mod Sm−1
scl . (4.5.9)

Lemma 4.5.7. Let µ ∈ R and (cj)j∈N be a sequence of symbols such that cj ∈ Sµ−jscl .

Then there exists c ∈ Sµscl such that

c ∼
∑
j

cj, i.e. ∀N ∈ N, c−
∑

0≤j<N

cj ∈ Sµ−Nscl .

Proof. The proof is almost identical to the proof of Lemma 4.3.13.

Let ω ∈ C∞b (R;R+) such that ω(t) = 0 for t ≤ 1 and ω(t) = 1 for t ≥ 2. Let

(λj)j∈N be a sequence of numbers ≥ 1. We want to define

c(x, ξ, h) =
∑
j≥0

cj(x, ξ, h)ω(h−1λ−1
j ), (4.5.10)

and we shall show that a suitable choice of λj will provide the answer. Multiplying

the cj by hµ, we may assume that µ = 0. We have then

|cj(x, ξ, h)|ω(h−1λ−1
j ) ≤ γ0(cj)h

j11≥hλj ≤ γ0(cj)λ
−j
j ,

so that,

∀j ≥ 1, λj ≥ 2γ0(cj)
1
j = µ

(0)
j =⇒ ∀j ≥ 1, |cj(x, ξ, h)|ω(h−1λ−1

j ) ≤ 2−j,

showing that the function c can be defined as above in (4.5.10) and is a continuous

bounded function. Let 1 ≤ k ∈ N be given. Calculating (with ωj = ω(h−1λ−1
j )) the

derivatives ωj∂
α
ξ ∂

β
x (cj) for |α|+ |β| = k, we get

ωj|∂αξ ∂βx (cj)| ≤ γk(cj)h
j+|α|11≥hλj ≤ γk(cj)λ

−j/2
j h|α|+

j
2 ,

so that

∀j ≥ k, λj ≥ 22
(
γk(cj)

) 2
j = µ

(k)
j =⇒ ∀j ≥ k, |∂αξ ∂βx (cjωj)| ≤ 2−jh|α|+

j
2 , (4.5.11)

showing that the function c can be defined as above in (4.5.10) and is a Ck function

such that

|(∂αξ ∂βx c)(x, ξ, h)| ≤
∑

0≤j<k

γk(cj)h
j+|α| +

∑
j≥k

2−jh|α| ≤ Ckh
|α|.
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It is possible to fulfill the conditions on the λj above for all k ∈ N: just take

λj ≥ sup0≤k≤j µ
(k)
j . The function c belongs to S0

scl and, with S−∞scl = ∩m∈RSmscl,

rN = c−
∑

0≤j<N

cj =
∑

0≤j<N

(ωj − 1)cj︸ ︷︷ ︸
∈S−∞scl

+
∑
j≥N

cjωj,

and for |α|+ |β| = k, using the estimates (4.5.11), we obtain

∑
j≥N

|∂αξ ∂βx (cjωj)(x, ξ, h)| ≤
∑

N≤j<max(2N,k)

.h|α|+j.h|α|+N︷ ︸︸ ︷
|∂αξ ∂βx (cjωj)(x, ξ, h)|

+
∑

j≥max(2N,k)

|∂αξ ∂βx (cjωj)(x, ξ, h)|︸ ︷︷ ︸
.2−jh|α|+

j
2.2−jh|α|+N

,

proving that rN ∈ S−Nscl . The proof of the lemma is complete.

Remark 4.5.8. These asymptotic results (as well as the example a1(x, hξ) with a1 ∈
C∞b (R2n) see page 111) led many authors to set a slightly different framework for

the semiclassical calculus; instead of dealing with a family of symbols a(x, ξ, h)

satisfying the estimates (4.5.1), one deals with a function a ∈ C∞b (R2n) and consider

the operator a(x, hDx) or the operator a(x, hξ)w; another way to express this is to

modify the quantization formula and to define for instance

(awhu)(x)=

∫∫
e

2iπ
h
〈x−y,ξ〉a(

x+ y

2
, ξ)u(y)dydξh−n, i.e. awh = a(x, hξ)w. (4.5.12)

Then, using Lemma 4.5.7, given a sequence (aj)j≥0 in C∞b (R2n), it is possible to

consider a(x, ξ, h) ∈ S0
scl with

a(x, ξ, h) ∼
∑
j≥0

hjaj(x, hξ), i.e. ∀N, a(x, ξ, h)−
∑

0≤j<N

hjaj(x, hξ) ∈ S−Nscl .

The symbol a0 is the principal symbol and

a(x, ξ, h)w ∼
∑
j≥0

hjawhj , i.e. ∀N, a(x, ξ, h)w −
∑

0≤j<N

hjawhj = hNrwhN,h,

where {rN,h}0<h≤1 is bounded in C∞b (R2n): in fact we have from Theorem 4.5.4,

hNrN,h(x, hξ) = sN(x, ξ, h), sN ∈ S−Nscl , i.e. rN,h(x, ξ) = h−NsN(x, h−1ξ, h),

and thus

|(∂αξ ∂βxrN,h)(x, ξ) = h−N−|α|(∂αξ ∂
β
xsN)(x, h−1ξ, h)| ≤ h−N−|α|γα,β,Nh

N+|α|.

If a, b ∈ S0
scl and a ∼

∑
j≥0 h

jaj(x, hξ), b ∼
∑

j≥0 h
jbj(x, hξ) as above, then one can

prove, using Corollary 4.5.6 and Lemma 4.1.8

awbw ≡ (a0b0)wh mod h(S0
scl)

w, (4.5.13)

[aw, bw] ≡ h

2iπ
{a0, b0}wh mod h2(S0

scl)
w. (4.5.14)
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There are many variations on this theme, and in particular, one can replace the

space C∞b (R2n) by a more general one, involving some weight functions, for instance

with polynomial growth at infinity. At this point, we are leaving an introduction

to the pseudodifferential calculus and can use our more general approach of Chap-

ter 2, involving metrics on the phase space, which incorporate all these variations.

Expecting these generalizations, we shall not use the wh quantization in this book,

except for the present remark.

Theorem 4.5.9. Let a be a symbol in S0
scl such that

inf
(x,ξ)∈R2n,h∈(0,1]

|a(x, ξ, h)| > 0.

Then there exists b ∈ S0
scl such that

b(x,D, h)a(x,D, h) = Id +l(x,D, h),
a(x,D, h)b(x,D, h) = Id +r(x,D, h),

r, l ∈ S−∞scl = ∩νSνscl.

Proof. The only change to perform in the proof of Theorem 4.3.12 to get this result

is to replace everywhere S1,0 by Sscl.

Theorem 4.5.10. Let χ be a symbol in S0
scl and let a be a symbol in S0

scl such

that infh∈(0,1],(x,ξ)∈suppχ(·,·,h) |a(x, ξ, h)| > 0. Let ψ be a symbol in S0
scl such that

suppψ(·, ·, h) ⊂ {(x, ξ), χ(x, ξ, h) = 1}. Then there exists b ∈ S0
scl such that

b(x,D, h)a(x,D, h) = ψ(x,D, h) + l(x,D, h), l ∈ S−∞scl .

Proof. Here also we have only to follow the proof of Theorem 4.3.15 and use Lemma

4.5.7 instead of Lemma 4.3.13 in the course of the proof.

Theorem 4.5.11. Let a be a nonnegative symbol in S0
scl. Then there exists a con-

stant C such that, for all u ∈ S (Rn),

Re〈a(x,D, h)u, u〉+ hC‖u‖2
L2(Rn) ≥ 0. (4.5.15)

Equivalently, there exists C ≥ 0 such that aw + Ch ≥ 0.

Proof. The proof of Theorem 4.4.1 is containing a proof of this result: noticing that

it is harmless to replace the standard quantization by the Weyl quantization for this

result, since J1/2a−a belongs to S−1
scl (see the formula (4.3.8) and Lemma 4.3.9), we

use the formula (4.4.4) to obtain than (a ∗ Γh)
w ≥ 0. The difference a ∗ Γh − a is∫ 1

0
(1− θ)

∫
R2n a

′′(X + θY, h)Y 2Γh(Y )dY dθ, which belongs to S0
scl.
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[3] Lars Hörmander, Linear partial differential operators, Springer Verlag, Berlin,

1976. MR 0404822 (53 #8622)

[4] , The analysis of linear partial differential operators. IV, Grundlehren

der Mathematischen Wissenschaften [Fundamental Principles of Mathematical

Sciences], vol. 275, Springer-Verlag, Berlin, 1994, Fourier integral operators,

Corrected reprint of the 1985 original. MR 1481433 (98f:35002)

[5] , The analysis of linear partial differential operators. I, Classics in

Mathematics, Springer-Verlag, Berlin, 2003, Distribution theory and Fourier

analysis, Reprint of the second (1990) edition [Springer, Berlin; MR1065993

(91m:35001a)]. MR 1996773

[6] , The analysis of linear partial differential operators. III, Classics in

Mathematics, Springer, Berlin, 2007, Pseudo-differential operators, Reprint of

the 1994 edition. MR 2304165 (2007k:35006)

[7] Richard A. Hunt, On L(p, q) spaces, Enseignement Math. (2) 12 (1966), 249–

276. MR 0223874 (36 #6921)

[8] P. D. Lax and L. Nirenberg, On stability for difference schemes: A sharp form
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homogeneous distributions, 30
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Riesz-Thorin interpolation, 56

Schwartz, 7

semi-classical calculus, 111

sharp G̊arding inequality, 108

signature, 35

Sobolev conjugate exponent, 83

Sobolev injection, 80

Sobolev spaces, 80

strong-type (p, q), 65

support of a distribution, 11

tempered distributions, 10

wave packets, 20
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