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Chapter 1

Introduction

1.1 Examples

What is a partial differential equation? Although the question may look too general,
it is certainly a natural one for the reader opening these notes with the expectation of
learning things about PDE, the acronym of Partial Differential Equations. Loosely
speaking it is a relation involving a function u of several real variables x1, . . . , xn
with its partial derivatives

∂u

∂xj
,

∂2u

∂xj∂xk
,

∂3u

∂xj∂xk∂xl
, . . .

Maybe a simple example would be a better starting point than a general (and vague)
definition: let us consider a C1 function u defined on R2 and let c > 0 be given. The
PDE

∂tu+ c∂xu = 0 (Transport Equation) (1.1.1)

is describing a propagation phenomenon at speed c, and a solution is given by

u(t, x) = ω(x− ct), ω ∈ C1(R). (1.1.2)

We have indeed ∂tu + c∂xu = ω′(x − ct)
(
−c + c

)
= 0. Note also that if u has

the dimension of a length L and c of a speed LT−1, ∂tu and c∂xu have respectively
the dimension LT−1, LT−1LL−1 i.e. (fortunately) both LT−1. At time t = 0, we have
u(0, x) = ω(x) and at time t = 1, we have u(1, x) = ω(x− c) so that ω is translated
(at speed c) to the right when time increases. The equation (1.1.1) is a linear PDE,
namely, if u1, u2 are solutions, then u1 + u2 is also a solution as well as any linear
combination c1u1 + c2u2 with constants c1, c2. Looking at (1.1.1) as an evolution
equation with respect to the time variable t, we may already ask the following
question: knowing u at time 0, say u(0, x) = ω(x), is it true that (1.1.2) is the
unique solution? In other words, we can set the so-called Cauchy problem,1{

∂tu+ c∂xu = 0,

u(0) = ω,
(1.1.3)

1 Augustin L. Cauchy (1789-1857) is a French mathematician, a prominent scientific figure
of the nineteenth century, who laid many foundational concepts of infinitesimal calculus; more is
available on the website [17].
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6 CHAPTER 1. INTRODUCTION

and ask the question of determinism: is the law of evolution (i.e. the transport
equation) and the initial state of the system (that is ω) determine uniquely the
solution u? We shall see that the answer is yes. Another interesting and natural
question about (1.1.1) concerns the regularity of u: of course a classical solution
should be differentiable, just for the equation to make sense but, somehow, this is
a pity since we would like to accept as a solution u(t, x) = |x − ct| and in fact
all functions ω(x − ct). We shall see that Distribution theory will provide a very
complete answer to this type of questions for linear equations.

Let us consider now for u of class C1 on R2,

∂tu+ u∂xu = 0. (Burgers Equation) (1.1.4)

That equation2 is not linear, but one may look at a linear companion equation in
three independent variables (t, x, y) given by ∂tU + y∂xU = 0. It is easy to see that
U(t, x, y) = x− y(t− T ) is a solution of the latter equation (here T is a constant).
Let us now take a function u(t, x) such that x − u(t, x)(t − T ) = x0, where x0 is a
constant, i.e.

u(t, x) =
x− x0

t− T
.

Now, we can verify that for t 6= T , the function u is a solution of (1.1.4): we check

∂tu+ u∂xu = −(x− x0)

(t− T )2
+
x− x0

t− T

1

t− T
= 0.

We shall go back to this type of equation later on, but we can notice already an
interesting phenomenon for this solution: assume T > 0, x0 = 0, then the solution
at t = 0 is −x/T (perfectly smooth and decreasing) and it blows up at t = T . If on
the contrary, we assume T < 0, x0 = 0, the solution at t = 0 is is −x/T (perfectly
smooth and increasing), remains smooth for all times larger than T , but blows up
in the past at time t = T .

The Laplace equation3 is the second-order PDE, ∆u = 0, with

∆u =
∑

1≤j≤n

∂2u

∂x2
j

. (1.1.5)

This is a linear equation and it is called second-order because it involves partial
derivatives of order at most 2. The solutions of the Laplace equation are called har-
monic functions. Let us determine all the harmonic polynomials in two dimensions.
Denoting the variables (x, y) ∈ R2, the equation can be written as

(∂x + i∂y)(∂x − i∂y)u = 0.

Since u is assumed to be a polynomial, we can write

u(x, y) =
∑

(k,l)∈N2

uk,l(x+ iy)k(x− iy)l, uk,l ∈ C, all 0 but a finite number.

2Jan M. Burgers (1895-1981) is a Dutch physicist.
3Pierre-Simon Laplace (1749-1827) is a French mathematician, see [17].
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Now we note that (∂x+i∂y)(x+iy)l = l(x+iy)l−1(1+i2) = 0 and (∂x−i∂y)(x−iy)l =
0. As a result u is a harmonic polynomial if uk,l = 0 when kl 6= 0. Conversely, noting
that (∂x + i∂y)(x− iy)l = l(x− iy)l−12 and (∂x − i∂y)(x+ iy)k = k(x+ iy)k−12, we
have (the finite sum)

∆u =
∑

(k,l)∈(N∗)2
uk,l4kl(x+ iy)k−1(x− iy)l−1

and thus for kl 6= 0, uk,l = 0, from the following remark: If the polynomial P =∑
p,q∈N ap,qz

pz̄q vanishes identically for z ∈ C, then all ap,q = 0. To prove this
remark, we shall note with z = x+ iy,

∂

∂z̄
=

1

2

( ∂
∂x

+ i
∂

∂y

)
,
∂

∂z
=

1

2

( ∂
∂x
− i ∂

∂y

)
, so that

∂

∂z̄
z̄ = 1,

∂

∂z̄
z = 0,

∂

∂z
z̄ = 0,

∂

∂z
z = 1,

0 =
1

p!q!

( ∂p
∂z̄p

∂q

∂zq
P
)
(0) = ap,q.

Finally the harmonic polynomials in two dimensions are

u(x, y) = f(x+ iy) + g(x− iy), f, g polynomials in C[X]. (1.1.6)

Requiring moreover that they should be real-valued leads to, using the standard
notation x+ iy = reiθ, r ≥ 0, θ ∈ R,

u(x, y) =
∑
k∈N

Re
(
(ak − ibk)(x+ iy)k

)
=
∑
k∈N

rk Re
(
(ak − ibk)e

iθk
)

=
∑
k∈N

(
ak cos(kθ) + bk sin(kθ)

)
rk, ak, bk ∈ R all 0 but a finite number.

We see also that for a sequence (ck)k∈Z ∈ `1,

v(x, y) = c0 +
∑
k∈N∗

(ckz
k + c−kz̄

k) (1.1.7)

is a harmonic function in the unit disk D1 = {z ∈ C, |z| < 1} such that

v|∂D1(e
iθ) =

∑
k∈Z

cke
ikθ.

As a consequence the function (1.1.7) is solving the Dirichlet problem4 for the
Laplace operator in the unit disk D1 with{

∆v = 0 on D1,

v = ν on ∂D1,
(1.1.8)

where ν is given by its Fourier series expansion ν(eiθ) =
∑

k∈Z cke
ikθ. The boundary

condition v = ν on ∂D1 is called a Dirichlet boundary condition. The Laplace

4Johann P. Dirichlet (1805-1859) is a German mathematician, see [17].
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equation is a “stationary” equation, i.e. there is no time variable and that boundary
condition should not be confused with an initial condition occurring for the Cauchy
problem (1.1.3).

The eikonal equation is a non-linear equation

|∇φ| = 1, i.e.
∑

1≤j≤n

|∂xj
φ|2 = 1. (1.1.9)

Note that for ξ ∈ Rn with Euclidean norm equal to 1, φ(x) = ξ · x is a solution of
(1.1.9). The notation ∇φ (nabla φ) stands for the vector

∇φ =
( ∂φ
∂x1

, . . . ,
∂φ

∂xn

)
. (1.1.10)

We shall study as well the Hamilton-Jacobi equation5

∂tu+H(x,∇u) = 0, (1.1.11)

which is a non-linear evolution equation.
The Helmholtz6 equation −∆u = λu is a linear equation closely related to

the Laplace equation and to the wave equation, also linear second order,

1

c2
∂2u

∂t2
−∆xu = 0, t ∈ R, x ∈ Rn, c > 0 is the speed of propagation. (1.1.12)

Note that if u has the dimension of a length L, then c−2∂2
t u has the dimension

L−2T2T−2L = L−1 as well as ∆xu which has dimension L−2L = L−1. It is interesting
to note that for any ξ ∈ Rn with

∑
j ξ

2
j = 1, and ω of class C2 on R

u(t, x) = ω(ξ · x− ct)

is a solution of (1.1.12) since c−2ω′′(ξ · x− ct)c2 −
∑

1≤j≤n ω
′′(ξ · x− ct)ξ2

j = 0.
We shall study in the sequel many other linear equations, such as the heat

equation,
∂u

∂t
−∆xu, t ∈ R+, x ∈ Rn,

and the Schrödinger equation,

1

i

∂u

∂t
−∆xu, t ∈ R, x ∈ Rn.

Although the two previous equations look similar, they are indeed very different. The
Schrödinger7 equation is a propagation equation which is time-reversible: assume
that u(t, x) solves on R × Rn, i∂tu + ∆u = 0, then v(t, x) = u(−t, x) will satisfy

5 Sir William Hamilton (1805-1865) is an Irish mathematician, physicist and astronomer.
Carl Gustav Jacobi (1804-1851) is a Prussian mathematician.

6Hermann von Helmholtz (1821-1894) is a German mathematician.
7Erwin Schrödinger (1887-1961) is an Austrian physicist, author of fundamental contribu-

tions to quantum mechanics.
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−i∂tv + ∆v = 0 on R× Rn. The term propagation equation is due to the fact that
for ξ ∈ Rn and

u(t, x) = ei(x·ξ−t|ξ|
2),

we have
1

i
∂tu−∆u = −|ξ|2ei(x·ξ−t|ξ|2) −

∑
j

i2ξ2
j e
i(x·ξ−t|ξ|2) = 0,

so that, comparing to the transport equation (1.1.1), the Schrödinger equation be-
haves like a propagation equation where the speed of propagation depends on the
frequency of the initial wave ω(x) = eix·ξ. On the other hand the heat equation is a
diffusion equation, modelling the evolution of the temperature distribution: this
equation is time-irreversible. First of all, if u(t, x) solves ∂tu−∆u = 0 on R+ ×Rn,
then v(t, x) = u(−t, x) solves ∂tv + ∆u = 0 on the different domain R− × Rn;
moreover, for ξ ∈ Rn the function

v(t, x) = eix·ξe−t|ξ|
2

satisfies

∂tv −∆v = −|ξ|2v(t, x)−
∑
j

i2ξ2
j v = 0, with v(0, x) = eix·ξ.

In particular v(t = 0) is a bounded function in Rn and v(t) remains bounded for
t > 0 whereas it is exponentially increasing for t < 0. It is not difficult to prove
that there is no bounded solution v(t, x) of the heat equation on the whole real line
satisfying v(0, x) = eix·ξ (ξ 6= 0).

So far, we have seen only scalar PDE, i.e. equations involving the derivatives
of a single scalar-valued function Rn 3 x 7→ u(x) ∈ R,C. Many very important
equations of mathematical physics are in fact systems of PDE, dealing with the
partial derivatives of vector-valued functions Rn 3 x 7→ u(x) ∈ RN . A typical
example is Maxwell’s equations8, displayed below in vacuum. For (t, x) ∈ R×R3,
the electric field E(t, x) belongs to R3 and the magnetic field B(t, x) belongs to R3

with 

∂tE = curlB =

∂x1

∂x2

∂x3

×

B1

B2

B3

 =

∂2B3 − ∂3B2

∂3B1 − ∂1B3

∂1B2 − ∂2B1

 ,

∂tB = − curlE =

∂3E2 − ∂2E3

∂1E3 − ∂3E1

∂2E1 − ∂1E2

 ,

divE = divB = 0,

(1.1.13)

with divE = ∂1E1 + ∂2E2 + ∂3E3. The previous system is a linear one, whereas the
following, Euler’s system for incompressible fluids9, is non-linear: the velocity

8James C. Maxwell (1831-1879) is a Scottish theoretical physicist and mathematician.
9Leonhard Euler (1707 -1783) is a mathematician and physicist, born in Switzerland, who

worked mostly in Germany and Russia.
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field v(t, x) = (v1, v2, v3) and the pressure (a scalar) p(t, x) should satisfy
∂tv + (v · ∇)v = −∇(p/ρ)

div v = 0

v|t=0 = w

(1.1.14)

where v · ∇ = v1∂1 + v2∂2 + v3∂3, ρ is the mass density, so that the system is∂tv1 +
∑

j vj∂jv1 + ∂1(p/ρ)

∂tv2 +
∑

j vj∂jv2 + ∂2(p/ρ)

∂tv3 +
∑

j vj∂jv3 + ∂3(p/ρ

 =

0
0
0

 ,
∑
j

∂jvj = 0.

Note that v has dimension LT−1, so that ∂tv has dimension LT−2 (acceleration) and
v · ∇v has dimension LT−1L−1LT−1 = LT−2, as well as ∇(p/ρ) which has dimension

L−1︸︷︷︸
∇

MLT−2︸ ︷︷ ︸
force

L−2︸︷︷︸
area−1

M−1L3︸ ︷︷ ︸
density−1

= LT−2

where M stands for the mass unit.
The Navier-Stokes system for incompressible fluids10 reads

∂tv + (v · ∇)v − ν∆v = −∇(p/ρ)

div v = 0

v|t=0 = w

(1.1.15)

where ν is the kinematic viscosity expressed in Stokes L2T−1 so that the dimension
of ν∆v is also

L2T−1︸ ︷︷ ︸
ν

L−2︸︷︷︸
∆

LT−1︸︷︷︸
v

= LT−2.

We note that curl grad = 0 since

∂x1

∂x2

∂x3

×
∂x1f
∂x2f
∂x3f

 = 0 and this implies that, taking

the curl of the first line of (1.1.14), we get with the vorticity

ω = curl v (1.1.16)

∂tω + curl((v · ∇)v) = 0.

Let us compute, using Einstein’s convention11 on repeated indices (this means that
∂jvj stands for

∑
1≤j≤3 ∂jvj),

curl
(
(v · ∇)v

)
=

∂x1

∂x2

∂x3

×

(v · ∇)v1

(v · ∇)v2

(v · ∇)v3

 = (v · ∇) curl v +

∂2vj∂jv3 − ∂3vj∂jv2

∂3vj∂jv1 − ∂1vj∂jv3

∂1vj∂jv2 − ∂2vj∂jv1


10Claude Navier (1785-1836) is a French engineer and scientist. Georges Stokes (1819-

1903) is a British mathematician and physicist.
11Albert Einstein (1879-1955) is one of the greatest scientists of all times and, needless to say,

his contributions to Quantum Mechanics, Brownian Motion and Relativity Theory are far more
important than this convention, which is however a handy notational tool.
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and since ∂jvj = 0, ω =

∂2v3 − ∂3v2

∂3v1 − ∂1v3

∂1v2 − ∂2v1

, we get

∂2vj∂jv3 − ∂3vj∂jv2

= [∂2v1∂1v3] + ∂2v2∂2v3 + ∂2v3∂3v3 − [∂3v1∂1v2]− ∂3v2∂2v2 − ∂3v3∂3v2

= [∂2v1∂1v3]− [∂3v1∂1v2] + ω1(∂2v2 + ∂3v3)

= −ω1∂1v1 + ∂2v1∂1v3 − ∂3v1∂1v2

= −ωj∂jv1 + (∂3v1 − ∂1v3)∂2v1 + (∂1v2 − ∂2v1)∂3v1 + ∂2v1∂1v3 − ∂3v1∂1v2

= −ωj∂jv1 + ∂2v1∂3v1 − ∂3v1∂2v1 = −ωj∂jv1,

so that, using a circular permutation, we get

curl
(
(v · ∇)v

)
= (v · ∇)ω − (ω · ∇)v (1.1.17)

and (1.1.14) becomes ∂tω + (v · ∇)ω − (ω · ∇)v = 0, div v = 0, ω|t=0 = curl v.

1.2 Comments

Although the above list of examples is very limited, it is quite obvious that partial
differential equations are occurring in many different domains of science: Electro-
magnetism with the Maxwell equations, Wave Propagation with the transport, wave,
Burgers equations, Quantum Mechanics with the Schrödinger equation, Diffusion
Theory with the heat equation, Fluid Dynamics with the Euler and Navier-Stokes
systems. We could have mentioned Einstein’s equation of General Relativity and
many other examples. As a matter of fact, the law of Physics are essentially all
expressed as PDE, so the domain is so vast that it is pointless to expect a useful
classification of PDE, at least in an introductory chapter of a textbook on PDE.

We have already mentioned various type of questions such that the Cauchy prob-
lem for evolution equations: for that type of Initial Value Problem, we are given an
equation of evolution ∂tu = F (x, u, ∂xu, . . . ) and the initial value u(0). The first nat-
ural questions are about the existence of a solution, its uniqueness but also about
the continuous dependence of the solution with respect to the data: the french
mathematician Jacques Hadamard (1865–1963)12 introduced the notion of well-
posedness as one of the most important property of a PDE. After all, the data
(initial or Cauchy data, various quantities occurring in the equation) in a Physics
problem are known only approximatively and even if the solution were existing and
proven unique, this would be useless for actual computation or applications if minute
changes of the data trigger huge changes for the solution. In fact, one should try
to establish some inequalities controlling the size of the norms or semi-norms of the
solution u in some functional space. The lack of well-posedness is linked to instabil-
ity and is also a very interesting phenomenon to study. We can quote at this point
Lars G̊arding’s survey13 article [10]:“ When a problem about partial differential op-
erators has been fitted into the abstract theory, all that remains is usually to prove

12See [17].
13Lars Gårding (born 1919), is a Swedish mathematician.
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a suitable inequality and much of our knowledge is, in fact, essentially contained in
such inequalities”.

On the other hand, we have seen that the solution can be submitted to bound-
ary conditions, such as the Dirichlet boundary condition and we shall study other
types of boundary conditions, such as the Neumann boundary14, where the normal
derivative to the boundary is given.

The questions of smoothness and regularity of the solutions are also very impor-
tant: where are located the singularities of the solutions, do they “propagate”? Is it
possible to consider “weak solutions”, whose regularity is too limited for the equation
to make “classical” sense (see our discussion above on the transport equation).

Obviously non-linear PDE are more difficult to handle than the linear ones, in
particular because some singularities of the solution may occur although the initial
datum is perfectly smooth (see our discussion above on the Burgers equation). The
study of systems of PDE is playing a key rôle in Fluid Mechanics and the intricacies
of the algebraic properties of these systems deserves a detailed examination (a simple
example of calculation was given with the formula (1.1.17)).

1.3 Quotations

Let us end this introduction with a couple of quotations. First of all, we cannot
avoid to quote Galileo Galilei (1564-1642), an Italian physicist, mathematician,
astronomer and philosopher with his famous apology of Mathematics: “Nature is
written in that great book which ever lies before our eyes - I mean the universe - but
we cannot understand it if we do not first learn the language and grasp the symbols,
in which it is written. This book is written in the mathematical language, and the
symbols are triangles, circles and other geometrical figures, without whose help it
is impossible to comprehend a single word of it; without which one wanders in vain
through a dark labyrinth,” see the translation of [4].

Our next quotation is by the physicist Eugene P. Wigner (1902-1995, 1963
Physics Nobel Prize) who, in his celebrated 1960 article The Unreasonable Effective-
ness of Mathematics in the Natural Sciences [24] is unraveling part of the complex
relationship between Mathematics and Physics: “The miracle of the appropriate-
ness of the language of mathematics for the formulation of the laws of physics is a
wonderful gift which we neither understand nor deserve. We should be grateful for
it and hope that it will remain valid in future research and that it will extend, for
better or for worse, to our pleasure, even though perhaps also to our bafflement,
to wide branches of learning.” It is interesting to complement that quotation by
the 2009 appreciation of James Glimm15 in [11]: “In simple terms, mathematics
works. It is effective. It is essential. It is practical. Its force cannot be avoided, and
the future belongs to societies that embrace its power. Its force is derived from its
essential role within science, and from the role of science in technology. Wigner’s
observations concerning The Unreasonable Effectiveness of Mathematics are truer
today than when they were first written in 1960.”

14Carl Gottfried Neumann (1832-1925) is a German mathematician.
15James Glimm (born 1934) is an American mathematician.
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The British physicist and mathematician Roger Penrose (born 1931), ac-
claimed author of popular books such as The Emperor’s new mind and The Road
to Reality,16a complete guide to the laws of the universe [18], should have a say
with the following remarkable excerpts of the preface of [18]: “To mathematicians
. . . mathematics is not just a cultural activity that we have ourselves created, but
it has a life of its own, and much of it finds an amazing harmony with the physical
universe. We cannot get a deep understanding of the laws that govern the physical
world without entering the world of mathematics. . . In modern physics, one cannot
avoid facing up to the subtleties of much sophisticated mathematics”

Then we listen to John A. Wheeler (1911-2008), an outstanding theoretical
physicist (author with Kip S. Thorne and Charles W. Misner of the landmark
book Gravitation [16]) who deals with the aesthetics of scientific truth: “It is my
opinion that everything must be based on a simple idea. And it is my opinion that
this idea, once we have finally discovered it, will be so compelling, so beautiful, that
we will say to one another, yes, how could it have been any different.”

16As a matter of fact, that extra-ordinary one-thousand-page book could not really be qualified
as popular, except for the fact that it is indeed available in general bookstores.
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Chapter 2

Vector Fields

We start with recalling a few basic facts on Ordinary Differential Equations.

2.1 Ordinary Differential Equations

2.1.1 The Cauchy-Lipschitz result

1 Let I be an interval of R and Ω be an open set of Rn. We consider a continuous
function F : I×Ω → Rn such that for all (t0, x0) ∈ I×Ω, there exists a neighborhood
V0 of (t0, x0) in I × Ω and a positive constant L0 such that for (t, x1), (t, x2) ∈ V0

|F (t, x1)− F (t, x2)| ≤ L0|x1 − x2|, (2.1.1)

where | · | stands for a norm in Rn. We shall say that F satisfies a local Lipschitz
condition. Note that these assumptions are satisfied whenever F ∈ C1(I × Ω) and
even if ∂xF (t, x) ∈ C0(I × Ω).

Theorem 2.1.1 (Cauchy-Lipschitz). Let F be as above. Then for all (t0, x0) ∈ I×Ω,
there exists a neighborhood J of t0 in I such the initial-value-problem{

ẋ(t) = F
(
t, x(t)

)
x(t0) = x0

(2.1.2)

has a unique solution defined in J .

N.B. A solution of (2.1.2) is a differentiable function on J , valued in Ω, and since
F and x are continuous, the equation itself implies that x is C1. One may as well
consider continuous solutions of

x(t) = x0 +

∫ t

t0

F (s, x(s))ds. (2.1.3)

From this equation, the solution t 7→ x(t) is C1, and satisfies (2.1.2).

1See the footnote (1) for A.L. Cauchy. Rudolph Lipschitz (1832-1903) is a German mathe-
matician.

15
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Proof. We shall use directly the Picard approximation scheme2 which goes as follows.
We want to define for k ∈ N, t in a neighborhood of t0, ,

x0(t) = x0,

xk+1(t) = x0 +

∫ t

t0

F (s, xk(s))ds. (2.1.4)

We need to prove that this makes sense, which is not obvious since F is only defined
on I × Ω. Let us assume that for t ∈ J0 = {t ∈ I, |t− t0| ≤ T0}, (xl(t))0≤l≤k is such
that

xl(t) ∈ B̄(x0, R0) ⊂ Ω, where T0 and R0 are positive,
(2.1.1) holds with V0 = J0 × B̄(x0, R0),

}
(2.1.5)

and such that

eL0T0

∫
|t−t0|≤T0

|F (s, x0)|ds ≤ R0. (2.1.6)

The relevance of the latter condition will be clarified by the computation below, but
we may note at once that, given R0 > 0, there exists T0 > 0 such that (2.1.6) is
satisfied since the lhs goes to zero with T0. Property (2.1.5) is true for k = 0; let us
assume k ≥ 1. Then we can define xk+1(t) as above for t ∈ J0 and we have, with
(xl)0≤l≤k satisfying (2.1.5)

|xk+1(t)− xk(t)| ≤
∣∣∣∣∫ t

t0

L0|xk(s)− xk−1(s)|ds
∣∣∣∣ . (2.1.7)

and inductively

|xk+1(t)− xk(t)| ≤ Lk0

∣∣∣∣∫ t

t0

|F (s, x0)|ds
|t− t0|k

k!

∣∣∣∣ , (2.1.8)

since (we may assume without loss of generality that t ≥ t0) that estimate holds true
trivially for k = 0 and if k ≥ 1, we have, using (2.1.7) and the induction hypothesis
(2.1.8) for k − 1,

|xk+1(t)− xk(t)| ≤ L0

∫ t

t0

Lk−1
0

∫ s

t0

|F (σ, x0)|(σ − t0)
k−1dσds

1

(k − 1)!

≤ Lk0
1

(k − 1)!

∫ t

t0

|F (σ, x0)|dσ
∫ t

t0

(s− t0)
k−1ds =

Lk0(t− t0)
k

k!

∫ t

t0

|F (σ, x0)|dσ.

As a consequence, we have for t ∈ J0,

|xk+1(t)− x0| ≤
∑

0≤l≤k

|xl+1(t)− xl(t)| ≤
∣∣∣∣∫ t

t0

|F (σ, x0)|dσ
∣∣∣∣ ∑

0≤l≤k

Ll0|t− t0|l

l!

≤ eL0|t−t0|
∣∣∣∣∫ t

t0

|F (σ, x0)|dσ
∣∣∣∣ ≤︸︷︷︸

from (2.1.6)

R0.

2Emile Picard (1856-1941) is a French mathematician.
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We have thus proven that, provided (2.1.6) holds true, then for all k ∈ N and all
t ∈ J0, xk(t) makes sense and belongs to B̄(x0, R0). Thus we have constructed a
sequence (xk)k≥0 of continuous functions of C0(J0; Rn) such that, defining

α(T0) =

∫
J0

|F (s, x0)|ds, J0 = {t ∈ I, |t− t0| ≤ T0}, (2.1.9)

and assuming as in (2.1.6) that α(T0)e
L0T0 ≤ R0, we have

sup
t∈J0

‖xk+1(t)− xk(t)‖ ≤
Lk0T

k
0

k!
α(T0). (2.1.10)

Lemma 2.1.2. Let J be a compact interval of R, E be a Banach3 space and E =
{u ∈ C0(J ;E)} equipped with the norm ‖u‖E = supt∈J |u(t)|E is a Banach space.

Proof of the lemma. Note that the continuous image u(J) is a compact subset of E,
thus is bounded so that the expression of ‖u‖E makes sense and is obviously a norm;
let us consider now a Cauchy sequence (uk)k≥1 in E . Then for all t ∈ J , (uk(t))k≥1

is a Cauchy sequence in E, thus converges: let us set v(t) = limk uk(t), for t ∈ J .
The convergence is uniform with respect to t since

|uk(t)− v(t)|E = lim
l
|uk(t)− uk+l(t)|E ≤ lim sup

l
‖uk − uk+l‖E = ε(k) −→

k→+∞

0.

The continuity of the limit follows by the classical argument: for t, t + h ∈ J , we
have for all k

|v(t+ h)− v(t)|E ≤ |v(t+ h)− uk(t+ h)|E + |uk(t+ h)− uk(t)|E + |uk(t)− v(t)|E
≤ 2‖v − uk‖E + |uk(t+ h)− uk(t)|E,

and thus by continuity of uk, lim suph→0 |v(t + h) − v(t)|E ≤ 2‖v − uk‖E so that
lim suph→0 |v(t+ h)− v(t)|E ≤ 2 infk ‖v − uk‖E = 0.

Applying this lemma, we see that the sequence of continuous functions (xk) is a
Cauchy sequence in the Banach space C0(J0; Rn) since (2.1.10) gives∑

k≥0

‖xk+1 − xk‖C0(J0;Rn) ≤ α(T0)e
L0T0 < +∞.

Let u = limk xk in the Banach space C0(J0; Rn); since xk(J0) ⊂ B̄(x0, R0), we have
also u(J0) ⊂ B̄(x0, R0) and from the equation (2.1.4), we get for t ∈ J0

u(t) = x0 +

∫ t

t0

F (s, u(s))ds,

3Stefan Banach (1892-1945) is a Polish mathematician. A Banach space is a complete normed
vector space.
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since u(t) = limk xk+1(t), xk+1(t) = x0 +
∫ t

0
F (s, xk(s))ds and the difference∫ t

0

(
F (s, xk(s))− F (s, u(s))

)
ds

satisfies∣∣∣∣∫ t

t0

(
F (s, u(s))− F (t, xk(t))

)
dt

∣∣∣∣ ≤ ∣∣∣∣∫ t

t0

L0|u(s)− xk(s)|ds
∣∣∣∣ ≤ L0T0‖xk − u‖C0(J0;Rn),

providing the local existence part of Theorem 2.1.1. Let us prove uniqueness (and
even more). Let u, v be solutions of{

u(t) = x0 +
∫ t
t0
F (s, u(s))ds

v(t) = y0 +
∫ t
t0
F (s, v(s))ds

for 0 ≤ t− t0 ≤ T0. (2.1.11)

We define ρ(t) = |u(t)− v(t)| and we have

ρ(t) ≤ |u(t0)− v(t0)|+
∫ t

t0

L0|u(s)− v(s)|ds = R(t),

so that Ṙ(t) = L0|u(t)− v(t)| = L0ρ(t) ≤ L0R(t).

Lemma 2.1.3 (Gronwall4). Let t0 < t1 be real numbers and R : [t0, t1] → R be a
differentiable function such that Ṙ(t) ≤ LR(t) for t ∈ [t0, t1], where L ∈ R. Then
for t ∈ [t0, t1], R(t) ≤ eL(t−t0)R(t0).

More generally, if Ṙ(t) ≤ L(t)R(t) + f(t) for t ∈ [t0, t1] with L, f ∈ L1([t0, t1]),
we have for t ∈ [t0, t1]

R(t) ≤ e
R t

t0
L(s)ds

R(t0) +

∫ t

t0

e
R t

s L(σ)dσf(s)ds.

Remark 2.1.4. In other words a solution of the differential inequality

Ṙ ≤ LR + f, R(t0) = R0,

is smaller than the solution of the equality Ṙ = LR + f,R(t0) = R0.

Proof of the lemma. We calculate

d

dt

(
R(t)e

−
R t

t0
L(s)ds)

=
(
Ṙ(t)− L(t)R(t)

)
e
−

R t
t0
L(s)ds ≤ f(t)e

−
R t

t0
L(s)ds

,

entailing for t ∈ [t0, t1] R(t)e
−

R t
t0
L(s)ds ≤ R(t0) +

∫ t
t0
f(s)e

−
R s

t0
L(σ)dσ

.

Applying this lemma, we get for 0 ≤ t− t0 ≤ T0 that

|u(t)− v(t)| = ρ(t) ≤ R(t) ≤ eL0(t−t0)R(t0),

proving uniqueness and a much better result, akin to continuous dependence on the
data, summarized in the following lemma.

4 Thomas Grönwall (1877-1932) is a Swedish-born American mathematician
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Lemma 2.1.5 (Gronwall lemma on ODE). Let F be as in Theorem 2.1.1 with
|F (t, x1) − F (t, x2)| ≤ L|x1 − x2| for t ∈ I, x1, x2 ∈ Ω. Let u, v be as in (2.1.11).
Then for t0 ≤ t ∈ I, |u(t)− v(t)| ≤ eL(t−t0)|u(t0)− v(t0)|.

The proof of Theorem 2.1.1 is complete.

Remark 2.1.6. We have proven a quantitatively more precise result: let F be as
in Theorem 2.1.1, (t0, x0) ∈ I × Ω, R0 > 0 such that B̄(x0, R0) ⊂ Ω and T0 > 0
such that (2.1.6) holds. Then with J0 = {t ∈ I, |t− t0| ≤ T0}, there exists a unique
solution x of (2.1.2) such that x ∈ C1(J0; B̄(x0, R0)). Let K be a compact subset of
Ω and J be a compact nonempty subinterval of I: then

sup
t∈J

xj∈K,j=1,2,x1 6=x2

|F (t, x1)− F (t, x2)|
|x1 − x2|

< +∞. (2.1.12)

If it were not the case, we would find sequences (tk) in J , (x1,k), (x2,k) in K, so that

|F (tk, x1,k)− F (tk, x2,k)| > k|x1,k − x2,k|.

Extracting subsequences and using the compactness assumption, we may assume
that the three sequences are converging to (t, x1, x2) ∈ J ×K2; moreover the con-
tinuity hypothesis on F gives the convergence of the lhs to |F (t, x1)− F (t, x2)| and
the inequality gives x1 = x2 and x1,k 6= x2,k We infer from the assumption (2.1.1) at
(t, x1) that for k ≥ k0,

k <
|F (tk, x1,k)− F (tk, x2,k)|

|x1,k − x2,k|
≤ L0

which is impossible. We have proven that for K compact subset of Ω, J compact
subinterval of I, (2.1.12) holds. Let R > 0 such that ∪x∈KB̄(x,R) = KR ⊂ Ω. Now
if t0 is given in I, L0 stands for the lhs of (2.1.12), and T0 small enough so that

eL0T0

∫
t∈I,|t−t0|≤T0

sup
y∈K

|F (s, y)|ds ≤ R,

we know that, for all y ∈ K, there exists a unique solution of (2.1.2) defined on
J0 = {t ∈ I, |t − t0| ≤ T0} such that x ∈ C1(J0; B̄(y,R)), x(t0) = y. In particular,
if the initial data y belongs to a compact subset of Ω and s belongs to a compact
subset of I, the time of existence of the solution of (2.1.2) is bounded from below
by a fixed constant (provided F satisfies (2.1.1)).

If we consider F as in Theorem 2.1.1, we know that, for any (s, y) ∈ I × Ω,
the initial-value problem ẋ(t) = F (t, x(t)), x(s) = y has a unique solution, which
is defined and C1 on a neighborhood of s in I. We may denote that solution by
x(t, s, y) which is characterized by

(∂tx)(t, s, y) = F
(
t, x(t, s, y)

)
, x(s, s, y) = y.
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We may consider y1, y2 ∈ Ω, s ∈ I and the solutions x(t, s, y2), x(t, s, y1) both defined
on a neighborhood J of s in I (the intersection of the neighborhoods on which
t 7→ x(t, s, yj) are defined). We have

x(t, s, y2)− x(t, s, y1) = y2 − y1 +

∫ t

s

[
F
(
σ, x(σ, s, y2)

)
− F

(
σ, x(σ, s, y2)

)]
dσ,

and assuming J compact, we get that ∪j=1,2{x(σ, s, yj)}σ∈J is a compact subset of
Ω, so that there exists L ≥ 0 with

|x(t, s, y2)− x(t, s, y1)| ≤ |y2 − y1|+
∣∣∣∣∫ t

s

L|x(σ, s, y2)− x(σ, s, y1)|dσ
∣∣∣∣

and the previous lemma implies that

|x(t, s, y2)− x(t, s, y1)| ≤ eL|t−s||y2 − y1|. (2.1.13)

The mapping Ω 3 y 7→ x(t, s, y), defined for any s ∈ I and t in a neighborhood of s
is thus Lipschitz continuous. We have also proven the following

Proposition 2.1.7. Let F : I × Ω −→ Rn be as in Theorem 2.1.1 with 0 ∈ I. We
define the flow ψ of the ODE, Ẋ(t) = F (t,X(t)) as the unique solution of

∂ψ

∂t
(t, x) = F (t, ψ(t, x)), ψ(0, x) = x. (2.1.14)

The C1 mapping t 7→ ψ(t, x) is defined on a neighborhood of 0 in I which may depend
on x. However if x belongs to a compact subset K of Ω, there exists T0 > 0 such
that ψ is defined on {t ∈ I, |t| ≤ T0} ×K and ψ(t, ·) is Lipschitz-continous.

Remark 2.1.8. There is essentially nothing to change in the statements and in the
proofs if we wish to replace Rn by a Banach space (possibly infinite dimensional).

Remark 2.1.9. The local Lipschitz regularity can be replaced by a much weaker as-
sumption related to an Osgood 5 modulus of continuity: let ω :]0,+∞) →]0,+∞),
be a continuous and non-decreasing function, such that ω(0+) = 0 and

∃r0 > 0,

∫ r0

0

dr

ω(r)
= +∞. (2.1.15)

Let I be an interval of R, Ω be an open subset of a Banach space E and F : I×Ω → E
such that there exists α ∈ L1

loc(I) so that for all t, x1, x2 ∈ I × Ω2

|F (t, x1)− F (t, x2)|E ≤ α(t)ω(|x1 − x2|E). (2.1.16)

Then Theorem 2.1.1 holds (see e.g. [5]). Some continuous dependence can also be
proven, in general weaker than (2.1.13). Note that the Lipschitz regularity corre-
sponds to ω(r) = r and that the integral condition above allows more general moduli
of continuity such as

ω(r) = r × | ln r| or r × | ln r| × ln(| ln r|).
5William F. Osgood (1864-1943) is an American mathematician.
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Naturally Hölder’s regularity ω(r) = rα with α ∈ [0, 1[ is excluded by (2.1.15): as a
matter of fact, in that case some classical counterexamples to uniqueness are known
such as the one-dimensional

ẋ = |x|α, x(0) = 0, (α ∈ [0, 1[)

which has the solution 0 and x(t) =
(
(1− α)t

) 1
1−α for t > 0, 0 for t ≤ 0.

Remark 2.1.10. Going back to the finite-dimensional case, a theorem by Peano6

is providing an existence result (without uniqueness) for the ODE (2.1.2) under a
mere continuity assumption for F . That type of result is not true in the infinite
dimensional case as the reader may check for instance in the exercise 18 page IV.41
of the Bourbaki’s volume [2].

2.1.2 Maximal and Global Solutions

Let I be an interval of R and Ω be an open set of Rn. We consider a continuous
function F : I × Ω → Rn. Let I1 ⊂ I2 ⊂ I be subintervals of I. Let xj : Ij → Ω
(j = 1, 2) be such that ẋj = F (t, xj). If x1 = x2|I1 we shall say that x2 is a
continuation of x1.

Definition 2.1.11. We consider the ODE ẋ = F (t, x). A maximal solution x of
this ODE is a solution so that there is no continuation of x, except x itself. A global
solution of this ODE is a solution defined on I.

Note that a global solution is a maximal solution, but that the converse in not
true in general. Taking I = R,Ω = R the equation ẋ = x2 has the maximal solutions
t 7→ (T0− t)−1 (T0 is a real parameter) defined on the intervals (−∞, T0), (T0,+∞).
None of these maximal solutions can be extended globally since |x(t)| goes to +∞
when t approaches T0.

For t < 1, x(t) =
1

1− t
, x(0) = 1, blow-up time t = 1,

for t ∈ R, x(t) = 0, the only solution not blowing-up,

for t > 1, x(t) =
1

1− t
, x(2) = −1, blow-up time t = 1.

Note that if x(t0) is positive, then x(t) is positive and blows-up in the future and if
x(t0) is negative, then x(t) is negative and blows-up in the past. Moreover x(0) =
T−1

0 , so that the larger positive x(0) is, the sooner the blow-up occurs.

Theorem 2.1.12. Let F : I×Ω → Rn be as in Theorem 2.1.1 and let (t0, x0) ∈ I×Ω.
Then there exists a unique maximal solution x : J → Rn of the initial-value-problem
ẋ = F (t, x), x(t0) = x0, where J is a subinterval of I containing t0.

Proof. Let us consider all the solutions xα : Jα → Rn of the initial-value-problem
ẋα = F (t, xα), xα(t0) = x0, where Jα is a subinterval of I containing t0. From the

6 Giuseppe Peano (1858-1932) is an Italian mathematician.
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x(0)=1

o

x(2)=-1

o

Figure 2.1: Three solutions of the ODE ẋ = x2.

existence theorem, that family is not empty. If θ ∈ Jα ∩ Jβ, xα(θ) = xβ(θ), from the
uniqueness theorem on [t0, θ] (or [θ, t0]) so that we may define for t ∈ ∪αJα = J (J
is an interval since t0 belongs to all Jα), x(t) = xα(t).

Moreover, the function x is continuous on J : take θ ∈ J , say with θ > t0, θ ∈ Jα:
the function x coincides with xα on [t0, θ], thus is left-continuous at θ. If θ = sup J ,
it is enough to prove continuity. Now if θ < sup J , ∃θ′ ∈ J, θ′ > θ: θ′ ∈ Jα for
some α and as above the function x coincides with xα on [t0, θ

′], which proves as
well continuity. Note that x is continuous at t0 since it coincides with xα on a
neighborhood of t0 in I for all α.

For t ∈ J , we have t ∈ Jα for some α and since t0 ∈ Jα, we get∫ t

t0

F (s, x(s))ds =

∫ t

t0

F (s, xα(s))ds = xα(t)− x0 = x(t)− x0,

so that x is a solution of the initial-value-problem ẋ = F (t, x), x(t0) = x0 on J . By
construction, it is a maximal solution.



2.1. ORDINARY DIFFERENTIAL EQUATIONS 23

Theorem 2.1.13. Let F : [0,+∞)×Ω → Rn be as in Theorem 2.1.1, x0 ∈ Ω. The
maximal solution of ẋ = F (t, x), x(0) = x0 is defined on some interval [0, T0[ and if
T0 < +∞ then

sup
0≤t<T0

|x(t)| = +∞ or x([0, T0[) is not a compact subset of Ω.

Proof. If the maximal solution were defined on some interval [0, T0], T0 > 0, then
(T0, x(T0)) ∈ [0,+∞)×Ω and the local existence theorem would imply the existence
of a solution of ẏ = F (t, y), y(T0) = x(T0) on some neighborhood of T0: by the
uniqueness theorem, that solution should coincide with x for t ≤ T0 and provide a
continuation of x, contradicting its maximality.

Let us assume that x is defined on [0, T0[ with 0 < T0 < +∞ and

sup
0≤t<T0

|x(t)| ≤M < +∞, as well as x([0, T0[) = K compact subset of Ω.

We consider a sequence (tk)k≥1 with 0 < tk < T0, limk tk = T0. The sequence
(x(tk))k≥1 belongs to K and thus has a convergent subsequence, that we shall call
again (x(tk))k≥1 so that

lim
k
x(tk) = ξ, ξ ∈ K.

The equation ẏ = F (t, y), y(T0) = ξ has a unique solution defined in [T0−ε0, T0 +ε0]
with ε0 > 0. For t ∈ [T0 − ε0, T0[, we have x(t) ∈ K which is a compact subset of Ω
and y(t) in a neighborhood of ξ so that (see the remark 2.1.6 for the uniformity of
the constant L)

|x(t)− y(t)| ≤ |x(tk)− y(tk)|+
∣∣∣∣∫ t

tk

L|x(s)− y(s)|ds
∣∣∣∣ ,

implying

sup
T0−ε0≤t<T0

|x(t)− y(t)| ≤ |x(tk)− y(tk)|+ L|t− tk| sup
T0−ε0≤t<T0

|x(t)− y(t)|

and thus, since sup0≤t<T0
|x(t)| ≤M < +∞, we have supT0−ε0≤t<T0

|x(t)− y(t)| = 0,
i.e. x(t) = y(t) on [T0− ε0, T0[. Considering the continuous function X(t) = x(t) for
0 ≤ t < T0, X(t) = y(t) for T0−ε0 ≤ t ≤ T0+ε0, we see that for T0−ε0 ≤ t ≤ T0+ε0,∫ t

0

F (s,X(s))ds =

∫ T0−ε0

0

F (s, x(s))ds+

∫ t

T0−ε0
F (s, y(s))ds

= x(T0 − ε0)− x0 + y(t)− y(T0 − ε0) = X(t)− x0,

so that X is a continuation of x, contradicting the maximality of the latter.

The previous theorems have the following consequences.

Corollary 2.1.14. We consider a continuous function F : R × Rn → Rn which
satisfies the Lipschitz condition (2.1.1). Then for all (t0, x0) ∈ R × Rn the initial
value problem {

ẋ(t) = F (t, x(t))
x(t0) = x0
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has a unique maximal solution (defined on a non-empty interval J). Then

if sup J < +∞, one has lim sup
t→(sup J)−

|x(t)| = +∞, (2.1.17)

if inf J > −∞, one has lim sup
t→(inf J)+

|x(t)| = +∞. (2.1.18)

This follows immediately from Theorem 2.1.13. In other words, maximal solu-
tions always exist (under mild regularity assumptions for F ) and the only possible
obstruction for a maximal solution to be global is that |x(t)| gets unbounded, or if
Ω 6= Rn, that x(t) gets close to the boundary ∂Ω.

Corollary 2.1.15. Let I be an interval of R. We consider a continuous function
F : I × Rn → Rn such that (2.1.1) holds and there exists a continuous function
α : I → R+ so that

∀t ∈ I, ∀x ∈ Rn, |F (t, x)| ≤ α(t)
(
1 + |x|

)
. (2.1.19)

Then all maximal solutions of the ODE ẋ = F (t, x) are global. In particular, the
solutions of linear equations with C0 coefficients are globally defined.

The motto for this result should be: solutions of nonlinear equations may blow-up
in finite time, whereas solutions of linear equations do exist globally.

Proof. We assume that 0 ∈ I ⊂ [0,+∞) and we consider a maximal solution of the
ODE: we note that for I 3 t ≥ 0

|x(t)| ≤ |x(0)|+
∫ t

0

α(s)
(
1 + |x(s)|

)
ds = R(t),

so that Ṙ = α(1 + |x|) ≤ α+ αR,R(0) = |x(0)|, and Gronwall’s inequality gives

|x(t)| ≤ R(t) ≤ e
R t
0 α(s)ds|x(0)|+

∫ t

0

α(s)e
R t

s α(σ)dσds < +∞, for all I 3 t ≥ 0,

implying global existence. In particular a linear equation with C0 coefficients would
be ẋ = A(t)x(t)+ b(t), with A a n×n continuous matrix, t 7→ b(t) ∈ Rn continuous,
so that (2.1.1) holds trivially and

|F (t, x)| = |A(t)x+ b(t)| ≤ ‖A(t)‖|x|+ |b(t)|

satisfying the assumption of the corollary.

We can check the example ẋ = x(x2 − 1).
If |x(0)| > 1, the solutions blow-up in finite time,
If |x(0)| ∈ {±1, 0}, stationary solutions,
If |x(0)| ≤ 1, global solutions.

When 0 < x(0) < 1, x(t) ∈]0, 1[ for all t ∈ R (and thus are decreasing), otherwise at
some t0, we would have by continuity x(t0) ∈ {0, 1} and thus by uniqueness it would
be a stationary solution 0 or 1, contradicting 0 < x(0) < 1. The lines x = 0,±1 are
separating the solutions.
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x(0)=3/2

x(0)=1

x(0)=1/2

x(0)=0

x(0)=-1/2

x(0)=-3/2

x(0)=-1

.

.

.

.

.

.

.

x(0)>1: blow-up in finite time

x(0)<-1: blow-up in finite time

lx(0)l≤1: global solutions

Figure 2.2: Solutions of the ODE ẋ = x(x2 − 1).

2.1.3 Continuous dependence

Theorem 2.1.16. Let I be an interval of R, Ω be an open set of Rn and U be an
open set of Rm. We consider a continuous function F : It×Ωx×Uλ → Rn such that
the partial derivatives ∂F/∂xj, ∂F/∂λk exist and are continuous. Assuming 0 ∈ I,
y ∈ Ω, we define x(t, y, λ) as the unique solution of the initial value problem

∂x

∂t
(t, y, λ) = F

(
t, x(t, y, λ), λ

)
, x(0, y, λ) = y.

Then the function x is a C1 function defined on a neighborhood of {(0, y)} × U .

Proof. We consider first the flow ψ of the ODE defined by

∂ψ

∂t
(t, x) = F (t, ψ(t, x)), ψ(0, x) = x

and we recall that ψ(t, ·) is Lipschitz-continous from (2.1.13). According to Propo-
sition 2.1.7, we may assume that ψ is defined on [0, T0]×K0 with T0 > 0 and K0 a
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compact subset of Ω with

|ψ(t, x1)− ψ(t, x2)| ≤ etL0 |x1 − x2|. (2.1.20)

For x given in Ω, we consider the linear ODE (D, ∂2F are n× n matrices)

Ḋ(t, x) = (∂2F )
(
t, ψ(t, x)

)
D(t, x), D(0, x) = Id, (2.1.21)

and we claim that ∂ψ
∂x

(t, x) = D(t, x). In fact, we have, since ∂2F is continuous and
ψ(t, ·) is Lipschitz-continuous,

ψ(t, x+ h)− ψ(t, x) = h+

∫ t

0

(
F
(
s, ψ(s, x+ h)

)
− F

(
s, ψ(s, x)

))
ds

= h+∫ t

0

∫ 1

0

(∂2F )
(
s, ψ(s, x) + θ

(
ψ(s, x+ h)− ψ(s, x)

))
dθ
(
ψ(s, x+ h)− ψ(s, x)

)
ds.

As a result, with ρ(t, x, h) = ψ(t, x+ h)− ψ(t, x), we have

ρ̇(t, x, h) =

∫ 1

0

(∂2F )
(
t, ψ(t, x) + θρ(t, x, h)

)
dθρ(t, x, h), ρ(0, x, h) = h.

We obtain

ρ̇(t, x, h) = (∂2F )(t, ψ(t, x))ρ(t, x, h) + ω(t, x, ρ(t, x, h))ρ(t, x, h),

ω(t, x, ρ) =

∫ 1

0

(
(∂2F )(t, ψ(t, x) + θρ)− (∂2F )(t, ψ(t, x))

)
dθ.

Using (2.1.21), (2.1.20) we have

ρ(0, x, h)−D(0, x)h = 0 and |ρ(t, x, h)| ≤ etL0|h|,

so that

ρ̇(t, x, h)− Ḋ(t, x)h

= (∂2F )(t, ψ(t, x))(ρ(t, x, h)−D(t, x)h) + ω(t, x, ρ(t, x, h))ρ(t, x, h),

and as a consequence with r(t) = |ρ(t, x, h)−D(t, x)h| for t ≥ 0,

r(t) ≤
∫ t

0

‖(∂2F )(s, ψ(s, x))‖r(s)ds+ tη(h)|h| ≤
∫ t

0

C1r(s)ds+ tη(h)|h| = R(t),

with limh→0 η(h) = 0. This gives

Ṙ(t) = C1r(t) + η(h)|h| ≤ C1R(t) + η(h)|h|, R(0) = 0,

and by Gronwall’s inequality R(t) ≤
∫ t

0
eC1(t−s)dsη(h)|h| = o(h) which gives

r(t) = o(h), ρ(t, x, h) = D(t, x)h+ o(h),

so that ∂ψ
∂x

(t, x) = D(t, x). We note also that (2.1.21) and (2.1.13) imply that D(t, x)
is solution of the linear equation

Ḋ(t, x) = Ω(t, x)D(t, x), D(0, x) = Id (2.1.22)

with Ω continuous.
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Lemma 2.1.17. Let N ∈ N, I be an interval of R and U be an open subset of Rn.
Let Ω be a continuous function on I×U valued in MN(R), the N×N matrices with
real entries. Let ∆(x) be a continuous mapping from Rn into MN(R). The unique
solution of the linear ODE

Ḋ(t, x) = Ω(t, x)D(t, x), D(0, x) = ∆(x),

is a continous function of its arguments.

Proof. From Theorem 2.1.1, we know that there exists a unique global solution for
every x ∈ U , so that I 3 t 7→ D(t, x) is C1 for each x ∈ U . We may assume
[0, T0] ⊂ I with some positive T0, and for t ∈ [0, T0], x, x + h ∈ K0, where K0 is a
compact neighborhood of x in U , we calculate

D(t, x+h)−D(t, x) = ∆(x+h)−∆(x)+

∫ t

0

(
Ω(s, x+h)D(s, x+h)−Ω(s, x)D(s, x)

)
ds,

entailing

|D(t, x+ h)−D(t, x)| ≤ |∆(x+ h)−∆(x)|

+

∫ t

0

|Ω(s, x+ h)− Ω(s, x)||D(s, x+ h)|ds

+

∫ t

0

|Ω(s, x)||D(s, x+ h)−D(s, x)|ds.

We note also that

|D(t, x)| ≤ |∆(x)|+
∫ t

0

|Ω(s, x)||D(s, x)|ds

≤ sup
x∈K0

|∆|+
∫ t

0

|D(s, x)|ds sup
[0,T0]×K0

|Ω| = R(t),

so that Ṙ(t) = ‖Ω‖[0,T0]×K0 |D(t, x)| ≤ ‖Ω‖[0,T0]×K0R(t) and Gronwall’s inequality
implies

|D(t, x)| ≤ R(t) ≤ ‖∆‖K0 exp t‖Ω‖[0,T0]×K0 ≤ C0, for t ∈ [0, T0], x ∈ K0.

With ρ(t, x, h) = |D(t, x + h) − D(t, x)|, we get thus with C1 = ‖Ω‖[0,T0]×K0 ,
limh→0 η(h) = 0,

ρ(t, x, h) ≤ |∆(x+ h)−∆(x)|+ C0T0η(h) + C1

∫ t

0

ρ(s, x, h)ds = R1(t).

We obtain Ṙ1(t) = C1ρ(t, x, h) ≤ C1R1(t) and Gronwall’s inequality gives

ρ(t, x, h) ≤ R1(t) ≤
(
|∆(x+ h)−∆(x)|+ C0T0η(h)

)
expT0C1.

For t ∈ [0, T0], x, x+ h ∈ K0 we get

|D(t, x+ h)−D(0, x)|

≤
(
|∆(x+ h)−∆(x)|+ C0T0η(h)

)
expT0C1 +

∫ t

0

|Ω(s, x)||D(s, x)|ds

≤
(
|∆(x+ h)−∆(x)|+ C0T0η(h)

)
expT0C1 + tC1C0,

which proves the continuity of D at (0, x), ending the proof of the Lemma.
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We may apply this lemma to get the fact that the flow is C1, under the assump-
tions of Theorem 2.1.16. To handle the question with an additional parameter λ,
we use the previous results, remarking that the equation

ψ̇(t, y, z) = F (t, ψ(t, y, z), z), ψ(0, y, z) = y

can be written as

Ψ̇(t, y, z) = F (t,Ψ(t, y, z)), Ψ(0, y, z) = (y, z)

with Ψ(t, y, z) = (ψ(t, y, z), z). The proof of Theorem 2.1.16 is complete.

Corollary 2.1.18. Let I be an interval of R containing 0, Ω be an open set of Rn,
k ∈ N∗ and F : I × Ω → Rn be a continuous function such that {∂αxF}|α|≤k exist
and are continuous on I × Ω. We denote7 by Jx × Ω 3 (t, x) 7→ ψ(t, x) ∈ Rn the
maximal solution of the ODE

∂ψ

∂t
(t, x) = F

(
t, ψ(t, x)

)
, ψ(0, x) = x.

Then the function ψ is a C1 function such that {∂αxψ, ∂t∂αxψ}|α|≤k are continuous.

Proof. For k = 1, x0 ∈ Ω, we get from the previous theorem that ψ is a C1 function
defined in a neighborhood of (0, x0) in I × Ω. Moreover, the proof of that theorem
and (2.1.21) gives

∂2ψ

∂t∂x
(t, x) = (∂2F )

(
t, ψ(t, x)

)
· ∂ψ
∂x

(t, x),
∂ψ

∂x
(0, x) = Id, (2.1.23)

with ∂ψ
∂x

continuous, according to Lemma 2.1.17, entailing from the above equation

the continuity of ∂2ψ
∂t∂x

. We want now to prove the theorem by induction on k with
the additional statement that for any multi-index α with |α| ≤ k,

∂t∂
α
xψ =

∑
|ρ|≥1

α1+···+α|ρ|=α, |αj |≥1

c(α1, . . . , αρ, ρ)(∂
ρ
2F )(t, ψ)∂α1

x ψ . . . ∂
α|ρ|
x ψ, (2.1.24)

where c(α1, . . . , αρ, ρ) are positive constants and (∂αxψ)(0, x) is a C1 function. The
formula (2.1.23) gives precisely the case k = 1 (note that ψ(0, x), ∂xψ(0, x) are both
C1). Let us now assume that k ≥ 1 and the assumptions of the Theorem are fulfilled
for k + 1. For |α| = k, (2.1.24) implies that ∂αxψ satisfies

∂t∂
α
xψ = (∂2F )(t, ψ) · ∂αxψ +G(t, ψ, ∂βxψ)β<α

where G is a linear combination of products (∂ρ2F )(t, ψ)∂α1
x ψ . . . ∂

α|ρ|
x ψ, with |ρ| ≤

k, 1 ≤ |αj| < k. As a result the function G is a C1 function of t, x. Since (t, x) 7→
(∂2F )︸ ︷︷ ︸
Ck

(t, ψ(t, x)︸ ︷︷ ︸
C1

) is also C1 since k ≥ 1, Yα = ∂αxψ is the solution of a linear ODE

∂tYα = a(t, x)Yα + f(t, x), a, f ∈ C1.

7According to Remark 2.1.6, the time of existence of the solutions is bounded below by a positive
constant T0, provided the initial data belong to a compact subset.
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A direct integration of that ODE gives

Yα(t, x) = e
R t
0 a(σ,x)dσ Yα(0, x)︸ ︷︷ ︸

∈C1

+

∫ t

0

e
R t

s a(σ,x)dσf(s, x)ds,

so that ∂αxψ is also C1, as well as ∂t∂
α
xψ from the equation. Taking the derivative

with respect to x1 of (2.1.24), using the fact that {∂αxF}|α|≤k+1 exist, we get a linear
combination of terms

(∂ρ2F )(t, ψ)∂α1
x ∂x1ψ . . . ∂

α|ρ|
x ψ,

∑
|ρ′|=|ρ|+1

(∂ρ
′

2 F )(t, ψ)∂x1ψ∂
α1
x ψ . . . ∂

α|ρ|
x ψ,

entailing the formula (2.1.24) for k + 1; note also that for |β| = 1 + k ≥ 2,
(∂βxψ)(0, x) = 0. The proof of the induction is complete as well as the proof of
the theorem.

Corollary 2.1.19. Let Ω be an open set of Rn, 1 ≤ k ∈ N and F : Ω → Rn be a Ck

function. Then the flow of the autonomous ODE, ψ̇ = F (ψ), is of class Ck (in both
variables t, x).

Proof. For k = 1, it follows from Corollary 2.1.18. Assume inductively that k ≥ 1
and F ∈ Ck+1: from Corollary 2.1.18, we know that ∂t∂

α
xψ, ∂

α
xψ are continuous

functions for |α| ≤ k+1. Moreover we know from (2.1.24) an explicit expression for
∂t∂

α
xψ for |α| ≤ k + 1 and in particular for |α| = k; since in (2.1.24), |ρ| ≤ |α| = k,

we can compute ∂2
t ∂

α
xψ, which is a linear combination of

∂ρ
′
F︸︷︷︸

|ρ′|=1+|ρ|≤k+1

∂tψ︸︷︷︸
F (ψ)

∂α1
x ψ . . . ∂

α|ρ|
x ψ, ∂ρF∂α1

x ∂tψ︸︷︷︸
F (ψ)

. . . ∂
α|ρ|
x ψ,

which is a continuous function. More generally, ∂lt∂
α
xψ for l + |α| ≤ k + 1 is a

polynomial in ∂βxψ, (∂ρF )(ψ), with |β| ≤ k + 1, |ρ| ≤ k + 1, thus a continuous
function. All the partial derivatives of ψ with order ≤ k + 1 are continuous, com-
pleting the induction and the proof.

2.2 Vector Fields, Flow, First Integrals

2.2.1 Definition, examples

Definition 2.2.1. Let Ω be an open set of Rn. A vector field X on Ω is a mapping
from Ω into Rn. The differential system associated to X is

dx

dt
= X(x). (2.2.1)

An integral curve of X is a solution of the previous system and the flow of the vector
field is the flow of that system of ODE. A singular point of X is a point x0 ∈ Ω
such that X(x0) = 0. When for x ∈ Ω, X(x) = (Xj(x))1≤j≤n, the vector field X is
denoted by

∑
1≤j≤nXj(x)

∂
∂xj
.
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N.B. We have introduced the notion of flow of an ODE in Proposition 2.1.7. In the
above definition, we deal with a so-called autonomous flow since X depends only on
the variable x and not on t.

Remark 2.2.2. Let X be a C1 vector field on some open subset Ω of Rn. The flow
of the vector field X, denoted by Φt

X(x) is the maximal solution of the ODE

Φ̇t
X(x) = X

(
Φt
X(x)

)
, Φ0

X(x) = x. (2.2.2)

The mapping t 7→ Φt
X(x) is defined in a neighborhood of 0 which may depend

on x; however, thanks to Proposition 2.1.7 and Corollary 2.1.18, for each compact
subset K0 of Ω, there exists T0 > 0 such that (t, x) 7→ Φt

X(x) is defined and C1 on
[−T0, T0]×K0. We have for x ∈ Ω and t, s in a neighborhood of 0,

d

dt

(
Φt+s
X (x)

)
= X

(
Φt+s
X (x)

)
, Φt+s

X (x)|t=0 = Φs
X(x),

d

dt

(
Φt
X

(
Φs
X(x)

))
= X

(
Φt
X

(
Φs
X(x)

))
, Φt

X

(
Φs
X(x)

)
|t=0

= Φs
X(x),

so that the uniqueness theorem 2.1.1 forces

Φt+s
X = Φt

XΦs
X . (2.2.3)

In particular the flow Φt
X is a local C1 diffeomorphism with inverse Φ−t

X since Φ0
X is

the identity.

Let us give a couple of examples. The radial vector field in R2 is x1∂x1 + x2∂x2 ,
namely is the mapping R2 3 (x1, x2) 7→ (x1, x2) ∈ R2. The differential system
associated to this vector field is{

ẋ1 = x1

ẋ2 = x2
i.e.

{
x1 = y1e

t, x1(0) = y1

x2 = y2e
t, x2(0) = y2

so that the integral curves are straight lines through the origin. The flow ψ(t, x) of
the radial vector field defined on R× R2 is thus

ψ(t, x) = etx.

We can note that ψ(t, 0R2) = 0R2 for all t, expressing the fact that 0R2 is a singular
point of x1∂x1 + x2∂x2 , namely a point where the vector field is vanishing.

We consider now the angular vector field in R2 given by x1∂x2 − x2∂x1 (the
mapping R2 3 (x1, x2) 7→ (−x2, x1) ∈ R2). The differential system associated to this
vector field is{

ẋ1 = −x2

ẋ2 = x1
i.e.

d

dt
(x1 + ix2) = i(x1 + ix2), (x1 + ix2) = eit(x1(0) + ix2(0))

so that the integral curves are circles centered at the origin. The flow ψ(t, x) of the
angular vector field defined on R× R2 is thus

ψ(t, x) = R(t)x, R(t) =

(
cos t − sin t
sin t cos t

)
(rotation with angle t).
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Figure 2.3: The radial vector field x1∂x1 + x2∂x2.

Remark 2.2.3. We note that if a vector field X is locally Lipschitz-continuous on
Ω, for all x0 ∈ Ω, there exists a unique maximal solution t 7→ x(t) = ψ(t, x0) of
the ODE (2.2.1) defined on [0, T0[ with some positive T0. From Theorem 2.1.13,
if x([0, T0[) is contained in a compact subset of Ω, we have T0 = +∞, (otherwise
T0 < +∞ and sup0≤t<T0

|x(t)| = +∞).

Definition 2.2.4. Let X be a vector field on Ω, open subset of Rn. A first integral
of X is a differentiable mapping f : Ω → R such that

∀x ∈ Ω, (Xf)(x) =
∑

1≤j≤n

Xj(x)
∂f

∂xj
(x) = 0.

In other words, 〈df,X〉 = 0, where the bracket stand for a bracket of duality
between the one-form df =

∑
1≤j≤n

∂f
∂xj
dxj and the vector field X =

∑
1≤j≤nXj∂xj

.

If f is of class C1 with df 6= 0, the set (a level surface of f)

Σ = {x ∈ Ω, f(x) = f(x0)}

is a C1 hypersurface to which the vector field X is tangent since it is “orthogonal”
to the gradient of f given by ∇f = (∂xj

f)1≤j≤n, which is the “normal” vector to
Σ. The quotation marks here are important in the sense that orthogonality here
must be understood in the sense of duality. The tangent bundle to the open set U
is simply the product U × Rn and a vector field on U is a section of that bundle,
i.e. a mapping U 3 x 7→ (x,X(x)) ∈ U × Rn. Now if V is an open set of Rn and
κ : V → U is a C1-diffeomorphism, we can define the pull-back of the vector field X
by κ as the vector field Y on V such that for f ∈ C1(U)

〈d(f ◦ κ), Y 〉 = 〈df,X〉 ◦ κ, (2.2.4)
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Figure 2.4: The angular vector field x1∂x2 − x2∂x1.

i.e. for X =
∑

1≤j≤n aj(x)∂xj
, we define Y =

∑
1≤k≤n bk(y)∂yk

so that

∑
1≤k≤n

bk(y)
∂(f ◦ κ)
∂yk

(y) =
∑

1≤j≤n

aj(κ(y))
∂f

∂xj
(κ(y))

which means∑
1≤k≤n

bk(y)
∂(f ◦ κ)
∂yk

(y) =
∑

1≤k,j≤n

bk(y)
∂f

∂xj
(κ(y))

∂κj
∂yk

(y) =
∑

1≤j≤n

aj(κ(y))
∂f

∂xj
(κ(y))

and this gives

aj(κ(y)) =
∑

1≤k≤n

bk(y)
∂κj
∂yk

(y).

Abusing the notations, these relationships are written usually in a more convenient
way as ∑

k

bk
∂

∂yk
=
∑
j,k

bk
∂xj
∂yk

∂

∂xj
=
∑
j

(∑
k

bk
∂xj
∂yk

)
︸ ︷︷ ︸

aj

∂

∂xj
.

Anyhow, we get immediately from these expressions that if X(f) = 0, i.e. f is
a first integral of X, the function f ◦ κ is a first integral of Y , meaning that the
notion of first integral is invariant by diffeomorphism, as well as the notion of a
vector field tangent to the level surfaces of a function f . Similarly, the one-form
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df has an invariant meaning as a conormal vector to Σ: the reader may remember
from that discussion that no Euclidean nor Riemannian structure was involved in
the definitions above.

Let us go back to our examples above: the angular vector field x1∂2 − x2∂1 has
obviously the first integral x2

1 + x2
2 and we see that this vector field is tangential to

the circles centered at 0. The radial vector field x1∂1 + x2∂2 has the first integral
x2/x1 on the open set x1 6= 0 and is indeed tangential to all straight lines through
the origin. We see as well that

x1√
x2

1 + x2
2

,
x2√
x2

1 + x2
2

are first integrals of the radial vector field as well as all homogeneous functions of
degree 0. Considering the diffeomorphism8

R∗
+×]− π, π[ → C\R−

(r, θ) 7→ reiθ

we see as well that

r
∂

∂r
= x1∂1 + x2∂2,

∂

∂θ
= x1∂2 − x2∂1. (2.2.5)

For the so-called spherical coordinates in R3, we have
x1 = r cos θ sinφ

x2 = r sin θ sinφ

x3 = r cosφ

(2.2.6)

(θ is the longitude, φ the colatitude9) and the diffeomorphism

κ : ]0,+∞[ × ]0, π[ × ]− π, π[ → R3\{(x1, x2, x3), x1 ≤ 0, x2 = 0} = D
(r , φ , θ) 7→ (r cos θ sinφ, r sin θ sinφ, r cosφ)

we have

∂

∂r
= cos θ sinφ

∂

∂x1

+ sin θ sinφ
∂

∂x2

+ cosφ
∂

∂x3

,

∂

∂φ
= r cos θ cosφ

∂

∂x1

+ r sin θ cosφ
∂

∂x2

− r sinφ
∂

∂x3

,

∂

∂θ
= −r sin θ sinφ

∂

∂x1

+ r cos θ sinφ
∂

∂x2

.

8 For z ∈ C\R−, we define Log z =
∫
[1,z]

dξ
ξ and we get by analytic continuation that eLog z = z;

we define arg z = Im(Log z), so that z = ei arg zeRe Log z = ei arg zeln |z|.
9The latitude is π

2 − φ, equal to π/2 at the “north pole” (0, 0, 1) and to −π/2 at the “south
pole” (0, 0,−1).
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Since we have an analytic determination of the argument (see footnote 8) on C\R−,
we define on D 

r =
√
x2

1 + x2
2 + x2

3

φ = arg
(
x3 + i(x2

1 + x2
2)

1/2
)

θ = arg(x1 + ix2)

The radial vector field x·∂x = x1∂x1 +x2∂x2 +x3∂x3 = r∂r is transverse to the spheres
with center 0 since ∂rr = 1 6= 0 whereas the vector fields ∂

∂φ
, ∂
∂θ

are tangential to the
spheres with center 0 since it is easy to verify that

∂r

∂φ
=
∂r

∂θ
= 0.

In fact the three vector fields x2∂x1−x1∂x2 , x3∂x2−x2∂x3 , x1∂x3−x3∂x1 , are tangential
to the spheres with center 0 and

∂

∂θ
= x1∂x2 − x2∂x1 , (2.2.7)

∂

∂φ
= r cos θ cosφ∂x1 + r sin θ cosφ∂x2 − r sinφ∂x3 ,

so that

r sinφ
∂

∂φ
= x3r

∂

∂r
− r2 ∂

∂x3

= x1x3
∂

∂x1

+ x2x3
∂

∂x2

− (x2
1 + x2

2)
∂

∂x3

= x1

(
x3

∂

∂x1

− x1
∂

∂x3

)
+ x2

(
x3

∂

∂x2

− x2
∂

∂x3

)
so that

∂

∂φ
=

x1√
x2

1 + x2
2

(
x3

∂

∂x1

− x1
∂

∂x3

)
+

x2√
x2

1 + x2
2

(
x3

∂

∂x2

− x2
∂

∂x3

)
. (2.2.8)

The integral curves of ∂/∂θ are the so-called parallels, which are horizontal circles
with center on the x3-axis (e.g. the Equator, the Artic circle), whereas the integral
curves of ∂/∂φ are the meridians, which are circles (or half-circles) with diameter
NS where N = (0, 0, 1) is the north pole and S = (0, 0,−1) is the south pole.

2.2.2 Local Straightening of a non-singular vector field

Theorem 2.2.5. Let k ∈ N∗, Ω an open set of Rn, x0 ∈ Ω and let X be Ck-vector
field on Ω such that X(x0) 6= 0 (X is non-singular at x0). Then there exists a Ck

diffeomorphism κ : V → U , where U is an open neighborhood of x0 and V is an
open neighborhood of 0Rn such that

κ∗
(
X|U

)
=

∂

∂y1

.
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Proof. Assuming as we may x0 = 0, with X =
∑

1≤j≤n aj(x)∂xj
, we may assume

that a1(0) 6= 0. The flow of the vector field X satisfies

ψ̇(t;x) = X
(
ψ(t;x)

)
, ψ(0; x) = x (2.2.9)

and thus the mapping (y1, y2, . . . , yn) 7→ κ(y1, y2, . . . , yn) = ψ(y1; 0, y2, . . . , yn) is of
class Ck in a neighborhood of 0 (see Corollary 2.1.18) with a Jacobian determinant
at 0 equal to

∂ψ

∂t
(0) ∧ ∂ψ

∂y2

(0) ∧ · · · ∧ ∂ψ

∂yn
(0) = X(0) ∧ ~e2 ∧ · · · ∧ ~en = a1(0) 6= 0.

As a result, from the local inversion Theorem, κ is a Ck diffeomorphism between V
and U , neighborhoods of 0 in Rn. From the identity

∂

∂t

{
u(ψ(t, y))

}
=
∑

1≤j≤n

∂u

∂xj

(
ψ(t, y)

)∂ψj
∂t

(t, y) =
∑

1≤j≤n

aj
(
ψ(t, y)

) ∂u
∂xj

(
ψ(t, y)

)
,

we get

∂

∂y1

{
(u ◦ κ)(y)

}
=

∂

∂y1

{
u
(
ψ(y1; 0, y2, . . . , yn)

)}
=
∑

1≤j≤n

aj(κ(y))
∂u

∂xj
(κ(y)),

so that

〈d(u ◦ κ), ∂

∂y1

〉 = 〈du,X〉 ◦ κ

and the identity (2.2.4) gives the result. We have with (b1, . . . , bn) = (1, 0 . . . , 0)

κ∗
(
X|U

)
=
∑

1≤k≤n

bk(y)
∂

∂yk
, aj(κ(y)) =

∑
1≤k≤n

∂κj
∂yk

(y)bk(y) = aj(κ(y))b1(y).

The previous method also gives a way to actually solve a first-order linear PDE:
let us consider the following equation on some open set Ω of Rn

∑
1≤j≤n

aj(x)
∂u

∂xj
(x) = a0(x)u(x) + f(x) (2.2.10)

where the {aj}1≤j≤n ∈ C1(Ω; R), a0, f ∈ C1(Ω; R). We are seeking some C1 solution
u. That equation can be written as Xu = a0u+ f and if ψ is the flow of the vector
field X, i.e., satisfies (2.2.9) and u is a C1 function solving (2.2.10), we get

d

dt

(
u(ψ(t, x))

)
= 〈du,X〉(ψ(t, x)) = a0(ψ(t, x))u(ψ(t, x)) + f(ψ(t, x)).

The function t 7→ u(ψ(t, x)) satisfies an ODE that we can solve explicitely: with
a(t, x) =

∫ t
0
a0(ψ(s, x))ds

u(ψ(t, x)) = ea(t,x)u(x) +

∫ t

0

ea(t,x)−a(s,x)f(ψ(s, x))ds. (2.2.11)
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In particular, if in the formula above x belongs to some C1 hypersurface Σ so that
X is tranverse to Σ, the proof of the previous theorem shows that the mapping
R × Σ 3 (t, x) 7→ ψ(t, x) ∈ Ω is a local C1-diffeomorphism. As a result the datum
u|Σ determines uniquely the C1 solution of the equation (2.2.10).

Corollary 2.2.6. Let Ω be an open set of Rn, Σ a C1 hypersurface10 of Ω and X a
C1 vector field on Ω such that X is transverse to Ω. Let a0, f ∈ C0(Ω), x0 ∈ Σ and
g ∈ C0(Σ). There exists a neighborhood U of x0 such that the Cauchy problem{

Xu = a0u+ f on U ,

u|Σ = g on Σ,

has a unique continuous solution.

Proof. Using Theorem 2.2.5, we may assume that X = ∂
∂xn

. Since X is transverse
to the hypersurface Σ with equation ρ(x) = 0, the implicit function theorem gives
that on a possibly smaller neighborhood of x0 (we take x0 = 0),

Σ = {(x′, xn) ∈ Rn−1 × Rn, xn = α(x′)}

where α is a C1 function. We get

∂u

∂xn
= a0(x

′, xn)u(x
′, xn) + f(x′, xn), u(x′, α(x′)) = g(x′).

Using the notation

a(x′, xn) =

∫ xn

α(x′)

a0(x
′, t)dt

The unique solution of that ODE with respect to the variable xn with parameters
x′ is given by

u(x′, xn) = ea(x
′,xn)g(x′) +

∫ xn

α(x′)

ea(x
′,xn)−a(x′,t)f(x′, t)dt.

Definition 2.2.7. Let Ω be an open set of Rn, X a Lipschitz-continuous vector field
on Ω. The divergence of X is defined as divX =

∑
1≤j≤n ∂xj

(aj).

Definition 2.2.8. Let Ω be an open set of Rn: Ω will be said to have a C1 boundary
if for all x0 ∈ ∂Ω, there exists a neighborhood U0 of x0 in Rn and a C1 function
ρ0 ∈ C1(U0; R) such that dρ0 does not vanish and Ω ∩ U0 = {x ∈ U0, ρ0(x) < 0}.

Note that ∂Ω ∩ U0 = {x ∈ U0, ρ0(x) = 0} since the implicit function the-
orem shows that, if (∂ρ0/∂xn)(x0) 6= 0 for some x0 ∈ ∂Ω, the mapping x 7→
(x1, . . . , xn−1, ρ0(x)) is a local C1-diffeomorphism.

10We shall define a C1 hypersurface of Ω as the set Σ = {x ∈ Ω, ρ(x) = 0} where the function
ρ ∈ C1(Ω; R) such that dρ 6= 0 at Σ. The transversality of the vector field X means here that
Xρ 6= 0 at Σ.
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Theorem 2.2.9 (Gauss-Green formula). Let Ω be an open set of Rn with a C1

boundary, X a Lipschitz-continuous vector field on Ω. Then we have, if X is com-
pactly supported or Ω is bounded,∫

Ω

(divX)dx =

∫
∂Ω

〈X, ν〉dσ, (2.2.12)

where ν is the exterior unit normal and dσ is the Euclidean measure on ∂Ω.

Proof. We may assume that Ω = {x ∈ Rn, ρ(x) < 0}, where ρ : Rn −→ R is C1

and such that dρ 6= 0 at ∂Ω. The exterior normal to the open set Ω is defined on (a
neighborhood of) ∂Ω as ν = ‖dρ‖−1dρ. We can reformulate the theorem as∫

Ω

divX dx =

∫
〈X, ν〉δ(ρ(x))‖dρ(x)‖ = lim

ε→0+

∫
〈X, dρ(x)〉θ(ρ(x)/ε)dx/ε

where θ ∈ Cc(R) has integral 1. Since it is linear in X, it is enough to prove it for
a(x)∂x1 , with a ∈ C1

c . We have, with ψ = 1 on (1,+∞), ψ = 0 on (−∞, 0),∫
Ω

divX dx =

∫
ρ(x)<0

∂a

∂x1

(x)dx = lim
ε→0+

∫
∂a

∂x1

(x)ψ(−ρ(x)/ε)dx

= lim
ε→0+

∫
a(x)ψ′(−ρ(x)/ε)ε−1 ∂ρ

∂x1

(x)dx = lim
ε→0+

∫
〈a(x)∂x1 , dρ〉ψ′(−ρ(x)/ε)ε−1dx

= lim
ε→0+

∫
〈X, dρ〉θ(ρ(x)/ε)ε−1dx,

with θ(t) = ψ′(−t),
∫ +∞
−∞ θ(t)dt =

∫ +∞
−∞ ψ′(−t)dt =

∫ +∞
−∞ ψ′(t)dt = 1,

In two dimensions, we get the Green-Riemann formula∫∫
Ω

(∂P
∂x

+
∂Q

∂y

)
dxdy =

∫
∂Ω

Pdy −Qdx, (2.2.13)

since with X = P∂x +Q∂y, Ω ≡ ρ(x, y) < 0, the lhs of (2.2.13) and (2.2.12) are the
same, whereas the rhs of (2.2.12) is, if ρ(x, y) = f(x)− y on the support of X,∫∫

〈X, dρ〉δ(ρ)dxdy = lim
ε→0+

∫∫ (
P (x, y)f ′(x)−Q(x, y)

)
θ((f(x)− y)/ε)dxdy/ε

=

∫ (
P (x, f(x))f ′(x)−Q(x, f(x))

)
dx =

∫
∂Ω

Pdy −Qdx.

Corollary 2.2.10. Let Ω be an open subset of Rn with a C1 boundary, u, v ∈ C2(Ω̄).
Then ∫

Ω

(∆u)(x)v(x)dx =

∫
Ω

u(x)(∆v)(x)dx+

∫
∂Ω

(
v
∂u

∂ν
− u

∂v

∂ν

)
dσ, (2.2.14)∫

Ω

∇u · ∇vdx = −
∫

Ω

u∆vdx+

∫
∂Ω

u
∂v

∂ν
dσ. (2.2.15)

where ∆ =
∑

1≤j≤n ∂
2
xj

is the Laplace operator and ∂u
∂ν

= ∇u · ν where ν is the
exterior normal.

Proof. We have v∆u = div
(
v∇u

)
−∇u ·∇v so that v∆u−u∆v = div(v∇u−u∇v)

providing the first formula from Green’s formula (2.2.12). The same formula written
as ∇u · ∇v = −u∆v + div

(
u∇v

)
entails the second formula.
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2.2.3 2D examples of singular vector fields

Theorem 2.2.5 shows that, locally, a C1 non-vanishing (i.e. non-singular) vector field
is equivalent to ∂/∂x1. The general question of classification of vector fields with
singularities is a difficult one, but we can give a pretty complete discussion for planar
vector fields with non-degenerate differential: it amounts to look at the system of
ODE(

ẋ1

ẋ2

)
= A

(
x1

x2

)
, where A is a 2× 2 constant real matrix, detA 6= 0. (2.2.16)

The characteristic polynomial of A is

pA(X) = X2 −X traceA+ detA, ∆A = (traceA)2 − 4 detA.

Case ∆A > 0: two distinct real roots λ1, λ2, R2 = Eλ1 ⊕ Eλ2

In a basis of eigenvectors the system is{
ẏ1 = λ1y1

ẏ2 = λ2y2
i.e.

{
y1 = etλ1y10

y2 = etλ2y20

· detA > 0, traceA > 0: 0 < λ1 < λ2

y2

y20

=

(
y1

y10

)λ2/λ1

repulsive node.

· detA > 0, traceA < 0: λ2 < λ1 < 0, attractive node, reverse the arrows in the
previous picture,

y2

y20

=

(
y1

y10

)λ2/λ1

.

· detA < 0: λ1 < 0 < λ2, saddle point

y2

y20

(
y1

y10

)λ2/(−λ1)

= 1

Case ∆A = 0: a double real root, λ1 = λ2 = 1
2
traceA.

· dimEλ = 2 attractive node if traceA < 0, repulsive node if traceA > 0,
· dimEλ = 1 attractive node if traceA < 0, repulsive node if traceA > 0.

Case ∆A < 0: two distinct conjugate non-real roots, λ1 = α+ iβ, λ2 = α− iβ,
β > 0

· α = 0 center,
· α > 0 expanding spiral point,
· α < 0 shrinking spiral point.

Exercise: draw a picture of the integral curves for each case above.
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2.3 Transport equations

2.3.1 The linear case

We shall deal first with the linear equation
∂u

∂t
+
∑

1≤j≤d

aj(t, x)
∂u

∂xj
= a0(t, x)u+ f(t, x) on t > 0, x ∈ Rd,

u|t=0 = u0, for x ∈ Rd,

(2.3.1)

where aj, f are functions of class C1 on Rd+1. We claim that solving that first-order
scalar linear PDE amounts to solve a non-linear system of ODE. We check with
x(t) =

(
xj(t)

)
1≤j≤d ∈ Rd

ẋj(t) = aj
(
t, x(t)

)
, 1 ≤ j ≤ d, xj(0) = yj, (2.3.2)

and we note that if u is a C1 solution of (2.3.1), we have

d

dt

{
u(t, x(t))

}
= (∂tu)(t, x(t)) +

∑
j

(∂xj
u)(t, x(t))aj(t, x(t))

= a0(t, x(t))u(t, x(t)) + f(t, x(t)),

so that u(t, x(t)) = u0(y)e
R t
0 a0(s,x(s))ds+

∫ t

0

e
R t

s a0(σ,x(σ))dσf(s, x(s))ds. As a result, the

value of the solution u along the characteristic curves t 7→ x(t), which satisfies a
linear ODE, is completely determined by u0, a0 and the source term f . We can write
as well x(t) = ψ(t, y) and notice that ψ is a C1 function: following Theorem 2.1.16,
ψ is the flow of the non-autonomous ODE (2.3.2) and we shall say as well that ψ is
the flow of the non-autonomous vector field

∂

∂t
+
∑

1≤j≤n

aj(t, x)
∂

∂xj
. (2.3.3)

We have

∂2ψj
∂t∂yk

(t, y) =
∑

1≤l≤d

∂aj
∂xl

(t, ψ(t, y))
∂ψl
∂yk

(t, y), i.e.
d

dt

∂ψ

∂y
=
∂a

∂x

∂ψ

∂y
,

so that with D(t, y) = det
(∂ψj

∂yk

)
1≤j,k≤d, we have from ψ(0, y) = y,

D(t, y) = exp

∫ t

0

(trace
∂a

∂x
)(s, ψ(s, y))ds = exp

∫ t

0

(div a)(s, ψ(s, y))ds. (2.3.4)

As a result, from the implicit function theorem, the equation x = ψ(t, y) is locally
equivalent to y = ϕ(t, x) with a C1 function ϕ so that

ψ(t, ϕ(t, x)) = x.
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We obtain from

u(t, ψ(t, y)) = u0(y)e
R t
0 a0(s,ψ(s,y))ds +

∫ t

0

e
R t

s a0(σ,ψ(σ,y))dσf(s, ψ(s, y))ds

that

u(t, x) = u0(ϕ(t, x))e
R t
0 a0(s,ψ(s,ϕ(t,x)))ds +

∫ t

0

e
R t

s a0(σ,ψ(σ,ϕ(t,x)))dσf
(
s, ψ(s, ϕ(t, x))

)
ds.

(2.3.5)
We need to introduce a slightly more general version of the non-autonomous flow
in order to compare it with the actual flow of the vector field ∂t + a(t, x) · ∂x in
particular when a satisfies the assumption (2.1.19), ensuring global existence for the
characteristic curves.

Definition 2.3.1. Let a : R×Rd −→ Rd be a C1 function such that (2.1.19) holds.
The non-autonomous flow of the vector field ∂t+a(t, x) ·∂x is defined as the mapping
R× R× Rd 3 (t, s, y) 7→ Ψ(t, s, y) ∈ Rd such that(∂Ψ

∂t

)
(t, s, y) = a

(
t,Ψ(t, s, y)

)
, Ψ(s, s, y) = y. (2.3.6)

Lemma 2.3.2. With a as in the previous definition, we have Ψ(t, 0, y) = ψ(t, y),
where ψ is defined by (2.3.2). The flow Φθ of the vector field ∂t + a(t, x) · ∂x in R1+d

satisfies
Φθ(s, y) =

(
s+ θ,Ψ(s+ θ, s, y)

)
. (2.3.7)

Moreover for s, θ1, θ2 ∈ R, y ∈ Rd, we have

Ψ(s+ θ1 + θ2, s, y) = Ψ
(
s+ θ1 + θ2, s+ θ1,Ψ(s+ θ1, s, y)

)
. (2.3.8)

For all t ∈ R, y 7→ ψ(t, y) is a C1 diffeomorphism of Rd.

Proof. Formula (2.3.7) follows immediately from (2.3.6). Considering the lhs (resp.
rhs) u(θ2) (resp. v(θ2)) of (2.3.8), we have

u̇(θ2) = a(s+ θ1 + θ2, u(θ2)), v̇(θ2) = a(s+ θ1 + θ2, v(θ2)),

and u(0) = Ψ(s+ θ1, s, y), v(0) = Ψ
(
s+ θ1, s+ θ1,Ψ(s+ θ1, s, y)

)
= Ψ(s+ θ1, s, y),

so that (2.3.8) follows. Note also that (2.3.8) is equivalent to the fact that Φθ1+θ2 =
Φθ1Φθ2 proven in (2.2.3). In particular, we have

y = Ψ(s, s, y) = Ψ
(
s, s+ θ,Ψ(s+ θ, s, y)

)
so that y = Ψ(s, t,Ψ(t, s, y)) = Ψ(0, t, ψ(t, y)) = Ψ(s, 0,Ψ(0, s, y)) = ψ(s,Ψ(0, s, y))
and for all t ∈ R, y 7→ ψ(t, y) = Ψ(t, 0, y) is a C1 global diffeomorphism of Rd

with inverse diffeomorphism x 7→ ϕ(t, x) = Ψ(0, t, x): both mappings are C1 from
Theorem 2.1.16, and with ϕt(x) = ϕ(t, x), ψt(y) = ψ(t, y) we have

(ϕt ◦ ψt)(y) = ϕt(ψ(t, y)) = Ψ(0, t,Ψ(t, 0, y)) = y,

(ψt ◦ ϕt)(x) = ψt(ϕ(t, x)) = Ψ(t, 0,Ψ(0, t, x)) = x.
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Remark 2.3.3. The group property of the non-autonomous flow is expressed by
(2.3.8) and in general, ψ(t + s, y) 6= ψ(t, ψ(s, y)): the simplest example is given by
the vector field ∂t + 2t∂x in R2

t,x for which

ψ(t, y) = t2 + y =⇒

{
ψ(t+ s, y) = (t+ s)2 + y

ψ(t, ψ(s, y)) = t2 + s2 + y.

Note also that here Ψ(t, s, y) = t2 − s2 + y and (2.3.8) reads

(s+ θ1 + θ2)
2 − s2 + y = (s+ θ1 + θ2)

2 − (s+ θ1)
2 + (s+ θ1)

2 − s2 + y.

Of course when a does not depend on t, the flow of L = ∂t + a(x) · ∂x︸ ︷︷ ︸
X

is given by

Φθ
L(s, y) = (s+ θ,Φθ

X(y)), Ψ(t, s, y) = Φt−s
X (y), ψ(t, y) = Φt

X(y)

and in that very particular case, ψ(t+ s, y) = ψ(t, ψ(s, y)).

We have proven the following

Theorem 2.3.4. Let a : Rt × Rd
x → Rd be a continuous function which satisfies

(2.1.19) and such that ∂xa is continuous. Let a0, f : Rt × Rd
x → R be continuous

functions and u0 : Rd → R be a C1 function. The Initial-Value-Problem (2.3.1) has
a unique C1 solution given by (2.3.5).

Note that, thanks to the hypothesis (2.1.19) and ∂xa continuous, the flow x 7→
ψ(t, x) and y 7→ ϕ(t, y) defined above are global C1 diffeomorphisms of Rd.

Remark 2.3.5. Let us assume that a0 and f are both identically vanishing: then
we have from (2.3.5)

u(t, x) = u0(ϕ(t, x))

and since ψ(t, y) = y +
∫ t

0
a
(
s, ψ(s, y)

)
ds we get

x = ψ(t, ϕ(t, x)) = ϕ(t, x) +

∫ t

0

a
(
s, ψ(s, ϕ(t, x))

)
ds

so that |ϕ(t, x) − x| ≤ |t|‖a‖L∞ and the solution u(t, x) depends only on u0 on the
ball B(x, |t|‖a‖L∞), that is a finite-speed-of-propagation property. Moreover the
range of u(t, ·) is included in the range of u0: in particular if u0 is valued in [m,M ],
so is the solution u. If the vector field is autonomous, we have seen that

ϕ(t, x) = Φ−t
X (x), X =

∑
1≤j≤d

aj(x)∂xj
,

so that u(t, x) = u0

(
Φ−t
X (x)

)
, u(t+ s, x) = u0

(
Φ−t−s
X (x)

)
= u(t,Φ−s

X (x)
)
.
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2.3.2 The quasi-linear case

A linear companion equation

We want now to investigate a more involved case
∂u

∂t
+
∑

1≤j≤d

aj
(
t, x, u(t, x)

) ∂u
∂xj

= b
(
t, x, u(t, x)

)
on 0 < t < T, x ∈ Rd,

u|t=0 = u0, for x ∈ Rd.

(2.3.9)
That equation is a general quasi-linear scalar first-order equation. We know from
the introduction and the discussion around Burgers equation (1.1.4) that we should
not expect global existence in general for such an equation. We assume that the
functions aj, b : Rt×Rd

x×Rv → R are of class C1 and we shall introduce a companion
linear homogeneous equation

∂F

∂t
+
∑

1≤j≤d

aj(t, x, v)
∂F

∂xj
+ b(t, x, v)

∂F

∂v
= 0, F (0, x, v) = v − u0(x). (2.3.10)

From the discussion in the previous section, we know that, provided u0 is continuous,
there exists a unique C1 local solution of the initial value problem (2.3.10), near the
point (t, x, v) = (0, x0, v0 = u0(x0)). We claim now that, at this point, ∂F/∂v 6= 0:
in fact this follows obviously from the identitv F (0, x, v) = v − u0(x) which implies
that (∂F/∂v)(0, x, v) = 1. We can now apply the Implicit Function Theorem, which
implies that the equation F (t, x, v) = 0 is equivalent to v = u(t, x) with a C1 function
u defined in a neighborhood of (t = 0, x = x0) with u(0, x0) = u0(x0). We have

F (t, x, u(t, x)) ≡ 0 (2.3.11)

and

∂u

∂t
+
∑

1≤j≤d

aj
(
t, x, u(t, x)

) ∂u
∂xj

= − ∂F/∂t
∂F/∂v

(t, x, u)−
∑

1≤j≤d

aj(t, x, u)
∂F/∂xj
∂F/∂v

(t, x, u) = b(t, x, u),

so that we have found a local solution for our quasi-linear PDE. Moreover, since
F (0, x, v) = v − u0(x), we get from (2.3.11) u(0, x) − u0(x) = 0, so that the initial
condition is also fulfilled. We shall develop later on this discussion on the first-order
scalar quasi-linear case, but it is interesting to note that finding a local solution for
such an equation is not more difficult than getting a solution for a linear equation.
Moreover, we shall be able to track the solution by a suitable method of characteris-
tics adapted to this quasi-linear case, in fact following the method of characteristics
for the companion linear equation (2.3.10).

The previous discussion shows that a local solution of (2.3.9) does exist. A direct
method of characteristics can be devised, following the discussion above: we assume
that u is a C1 solution of (2.3.9) and we consider the ODE

ẋ(t) = a(t, x, u(t, x(t))), v̇(t) = b(t, x(t), u(t, x(t))), x(0) = x0, v(0) = u0(x0).
(2.3.12)
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We calculate

d

dt

(
u(t, x(t))− v(t)

)
= (∂tu)(t, x(t)) + (∂xu)(t, x(t)) · a(t, x(t), u(t, x(t)))− b(t, x(t), u(t, x(t))) = 0

so that
u(t, x(t)) = v(t). (2.3.13)

2.3.3 Classical solutions of Burgers equation

We have already encountered Burgers’ equation in (1.1.4). According to the previous
discussion, the linear companion equation is ∂tF+v∂xF = 0 whose flow is ψ(t, x, v) =
(x+tv, v) since ẋ = v, v̇ = 0; we have F (t, x+tv, v) = v−u0(x) and thus the identity
F (t, x+ tu0(x), u0(x)) = 0. Since a C1 solution u(t, x) of

∂tu+ u∂xu = 0, u(0, x) = u0(x), (2.3.14)

satisfies the identity (2.3.11) we have

u(t, x+ tu0(x)) = u0(x). (2.3.15)

If u0 ∈ C1 with u0, u
′
0 bounded the mapping x 7→ x + tu0(x) = ft(x) for t ≥ 0 is a

C1 diffeomorphism provided 1 + tu′0(x) > 0 which is satisfied whenever

0 ≤ t < T0 =
1

sup(−u′0)+

since the inequality u′0 ≥ −M with M ≥ 0 implies

1 + tu′0(x) ≥ 1− tM > 1− T0M = 0.

Moreover ft and gt = f−1
t are C1 functions of t. As a result, we have for 0 ≤ t < T0

u(t, x) = u0(gt(x)), so that sup
x
|u(t, x)| = sup

x
|u0(x)|.

Note that

(∂xu)(t, ft(x))f
′
t(x) = u′0(x) =⇒ (∂xu)(t, x+ tu0(x)) =

u′0(x)

1 + tu′0(x)

so that this quantity is unbounded when t → (T0)− if −u′0 reaches a positive max-
imum at x, but nevertheless

∫
|(∂xu)(t, x)|dx =

∫
|u′0(gt(x))|g′t(x)dx =

∫
|u′0(x)|dx.

Let us check some simple examples.
• When u0(x) = αx, with α ≥ 0 we do have a global solution for t ≥ 0 given by the
identity

u(t, x) = u0(x− tu(t, x)) = αx− αtu(t, x) =⇒ u(t, x) = αx/(1 + αt).

• When u0(x) = −αx, with α > 0 the solution blows-up at time T = 1/α,

u(t, x) = u0(x− tu(t, x)) = −αx+ αtu(t, x) =⇒ u(t, x) = αx/(αt− 1).
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• When u0(x) = (1 − x)H(x) + (1 + x)H(−x), with H = 1R+ , we find, using the
method of characteristics that

u(t, x) = H(x− t)
1− x

1− t
+H(t− x)

x+ 1

t+ 1
, 0 ≤ t < 1, x ∈ R. (2.3.16)

The function u is only Lipschitz continuous, but we may compute its distribution
derivative and we get on the open set −1 < t < 1

∂tu = −δ(x− t)
1− x

1− t
+ δ(t− x)

x+ 1

t+ 1
+H(x− t)

1− x

(1− t)2
−H(t− x)

x+ 1

(t+ 1)2

= H(x− t)
1− x

(1− t)2
−H(t− x)

x+ 1

(t+ 1)2
∈ L∞loc

∂xu = δ(x− t)
1− x

1− t
− δ(t− x)

x+ 1

t+ 1
−H(x− t)

1

(1− t)
+H(t− x)

1

(t+ 1)

= −H(x− t)
1

(1− t)
+H(t− x)

1

(t+ 1)
∈ L∞loc, the product u∂xu makes sense

u∂xu = −H(x− t)
1− x

(1− t)2
+H(t− x)

x+ 1

(t+ 1)2
= −∂tu,

so that Burgers equation holds for u. The following picture is helpful. In fact, the

t=0

t=1
Blow-up at time t=1

for x≥0, the characteristics meet at (1,1)for x<0, the characteristics do not meet

Figure 2.5: The characteristic curves with
u0(x) = (1− x)H(x) + (1 + x)H(−x).

function u0 is equal to 1 + x for x ≤ 0 and to 1 − x for x ≥ 0 and we have from
(2.3.15) u(t, x+ tu0(x)) = u0(x), so that u is constant along the characteristic curves
t 7→ (x0 + tu0(x0), t) ∈ R2

x,t: these curves are straight lines starting at (x0, t = 0)
with slope 1/u0(x0). In the case under scope, we have{

x(t, x0) = x0 + t(1 + x0) if x0 ≤ 0,

x(t, x0) = x0 + t(1− x0) if x0 ≥ 0.
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We have indeed for x0 6= x1 both ≥ 0, 0 ≤ t < 1

x(1, x0) = 1, x(t, x0)− x(t, x1) = (x0 − x1)(1− t) 6= 0.

On the other hand for x0 6= x1 both ≤ 0, t ≥ 0, we have

x(t, x0)− x(t, x1) = (x0 − x1)(1 + t) 6= 0.

2.4 One-dimensional conservation laws

2.4.1 Rankine-Hugoniot condition and singular solutions

We shall consider here the following type of non-linear equation

∂tu+ ∂x
(
f(u)

)
= 0, (2.4.1)

where (t, x) are two real variables, and u is a real-valued function, whereas f is a
smooth given function, called the flux. We shall consider some singular solutions of
this equation, with a discontinuity across a C1 curve with equation x = σ(t). We
define

u(t, x) = H(x− σ(t))ur(t, x) +H(σ(t)− x)ul(t, x) (2.4.2)

where H is the Heaviside function and we shall assume that ur and ul are C1

functions respectively on the closure of the open subsets

Ωr = {(x, t), x > σ(t)} and Ωl = {(x, t), x < σ(t)}

and that ur solves the equation (2.4.1) on the open set Ωr (resp. ul solves the
equation (2.4.1) on the open set Ωl). We shall assume also the so-called Rankine-
Hugoniot condition,

at x = σ(t), f(ur)− f(ul) = σ′(t)(ur − ul). (2.4.3)

Theorem 2.4.1. Let σ be a C1 function, Ωr,l defined as above, let ur, ul be C1

solutions of (2.4.1) respectively on Ωr,Ωl. Then u given by (2.4.2) is a distribution
solution of (2.4.1) if and only if the Rankine-Hugoniot condition (2.4.3) is fulfilled.

Proof. We have

f(u(t, x)) = H(x− σ(t))f(ur(t, x)) +H(σ(t)− x)f(ul(t, x))

and thus the distribution derivative with respect to x of f(u) is equal to

∂x(f(u)) = H(x− σ(t))f ′(ur(t, x))(∂xur)(t, x) +H(σ(t)− x)f ′(ul(t, x))(∂xul)(t, x)
+ δ(x− σ(t))

(
f(ur(t, x))− f(ul(t, x))

)
.

On the other hand, we have ∂tu = δ(x− σ(t))
(
ul(t, x)− ur(t, x)

)
σ′(t). Since ur and

ul are C1 solutions respectively on Ωr,Ωl, we get

∂tu+ ∂x
(
f(u)

)
= δ(x− σ(t))

(
f(ur)− f(ul)− σ′(t)

(
ur − ul

))
and the results follows.
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2.4.2 The Riemann problem for Burgers equation

We consider Burgers equation and a L∞loc solution u of{
∂tu+ ∂x(u

2/2) = 0, on t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R.

(2.4.4)

It means that for all ϕ ∈ C∞
c (R2),

∫
R
u0(x)ϕ(0, x)dx+

∫∫
H(t)∂tϕ(t, x)u(t, x)dtdx

+
1

2

∫∫
H(t)u(t, x)2(∂xϕ)(t, x)dtdx = 0, (2.4.5)

or for u ∈ L∞loc(R2),

∂t(Hu) + ∂x((Hu)
2/2) = δ(t)⊗ u0(x), H = H(t). (2.4.6)

Indeed (2.4.5) means that

〈∂t(Hu) + ∂x(Hu)
2/2, ϕ〉D ′,D = 〈δ(t)⊗ u0(x), ϕ〉D ′,D ,

which is (2.4.6).

Non-Physical Shock and Rarefaction Wave

Let us first assume u0(x) = H(x), i.e. ul(0, x) = 0, ur(0, x) = 1. Following the
method of characteristics (2.3.15), we should have u(t, x+ tu0(x)) = u0(x), i.e.{

u(t, x) = 0, for x < 0,

u(t, x+ t) = 1 for x > 0.
that is

{
u(t, x) = 0, for x < 0,

u(t, x) = 1 for x > t,

so we get no information in the region 0 < x < t. We could use our knowledge
on the construction of singular solutions to create a somewhat arbitrary shock at
x = t/2 (non-physical shock)

u(t, x) =

{
u(t, x) = 0, for x < t/2,

u(t, x) = 1 for x > t/2.
(2.4.7)

The Rankine-Hugoniot condition (2.4.3) is satisfied since σ(t) = t/2, u2
l = ul, u

2
r =

ur, so that

1

2
(u2

r − u2
l ) = σ′(t)(ur − ul).
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u=0
u=1

A non-physical shock along the line x=t/2

However, we can also devise another solution v by defining (rarefaction wave)

v(t, x) =


v(t, x) = 0, for x < 0,

v(t, x) = x/t for 0 < x < t,

v(t, x) = 1 for x > t.

(2.4.8)

We can indeed calculate

∂t

(
H(t)H(x)

(
H(t− x)x/t+H(x− t)

))
+

1

2
∂x

(
H(t)H(x)

(
H(t− x)x/t+H(x− t)

))2

and refer the reader to the proof of Theorem 2.4.2 to show that (2.4.8) is actually a
solution.

u=0 u=1

A rarefaction wave:   u=x/t in the region 0<x<t,    u=0 on x<0,     u=1 on x>t

We have thus two different weak solutions of (2.4.4) with the same inital datum!
This very unnatural situation has to be modified and we have to find a criterion to
select the “correct” solution.
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Entropy condition

For a general one-dimensional conservation law ∂tu + ∂x
(
f(u)

)
= 0 with a strictly

convex flux f (assume f ∈ C2(R) with inf f ′′ > 0), suppose that we have a curve of
discontinuity Γ ≡ x = φ(t) with distinct left and right limits ul, ur. Then nonetheless
the Rankine-Hugoniot (2.4.3) should be satisfied across Γ, but also ul > ur along
Γ: this eliminates in particular the solution (2.4.7). As a geometric explanation, we
may say that singularities are due to the crossing of characteristics, but we want
to avoid that by moving backwards along a characteristic, we encounter a singular
curve.

Theorem 2.4.2. We consider the initial-value problem{
∂tu+ ∂x

(
u2

2

)
= 0, t > 0,

u0(x) = H(−x)ul +H(x)ur.
(2.4.9)

where ul, ur are distinct constants and we define

σ =
1

2

u2
r − u2

l

ur − ul
(2.4.10)

(1) If ul > ur, the unique entropy solution is given by

u(t, x) = H(σt− x)ul +H(x− σt)ur. (2.4.11)

This is a shock wave with speed σ satisfying the Rankine-Hugoniot condition (2.4.3)
at the discontinuity curve x = σt.
(2) If ul < ur, the unique entropy solution is given by

u(t, x) = H(tul − x)ul +
x

t
1[tul,tur](x) +H(x− tur)ur. (2.4.12)

The states ul, ur are separated by a rarefaction wave.

Proof. In the case ul > ur, we have a singular solution according to Theorem 2.4.1
satisfying our entropy condition ul > ur. In the other case, we must avoid a shock
curve and we check directly, with u given by (2.4.12),

∂tu = δ(tul − x)u2
l −

x

t2
1[tul,tur](x) +

x

t

(
−δ(x− tul)ul + δ(tur − x)ur

)
− δ(x− tur)u

2
r,

and

∂x(u
2) = ∂x

(
H(tul − x)u2

l +
x2

t2
1[tul,tur](x) +H(x− tur)u

2
r

)
= −u2

l δ(tul − x) +
2x

t2
1[tul,tur](x) +

x2

t2
(
δ(x− tul)− δ(x− tur)

)
+ δ(x− tur)u

2
r
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so that

∂tu+ ∂x(u
2/2) = δ(tul − x)

=u2
l ( 1

2
−1+ 1

2
)=0︷ ︸︸ ︷(

u2
l /2− xul/t+ x2/2t2

)
+ δ(x− tur)

(
−u2

r/2 + xur/t− x2/2t2
)︸ ︷︷ ︸

=u2
r(− 1

2
+1− 1

2
)=0

= 0.
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Chapter 3

Five classical equations

3.1 The Laplace and Cauchy-Riemann equations

3.1.1 Fundamental solutions

We define the Laplace operator ∆ in Rn as

∆ =
∑

1≤j≤n

∂2
xj
. (3.1.1)

In one dimension, we have that d2

dt2
(t+) = δ0 and for n ≥ 2 the following result

describes the fundamental solutions of the Laplace operator. In R2
x,y, we define the

operator ∂̄ (a.k.a. the Cauchy-Riemann operator) by

∂̄ =
1

2
(∂x + i∂y). (3.1.2)

Theorem 3.1.1. We have ∆E = δ0 with ‖ · ‖ standing for the Euclidean norm,

E(x) =
1

2π
ln ‖x‖, for n = 2, (3.1.3)

E(x) = ‖x‖2−n 1

(2− n)|Sn−1|
, for n ≥ 3, with |Sn−1| = 2πn/2

Γ(n/2)
, (3.1.4)

∂̄
( 1

πz

)
= δ0, with z = x+ iy (equality in D ′(R2

x,y)). (3.1.5)

Proof. We start with n ≥ 3, noting that the function ‖x‖2−n is L1
loc and homogeneous

with degree 2−n, so that ∆‖x‖2−n is homogeneous with degree −n (see section 3.4.3

in [15]). Moreover, the function ‖x‖2−n = f(r2), r2 = ‖x‖2, f(t) = t
1−n

2
+ is smooth

outside 0 and we can compute there

∆(f(r2)) =
∑
j

∂j(f
′(r2)2xj) =

∑
j

f ′′(r2)4x2
j + 2nf ′(r2) = 4r2f ′′(r2) + 2nf ′(r2),

so that with t = r2,

∆(f(r2)) = 4t(1− n

2
)(−n

2
)t−

n
2
−1 + 2n(1− n

2
)t−

n
2 = t−

n
2 (1− n

2
)(−2n+ 2n) = 0.
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As a result, ∆‖x‖2−n is homogeneous with degree −n and supported in {0}. From
Theorem 3.3.4 in [15], we obtain that

∆‖x‖2−n = cδ0︸ ︷︷ ︸
homogeneous
degree −n

+
∑

1≤j≤m

∑
|α|=j

cj,αδ
(α)
0︸ ︷︷ ︸

homogeneous
degree −n− j

.

Lemma 3.4.8 in [15] implies that for 1 ≤ j ≤ m, 0 =
∑

|α|=j cj,αδ
(α)
0 and ∆‖x‖2−n =

cδ0. It remains to determine the constant c. We calculate, using the previous
formulas for the computation of ∆(f(r2)), here with f(t) = e−πt,

c = 〈∆‖x‖2−n, e−π‖x‖
2〉 =

∫
‖x‖2−ne−π‖x‖

2(
4‖x‖2π2 − 2nπ

)
dx

= |Sn−1|
∫ +∞

0

r2−n+n−1e−πr
2

(4π2r2 − 2nπ)dr

= |Sn−1|
( 1

2π
[e−πr

2

(4π2r2 − 2nπ)]0+∞ +
1

2π

∫ +∞

0

e−πr
2

8π2rdr
)

= |Sn−1|(−n+ 2),

giving (3.1.4). For the convenience of the reader, we calculate explicitely |Sn−1|. We
have indeed

1 =

∫
Rn

e−π‖x‖
2

dx = |Sn−1|
∫ +∞

0

rn−1e−πr
2

dr

=︸︷︷︸
r=t1/2π−1/2

|Sn−1|π(1−n)/2

∫ +∞

0

t
n−1

2 e−t
1

2
t−1/2dtπ−1/2 = |Sn−1|π−n/22−1Γ(n/2).

Turning now our attention to the Cauchy-Riemann equation, we see that 1/z is also
L1

loc(R2), homogeneous of degree −1, and satisfies ∂̄(z−1) = 0 on the complement of
{0}, so that the same reasoning as above shows that

∂̄(π−1z−1) = cδ0.

To check the value of c, we write c = 〈∂̄(π−1z−1), e−πzz̄〉 =
∫

R2 e
−πzz̄π−1z−1πzdxdy =

1, which gives (3.1.5). We are left with the Laplace equation in two dimensions and
we note that with ∂

∂z
= 1

2
(∂x − i∂y),

∂
∂z̄

= 1
2
(∂x + i∂y), we have in two dimensions

∆ = 4
∂

∂z

∂

∂z̄
= 4

∂

∂z̄

∂

∂z
. (3.1.6)

Solving the equation 4∂E
∂z

= 1
πz

leads us to try E = 1
2π

ln |z| and we check directly1

that ∂
∂z

(
ln(zz̄)

)
= z−1

∆(
1

2π
ln |z|) = π−12−24

∂

∂z̄

∂

∂z

(
ln(zz̄)

)
= π−1 ∂

∂z̄

(
z−1
)

= δ0.

1Noting that ln(x2 + y2) and its first derivatives are L1
loc(R2), we have for ϕ ∈ C∞c (R2),

〈 ∂
∂z

(
ln |z|2

)
, ϕ〉 =

1
2

∫∫
R2

(−∂xϕ+i∂yϕ) ln(x2+y2)dxdy =
∫∫

ϕ(x, y)(xr−2−iyr−2)dxdy =
∫∫

(x−iy)−1ϕ(x, y)dxdy.
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3.1.2 Hypoellipticity

Definition 3.1.2. We consider a constant coefficients differential operator

P = P (D) =
∑
|α|≤m

aαD
α
x , where aα ∈ C, Dα

x =
1

(2iπ)|α|
∂αx . (3.1.7)

A distribution E ∈ D ′(Rn) is called a fundamental solution of P when PE = δ0.

Definition 3.1.3. Let P be a linear operator of type (3.1.7). We shall say that P
is hypoelliptic when for all open subsets Ω of Rn and all u ∈ D ′(Ω), we have

singsuppu = singsuppPu. (3.1.8)

We note that if f ∈ E ′(Rn) and E is a fundamental solution of P , we have from
(3.5.13), (3.5.14) in [15],

P (E ∗ f) = PE ∗ f = δ0 ∗ f = f,

which allows to find a solution of the Partial Differential Equation P (D)u = f , at
least when f is a compactly supported distribution.

Examples. We have on the real line already proven (see (3.2.2) in [15]) that dH
dt

= δ0,
so that the Heaviside function is a fundamental solution of d/dt (note that from
Lemma 3.2.4 in [15], the other fundamental solutions are C + H(t)). This also
implies that

∂x1

(
H(x1)⊗ δ0(x2)⊗ · · · ⊗ δ0(xn)

)
= δ0(x), (the Dirac mass at 0 in Rn).

Let N ∈ N. With xλ+ defined in (3.4.8) of [15], we get, since ∂N+1
x1

(xN+1
1,+ ) =

H(x1)(N + 1)!, that

(∂x1 . . . ∂xn)N+2
( ∏

1≤j≤n

( xN+1
j,+

(N + 1)!

)
= δ0(x).

It is obvious that singsuppPu ⊂ singsuppu, so the hypoellipticity means that
singsuppu ⊂ singsuppPu, which is a very interesting piece of information since we
can then determine the singularities of our (unknown) solution u, which are located
at the same place as the singularities of the source f , which is known when we try
to solve the equation Pu = f.

Theorem 3.1.4. Let P be a linear operator of type (3.1.7) such that P has a fun-
damental solution E satisfying

singsuppE = {0}. (3.1.9)

Then P is hypoelliptic. In particular the Laplace and the Cauchy-Riemann operators
are hypoelliptic.
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N.B. The condition (3.1.9) appears as an iff condition for the hypoellipticity of the
operator P since it is also a consequence of the hypoellipticity property.

Proof. Assume that (3.1.9) holds, let Ω be an open subset of Rn and u ∈ D ′(Ω). We
consider f = Pu ∈ D ′(Ω), x0 /∈ singsupp f , χ0 ∈ C∞

c (Ω), χ0 = 1 near x0. We have
from Proposition 3.5.7 in [15] that

χu = χu ∗ PE = (Pχu) ∗ E = ([P, χ]u) ∗ E +

∈C∞c (Rn)︷︸︸︷
(χf) ∗E︸ ︷︷ ︸
∈C∞(Rn)

and thus, using Proposition 3.5.7 in [15] for singular supports, we get

singsupp(χu) ⊂ singsupp([P, χ]u) + singsuppE = singsupp([P, χ]u) ⊂ supp(u∇χ),

and since χ is identically 1 near x0, we get that x0 /∈ supp(u∇χ), implying x0 /∈
singsupp(χu), proving that x0 /∈ singsuppu and the result.

A few words on the Gamma function

The gamma function Γ is a meromorphic function on C given for Re z > 0 by the
formula

Γ(z) =

∫ +∞

0

e−ttz−1dt. (3.1.10)

For n ∈ N, we have Γ(n + 1) = n!; another interesting value is Γ(1/2) =
√
π. The

functional equation
Γ(z + 1) = zΓ(z) (3.1.11)

is easy to prove for Re z > 0 and can be used to extend the Γ function into a mero-

morphic function with simple poles at −N and Res(Γ,−k) = (−1)k

k!
. For instance, for

−1 < Re z ≤ 0 with z 6= 0 we define

Γ(z) =
Γ(z + 1)

z
, where we can use (3.1.10) to define Γ(z + 1).

More generally for k ∈ N, −1− k < Re z ≤ −k, z 6= −k, we can define

Γ(z) =
Γ(z + k + 1)

z(z + 1) . . . (z + k)
.

There are manifold references on the Gamma function. One of the most compre-
hensive is certainly the chapter VII of the Bourbaki volume Fonctions de variable
réelle [2].

3.1.3 Polar and spherical coordinates

The polar coordinates in R2 are ]0,+∞)×]−π, π[3 (r, θ) 7→ (r cos θ, r sin θ) = (x, y)
which is a C1 diffeomorphism from ]0,+∞)×]−π, π[ onto R2\(R−×{0}) with inverse
mapping given by

r = (x2 + y2)1/2, θ = Im
(
Log(x+ iy)

)
, where for z ∈ C\R−, Log z =

∫
[1,z]

dξ

ξ
.
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We have in two dimensions
r2∆ = (r∂r)

2 + ∂2
θ , (3.1.12)

since

(x∂x + y∂y)
2 + (x∂y − y∂x)

2

= x2∂2
x + y2∂2

y + 2xy∂2
xy + x∂x + y∂y + x2∂2

y + y2∂2
x − 2xy∂2

xy − x∂x − y∂y

= (x2 + y2)(∂2
x + ∂2

y).

In three dimensions, the spherical coordinates are given by
x = r cos θ sinφ

y = r sin θ sinφ

z = r cosφ

,


r = (x2 + y2 + z2)1/2

θ = Im
(
Log(x+ iy)

)
φ = Im

(
Log(z + i(x2 + y2)1/2)

) (3.1.13)

defining a C1 diffeomorphism

]0,+∞)×]− π, π[×]0, π[3 (r, θ, φ) 7→ (x, y, z) ∈ R3\
(
R− × {0} × R

)
.

The expression of the Laplace operator in spherical coordinates is

r2∆ = (r∂r)
2 + r∂r + ∂2

φ +
1

sin2 φ
∂2
θ +

1

tanφ
∂φ. (3.1.14)

To prove the above formula, we use (3.1.12), with

z = r cosφ, ρ = r sinφ, r2(∂2
z + ∂2

ρ) = (r∂r)
2 + ∂2

φ,

(ρ∂ρ)
2 + ∂2

θ = ρ2(∂2
x + ∂2

y),

so that (r∂r)
2 + ∂2

φ = r2∂2
z + r2ρ−2

(
ρ2(∂2

x + ∂2
y)− ρ∂ρ − ∂2

θ

)
and thus

r2∆ = (r∂r)
2 + ∂2

φ +
1

sin2 φ
∂2
θ + r2ρ−1∂ρ. (3.1.15)

We have also, using the change of variables (r, φ) 7→ (z, ρ)

r2ρ−1∂ρ = r2ρ−1
( r cosφ

z2 + ρ2
∂φ + ρr−1∂r

)
=

1

tanφ
∂φ + r∂r

and with (3.1.15), this provides the sought formula (3.1.14).

3.2 The heat equation

The heat operator is the following constant coefficient differential operator on Rt×Rn
x

∂t −∆x, (3.2.1)

where the Laplace operator ∆x on Rn is defined by (3.1.1).
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Theorem 3.2.1. We define on Rt × Rn
x the L1

loc function

E(t, x) = (4πt)−n/2H(t)e−
|x|2
4t . (3.2.2)

The function E is C∞ on the complement of {(0, 0)} in R×Rn. The function E is
a fundamental solution of the heat equation, i.e. ∂tE −∆xE = δ0(t)⊗ δ0(x).

Proof. To prove that E ∈ L1
loc(Rn+1), we calculate for T ≥ 0,∫ T

0

∫ +∞

0

t−n/2rn−1e−
r2

4t dtdr =︸︷︷︸
r=2t1/2ρ

∫ T

0

∫ +∞

0

t−n/22n−1t(n−1)/2ρn−1e−ρ
2

2t1/2dtdρ

= 2nT

∫ +∞

0

ρn−1e−ρ
2

dρ < +∞.

Moreover, the function E is obviously analytic on the open subset of R1+n {(t, x) ∈
R × Rn, t 6= 0}. Let us prove that E is C∞ on R × (Rn\{0}). With ρ0 defined in
(3.1.1) of [15], the function ρ1 defined by ρ1(t) = H(t)t−n/2ρ0(t) is also C∞ on R
and

E(t, x) = H(
|x|2

4t
)
( |x|2

4t

)n/2
e−

|x|2
4t |x|−nπ−n/2 = |x|−nπ−n/2ρ1

( 4t

|x|2
)
,

which is indeed smooth on Rt×(Rn
x\{0}). We want to solve the equation ∂tu−∆xu =

δ0(t)δ0(x). If u belongs to S ′(Rn+1), we can consider its Fourier transform v with
respect to x (well-defined by transposition as the Fourier transform in (4.1.10) of
[15], and we end-up with the simple ODE with parameters on v,

∂tv + 4π2|ξ|2v = δ0(t). (3.2.3)

It remains to determine a fundamental solution of that ODE: we have

d

dt
+ λ = e−tλ

d

dt
etλ,

( d
dt

+ λ
)
(e−tλH(t)) =

(
e−tλ

d

dt
etλ
)
(e−tλH(t)) = δ0(t), (3.2.4)

so that we can take v = H(t)e−4π2t|ξ|2 , which belongs to S ′(Rt × Rn
ξ ). Taking

the inverse Fourier transform with respect to ξ of both sides of (3.2.3) gives2 with
u ∈ S ′(Rt × Rn

ξ )
∂tu−∆xu = δ0(t)⊗ δ0(x). (3.2.5)

To compute u, we check with ϕ ∈ D(R), ψ ∈ D(Rn),

〈u, ϕ⊗ ψ̌〉 = 〈v̂x, ϕ⊗ ψ〉 = 〈v, ϕ⊗ ψ̂〉 =

∫ +∞

0

∫
Rn

ϕ(t)ψ̂(ξ)e−4π2t|ξ|2dtdξ.

We can use the Fubini theorem in that absolutely converging integral and use (4.1.2)
in [15] to get

〈u, ϕ⊗ ψ̌〉 =

∫ +∞

0

ϕ(t)

(∫
Rn

(4πt)−n/2e−π
|x|2
4πt ψ(x)dx

)
dt = 〈E,ϕ⊗ ψ̌〉,

where the last equality is due to the Fubini theorem and the local integrability of
E. We have thus E = u and E satisfies (3.2.5). The proof is complete.

2The Fourier transformation obviously respects the tensor products.
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Corollary 3.2.2. The heat equation is C∞ hypoelliptic (see the definition 3.1.3) ,
in particular for w ∈ D ′(R1+n),

singsuppw ⊂ singsupp(∂tw −∆xw),

where singsupp stands for the C∞ singular support as defined by (3.1.9) in [15].

Proof. It is an immediate consequence of the theorem 3.1.4, since E is C∞ outside
zero from the previous theorem.

Remark 3.2.3. It is also possible to define the analytic singular support of a dis-
tribution T in an open subset Ω of Rn: we define

singsuppA T = {x ∈ Ω,∀Uopen ∈ Vx, T|U /∈ A(U)}, (3.2.6)

whereA(U) stands for the analytic3 functions on the open set U . It is a consequence4

of the proof of theorem 3.2.1 that

singsuppAE = {0} × Rn
x. (3.2.7)

In particular this implies that the heat equation is not analytic-hypoelliptic since

{0} × Rn
x = singsuppAE 6⊂ singsuppA(∂tE −∆xE) = singsuppA δ0 = {0R1+n}.

3.3 The Schrödinger equation

We move forward now with the Schrödinger equation,

1

i

∂

∂t
−∆x (3.3.1)

which looks similar to the heat equation, but which is in fact drastically different.

Lemma 3.3.1.

D(Rn+1) 7→
∫ +∞

0

e−i(n−2)π
4 (4πt)−n/2

(∫
Rn

Φ(t, x)ei
|x|2
4t dx

)
dt = 〈E,Φ〉 (3.3.2)

is a distribution in Rn+1 of order ≤ n+ 2.

3A function f is said to be analytic on an open subset U of Rn if it is C∞(U), and for each
x0 ∈ U there exists r0 > 0 such that B̄(x0, r0) ⊂ U and

∀x ∈ B̄(x0, r0), f(x) =
∑

α∈Nn

1
α!

∂α
x f(x0)(x− x0)α.

4In fact, in the theorem, we have noted the obvious inclusion singsuppAE ⊂ {0} × Rn
x , but

since E is C∞ in t 6= 0, vanishes identically on t < 0, is positive ( it means > 0) on t > 0, it cannot
be analytic near any point of {0} × Rn

x .
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Proof. Let Φ ∈ D(R× Rn); for t > 0 we have, using (4.6.7) iin [15],

e−i(n−2)π
4 (4πt)−n/2

∫
Rn

Φ(t, x)ei
|x|2
4t dx = i

∫
Rn

Φ̂x(t, ξ)e−4iπ2t|ξ|2dξ,

so that with N 3 ñ even > n, using (4.1.7) and (4.1.14) in [15],

sup
t>0

∣∣∣∣e−i(n−2)π
4 (4πt)−n/2

∫
Rn

Φ(t, x)ei
|x|2
4t dx

∣∣∣∣ ≤ sup
t>0

∫
Rn

|Φ̂x(t, ξ)|dξ

≤ sup
t>0

∫
(1 + |ξ|2)−ñ/2| (1 + |ξ|2)ñ/2︸ ︷︷ ︸

polynomial

Φ̂(t, ξ)|dξ ≤ Cn max
|α|≤ñ

‖∂αxΦ‖L∞(Rn+1).

As a result the mapping

D(Rn+1) 7→
∫ +∞

0

e−i(n−2)π
4 (4πt)−n/2

(∫
Rn

Φ(t, x)ei
|x|2
4t dx

)
dt = 〈E,Φ〉

is a distribution of order ≤ n+ 2.

Theorem 3.3.2. The distribution E given by (3.3.2) is a fundamental solution of
the Schrödinger equation, i.e. 1

i
∂tE −∆xE = δ0(t)⊗ δ0(x). Moreover, E is smooth

on the open set {t 6= 0} and equal there to

e−i(n−2)π
4H(t)(4πt)−n/2ei

|x|2
4t . (3.3.3)

The distribution E is the partial Fourier transform with respect to the variable x of
the L∞(Rn+1) function

Ẽ(t, ξ) = iH(t)e−4iπ2t|ξ|2 . (3.3.4)

Proof. We want to solve the equation −i∂tu − ∆xu = δ0(t)δ0(x). If u belongs to
S ′(Rn+1), we can consider its Fourier transform v with respect to x (well-defined
by transposition as the Fourier transform in (4.1.10) of [15]), and we end-up with
the simple ODE with parameters on v,

∂tv + i4π2|ξ|2v = iδ0(t). (3.3.5)

Using the identity (3.2.4), we see that we can take v = iH(t)e−i4π
2t|ξ|2 , which belongs

to S ′(Rt×Rn
ξ ). Taking the inverse Fourier transform with respect to ξ of both sides

of (3.3.5) gives with u ∈ S ′(Rt × Rn
ξ )

∂tu− i∆xu = iδ0(t)⊗ δ0(x) i.e.
1

i
∂tu−∆xu = δ0(t)⊗ δ0(x). (3.3.6)

To compute u, we check with ϕ ∈ D(R), ψ ∈ D(Rn),

〈u, ϕ⊗ ψ〉 = 〈v̂x, ϕ⊗ ψ̌〉 = 〈v, ϕ⊗ ˇ̂
ψ〉 = i

∫ +∞

0

ϕ(t)

(∫
Rn

ψ̂(ξ)eiπ(−4πt)|ξ|2dξ

)
dt.

(3.3.7)
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We note now that, using (4.6.7) and (4.1.10) in [15], for t > 0,

i

∫
Rn

ψ̂(ξ)eiπ(−4πt)|ξ|2dξ = i

∫
Rn

ψ(x)(4πt)−n/2ei
|x|2
4t dxe−n

iπ
4

= e−i(n−2)π
4 (4πt)−n/2

∫
Rn

ei
|x|2
4t ψ(x)dx.

As a result, u is a distribution on Rn+1 defined by

〈u,Φ〉 = e−i(n−2)π
4 (4π)−n/2

∫ +∞

0

t−n/2
(∫

Rn

Φ(t, x)ei
|x|2
4t dx

)
dt

and coincides with E, so that E satisfies (3.3.6). The identity (3.3.7) is proving
(3.3.4). The proof of the theorem is complete.

Remark 3.3.3. The fundamental solution of the Schrödinger equation is unbounded
near t = 0 and, since E is smooth on t 6= 0, its C∞ singular support is equal to
{0} × Rn

x. In particular, the Schrödinger equation is not hypoelliptic. We shall see
that it looks like a propagation equation with an infinite speed, or more precisely
with a speed depending on the frequency of the wave.

3.4 The Wave Equation

3.4.1 Presentation

The wave equation in d dimensions with speed of propagation c > 0, is given by the
operator on Rt × Rd

x

�c = c−2∂2
t −∆x. (3.4.1)

We want to solve the equation c−2∂2
t u−∆xu = δ0(t)δ0(x). If u belongs to S ′(Rd+1),

we can consider its Fourier transform v with respect to x, and we end-up with the
ODE with parameters on v,

c−2∂2
t v + 4π2|ξ|2v = δ0(t), ∂2

t v + 4π2c2|ξ|2v = c2δ0(t). (3.4.2)

Lemma 3.4.1. Let λ, µ ∈ C. A fundamental solution of Pλ,µ = ( d
dt
−λ)( d

dt
−µ) (on

the real line) is 
(etλ − etµ

λ− µ

)
H(t) for λ 6= µ,

tetλH(t) for λ = µ.
(3.4.3)

Proof. If λ 6= µ, to solve ( d
dt
− λ)( d

dt
− µ) = δ0(t), the method of variation of

parameters gives a solution a(t)eλt + b(t)eµt with(
etλ etµ

λetλ µetµ

)(
ȧ

ḃ

)
=

(
0
δ

)
=⇒

(
ȧ

ḃ

)
=

1

λ− µ

(
δ
−δ

)
=⇒ (3.4.3) for λ 6= µ,

which gives also the result for λ = µ by differentiation with respect to λ of the
identity Pλ,µ

(
etλ − etµ

)
= (λ− µ)δ.
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Going back to the wave equation, we can take v as the temperate distribution5

given by

v(t, ξ) = c2H(t)
e2iπct|ξ| − e−2iπct|ξ|

4iπc|ξ|
= c2H(t)

sin
(
2πct|ξ|

)
2πc|ξ|

. (3.4.4)

Taking the inverse Fourier transform with respect to ξ of both sides of (3.4.2) gives
with u ∈ S ′(Rt × Rd

ξ)

c−2∂2
t u−∆xu = δ0(t)⊗ δ0(x). (3.4.5)

To compute u, we check with Φ ∈ D(R1+d),

〈u,Φ〉 = 〈v̂x(t, ξ),Φ(t,−ξ)〉 =

∫ +∞

0

∫
Rn

Φ̂x(t, ξ)c
sin
(
2πct|ξ|

)
2π|ξ|

dξdt. (3.4.6)

We have found an expression for a fundamental solution of the wave equation in d
space dimensions and proven the following proposition.

Proposition 3.4.2. Let E+ be the temperate distribution on Rd+1 such that

Ê+

x
(t, ξ) = cH(t)

sin
(
2πct|ξ|

)
2π|ξ|

. (3.4.7)

Then E+ is a fundamental solution of the wave equation (3.4.1), i.e. satisfies
�cE+ = δ0(t)⊗ δ0(x).

Remark 3.4.3. Defining the forward-light-cone Γ+,c as

Γ+,c = {(t, x) ∈ R× Rd, ct ≥ |x|}, (3.4.8)

one can prove more precisely that E+ is the only fundamental solution with support
in {t ≥ 0} and that

suppE+ = Γ+, when d = 1 and d ≥ 2 is even, (3.4.9)

suppE+ = ∂Γ+, when d ≥ 3 is odd, (3.4.10)

singsuppE+ = ∂Γ+, in any dimension. (3.4.11)

Lemma 3.4.4. Let E1, E2 be fundamental solutions of the wave equation such that
suppE1 ⊂ Γ+,c, suppE2 ⊂ {t ≥ 0}. Then E1 = E2.

Proof. Defining u = E1 − E2, we have suppu ⊂ {t ≥ 0} and the mapping

{t ≥ 0} × Γ+,c 3
(
(t, x), (s, y)

)
7→ (t+ s, x+ y) ∈ Rd+1

is proper since

t, s ≥ 0, cs ≥ |y|, |t+ s| ≤ T, |x+ y| ≤ R =⇒ t, s ∈ [0, T ], |x| ≤ R + cT, |y| ≤ cT,

so that Section 3.5.3 in [15] allows to perform the following calculations

u = u ∗ δ0 = u ∗�cE1 = �cu ∗ E1 = 0.

5The function R 3 s 7→ sin s
s =

∑
k≥0(−1)k s2k

(2k+1)! = S(s2) is a smooth bounded function of
s2, so that v(t, ξ) = c2H(t)tS(4π2c2t2|ξ|2) is continuous and such that |v(t, ξ)| ≤ CtH(t), thus a
tempered distribution.
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3.4.2 The wave equation in one space dimension

Theorem 3.4.5. On Rt × Rx, the only fundamental solution of the wave equation
supported in Γ+,c is

E+(t, x) =
c

2
H(ct− |x|). (3.4.12)

where E+ is defined in (3.4.7). That fundamental solution is bounded and the prop-
erties (3.4.9), (3.4.11) are satisfied.

Proof. We have c−2∂2
t − ∂2

x = (c−1∂t − ∂x)(c
−1∂t + ∂x) and changing (linearly) the

variables with x1 = ct + x, x2 = ct − x, we have t = 1
2c

(x1 + x2), x = 1
2
(x1 − x2),

using the notation

(x1, x2) 7→ (t, x) 7→ u(t, x) = v(x1, x2),

∂u

∂t
=

∂v

∂x1

c+
∂v

∂x2

c,
∂u

∂x
=

∂v

∂x1

− ∂v

∂x2

, c−1∂t − ∂x = 2∂x2 , c
−1∂t + ∂x = 2∂x1 ,

and thus �c = 4 ∂2

∂x1∂x2
, so that a fundamental solution is v = 1

4
H(x1)H(x2). We

have now to pull-back this distribution by the linear mapping (t, x) 7→ (x1, x2): we
have the formula

ϕ(0, 0) = 〈4 ∂2v

∂x1∂x2

(x1, x2), ϕ(x1, x2)〉 = 〈(�cu)(t, x), ϕ(ct+ x, ct− x)〉2c

which gives the fundamental solution 2c
4
H(ct+x)H(ct−x) = c

2
H(ct−|x|). Moreover

that fundamental solution is supported in Γ+,c and since E+ is supported in {t ≥ 0},
we can apply the lemma 3.4.4 to get their equality.

3.4.3 The wave equation in two space dimensions

We consider (3.4.1) with d = 2, i.e. �c = c−2∂2
t − ∂2

x1
− ∂2

x2
.

Theorem 3.4.6. On Rt × R2
x, the only fundamental solution of the wave equation

supported in Γ+,c is

E+(t, x) =
c

2π
H(ct− |x|)(c2t2 − |x|2)−1/2, (3.4.13)

where E+ is defined in (3.4.7). That fundamental solution is L1
loc and the properties

(3.4.9), (3.4.11) are satisfied.

Proof. From the lemma 3.4.4, it is enough to prove that the rhs of (3.4.13) is indeed
a fundamental solution. The function E(t, x) = c

2π
H(ct − |x|)(c2t2 − |x|2)−1/2 is

locally integrable in R× R2 since∫ T

0

∫ ct

0

(c2t2 − r2)−1/2rdrdt =

∫ T

0

[(c2t2 − r2)1/2]r=0
r=ctdt = cT 2/2 < +∞.

Moreover E is homogeneous of degree −1, so that �cE is homogeneous with degree
−3 and supported in Γ+,c. We use now the independently proven three-dimensional
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case (Theorem 3.4.7). We define with E+,3 given by (3.4.15), ϕ ∈ D(R3
t,x1,x2

), χ ∈
D(R) with χ(0) = 1,

〈u, ϕ〉D ′(R3),D(R3) = lim
ε→0
〈E+,3, ϕ(t, x1, x2)⊗ χ(εx3)〉D ′(R4),D(R4)

= lim
ε→0

1

4π

∫∫∫
R3

ϕ(c−1
√
x2

1 + x2
2 + x2

3, x1, x2)√
x2

1 + x2
2 + x2

3

χ(εx3)dx1dx2dx3

=
1

4π
2

∫∫∫
R2

x1,x2
×{x3≥0}

ϕ(c−1
√
x2

1 + x2
2 + x2

3, x1, x2)√
x2

1 + x2
2 + x2

3

dx1dx2dx3

(t = c−1
√

x2
1 + x2

2 + x2
3)

=
1

2π

∫∫∫
R2

x1,x2
×{ct≥

√
x2
1+x2

2}

ϕ(t, x1, x2)

ct

1

2
(c2t2 − x2

1 − x2
2)
−1/22c2tdx1dx2dt

=
c

2π

∫∫∫
R2

x1,x2
×{ct≥

√
x2
1+x2

2}
ϕ(t, x1, x2)(c

2t2 − x2
1 − x2

2)
−1/2dx1dx2dt

= 〈E,ϕ〉D ′(R3),D(R3), so that E+ = u.

With �c,d standing for the wave operator in d dimensions with speed c, we have,
since

�c,3

(
ϕ(t, x1, x2)⊗ χ(εx3)

)
= �c,2

(
ϕ(t, x1, x2)

)
⊗ χ(εx3)− ϕ(t, x1, x2)ε

2χ′′(εx3)

〈�c,2u, ϕ〉 = lim
ε→0
〈E+,3, (�c,2ϕ)(t, x1, x2)⊗ χ(εx3)〉

= lim
ε→0

(
〈E+,3,�c,3

(
ϕ(t, x1, x2)⊗ χ(εx3)

)
)〉+ 〈E+,3, ϕ(t, x1, x2)ε

2χ′′(εx3)〉
)

= ϕ(0, 0, 0),

which gives �c,2E = �c,2u = δ0,R3 and the result.

3.4.4 The wave equation in three space dimensions

We consider (3.4.1) with d = 3, i.e. �c = c−2∂2
t − ∂2

x1
− ∂2

x2
− ∂2

x3
.

Theorem 3.4.7. On Rt × R3
x, the only fundamental solution of the wave equation

supported in Γ+,c is

E+(t, x) =
1

4π|x|
δ0,R(t− c−1|x|), (3.4.14)

i.e. for Φ ∈ D(Rt × R3
x), 〈E+,Φ〉 =

∫
R3

1

4π|x|
Φ(c−1|x|, x)dx. (3.4.15)

where E+ is defined in (3.4.7). The properties (3.4.10), (3.4.11) are satisfied.

Proof. The formula (3.4.15) is defining a Radon measure E with support ∂Γ+,c,
so that the last statements of the lemmas are clear. From the lemma 3.4.4, it is
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enough to prove that (3.4.15) defines indeed a fundamental solution. We check for
ϕ ∈ D(R), ψ ∈ D(R3)

〈�cE,ϕ(t)⊗ ψ(x)〉 = 〈E,�c(ϕ⊗ ψ)〉

=
1

4π

∫
R3

|x|−1
(
c−2ϕ′′(c−1|x|)ψ(x)− ϕ(c−1|x|)(∆ψ)(x)

)
dx.

If we assume that suppϕ ⊂ R∗
+, we get∫

R3

|x|−1ϕ(c−1|x|)(∆ψ)(x)dx =

∫
R3

∆
(
|x|−1ϕ(c−1|x|)

)
ψ(x)dx

=

∫
R3

((
r−1ϕ(c−1r)

)′′
+ 2r−1

(
r−1ϕ(c−1r)

)′)
ψ(x)dx (r = |x|)

=

∫
ψ(x)

(
r−1ϕ′′(c−1r)c−2 + 2(−r−2)ϕ′(c−1r)c−1 + 2r−3ϕ(c−1r)

+ 2r−1r−1ϕ′(c−1r)c−1 + 2r−1(−r−2)ϕ(c−1r)
)
dx,

which gives 〈�cE,ϕ(t)⊗ ψ(x)〉 = 0. As a result,

supp(�cE) ⊂ ∂Γ+,c ∩ {t ≤ 0} = {(0R, 0R3)},

and since E is homogeneous with degree −2, the distribution �cE is homogeneous
with degree −4 with support at the origin of R4: Lemma 3.4.8 and Theorem 3.3.4
in [15] imply that �cE = κδ0,R4 . To check that κ = 1, we calculate for ϕ ∈ D(R)
(noting that |t| ≤ C and |x| ≤ c|t|+ 1 implies |x| ≤ cC + 1)

〈�cE,ϕ(t)⊗ 1〉 =
1

4π

∫ +∞

0

r−1c−2ϕ′′(c−1r)r2dr4π =

∫ +∞

0

ϕ′′(r)rdr

= [ϕ′(r)r]+∞0 −
∫ +∞

0

ϕ′(r)dr = ϕ(0),

so that κ = 1 and the theorem is proven.
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Chapter 4

Analytic PDE

4.1 The Cauchy-Kovalevskaya theorem

Let m ∈ N∗. We consider the Cauchy problem in Rt × Rd
x{

∂mt u = F
(
t, x, (∂kt ∂

α
xu)|α|+k≤m,k<m

)
,

(∂jtu)(0, x) = vj(x), 0 ≤ j < m.
(4.1.1)

where F, vj are all analytic of their arguments.

Theorem 4.1.1. Let F be an analytic function in a neighborhood of (0, x0, y0) ∈
Rt × Rd

x × RN with y0 =
(
(∂αx vk)(x0)

)
|α|+k≤m,k<m, N = Cd+1

d+m+1 − 1 (see (7.3.3) in

the appendix) and let (vj)0≤j<m be analytic functions in a neighborhood of x0. Then
there exists a neighborhood of (0, x0) on which the Cauchy problem (4.1.1) has a
unique analytic solution.

Proof. The uniqueness part is a consequence of the following lemma.

Lemma 4.1.2. Let m,m′ ∈ N∗. We consider the Cauchy problem in Rt × Rd
x{

∂mt u = G
(
t, x, (∂kt ∂

α
xu)|α|≤m′,k<m

)
,

(∂jtu)(0, x) = vj(x), 0 ≤ j < m.
(4.1.2)

where G, vj are all analytic of their arguments. The problem (4.1.2) has a unique
analytic solution.

Proof of the lemma. Let u be an analytic solution of (4.1.2): we prove by induction
on l that

∀l ∈ N,∃m′
l ∈ N, ∂m+l

t u = Gl(t, x, (∂
k
t ∂

α
xu)|α|≤m′

l,k<m
), (4.1.3)

where Gl depends on a finite number of derivatives of G. It is true for l = 0 and if
true for some l ≥ 0, we get

∂m+l+1
t u =

∂Gl

∂t
+

∑
k,α

|α|≤m′,k<m

∂Gl

∂wkα
∂k+1
t ∂αxu︸ ︷︷ ︸

expected term if k < m − 1

.

65
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If k = m− 1 in the sum above, we have ∂k+1
t ∂αxu = ∂αx

(
G(t, x, (∂kt ∂

α
xu)|α|≤m′,k<m)

)
,

and this concludes the induction proof. As a result, we get that

∀l ∈ N, ∂m+l
t u(0, x) = Gl(0, x, (∂

α
x vk)|α|≤m′

l,k<m
) (and ∂j

t u(0, x) = vj(x), 0 ≤ j < m).

This implies that for all k, α, (∂kt ∂
α
xu)(0, x) are determined by the equation (4.1.2)

and by analyticity of u, gives the uniqueness result. The proof of the lemma is
complete.

Let us now prove the existence part of Theorem 4.1.1. Introducing U(t, x) = u(t, x)−∑
0≤j<m vj(x)

tj

j!
we see that (4.1.1) is equivalent to∂

m
t U = F

(
t, x, (∂kt ∂

α
x (U +

∑
0≤j<m vj(x)

tj

j!
))|α|+k≤m

k<m

)
= G

(
t, x, (∂kt ∂

α
xU)|α|+k≤m

k<m

)
,

(∂jtU)(0, x) = 0, 0 ≤ j < m.

(4.1.4)
with G analytic. To prove the theorem, we may thus assume that the vj in (4.1.1)
are all identically 0. Let us notice that if u is a smooth function satisfying (4.1.1),
then for k + |α| ≤ m, k < m, we have with wk,α = ∂kt ∂

α
xu,

· if k + 1 + |α| ≤ m and k + 1 < m, ∂twk,α = wk+1,α,

· if k = m− 1, |α| = 0, ∂twk,α = ∂mt u = F (t, x, (wlβ)l+|β|≤m,l<m),

· if k = m− 1, |α| = 1, α = ej, ∂twk,α = ∂xj
∂mt u =

∂F

∂xj
+

∑
l+|β|≤m
l<m

∂F

∂wlβ

∂wlβ
∂xj

,

· if k < m− 1, k + 1 + |α| ≥ 1 +m =⇒ k + |α| = m, k ≤ m− 2, |α| ≥ 2,

∃j with αj ≥ 1, ∂twk,α = ∂k+1
t ∂αxu = ∂xj

∂k+1
t ∂α−ej

x u = ∂xj
wk+1,α−ej

,

with k + 1 < m, k + 1 + |α− ej| = k + |α| = m,

· wkα(0, x) = ∂αx vk(x) ≡ 0.

Conversely, if the functions (wk,α)k+|α|≤m,k<m satisfy

· if k + 1 + |α| ≤ m and k + 1 < m, ∂twk,α = wk+1,α, (4.1.5)

· if k = m− 1, |α| = 0, ∂twk,α = F (t, x, (wlβ)l+|β|≤m,l<m), (4.1.6)

· if k = m− 1, |α| = 1, α = ej, ∂twk,α =
∂F

∂xj
+

∑
l+|β|≤m
l<m

∂F

∂wlβ

∂wlβ
∂xj

, (4.1.7)

· if k + |α| = m, k ≤ m− 2, |α| ≥ 2, ∂twk,α = ∂xj
wk+1,α−ej

, (4.1.8)

where j is the smallest integer in [1, d] such that αj ≥ 1,

· wkα(0, x) ≡ 0, (4.1.9)

we have
wk,α = ∂kt ∂

α
xw00, k + |α| ≤ m, k < m. (4.1.10)

In fact, if |α| = 0, we have for k < m from (4.1.5)

∂tw00 = w10, . . . , ∂twm−2,0 = wm−1,0 =⇒ ∂kt w00 = wk0 for 0 ≤ k < m,
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and the property (4.1.10) for |α| = 0. We perform now an induction on |α|. If
k + |α| = m, k ≤ m− 2, (4.1.8), (4.1.9) imply

∂twk,α = ∂xj
wk+1,α−ej

=⇒ wk,α =

∫ t

0

∂xj
wk+1,α−ej

ds =︸︷︷︸
induction

since|α − ej | = |α| − 1

∫ t

0

∂xj
∂α−ej
x ∂k+1

t w00ds = ∂kt ∂
α
xw00.

(4.1.11)

Moreover, if k = m− 1, |α| = 1, α = ej, (4.1.7), (4.1.9) imply

wm−1,ej
=

∫ t

0

( ∂F
∂xj

+
∑

l+|β|≤m
l<m

∂F

∂wlβ

∂wlβ
∂xj

)
ds (4.1.12)

whereas from (4.1.6), (4.1.9),

wm−1,0 =

∫ t

0

F (s, x, (wlβ)l+|β|≤m,l<m)ds

and thus (4.1.12) gives ∂xj
wm−1,0 = wm−1,ej

so that

wm−1,ej
= ∂m−1

t ∂xj
w00, (4.1.13)

from the case |α| = 0. Assume now that k+ 1 + |α| ≤ m, k+ 1 < m, i.e. k ≤ m− 2,
k + |α| ≤ m− 1.

If k = m− 2, |α| = 1, α = ej, we have from (4.1.5), (4.1.9) and (4.1.13)

wm−2,α =

∫ t

0

wm−1,ej
ds =

∫ t

0

∂xj
wm−1,0ds = ∂xj

∫ t

0

∂twm−2,0ds

= ∂xj
wm−2,0 = ∂m−2

t ∂αxw00.

If k = m−3, |α| ≥ 1, αj ≥ 1, we have from (4.1.5), (4.1.9) and the case k = m−2,

wm−3,α =

∫ t

0

wm−2,αds =

∫ t

0

∂xj
wm−2,α−ej

ds = ∂xj

∫ t

0

∂twm−3,α−ej
ds

= ∂xj
wm−3,α−ej

= ∂xj
∂m−3
t ∂α−ej

x w00 = ∂m−3
t ∂αxw00.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If k = m − l, l ≥ 2, |α| ≥ 1, αj ≥ 1, we have from (4.1.5), (4.1.9) and the case
k = m− l + 1,

wm−l,α =

∫ t

0

wm−l+1,αds =

∫ t

0

∂xj
wm−l+1,α−ej

ds = ∂xj

∫ t

0

∂twm−l,α−ej
ds

= ∂xj
wm−l,α−ej

= ∂xj
∂m−lt ∂α−ej

x w00 = ∂m−lt ∂αxw00,

proving (4.1.10). Property (4.1.10) and (4.1.6) give

∂mt w00 = ∂twm−1,0 = F (t, x, (wlβ)l+|β|≤m,l<m) = F (t, x, (∂lt∂xβw00)l+|β|≤m,l<m)
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so that u = w00 satisfies the equation (4.1.1) with ∂jtu(0, x) = 0 for 0 ≤ j < m. As
a result, considering the vector-valued function Y = (wk,α)k+|α|≤m,k<m, we have{

∂tY =
∑

1≤j≤dAj(t, x, Y )∂xj
Y + T (t, x, Y ),

Y (0, x) = 0,
(4.1.14)

where each Aj is a N ×N matrix and T belongs to RN . Moreover if F is analytic,
it is also the case of the functions Aj, T . Adding a dimension to the vector Y , we
may take t as a first component and deal finally with the existence of an analytic
solution for the quasi-linear system{

∂tY =
∑

1≤j≤dAj(x, Y )∂xj
Y + T (x, Y ),

Y (0, x) = 0,
(4.1.15)

where each Aj is a N ′ × N ′ matrix and T belongs to RN ′
(this new N ′ = N + 1,

where N is given in (4.1.14): nevertheless, we shall call it N in the sequel). If
Y =

∑
j,α x

αtjYα,j is an analytic solution of (4.1.15), we have

∂tY =
∑
j≥1,α

jtj−1xαYα,j =
∑
j≥0,α

(j + 1)tjxαYα,j+1

and since A(x, Y ) · ∂xY + T (x, Y ) =
∑

j,α Pα,j
(
(Yβ,l)l≤j, coeff.A, T

)
xαtj, where Pα,j

is a polynomial with non-negative coefficients, we get

Yα,j+1 =
1

j + 1
Pα,j

(
(Yβ,l)l≤j, coeff.A, T

)
.

As a result, the knowledge of (Yβ,l)l≤j provides the knowledge of (Yβ,l)l≤j+1, and since
we know (Yβ,0) from the initial condition in (4.1.15), the above formula determines
the power series coefficients of Y and we have

Yα,j = Qα,j

(
coeff.A, T

)
,

where Qα,j is a polynomial with non-negative coefficients. We consider the Cauchy
problem

∂tZ =
∑
j

Bj(x, Z)∂xj
Z + S(x, Z), Z(x, 0) = 0

with analytic functions Bj, S, majorizing Aj, T : if we find an analytic solution Z,
then its Taylor coefficients Zα,j will satisfy

Zα,j = Qα,j

(
coeff.B, S

)
and since Qα,j is a polynomial with non-negative coefficients, we get

|Yα,j| = |Qα,j

(
coeff.A, T

)
| ≤ Qα,j

(
coeff.B, S

)
= Zα,j

Using (7.2.7), we see that the power series of A, T are majorized by those of

Mr

r −
∑

1≤j≤d xj −
∑

1≤l≤N yl
,
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provided, M is large enough and r > 0 is small enough. We consider now the Cauchy
problem

∂tzm =
Mr

r −
∑

1≤j≤d xj −
∑

1≤l≤N zl

(∑
j,l

∂xj
zl + 1

)
zm(0, x) = 0.

, 1 ≤ m ≤ N. (4.1.16)

It is enough to prove the existence of an analytic solution for this problem. If we
consider the scalar equation (t, s) ∈ R2 7→ u(t, s) ∈ R,

∂tu =
Mr

r − s−Nu

(
Nd∂su+ 1

)
, u(0, s) = 0, (4.1.17)

and if we define
zm(t, x) = u(t, x1 + · · ·+ xd), 1 ≤ m ≤ N,

we get a solution of (4.1.16). The remaining task is to solve (4.1.17). To simplify
the algebra we solve

∂tu =
1

1− s− u
(∂su+ 1), u(0, s) = 0.

Using the method of characteristics, we obtain{
ṫ = 1− s− u, ṡ = −1, u̇ = 1,

t(0) = 0, s(0) = σ, u(0) = 0

so that u = τ, s = σ− τ, t = τ − στ and thus σ = s+ u, τ = u, t = u(1− s− u),
that is u =

1−s±
√

(1−s)2−4t

2
. To satisfy the initial condition u(0, s) = 0, we find

u =
1− s−

√
(1− s)2 − 4t

2
, (4.1.18)

which is indeed analytic near the origin. The proof of Theorem 4.1.1 is complete.
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Chapter 5

Elliptic Equations

5.1 Some simple facts on the Laplace operator

5.1.1 The mean-value theorem

Definition 5.1.1. Let Ω be an open subset of Rn and u ∈ D ′(Ω). We shall say that
u is an harmonic function on Ω if 4u = 0 on Ω.

Remark 5.1.2. Note that from Theorem 3.1.4, an harmonic function is C∞ and we
shall see below that it is even analytic.

Proposition 5.1.3. Let Ω be an open subset of Rn and u be an harmonic function
on Ω. Then u is a smooth function and for all x ∈ Ω and all r > 0 such that
B̄(x, r) ⊂ Ω, we have

u(x) =
1

|B(x, r)|

∫
B(x,r)

u(y)dy =
1

|∂B(x, r)|

∫
∂B(x,r)

u(y)dσ(y). (5.1.1)

We shall use the notation –
∫
A
f(y)dy = 1

|A|

∫
A
f(y)dy.

Proof. For x, r as in the statement above, we define

ϕ(r) = —

∫
∂B(x,r)

u(y)dσ(y) = —

∫
∂B(0,1)

u(x+ rω)dσ(ω)

and we have ϕ′(r) = –
∫

Sn−1u
′(x+rω)·ωdσ(ω) so that with X(y) =

∑
j(∂ju)(x+ry)∂yj

ϕ′(r)|Sn−1| =
∫

Sn−1

∑
1≤j≤n

(∂ju)(x+ rω)ωjdσ(ω) =

∫
Sn−1

〈X, ν〉dσ

(ν is the exterior normal to Sn−1) =

∫
Bn

divXdy =

∫
Bn

(∆u)(x+ ry)rdy = 0,

and ϕ is constant so that –
∫
∂B(x,r)

u(y)dσ(y) = limr→0+ —
∫
∂B(x,r)

u(y)dσ(y) = u(x). On

the other hand we have∫
B(x,r)

u(y)dy =

∫ r

0

ρn−1

∫
Sn−1

u(x+ ρω)dσ(ω)dρ

=

∫ r

0

ρn−1|Sn−1|dρu(x) = |B(x, r)|u(x),

71
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concluding the proof.

Remark 5.1.4. Note that, defining a subharmonic function u as a C2 function such
that ∆u ≥ 0, we get, using the same proof, that a subharmonic function u on an
open subset Ω of Rn satisfies

∀x ∈ Ω with B̄(x, r) ⊂ Ω, u(x) ≤ —

∫
∂B(x,r)

u(y)dσ(y). (5.1.2)

In fact the function ϕ above is proven non-decreasing, and thus such that u(x) =
limr→0 ϕ(r) ≤ –

∫
∂B(x,r)

u(y)dσ(y).

Remark 5.1.5. If B̄(x, r) ⊂ Ω, we have defined for u ∈ C2(Ω),

ϕ(r) = –

∫
∂B(x,r)

u(y)dσ(y)

and we have seen that

ϕ(r)|Sn−1| =
∫

Sn−1

u(x+ ωr)dσ(ω), so that

ϕ′(r)|Sn−1| =
∫

Bn

(∆u)(x+ ry)rdy =

∫
B(x,r)

(∆u)(z)dzr1−n

= —

∫
B(x,r)

(∆u)(z)dzr1−n r
n

n
|Sn−1| and thus

ϕ′(r) = —

∫
B(x,r)

(∆u)(z)dz
r

n
. (5.1.3)

Theorem 5.1.6. Let Ω be an open subset of Rn and u ∈ C2(Ω). The function u is
harmonic in Ω if and only if for all x ∈ Ω and all r > 0 such that B̄(x, r) ⊂ Ω, we
have

u(x) = —

∫
∂B(x,r)

u(y)dσ(y),

that is u satisfies the mean value property.

Proof. We have seen in Proposition 5.1.3 the “only if” part. On the other hand, if
u satisfies the mean-value property and x0 ∈ Ω with (∆u)(x0) > 0, ϕ as above, we
get

0 = ϕ′(r) = —

∫
B(x0,r)

(∆u)(y)dσ(y)
r

n
> 0

with B(x0, r0) ⊂ Ω, r0 ≥ r > 0, ∆u > 0 continuous on B(x, r0), which is impossible;
the same occurs with a negative sign for ∆u.
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5.1.2 The maximum principle

Theorem 5.1.7. Let Ω be an open bounded subset of Rn, u an harmonic function
on Ω continuous on Ω. Then maxΩ u = max∂Ω u, and if Ω is connected and ∃x0 ∈ Ω
with u(x0) = maxΩ u, then u is constant on Ω.

Proof. Note that u is continuous on the compact set Ω. Let us assume ∃x0 ∈ Ω with
u(x0) = maxΩ u = M . Then if 0 < r < d(x0, ∂Ω),

M = u(x0) = —

∫
∂B(x0,r)

u(y)dσ(y) ≤M,

and this implies that u = M on B(x0, r), so that the set A = {x ∈ Ω, u(x) = M}
is closed and open in Ω. If Ω is connected, we get the sought result. In the general
case, we get that A contains the closure of the connected component of x0.

Remark 5.1.8. If Ω is a connected open subset of Rn, u is a continuous function
on Ω, such that {

∆u = 0 in Ω,

u = g on ∂Ω,

with g ≥ 0, then u(x) > 0 for all x ∈ Ω if there exists x0 ∈ ∂Ω such that g(x0) > 0.
In fact, the function g is valued in [m,M ] ⊂ R+ with M > 0,m ≥ 0. From the
previous result, the function u is also valued in [m,M ]. If m > 0, we are done and
if m = 0, we define

B = {x ∈ Ω, u(x) = 0}

we get that it is closed and open and cannot be all Ω since u must be positive near
the point x0. As a result, B = ∅, proving the result.

Theorem 5.1.9. Let Ω be an open subset of Rn, f be a continuous function on Ω and
g a continuous function on ∂Ω. There exists at most one solution u ∈ C(Ω)∩C2(Ω)
to the Dirichlet problem {

∆u = f in Ω,

u = g on ∂Ω.

Proof. If u1, u2 are two solutions, the function u1−u2 is harmonic on Ω with bound-
ary value 0 and the maximum principle entails u1 − u2 = 0.

Theorem 5.1.10 (Harnack’s inequality). Let U b Ω be open subsets of Rn, with U
connected (U b Ω means U compact ⊂ Ω). There exists C > 0 such that for any u
nonnegative harmonic function on Ω,

sup
U
u ≤ C inf

U
u. (5.1.4)

This implies that for all x, y ∈ U , C−1u(y) ≤ u(x) ≤ Cu(y).
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Proof. Since Ū is a compact subset of Ω, dist (Ū , ∂Ω) > 0, and with x1, x2 ∈ U, |x1−
x2| ≤ r with r = dist (Ū , ∂Ω)/4, we have B̄(x2, r) ⊂ B̄(x1, 2r) ⊂ Ω, and

u(x1) = —

∫
B(x1,2r)

u(y)dy ≥︸︷︷︸
u≥0

2−n—

∫
B(x2,r)

u(y)dy = u(x2),

implying that for x1, x2 ∈ U, |x1 − x2| ≤ r, we have 2−nu(x2) ≤ u(x1) ≤ 2nu(x2).
Using the compactness of Ū , and Ū ⊂ ∪y∈ŪB(y, r/2), we can find a finite number
N of balls such that Ū ⊂ ∪1≤j≤NB(yj, r/2).

Lemma 5.1.11. Let U be an open connected subset of Rn such that U ⊂ ∪1≤j≤NBj

where the Bj are open balls. Then for x0, x1 ∈ U , there exists a continuous curve
γ : [0, 1] → U such that γ(0) = x0, γ(1) = x1, and there exists 0 ≤ T0 ≤ T1 ≤ · · · ≤
Tν−1 ≤ 1 with ν ≤ N and

γ([0, T1)) ⊂ Bj1 , γ([T1, T2) ⊂ Bj2 , . . . , γ([Tν−1, 1] ⊂ Bjν .

Proof of the lemma. Note first that since U is an open connected subset of Rn, it is
also pathwise connected and we can find a continuous curve Γ in U joining x0 to x1.
If x0, x1 belong to the same ball Bj, there is nothing to prove. If x0 ∈ Bj1 , x1 /∈ Bj1 ,
we define

T1 = sup{t ∈ [0, 1],Γ(t) ∈ Bj1}.
We get that T1 ∈ (0, 1) and Γ(T1) ∈ ∂Bj1 . We define γ on [0, T1] as the segment
[γ(0), γ(T1)]. We know now that Γ(t) /∈ Bj1 for all t ≥ T1. Since Γ(T1) ∈ Bj2 we can
now define

T2 = sup{t ∈ [T1, 1],Γ(t) ∈ Bj2}.
We get that T2 ∈ (T1, 1] and Γ(T2) ∈ ∂Bj2 . We define γ on [T1, T2] as the segment
[γ(T1), γ(T2)]. And so on.

This implies that for x, y ∈ U , u(x) ≤ 2nNu(y) and the result.

5.1.3 Analyticity of harmonic functions

We have seen in Theorem 3.1.1 that the fundamental solution of the Laplace operator
is nonetheless C∞ outside of the origin, but also analytic outside of the origin. We
could use that result to prove directly the analytic-hypoellipticity of the Laplace
equation, that is the property ∆u analytic on the open set Ω implies u analytic
on Ω. However, we have chosen a more direct approach, relying on the maximum
principle.

Proposition 5.1.12. Let Ω be an open set of Rn and u be an harmonic function on
Ω. Then u ∈ C∞(Ω) and for x0 ∈ Ω with B̄(x0, r) ⊂ Ω,

βn|∂αxu(x0)| ≤
Ck
rn+k

‖u‖L1(B(x0,r)), |α| = k, C0 = 1, Ck = (2n+1nk)k for k ≥ 1,

where

βn = |Sn−1|/n =
2πn/2

nΓ(n/2)
=

πn/2

Γ(1 + n
2
)

(5.1.5)

is the volume of the unit ball in Rn.
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Proof. We have from the mean-value property if B̄(x, ρ) ⊂ Ω,

|u(x)|ρnβn ≤ ‖u‖L1(B(x,ρ)) (5.1.6)

and in particular the estimate is true for k = 0. From the mean-value property, we
have from the harmonicity of each ∂xj

u that, if B̄(x, ρ) ⊂ Ω,

∂xj
u(x) = —

∫
B(x,ρ)

∂xj
u(y)dy =

n

ρn|Sn−1|

∫
B(x,ρ)

div (u∂xj
)dy

=
n

ρn|Sn−1|

∫
∂B(x,ρ)

uνjdσ,

so that
|∂xj

u(x)| ≤ n

ρ
‖u‖L∞(∂B(x,ρ)). (5.1.7)

As a result, we have, using (5.1.6)-(5.1.7) with ρ = r/2,

βn|∂xj
u(x0)| ≤

2n

r
(r/2)−n‖u‖L1(B(x0,r)) =

‖u‖L1(B(x0,r))

rn+1
n2n+1

and the property is true for k = 1. Let us consider now a multi-index α with
|α| = k ≥ 1 and from the harmonicity of ∂αxu and (5.1.7)

|∂xj
∂αxu(x0)| ≤

n(k + 1)

r
‖∂αxu‖L∞(∂B(x0,r/(k+1)))

so that, inductively,

βn|∂xj
∂αxu(x0)| ≤

n(k + 1)

r

‖u‖L1(B(x0,r))

( rk
k+1

)n+k
(n2n+1k)k.

We check now

(n2n+1k)kn(k + 1)(
k + 1

k
)n+k = (k + 1)k+1(k + 1)nk−nnk+1(2n+1)k

=
(
n2n+1(k + 1)

)k+1
2−n−1(1 +

1

k
)n ≤

(
n2n+1(k + 1)

)k+1
,

completing the proof of the proposition.

Theorem 5.1.13 (Liouville theorem). Let u be a bounded harmonic function on
Rn. Then u is a constant.

Proof. From the previous proposition, we have for all x ∈ Rn, r > 0

|∇u(x)| ≤ 2n+1n

βnrn+1
‖u‖L1(B(x,r)) ≤

2n+1n

r
‖u‖L∞(Rn),

implying ∇u ≡ 0 so that u is constant.

Corollary 5.1.14. Let f ∈ L∞comp(Rn) with n ≥ 3. The bounded solutions of ∆u = f
on Rn are E ∗ f + constant, where E is the fundamental solution of the Laplace
operator given by Theorem 3.1.1
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Proof. If u is a bounded solution of ∆u = f , the distribution u−E ∗ f makes sense
and is harmonic on Rn. It is also bounded since u is bounded and

|(E ∗ f)(x)| ≤ cn

∫
|f(y)|

|x− y|n−2
dy ≤ cn‖f‖L∞(Rn)

∫
|y|≤R0

|x− y|2−ndy.

If |x| ≥ R0 + 1, we have∫
|y|≤R0

|x− y|2−ndy ≤
∫
|y|≤R0

(|x| −R0)
2−ndy =

Rn
0βn

(|x| −R0)n−2
≤ Rn

0βn,

and if |x| ≤ R0 + 1, we have∫
|y|≤R0

|x− y|2−ndy ≤
∫
|z−x|≤R0

|z|2−ndz ≤
∫
|z|≤R0+|x|≤2R0+1

|z|2−ndz

entailing that E ∗ f is bounded. By Liouville Theorem, u − E ∗ f is constant.
Conversely E ∗ f + C is indeed a bounded solution of ∆u = f .

Note that in two dimensions, the fundamental solution of the Laplace operator
is unbounded; in particular a solution of ∆u = f with f ∈ C∞

c (B(0, 1)), f 6≡ 0 is
given by 1

2π

∫
|y−x|≤1

f(x − y) ln |y|dy. Since |y − x| ≥
∣∣|y| − |x|∣∣, |y − x| ≤ 1 implies

|x| − 1 ≤ |y| ≤ |x|+ 1 and if |x| > 2,

|y − x| ≤ 1 =⇒ 0 < ln(|x| − 1) ≤ ln |y| ≤ ln(1 + |x|)

so that if f ≥ 0, for |x| > 2,∫
|y−x|≤1

f(x− y) ln |y|dy ≥ ln(|x| − 1)

∫
f(z)dz

which is unbounded.

Theorem 5.1.15 (Analytic-hypoellipticity of the Laplace operator). Let u be an
harmonic function on some open subset Ω of Rn. Then u is an analytic function on
Ω.

Proof. Let x0 be a point of Ω and r0 > 0 with B̄(x0, 4r0) ⊂ Ω. We have proven in
Proposition 5.1.12 that u is C∞ and such that

βn‖∂αxu‖L∞(B(x0,r0)) ≤ r−n−k0 kk(2n+1n)k‖u‖L1(B(x0,2r0)), |α| = k.

Furthermore Stirling’s formula (7.3.5) gives for k ≥ k0, k
k ≤ k!2(2πk)−1/2ek and

since nk =
∑

α∈Nn,|α|=k
k!
α!

which implies k! ≤ α!nk, we obtain for k ≥ k0,

βn‖∂αxu‖L∞(B(x0,r0)) ≤ r−n−k0 (2n+1n)k‖u‖L1(B(x0,2r0))k!2(2πk)−1/2ek ≤ C0ρ
−|α|
0 α!

yielding analyticity from Theorem 7.2.4.
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5.1.4 Green’s function

Lemma 5.1.16. Let Ω be a bounded open set of Rn with a C1 boundary, u ∈ C2(Ω̄).
Then we have for all x ∈ Ω,

u(x) =

∫
Ω

E(x− y)(∆u)(y)dy+

∫
∂Ω

u(y)
∂E

∂ν
(y−x)dσ(y)−

∫
∂Ω

∂u

∂ν
(y)E(y−x)dσ(y)

(5.1.8)
where E is the fundamental solution of the Laplace operator (see Theorem 3.1.1).
Since E ∈ L1

loc(Rn) ∩ C∞(Rn\{0}), the formula above makes sense.

Proof. We consider u ∈ C∞
c (Rn) and we write u = u ∗ δ = u ∗∆E = ∆u ∗E so that

u(x) =

∫
∆u(y)E(x− y)dy =

∫
Ω

∆u(y)E(y− x)dy+

∫
Ωc

divy
(
E(y − x)∇u(y)

)
dy

−
∫

Ωc

(∇E)(y − x) · ∇u(y)dy,

entailing with Green’s formula for x ∈ Ω,

u(x) =

∫
Ω

∆u(y)E(x− y)dy −
∫
∂Ω

E(y − x)
∂u

∂ν
(y)dσ(y)

+

∫
∂Ω

∂E

∂ν
(y − x)u(y)dσ(y) +

∫
Ωc

u(y) (∆E)(y − x)︸ ︷︷ ︸
=0

dy,

which is the result.

Remark 5.1.17. Let Ω be a bounded set of Rn with a C1 boundary. Assume that
for each x ∈ Ω, we are able to find a function y 7→ φx(y) such that{

∆φx = 0 in Ω,

φx(y) = −E(x− y) on ∂Ω,
(5.1.9)

As a consequence, we have
∫

Ω
φx(y)(∆u)(y)dy =

∫
Ω

(
φx

∂u
∂ν
− u∂φx

∂ν

)
dσ(y). We define

then the Green function for the open set as

G(x, y) = E(y − x) + φx(y). (5.1.10)

Using formula (5.1.8), we get for x ∈ Ω,

u(x) =

∫
Ω

E(x− y)(∆u)(y)dy +

∫
∂Ω

u(y)
∂E

∂ν
(y − x)dσ(y) +

∫
∂Ω

∂u

∂ν
(y)φx(y)dσ(y)

=

∫
Ω

G(x, y)(∆u)(y)dy +

∫
∂Ω

u(y)

(
∂φx
∂ν

+
∂E

∂ν
(y − x)

)
dσ(y)

=

∫
Ω

G(x, y)(∆u)(y)dy +

∫
∂Ω

u(y)
∂G

∂νy
(x, y)dσ(y). (5.1.11)
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Note that we may symbolically write that for x ∈ Ω,{
(∆yG)(x, y) = δ(x− y), y ∈ Ω

G(x, y) = 0, y ∈ ∂Ω.

As a matter of fact, we have∫
Ω

G(x, y)(∆u)(y)dy

=

∫
Ω

u(y)(∆yG)(x, y)dy +

∫
∂Ω

(
G(x, y)

∂u

∂ν
(y)− ∂G

∂νy
(x, y)u(y)

)
dσ(y)

= u(x)−
∫
∂Ω

∂G

∂νy
(x, y)u(y)dσ(y),

which is (5.1.11).

An immediate consequence of Lemma 5.1.16 and Formula (5.1.10) is the following
theorem.

Theorem 5.1.18. Let Ω be a bounded open set of Rn with a C1 boundary. If
u ∈ C2(Ω̄) is such that {

∆u = f in Ω,

u = g on ∂Ω,
(5.1.12)

then for all x ∈ Ω,

u(x) =

∫
Ω

G(x, y)f(y)dy +

∫
∂Ω

∂G

∂νy
(x, y)g(y)dσ(y) (5.1.13)

where G is the Green function given by (5.1.10).

Green’s function for a half-space

We consider first the following simple problem on Rn
+ = Rn−1 × R∗

+. Let g ∈
S (Rn−1): we are looking for u defined on Rn

+ such that{
∆u = 0 in xn > 0,

u(·, 0) = g on Rn−1.

Defining v(ξ′, xn) as the Fourier transform of u with respect to x′, we get the ODE

∂2
xn
v(ξ′, xn)− 4π2|ξ′|2v(ξ′, xn) = 0, v(ξ′, 0) = ĝ(ξ′),

that we solve readily, obtaining v(ξ′, xn) = e−2πxn|ξ′|ĝ(ξ′), so that, at least formally,

u(x′, xn) =

∫∫
e2iπ(x′−y′)ξ′e−2πxn|ξ′|g(y′)dy′dξ′.
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Using Formula (7.1.1), we get for xn > 0,

u(x′, xn) =
Γ(n/2)

πn/2

∫
(1 + |x′ − y′|2x−2

n )−n/2g(y′)dy′x1−n
n

=
2xn
|Sn−1|

∫
Rn−1

g(y′)dy′(
x2
n + |x′ − y′|2

)n/2 =
2xn
nβn

∫
∂Rn

+

g(y)dy

|x− y|n
. (5.1.14)

We define the Poisson kernel for Rn
+ as

k(x, y) =
2xn

nβn|x− y|n
, x ∈ Rn

+, y ∈ ∂Rn
+, (5.1.15)

and we note right away that

∀x ∈ Rn
+,

∫
∂Rn

+

2xn
nβn|x− y|n

dy = 1 (for a proof see Section 7.3.3). (5.1.16)

Theorem 5.1.19. Let g ∈ C0(Rn−1) ∩ L∞(Rn−1) and u defined on Rn
+ by (5.1.14).

Then the function u ∈ C∞(Rn
+) ∩ L∞(Rn

+), is harmonic on Rn
+ and such that for

each x0 ∈ ∂Rn
+

lim
x→x0
x∈Rn

+

u(x) = g(x0). (5.1.17)

The function u is thus continuous up to the boundary.

Proof. Formula (5.1.14) is well-defined for xn > 0, g ∈ L∞(Rn−1), defines a smooth
function which satisfies as well |u(x)| ≤ ‖g‖L∞(Rn−1) since the Poisson kernel k given
by (5.1.15) is non-negative with integral 1 from (5.1.16). On the other hand, u is
harmonic on Rn

+ since with ρy′(x
′, xn) = (|x′ − y′|2 + x2

n)
−n/2

xn∆(ρ−n) + 2∂xn(ρ−n)

= xn
[
(−n)(−n− 1)ρ−n−2 + (n− 1)ρ−1(−n)ρ−n−1

]
+ 2(−n)ρ−n−1xnρ

−1

= xnρ
−n−2

(
n(n+ 1)− n(n− 1)− 2n

)
= 0.

We now consider for xn > 0, u(x′, xn) − g(x′) = 2xn

nβn

∫
Rn−1

(g(y′)−g(x′))dy′
(x2

n+|x′−y′|2)n/2 and we

obtain with r > 0

nβn|u(x′, xn)− g(x′)| ≤ 2xn sup
y′∈B(x′,r)

|g(y′)− g(x′)|
∫
B(x′,r)

dy′(
x2
n + |x′ − y′|2

)n/2
+ 4xn‖g‖L∞(Rn−1)

∫
|x′−y′|≥r

dy′

(x2
n + |x′ − y′|2)n/2

so that from (5.1.16) and k ≥ 0,

|u(x′, xn)− g(x′)| ≤ sup
y′∈B(x′,r)

|g(y′)− g(x′)|+
4xn‖g‖L∞(Rn−1)

nβn

∫ +∞

r

ρn−2−ndρ|Sn−2|

≤ sup
y′∈B(x′,r)

|g(y′)− g(x′)|+
4xn‖g‖L∞(Rn−1)|Sn−2|

nβnr
.
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As a result, we get

lim sup
xn→0+

|u(x′, xn)− g(x′)| ≤ inf
r>0

(
sup

y′∈B(x′,r)

|g(y′)− g(x′)|
)

= 0.

Since

|u(x′, xn)− g(z′)| ≤ |u(x′, xn)− g(x′)|+ |g(x′)− g(z′)|

≤ sup
y′∈B(x′,r)

|g(y′)− g(x′)|+
4xn‖g‖L∞(Rn−1)|Sn−2|

nβnr
+ |g(x′)− g(z′)|.

we get

lim sup
(x′,xn)→(z′,0)

xn>0

|u(x′, xn)− g(z′)| ≤ inf
r>0

(
lim sup
x′→z′

(
sup

y′∈B(x′,r)

|g(y′)− g(x′)|
))

= 0

from the continuity of g.

Proposition 5.1.20. The Green function for the half-space {x ∈ Rn, xn > 0} is

G(x, y) = E(y − x)− E(y − x̌), (5.1.18)

where E is the fundamental solution of the Laplace operator given by (3.1.4) and for
x = (x′, xn) ∈ Rn−1 × R, we have defined x̌ = (x′,−xn).

Proof. According to (5.1.10), we have to verify for x ∈ Rn
+ that φx(y) = −E(y − x̌)

does satisfy (∆φx)(y) = 0 in Ω and φx(y) = −E(x−y) for y ∈ ∂Rn
+. Both points are

obvious. Note also that Formula (5.1.13) gives for u satisfying (5.1.12) with f = 0
and x ∈ Rn

+,

u(x) =

∫
Rn−1

(
− ∂

∂yn

)(
E(y − x)− E(y − x̌)

)
g(y)dy

which gives for n ≥ 3, u(x) =

1

(2− n)nβn

∫
g(y)

(
|y − x|1−n(2− n)

xn − yn
|y − x|

+ |y − x̌|1−n(2− n)
xn + yn
|y − x|

)
dy

so that we recover Formula (5.1.14) for the Poisson kernel of the half-space.

Green’s function for a ball

We want now to solve {
∆u = 0 in |x| < 1,

u = g on Sn−1.

The Green function for the ball is G(x, y) = E(y − x) + φx(y) and with x̃ = x/|x|2
we define

φx(y) = −E
(
(y − x̃)|x|

)
.
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We note that for |x| < 1, the function y 7→ φx(y) is harmonic and for y ∈ Sn−1, we
have

φx(y) = −|y − x̃|2−n|x|2−n

(2− n)nβn
= −E(y − x)

since |x|2|y − x̃|2 = |x|2 − 2y · x+ 1 = |x− y|2. We calculate now for |y| = 1

(2− n)nβn
∂G

∂νy
(x, y) = |y− x|−n(2− n)(y− x) · y− |y− x̃|−n(2− n)|x|2−n(y− x̃) · y,

so that

∂G

∂νy
(x, y) =

|y − x|−n

nβn

(
1− x · y − |x|2(1− x̃ · y)

)
=

1− |x|2

nβn|y − x|n
.

As a result the Poisson kernel for the ball BR = B(0, R) is

k(x, y) =
R2 − |x|2

nβnR|x− y|n
.

Theorem 5.1.21. Let g ∈ C0(∂BR) and u defined on BR by

u(x) =
R2 − |x|2

nβnR

∫
∂BR

g(y)

|x− y|n
dσ(y) (5.1.19)

Then the function u ∈ C∞(BR), is harmonic on BR and such that for each x0 ∈ ∂BR

limx→x0
x∈BR

u(x) = g(x0). The function u is thus continuous up to the boundary.

Proof. The proof is similar to that for Theorem 5.1.19. We may also compare this
formula to (1.1.7) in the introduction: we have

u(z, z̄) = c0 +
∑
k≥1

(ckz
k + c−kz̄

k), g(eiθ) =
∑
k∈Z

cke
ikθ,

so that u(z, z̄) = 1
2π

∫ 2π

0
g(eiθ)dθ +

∑
k≥1

1
2π

∫ 2π

0
(zke−ikθ + z̄keikθ)dθ. Since we have

also for |ζ| = 1 > |z|,

1 +
∑
k≥1

(zζ̄)k + (z̄ζ)k = 1 +
zζ̄

1− zζ̄
+

z̄ζ

1− z̄ζ
= 1 + 2 Re

zζ−1

1− zζ−1

= Re
(
1 +

2z

ζ − z

)
= Re

(ζ + z

ζ − z

)
=

Re(ζ + z)(ζ̄ − z̄)

|ζ − z|2
=

1− |z|2

|ζ − z|2
,

we obtain

u(z, z̄) =
1− |z|2

2π

∫ 2π

0

g(eiθ)

|z − eiθ|2
dθ =

1− |z|2

2β1

∫
S1

g(y)

|z − y|2
dσ(y),

which is indeed the 2D case of (5.1.19).
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Chapter 6

Hyperbolic Equations

6.1 Energy identities for the wave equation

6.1.1 A basic identity

In Section 3.4, we have found the fundamental solution of the wave equation and
provided explicit formulas when the space dimension is less than 3. Here, we want
to consider Ω a bounded open subset of Rd, with a smooth boundary. For T > 0,
we define the cylinder ΩT = (0, T ]× Ω and noting that

ΩT = [0, T ]× Ω =
(
(0, T ]× Ω

)
∪
(
{0} × Ω

)
∪
(
[0, T ]× ∂Ω

)
we see that

ΓT = ΩT\ΩT =
(
{0} × Ω

)
∪
(
[0, T ]× ∂Ω

)
.

With c > 0, we define the wave operator with speed c by the formula (3.4.1)

�c = c−2∂2
t −∆x.

We consider the problem
�cu = f, on ΩT = (0, T ]× Ω,

u = g, on ΓT =
(
{0} × Ω

)
∪
(
[0, T ]× ∂Ω

)
,

∂tu = h, on {0} × Ω,

(6.1.1)

and we want to start by proving that if a C2 solution exists, it is unique. We
calculate

〈�cu, ∂tu〉L2(Ω) =
1

2

d

dt
c−2‖∂tu‖2

L2(Ω) − 〈∆u, ∂tu〉L2(Ω)

=
1

2

d

dt
c−2‖∂tu‖2

L2(Ω) −
∫
∂Ω

∂tu
∂u

∂ν
dσ + 〈∂t(∇u),∇u〉2L2(Ω)

=
1

2

d

dt

(
c−2‖∂tu‖2

L2(Ω) + ‖∇u‖2
L2(Ω)

)
−
∫
∂Ω

∂tu
∂u

∂ν
dσ.

Defining the energy of u on Ω at time t as

E(t) =
1

2

(
c−2‖∂tu‖2

L2(Ω) + ‖∇u‖2
L2(Ω)

)
, (6.1.2)
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we see that

Ė(t) = 〈�cu, ∂tu〉L2(Ω) +

∫
∂Ω

∂tu
∂u

∂ν
dσ. (6.1.3)

As a first result, if u1, u2 are two solutions of (6.1.1), the function u = u2 − u1

satisfies (6.1.1) with f, g, h all 0 and consequently Ė = 0 for that u. Since E(0) = 0
as well, we get that E(t) = 0 for all times, and u is 0.

6.1.2 Domain of dependence for the wave equation

We consider now a C2 solution u of the wave equation on R+×Rd, c−2∂2
t u−∆xu = 0,

and we introduce for t0 ≥ t ≥ 0 the following energy

F (t) =
1

2

∫
B(x0,c(t0−t))

(
c−2|∂tu|2 + |∇u|2

)
dx

and we calculate its derivative, using the identity of the previous subsection,

Ḟ (t) =

∫
|x−x0|=c(t0−t)

∂tu
∂u

∂ν
dσ − 1

2

∫
|x−x0|=c(t0−t)

(
c−1|∂tu|2 + c|∇u|2

)
dσ.

We note that 2∂tu
∂u
∂ν
≤ c−1|∂tu|2 + c|∇u|2 so that Ḟ ≤ 0. As a result, for 0 ≤ t ≤ t0,

we have∫
B(x0,c(t0−t))

(
c−2|∂tu|2 + |∇u|2

)
dx ≤

∫
B(x0,ct0)

(
c−2|∂tu|2 + |∇u|2

)
dx. (6.1.4)

In particular, if u and ∂tu both vanish at time 0 on the ball B(x0, ct0) then u vanishes
on the cone

Ct0,x0 = {(t, x) ∈ [0, t0]× Rd, |x− x0| ≤ c(t0 − t)}.

Rephrasing that, we can say that, if both u(t = 0) and ∂tu(t = 0) are supported in
B̄(X0, R0), then for t0 ≥ 0,

suppu(t0, ·) ⊂ B̄(X0, R0 + ct0). (6.1.5)

In fact, if |x0 −X0| > R0 + ct0, we have Ct0,x0 ∩ {t = 0} = B(x0, ct0) and

B̄(x0, ct0) ⊂ B̄(X0, R0)
c since |y − x0| ≤ ct0 =⇒ |y −X0| ≥ |x0 −X0| − |y − x0| > R0.

As a consequence, both u(t = 0) and ∂tu(t = 0) vanish on B(x0, ct0) so that
u(t0, x0) = 0 and the result (6.1.5). In other words, the value u(T,X) for some
positive T depends only on the values of u(t = 0), ∂tu(t = 0) on the backward light-
cone with vertex (T,X) intersected with t = 0, i.e. CT,X ∩ {t = 0} = B(X, cT ).
The cone CT,X is the cone of dependence at (T,X). If both u(t = 0), ∂tu(t = 0) are
supported in the ball B̄(X,R), then

suppu(T, ·) ⊂ B̄(X,R + cT ).

These properties bear the name of finite propagation speed.



Chapter 7

Appendix

7.1 Fourier transform

Lemma 7.1.1. Let n ∈ N∗ and Rn 3 x 7→ u(x) = exp−2π|x|, where |x| stands
for the Euclidean norm of x. The function u belongs to L1(Rn) and its Fourier
transform is

û(ξ) = π−(n+1
2

)Γ
(n+ 1

2

)(
1 + |ξ|2

)−(n+1
2

)
. (7.1.1)

Proof. We note first that in one dimension∫
R
e−2iπxξe−2π|x|dx = 2 Re

∫ +∞

0

e−2πx(1+iξ)dx =
1

π(1 + ξ2)

corroborating the above formula in 1D. We want to take advantage of this to write
e−2π|x| as a superposition of Gaussian functions; doing this will be very helpful since
it is easy to calculate the Fourier transform of Gaussian functions (this quite natural
idea seems to be used only in the wonderful textbook by Robert Strichartz [22] and
we follow his method). For t ∈ R+, we have

e−2πt =

∫
R
e2iπtτ

dτ

π(1 + τ 2)
=

∫∫
R2

e2iπtτe−sπ(1+τ2)H(s)dsdτ =

∫
R+

e−πss−1/2e−
π
s
t2ds

so that for x ∈ Rn, e−2π|x| =
∫

R+
e−πss−1/2e−

π
s
|x|2ds and thus

û(ξ) =

∫∫
Rn×R+

e−2iπxξe−πss−1/2e−
π
s
|x|2dxds =

∫
R+

e−πss−1/2e−πs|ξ|
2

sn/2ds

so that û(ξ) =
∫ +∞

0
e−ss(n−1)/2

(
π(1 + |ξ|2)

)−(n+1)/2
ds, which is the sought result.

7.2 Spaces of functions

7.2.1 On the Faà de Bruno formula

The following useful formula is known as Faà de Bruno’s1 , dealing with the iterated
chain rule. We write here all the coefficients explicitly.

1 One could find a version of theorem 7.2.1 on pages 69-70 of the thesis of “Chevalier François
FAÀ DE BRUNO, Capitaine honoraire d’État-Major dans l’armée Sarde”. This thesis was
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Theorem 7.2.1. Let k ≥ 1 be an integer and U , V , W open sets in Banach spaces.
Let a and b be k times differentiable fonctions b : U −→ V and a : V −→ W . Then
the k- multilinear symmetric mapping (a ◦ b)(k) is given by (N∗ = N\{0})

(a ◦ b)(k)

k!
=

∑
1≤j≤k

(k1,...,kj)∈N∗j

k1+···+kj=k

a(j) ◦ b
j!

b(k1)

k1!
. . .

b(kj)

kj!
. (7.2.1)

Remark 7.2.2. One can note that a symmetric k−multilinear mapping L is de-
termined by its value on “diagonal” k-vectors (T, . . . , T ), so that formula (7.2.1)
means that (a ◦ b)(k) is the only symmetric k-multilinear mapping such that, if T is
a tangent vector to U , and x a point in U

1

k!
(a ◦ b)(k)(x)

k times︷ ︸︸ ︷
(T, . . . , T ) =

∑
1≤j≤k

(k1,...,kj)∈N∗j

k1+···+kj=k

a(j)
[
b(x)

]
j!

(
b(k1)(x)T k1

k1!
, . . . ,

b(kj)(x)T kj

kj!

)
,

where b(l)(x)T l stands for the tangent vector to V given by b(l)(x)

l times︷ ︸︸ ︷
(T, . . . , T ). Since

a(j)
[
b(x)

]
is a j-multilinear mapping from the product of j copies of the tangent

space to V into the tangent space to W , the formula makes sense with both sides
tangent vectors to W . Note also that the sum in (7.2.1) is extended to all the
multi-indices (k1, . . . , kj) ∈ N∗j such that k1 + · · ·+ kj = k.

Proof. Let’s now prove the theorem. Using the same notations as in the remark
above, we see, that for t ∈ R, x ∈ U and h a tangent vector to U ,

c(k)(x)hk =

(
d

dt

)k
c(x+ th)|t=0 ,

so that it is enough to prove the theorem for U neighborhood of 0, U ⊂ R and
b(0) = 0 . Moreover, one can assume by regularization that b ∈ C∞

c (R). Taylor-
Young’s formula gives then with a continuous ε with ε(0) = 0

(a ◦ b)(t) =
∑

0≤j≤k

a(j)(0)

j!
b(t)j + tkε(t) (7.2.2)

and thus

[∂kt (a ◦ b)](0) =
∑

0≤j≤k

a(j)(0)

j!
∂kt [b(t)

j]|t=0.

Since for tensor products we have (the inverse Fourier formula comes from the usual
one for 〈ξ, b(t)〉, where ξ is a linear form)

b(t)j =

∫
Rj

e2iπ t(τ1+···+τj) b̂(τ1) . . . b̂(τj)dτ1 . . . dτj,

defended in 1856, in the Faculté des Sciences de Paris in front of the following jury : Cauchy
(chair) , Lamé and Delaunay.
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we obtain

∂kt [b(t)
j]|t=0 =

∫
Rj

(2iπ)k(τ1 + · · ·+ τj)
k b̂(τ1) . . . b̂(τj)dτ1 . . . dτj

=
∑

(k1,...,kj)∈Nj

k1+···+kj=k

k!

k1! . . . kj!
b(k1)(0) . . . b(kj)(0) ,

which gives the result of the theorem, since b(0) = 0 so that all the k1, . . . , kj above
should be larger than 1.

It is now easy to derive the following

Corollary 7.2.3. Let a and b be functions satisfying the assumptions of Theorem
7.2.1 so that U ⊂ Rm

x , V ⊂ Rn
y , W ⊂ R and α is a multi-index ∈ Nm. Then

(using the standard notation for a multi-index β ∈ Nn , a(β) = ∂βy a and if γ ∈ Nl ,
γ! = γ1! . . . γl!) we get for |α| ≥ 1,

∂αx (a ◦ b)
α!

=
∑

1≤j≤|α|
(α(1),...,α(j))∈Nm×···×Nm=Nmj

α(1)+···+α(j)=α
min1≤r≤j |α(j)|≥1

a(j) ◦ b
j!

b(α
(1)) . . . b(α

(j))

α(1)! . . . α(j)!
(7.2.3)

We can remark that, although corollary 7.2.3 follows actually from Theorem
7.2.1, it is easier to prove it directly, along the lines of the proof above using the
Fourier inversion formula to compute ∂αx [b(x)]j.

7.2.2 Analytic functions

Let Ω be an open subset of Rn and f : Ω → R be a C∞ function. The function f is
said to be analytic2 on Ω if for all x0 ∈ Ω, there exists R0 > 0 such that

∀x ∈ B(x0, R0), f(x) =
∑
k≥0

f (k)(x0)

k!
(x− x0)

k. (7.2.4)

Note that when n > 1, f (k)(x0) is a k-th multilinear symmetric form and that3

f (k)(x)

k!
hk =

∑
|α|=k

(∂αx f)(x)

α!
hα, α! = α1! . . . αn!, hα = hα1 . . . hαn , (7.2.5)

so that formula (7.2.4) can be written

f(x) =
∑
α∈Nn

f (α)(x0)

α!
(x− x0)

α. (7.2.6)

2Real-analytic would be more appropriate.
3The summation is taking place on multi-indices α ∈ Nn such that |α| =

∑
1≤j≤n αj = k.
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There are plenty of examples of C∞ functions which are not analytic such as (3.1.1-
2) in [15]. One should also keep in mind that the convergence of the Taylor series∑

k≥0
f (k)(0)
k!

hk is not enough to ensure analyticity as shown by the example on the
real line

f(t) = e−1/t2 for t 6= 0, f(0) = 0,

which is easily seen to be C∞ and is flat at the origin, i.e. for all k ∈ N, f (k)(0) = 0.
That function is not analytic near 0 (otherwise it would be 0 near 0, which is not
the case), but the Taylor series at 0 does converge.

On the other hand, there is no difficulty to extend Formula (7.2.4) to a ball
with same radius in Cn. In particular the restriction to Rn of an entire function
(holomorphic function on the whole Cn) is indeed analytic. However, all analytic
functions on Rn are not restrictions of entire function: an example is given by
R 3 t 7→ 1/(1 + t2) which is analytic on R but is not the restriction of an entire
function to R (exercise: if it were the restriction of an entire function, that function
would coincide with 1/(1 + z2) which has poles at ±i). This type of example is a
good reason to use the terminology real-analytic for analytic functions on an open
subset of Rn.

Going back to (7.2.4), we define the k-th multi-linear symmetric form ak = f (k)(x0)
k!

and
1

R
= lim sup

k
‖ak‖1/k, with ‖ak‖ = sup

|T |=1

|akT k|.

Assuming R > 0, we have for |h| ≤ R2 < R1 < R, provided that for k > k0,
‖ak‖1/k ≤ 1/R1,∑

k≥0

sup
|h|≤R2

|akhk| ≤ sup
0≤k≤k0

‖ak‖
∑

0≤k≤k0

Rk
2 +

∑
k0<k

sup
|h|≤R2

(‖ak‖1/k|h|)k

≤ sup
0≤k≤k0

‖ak‖
∑

0≤k≤k0

Rk
2 +

∑
k0<k

(R−1
1 R2)

k < +∞,

so that the series
∑

k≥0 akh
k converges normally on each compact subset of B(0, R).

As a consequence the convergence is uniform on each compact subset of B(0, R) and
the series can be differentiated termwise.

If n = 1 and |h| ≥ R2 > R1 > R, we have, extracting a subsequence, |akj
|1/kjR1 ≥

R1/R2, ∀j ≥ j0. As a result, for j ≥ j0,

|akj
hkj | =

(
|akj

|1/kjR1|h|R−1
2

)kj(R2/R1)
kj

≥
(R1

R2

|h|R−1
2

)kj(R2/R1)
kj = (|h|/R2)

kj ≥ 1

and the series
∑
akh

k cannot converge. This proves also in n dimensions that, if

|h| > 1

sup|T |=1

(
lim supk |akT k|1/k

)
the series

∑
akh

k cannot converge everywhere. Note that

1/R̃ = sup
|T |=1

(
lim sup

k
|akT k|1/k

)
≤ lim sup

k
‖ak‖1/k = 1/R
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and the series
∑
akh

k does not converge on the whole |h| > R̃ and converges when
|h| < R (note that we have indeed R ≤ R̃ and R = R̃ in one dimension).

The following example is a good illustration of what may happen with the domain
of convergence of multiple power series: we consider∑

k≥0

xk1x
k
2, which is convergent on |x1x2| ≤ 1.

We have ‖a2k‖ = supx2
1+x2

2=1 |xk1xk2| = supθ∈R | cos θ sin θ|k = 2−k, so that R =
√

2,
which is indeed the largest circle to fit between the hyperbolas x1x2 = 1. On the
other hand, with T0 = (cos θ0, sin θ0),

|a2kT
2k
0 |1/2k = (cos θ0 sin θ0)

1/2 = 2−1/2
√

sin(2θ0) =⇒ R̃ =
√

2.

The radius
√

2 is indeed the largest possible ball in which convergence takes place.
However the region of convergence is unbounded. The picture below may help the
reader to understand the various regions. 4

0

√2 

We have the following characterization of analytic functions.

4For multiple power series, it would be more natural, but also more complicated, to introduce
the notion of polydisc: a polydisc with center ζ and (positive) radii r1, . . . , rn in Cn is the set

D(ζ, r1, . . . , rn) = {z ∈ Cn,∀j, |zj − ζj | < rj}.

The interior of the set where absolute convergence of a multiple power series takes place is called
the domain of convergence D. With r = (r1, . . . , rn), the polydisc D(ζ, r) is called the polydisc of
convergence at ζ ∈ Cn if D(ζ, r) ⊂ D and D(ζ, ρ) 6⊂ D if max(ρj − rj) > 0. We have then the
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Theorem 7.2.4. Let Ω be an open subset of Rn and f ∈ C∞(Ω; R). The function f
is analytic on Ω if and only for all compact subsets K of Ω, there exists C ≥ 0, ρ > 0
such that

∀α ∈ Nn, ‖∂αx f‖L∞(K) ≤ Cρ−|α|α!

We leave the proof as an exercise for the reader.

Remark 7.2.5. A consequence of Corollary 7.2.3 and is that the composition of an-
alytic functions is analytic and that the power series coefficients of a◦b are universal
polynomials with positive rational coefficients of the power series coefficients of a, b:
in fact we have the explicit formula

∂αx (a ◦ b)
α!

=
∑

1≤j≤|α|
(α(1),...,α(j))∈Nm×···×Nm=Nmj

α(1)+···+α(j)=α
min1≤r≤j |α(j)|≥1

a(j) ◦ b
j!

b(α
(1)) . . . b(α

(j))

α(1)! . . . α(j)!

Definition 7.2.6. Let A =
∑

α∈Nn aαx
α be a power series with non-negative coeffi-

cients and B =
∑

α∈Nn bαx
α be a power series with complex coefficients. The power

series A is said to majorize B if for all α ∈ Nn, |bα| ≤ aα. We shall write B � A.
In particular, if A converges absolutely, then B converges absolutely.

To provide simple examples, we start noting that, for R > 0, the function Rd 3
x 7→ 1

R−
P

1≤j≤d xj
is analytic on {x,

∑
1≤j≤d |xj| < R} since it is equal to

R−1
∑
k≥0

(
R−1

∑
1≤j≤d

xj
)k

=
∑
α

R−1−|α| |α|!
α!

xα,

and with |x|1 =
∑

1≤j≤n |xj|, we have from the multinomial formula5

∑
α

R−1−|α| |α|!
α!
|xα| = R−1

∑
k≥0

(
R−1

∑
1≤j≤d

|xj|
)k

= R−1 1

1− (|x|1/R)
=

1

R− |x|1
.

We remark now that if the power series C =
∑

α cαx
α converges on

|x|∞ = max
1≤j≤n

|xj| ≤ R for some positive R,

then cα(R, . . . , R)α = cαR
|α| must be bounded, i.e. |cα| ≤ MR−|α| ≤ MR−|α| |α|!

α!
, so

that

C � MR

R−
∑

1≤j≤n xj
. (7.2.7)

relation
lim sup
|k|→+∞

(
|akrk1

1 . . . rkn
n |
)1/|k| = 1,

analogous to the Cauchy-Hadamard relation for the radius of convergence in one dimension.
5The multinomial formula is (t1 + · · ·+ tn)k =

∑
α∈Nn

k!
α!

tα.
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7.3 Some computations

7.3.1 On multi-indices

Let n ∈ N∗,m ∈ N. We have

Card {(α1, . . . , αn) ∈ Nn, α1 + · · ·+ αn = m}︸ ︷︷ ︸
En,m

= Cn−1
m+n−1 =

(m+ n− 1)!

(n− 1)!m!
. (7.3.1)

In fact, defining

β1 = α1 + 1, β2 = α1 + α2 + 2, . . . , βn−1 = α1 + · · ·+ αn−1 + n− 1,

we have 1 ≤ β1 < β2 < · · · < βn−1 ≤ m + n − 1, and we find a bijection between
the set En,m and the set of strictly increasing mappings from {1, . . . , n − 1} to
{1, . . . ,m+n−1}; the latter set has cardinality Cn−1

m+n−1 since it amounts to choosing
a subset with n−1 elements among a set of m+n−1 elements. On the other hand,
defining qn,m = CardEn,m, we have obviously

qn+1,m =
m∑
j=0

qn,j

and we can check that Cn
m+n =

∑m
j=0C

n−1
n+j−1 : it is true for m = 0 and if verified for

m ≥ 0, we get indeed

Cn
m+1+n = Cn

m+n + Cn−1
m+n =

m∑
j=0

Cn−1
n+j−1 + Cn−1

m+n =
m+1∑
j=0

Cn−1
n+j−1.

We have also obviously from the above discussion

Card {(α1, . . . , αn) ∈ Nn, α1 + · · ·+ αn ≤ m}︸ ︷︷ ︸
Fn,m

= qn+1,m = Cn
n+m, (7.3.2)

as well as

Card{(α1, . . . , αn+1) ∈ Nn+1, α1+· · ·+αn+1 ≤ m,αn+1 < m} = Cn+1
n+m+1−1. (7.3.3)

7.3.2 Stirling’s formula

Let k ∈ N. We have

k! =
(k
e

)k√
2πk

(
1 +

1

12k
+O(k−2)

)
, k → +∞. (7.3.4)

and in particular

k! ∼
(k
e

)k√
2πk k → +∞. (7.3.5)
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7.3.3 On the Poisson kernel for a half-space

We consider for xn > 0, x′ ∈ Rn−1, n ≥ 1, nβn = 2πn/2

Γ(n/2)
= |Sn−1|,

I =
2xn
nβn

∫
Rn−1

dy′(
|x′ − y′|2 + x2

n

)n/2 =
xnΓ(n/2)

πn/2

∫
Rn−1

dy′

(x2
n + |y′|2)n/2

=
xnΓ(n/2)

πn/2

∫ +∞

0

ρn−2dρ

(x2
n + ρ2)n/2

|Sn−2| = Γ(n/2)

πn/2
2π(n−1)/2

Γ((n− 1)/2)

∫ +∞

0

ρn−2

(1 + ρ2)n/2
dρ.

We have∫ +∞

0

ρn−2

(1 + ρ2)n/2
dρ =

∫ π/2

0

(tan θ)n−2(cos θ)n−2dθ =

∫ π/2

0

(sin θ)n−2dθ = Wn−2,

the so-called Wallis integrals. It is easy and classical to get for k ∈ N,

W2k =
π(2k)!

(k!)222k+1
, W2k+1 =

(k!)222k

(2k + 1)!
. (7.3.6)

As a result, for n = 2 + 2k,

Γ(n/2)

πn/2
2π(n−1)/2

Γ((n− 1)/2)

∫ +∞

0

ρn−2

(1 + ρ2)n/2
dρ =

k!

π1/2

2

Γ(k + 1
2
)

π(2k)!

(k!)222k+1
=

π
1
2 (2k)!

22kk!Γ(k + 1
2
)

and for n = 3 + 2k,

Γ(n/2)

πn/2
2π(n−1)/2

Γ((n− 1)/2)

∫ +∞

0

ρn−2

(1 + ρ2)n/2
dρ

=
(k + 1

2
)Γ(k + 1

2
)

π1/2

2

k!

(k!)222k

(2k + 1)!
=

22kk!Γ(k + 1
2
)

π
1
2 (2k)!

.

on the other hand we have

Γ(k +
1

2
) = (k − 1

2
)(k − 3

2
) . . . (k − (2k − 1)

2
)Γ(1/2) = π1/2 (2k)!

22kk!
,

entailing π
1
2 (2k)!

22kk!Γ(k+ 1
2
)

= 1 =
22kk!Γ(k+ 1

2
)

π
1
2 (2k)!

. We have thus proven

∀(x′, xn) ∈ Rn−1 × R∗
+,

2xn
nβn

∫
Rn−1

dy′(
|x′ − y′|2 + x2

n

)n/2 = 1. (7.3.7)
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Hermann, Paris, 1971. MR MR0358652 (50 #11111)
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Notations
∆, Laplace operator, 51
Γ, gamma function, 54
Γ+,c, forward light-cone, 60
∂̄, 51
βn, volume of the unit ball of Rn, 74
curl, 9
div, 9
∇, 8

attractive node, 38
autonomous flow, 29

Burgers equation, 6, 43

Cauchy problem, 5
Cauchy-Lipschitz Theorem, 15
characteristic curves, 39

Dirichlet, 7

Euler’s system, 9

first integral, 29
flow of a vector field, 29
flow of an ODE, 20
fundamental solution, 51

gamma function, 54
Gauss-Green formula, 37
global solution of an ODE, 21
Green-Riemann formula, 37
Gronwall, 18

heat equation, 8, 55
hypoellipticity, 53

Laplace, 6

maximal solution of an ODE, 21

Navier-Stokes system, 10

Osgood, 20

polar coordinates in R2, 54

quasi-linear equation, 42

repulsive node, 38

saddle point, 38
Schrödinger equation, 8, 57
singular point of a vector field, 29
spherical coordinates, 55
spherical coordinates in R3, 33

transport equation, 5

vector field, 29
volume of the unit ball, 74
vorticity, 10

wave, 8
wave equation, 59
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