
1. Introduction
2. Our results

3. Proofs

Onset of instability for a class of
non-linear PDE systems

Nicolas Lerner
Université Paris VI
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1.Introduction

Well-posedness, Ill-posedness.

Jacques Hadamard introduced the notion of well-posedness.

Existence and uniqueness are important for an evolution equation, but of
little interest without some inequalities controlling the size of the solution
u(t) at a positive time t by the size of the initial datum u(0) in some
appropriate functional space.
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A typical example of an ill-posed problem (i.e. not well-posed) is
the Cauchy problem for the ∂ equation :{

∂tu + i∂xu = 0, on t > 0,

u(0, x) = u0(x).

We cannot expect that for t > 0, K , L compact subsets of R,

(∗) ‖u(t)‖H−N(K) ≤ C0‖u(0)‖HN(L)

since for u0(x) = e iλx , the unique solution is u(t, x) = eλ(t+ix)

and (∗) would imply for any λ ≥ 1 and a fixed positive t,

cKλ
−Neλt ≤ ‖u(t)‖H−N(K) ≤ C0‖u(0)‖HN(L) ≤ CLλ

N .

For an ill-posed problem, large oscillations in the initial datum
trigger exponential increasing in time of the solution.
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Generic instability of Kovalevskaya solutions for ill-posed problems

Let us quote Lars Gårding :

“ It was pointed out very emphatically by Hadamard that it is not
natural to consider only analytic solutions and source functions
even for an operator with analytic coefficients.

This reduces the
interest of the Cauchy-Kovalevskaya theorem which . . .does not
distinguish between classes of differential operators which have, in
fact, very different properties such as the Laplace operator and the
Wave operator.”
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Let us start over with the toy model

∂tu + i∂xu = 0 on t > 0, u(0, x) = u0(x),

and assume that supp û0 ⊂ R+. With v(t, ξ) = û(t, ξ), we get

v̇ = ξv , û(t, ξ) = v(t, ξ) = etξv(0, ξ) = et|ξ|û0(ξ).

Assuming now that u(T ) belongs to L2(R) for some T > 0 (not
that stringent an assumption), we obtain

û0(ξ) = e−T |ξ|û(T , ξ)

and this implies that u0 is analytic.
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Assuming now that u(T ) belongs to L2(R) for some T > 0 (not
that stringent an assumption), we obtain
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Without the assumption on the spectrum, it is possible for that
simple model to use the projection P+ on the subspace of functions
with non-negative spectrum and to obtain analyticity for P+u0.

More generally, it is easy to reproduce that backward
regularization property for some quasi-linear equations whose
characteristics do not stay in the real line.

This is also an instability result, since the very existence of a
solution implies some strong regularity property for the initial
datum. For instance, obtaining analyticity for the initial datum will
ruin existence of a solution if we perturb an analytic initial datum
by a smooth flat function at a point.
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Quasi-linear first-order systems. We consider the quasi-linear
system,

(]) ∂tu + A(t, x , u) · ∂xu = b(t, x , u), u|t=0 = u0(x),

A(t, x , u) · ∂x =
∑

1≤j≤d
Aj(t, x , u)∂xj ,

t ∈ R is the time-variable, x ∈ Rd stands for the space variables,
u(t, x), b(t, x , u) ∈ RN , Aj are real N × N matrices. We define
for ξ ∈ Rd ,

Au(t, x , ξ) =
∑

1≤j≤d
Aj(t, x , u(t, x))ξj , (N × N real matrix),

pu(µ; t, x , ξ) = det
(
Au(t, x , ξ)−µ IdN

)
, (characteristic polynomial of Au).
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Considering the Cauchy problem for a quasi-linear real N × N system

(]) ∂tu +
∑

1≤j≤d

Aj(t, x , u)∂xj u = b(t, x , u), u(0, x) = u0(x),

we define Au(t, x , ξ) =
∑

1≤j≤d Aj(t, x , u)ξj .

We shall say that the system is hyperbolic when the eigenvalues of Au

are real. Note that if the eigenvalues of

Au(0, x0, ξ) =
∑

1≤j≤d

Aj(0, x0, u0(x0))ξj

are real and simple for all ξ ∈ Sd−1, then they stay real and simple for
the matrix Au(t, x , ξ) nearby (strict hyperbolicity) : the characteristic
roots are continuous functions λ(t, x , ξ), homogeneous of degree one
with respect to ξ, and if they were non-real, since the matrix Au is real,
the roots λ, λ̄ would merge to a double real root.

Strict hyperbolicity implies local well-posedness (see A. Majda,
G. Métivier).
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Aj(t, x , u)∂xj u = b(t, x , u), u(0, x) = u0(x),

Au(t, x , ξ) =
∑

1≤j≤d

Aj(t, x , u)ξj .

Conversely, even a very weak assumption of well-posedness implies
(weak) hyperbolicity : this type of result has now the generic name of
Lax-Mizohata theorems and many authors were involved in proving and
stating them : P. Lax, S. Mizohata for linear equations, V. Ivrii &
V. Petkov for existence of solutions for general C∞ data for linear
equations, S. Wakabayashi, K. Yagdjian for non-linear equations
with different notions of stability.
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equations, S. Wakabayashi, K. Yagdjian for non-linear equations
with different notions of stability.
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Summing-up :
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Strict hyperbolicity =⇒Well-posedness

Well-posedness =⇒Weak hyperbolicity

What happens if Au(0, x , ξ) =
∑

1≤j≤d
Aj(0, x , u0(x))ξj

is only weakly hyperbolic ?
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∑

1≤j≤d Aj (0, x, u0(x))ξj is only weakly hyperbolic ?

We need to look at the behaviour of the characteristic roots for
t > 0, and see if the roots intend to visit the complex flesh around
the real line : if that is so, instability will be present.
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Aj (t, x, u)∂xj u = b(t, x, u), u(0, x) = u0(x), Au(t, x, ξ) =
∑

1≤j≤d

Aj (t, x, u)ξj .

A difficulty : the roots will be multiple and thus generically
singular : we need to discuss on a “macroscopic” smooth quantity
and we do not want to calculate the roots.

We do not expect a system of PDE to behave as a collection of
(coupled) scalar equations, but we want to single out typical
models of unstable systems.

Note that, using the equation, ∂tu(0, x) can be expressed as a
function of u0(x) and tangential derivatives ∂xu0(x).

As a result, the k-jet of Au at t = 0 depends only on the data. We
want conditions depending only on the data ( !). The jet of the
characteristic polynomial det

(
Au(t, x , ξ)− µ IdN

)
at t = 0 should

be easy to calculate.
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2. Our results

Definition of Hadamard instability. We assume that we have a reference local
solution φ(t, x) with regularity Hm,m > 1 + d

2
, near a distinguished point x0,

∂tφ+
∑

1≤j≤d

Aj (t, x , φ)∂xjφ = b(t, x , φ), φ(0, x) = φ0(x), on [0,T0]× U0,

T0 > 0, U0 a neighborhood of x0.

Assuming for instance analyticity for the fluxes
and b, φ0, the existence of a local analytic solution follows from CK theorem.

Ill-posedness means : let 0 < T ≤ T0, U ⊂ U0 a neighborhood of x0,
θ ∈ (1/2, 1] be given. There is no neighborhood U of φ0 in Hm(U) such that
for all u0 ∈ U , the above PDE system has a solution in L∞

(
[0,T ],W 1,∞(U)

)
with initial value u0 satisfying

sup
u0∈U
0≤t≤T

‖u(t)− φ(t)‖W 1,∞(U)

‖u0 − φ0‖θHm(U)

< +∞.
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with initial value u0 satisfying

sup
u0∈U
0≤t≤T

‖u(t)− φ(t)‖
W 1,∞(U)

‖u(0)− φ(0)‖θ
Hm(U)

< +∞.

• Either data arbitrarily close to φ0 fail to generate trajectories (non-existence of a
solution), or if a solution happens to exist, Hölder continuity fails.

• The deviation is instantaneous (T arbitrarily small) and localized (U arbitrarily
small).

• m could be very large (e.g. when a CK solution is available), this is not enough to
control the first derivative of the deviation in L∞.
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Assumptions. We describe now some sufficient conditions triggering instability.
Our reference solution

∂tφ +
∑

1≤j≤d

Aj (t, x, φ)∂xj φ = b(t, x, φ), φ(0, x) = φ0(x),

Aφ(t, x, ξ) =
∑

1≤j≤d

Aj (t, x, φ)ξj , pφ(µ; t, x, ξ) = det
(
Aφ(t, x, ξ)− µ IdN

)
.

If for every neighborhood U of x0, there exists x ∈ U, ξ ∈ Sd−1, µ ∈ C\R, such that
pφ(µ; 0, x , ξ) = 0, this is essentially the “elliptic case”, for which Lax-Mizohata
theorems prove instability.

We may thus assume that there exists a neighborhood U0 of x0 such that for all
x ∈ U0, all ξ ∈ Sd−1, pφ(µ; 0, x , ξ) = 0 =⇒ µ ∈ R, i.e. we have weak hyperbolicity
near x0 at time 0. If all the roots at x0 are simple, this is the strictly hyperbolic case
(which is well-posed), so we may assume as well that there is a multiple root at x0.
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N × N quasi-linear system : ∂tu + A(t, x, φ) · ∂xφ = b(t, x, φ), φ(0, x) = φ0(x).

Aφ(t, x, ξ) =
∑

1≤j≤d

Aj (t, x, φ(t, x))ξj , p(µ; t, x, ξ) = det
(
Aφ(t, x, ξ)− µ IdN

)
.

p(µ0; 0, x0, ξ0) =
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∂µ
(µ0; 0, x0, ξ0) = 0 and

( ∂2p

∂µ2
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∂t

)
(µ0; 0, x0, ξ0) > 0. (H)

Why is (H) relevant to instability ?

We get a normal form since ∂p
∂µ

(µ; t, x , ξ) = 0 has a solution µ = ν(t, x , ξ)
(thanks to the double root assumption)

and thus

p(µ; t, x , ξ) = p(ν(t, x , ξ); t, x , ξ) +

=0︷ ︸︸ ︷
∂p

∂µ
(ν(t, x , ξ); t, x , ξ)

(
µ− ν(t, x , ξ))

+
(
µ− ν(t, x , ξ)

)2
∫ 1

0

(1− σ)
∂2p

∂µ2

(
ν(t, x , ξ) + σ(µ− ν(t, x , ξ)); t, x , ξ

)
dσ︸ ︷︷ ︸

e0 6=0

,

17 Onset of instability for a class of non-linear PDE systems



1. Introduction
2. Our results

3. Proofs

Definition of Hadamard instability
Assumptions
Theorem and examples

N × N quasi-linear system : ∂tu + A(t, x, φ) · ∂xφ = b(t, x, φ), φ(0, x) = φ0(x).

Aφ(t, x, ξ) =
∑

1≤j≤d

Aj (t, x, φ(t, x))ξj , p(µ; t, x, ξ) = det
(
Aφ(t, x, ξ)− µ IdN

)
.

p(µ0; 0, x0, ξ0) =
∂p

∂µ
(µ0; 0, x0, ξ0) = 0 and

( ∂2p

∂µ2

∂p

∂t

)
(µ0; 0, x0, ξ0) > 0. (H)

Why is (H) relevant to instability ?

We get a normal form since ∂p
∂µ

(µ; t, x , ξ) = 0 has a solution µ = ν(t, x , ξ)
(thanks to the double root assumption)

and thus

p(µ; t, x , ξ) = p(ν(t, x , ξ); t, x , ξ) +

=0︷ ︸︸ ︷
∂p

∂µ
(ν(t, x , ξ); t, x , ξ)

(
µ− ν(t, x , ξ))

+
(
µ− ν(t, x , ξ)

)2
∫ 1

0

(1− σ)
∂2p

∂µ2

(
ν(t, x , ξ) + σ(µ− ν(t, x , ξ)); t, x , ξ

)
dσ︸ ︷︷ ︸

e0 6=0

,

17 Onset of instability for a class of non-linear PDE systems



1. Introduction
2. Our results

3. Proofs

Definition of Hadamard instability
Assumptions
Theorem and examples

N × N quasi-linear system : ∂tu + A(t, x, φ) · ∂xφ = b(t, x, φ), φ(0, x) = φ0(x).

Aφ(t, x, ξ) =
∑

1≤j≤d

Aj (t, x, φ(t, x))ξj , p(µ; t, x, ξ) = det
(
Aφ(t, x, ξ)− µ IdN

)
.

p(µ0; 0, x0, ξ0) =
∂p

∂µ
(µ0; 0, x0, ξ0) = 0 and

( ∂2p

∂µ2

∂p

∂t

)
(µ0; 0, x0, ξ0) > 0. (H)

Why is (H) relevant to instability ?

We get a normal form since ∂p
∂µ

(µ; t, x , ξ) = 0 has a solution µ = ν(t, x , ξ)
(thanks to the double root assumption) and thus

p(µ; t, x , ξ) = p(ν(t, x , ξ); t, x , ξ) +

=0︷ ︸︸ ︷
∂p

∂µ
(ν(t, x , ξ); t, x , ξ)

(
µ− ν(t, x , ξ))

+
(
µ− ν(t, x , ξ)

)2
∫ 1

0

(1− σ)
∂2p

∂µ2

(
ν(t, x , ξ) + σ(µ− ν(t, x , ξ)); t, x , ξ

)
dσ︸ ︷︷ ︸

e0 6=0

,

17 Onset of instability for a class of non-linear PDE systems



1. Introduction
2. Our results

3. Proofs

Definition of Hadamard instability
Assumptions
Theorem and examples

N × N quasi-linear system : ∂tu + A(t, x, φ) · ∂xφ = b(t, x, φ), φ(0, x) = φ0(x).

Aφ(t, x, ξ) =
∑

1≤j≤d

Aj (t, x, φ(t, x))ξj , p(µ; t, x, ξ) = det
(
Aφ(t, x, ξ)− µ IdN

)
.

p(µ0; 0, x0, ξ0) =
∂p

∂µ
(µ0; 0, x0, ξ0) = 0 and

( ∂2p

∂µ2

∂p

∂t

)
(µ0; 0, x0, ξ0) > 0. (H)

Why is (H) relevant to instability ?
We get a normal form since ∂p

∂µ
(µ; t, x , ξ) = 0 has a solution µ = ν(t, x , ξ)

(thanks to the double root assumption)

and thus

p(µ; t, x , ξ) = p(ν(t, x , ξ); t, x , ξ) +

=0︷ ︸︸ ︷
∂p

∂µ
(ν(t, x , ξ); t, x , ξ)

(
µ− ν(t, x , ξ))

+
(
µ− ν(t, x , ξ)

)2
∫ 1

0

(1− σ)
∂2p

∂µ2

(
ν(t, x , ξ) + σ(µ− ν(t, x , ξ)); t, x , ξ

)
dσ︸ ︷︷ ︸

e0 6=0

,

17 Onset of instability for a class of non-linear PDE systems



1. Introduction
2. Our results

3. Proofs

Definition of Hadamard instability
Assumptions
Theorem and examples

N × N quasi-linear system : ∂tu + A(t, x, φ) · ∂xφ = b(t, x, φ), φ(0, x) = φ0(x).

Aφ(t, x, ξ) =
∑

1≤j≤d

Aj (t, x, φ(t, x))ξj , p(µ; t, x, ξ) = det
(
Aφ(t, x, ξ)− µ IdN

)
.

p(µ0; 0, x0, ξ0) =
∂p

∂µ
(µ0; 0, x0, ξ0) = 0 and

( ∂2p

∂µ2

∂p

∂t

)
(µ0; 0, x0, ξ0) > 0. (H)

Why is (H) relevant to instability ?
We get a normal form since ∂p

∂µ
(µ; t, x , ξ) = 0 has a solution µ = ν(t, x , ξ)

(thanks to the double root assumption) and thus

p(µ; t, x , ξ) = p(ν(t, x , ξ); t, x , ξ) +

=0︷ ︸︸ ︷
∂p

∂µ
(ν(t, x , ξ); t, x , ξ)

(
µ− ν(t, x , ξ))

+
(
µ− ν(t, x , ξ)

)2
∫ 1

0

(1− σ)
∂2p

∂µ2

(
ν(t, x , ξ) + σ(µ− ν(t, x , ξ)); t, x , ξ

)
dσ︸ ︷︷ ︸

e0 6=0

,

17 Onset of instability for a class of non-linear PDE systems



1. Introduction
2. Our results

3. Proofs

Definition of Hadamard instability
Assumptions
Theorem and examples

p(µ0; 0, x0, ξ0) =
∂p

∂µ
(µ0; 0, x0, ξ0) = 0 and

( ∂2p

∂µ2

∂p

∂t

)
(µ0; 0, x0, ξ0) > 0. (H)

p(µ; t, x , ξ) = p(ν(t, x , ξ); t, x , ξ) +

=0︷ ︸︸ ︷
∂p

∂µ
(ν(t, x , ξ); t, x , ξ)

(
µ− ν(t, x , ξ))

+
(
µ− ν(t, x , ξ)

)2
∫ 1

0

(1− σ)
∂2p

∂µ2

(
ν(t, x , ξ) + σ(µ− ν(t, x , ξ)); t, x , ξ

)
dσ︸ ︷︷ ︸

e0 6=0

,

p(µ; t, x , ξ) = p(ν(t, x , ξ); t, x , ξ) +
(
µ− ν(t, x , ξ)

)2
e0(µ; t, x , ξ).

Since ∂p
∂t
6= 0, this gives with e0e1 > 0

p(µ; t, x , ξ) = e1(t, x , ξ)
(
t − θ(x , ξ)

)
+ e0(µ; t, x , ξ)

(
µ− ν(t, x , ξ)

)2
,

so that the roots are such that

(µ− ν)2 + e−1
0 e1︸ ︷︷ ︸
>0

(t − θ) = 0 =⇒ µ ∈ ν + iR∗, if t > θ.
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with e0e1 > 0.

Note that the assumption (H) depends only on φ0 and its first
derivative (wrt x !) since we can use the equation to get ∂tφ. Now
the elliptic region is t > θ(x , ξ) since e0e1 > 0. Since t = 0 is in
the hyperbolic region, we get

θ(x , ξ) ≥ 0, ν(0, x0, ξ0) = µ0, θ(x0, ξ0) = 0,

implying ∇θ(x0, ξ0) = 0.
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With Toan NGUYEN (Penn State University) and Benjamin TEXIER
(Université Paris VII), we proved the following result.

Theorem

When Condition (H) holds, the N × N quasi-linear PDE system above is
unstable in the Hadamard sense, i.e. there is no neighborhood U of φ0 in
Hm(U) such that for all u0 ∈ U , the above PDE system has a solution in
L∞
(
[0,T ],W 1,∞(U)

)
with initial value u0 satisfying

sup
u0∈U
0≤t≤T

‖u(t)− φ(t)‖W 1,∞(U)

‖u0 − φ0‖θHm(U)

< +∞.
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unstable in the Hadamard sense, i.e. there is no neighborhood U of φ0 in
Hm(U) such that for all u0 ∈ U , the above PDE system has a solution in
L∞
(
[0,T ],W 1,∞(U)

)
with initial value u0 satisfying

sup
u0∈U
0≤t≤T

‖u(t)− φ(t)‖W 1,∞(U)

‖u0 − φ0‖θHm(U)

< +∞.
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1. Introduction
2. Our results

3. Proofs

Definition of Hadamard instability
Assumptions
Theorem and examples

N × N quasi-linear system : ∂tu + A(t, x , u) · ∂xu = b(t, x , u), u(0, x) = u0(x).
A(t, x , ξ) =

∑
1≤j≤d Aj(t, x , u(t, x))ξj , p(µ; t, x , ξ) = det

(
A(t, x , ξ)− µ IdN

)
.

p(µ0; 0, x0, ξ0) =
∂p

∂µ
(µ0; 0, x0, ξ0) = 0 and

(∂2p

∂µ2

∂p

∂t

)
(µ0; 0, x0, ξ0) > 0. (H)

In other words (H) implies instability even though the operator is
weakly hyperbolic at time 0.

(Hopefully not) outrageous claim :

(H) is easy to check.

Let’s try our hand on a significant example, mentioned by
Métivier.
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1. Introduction
2. Our results

3. Proofs

Definition of Hadamard instability
Assumptions
Theorem and examples

Example 1 : Van der Waals. Consider the compressible Euler equations in one
space dimension, in Lagrangian coordinates :{

∂tu + ∂xv = 0,

∂tv + ∂xq(u) = 0,

with q analytic. The polynomial p(µ, t, x , ξ) is

p(µ, t, x , ξ) =

∣∣∣∣ −µ ξ
q′(u)ξ −µ

∣∣∣∣ = µ2 − ξ2q′(u(t, x))

Assuming q′(u0(x0)) = 0, we have a double root µ = 0, ∂2p
∂µ2 = 2,

∂p

∂t
= −ξ2q′′(u(t, x))∂tu = ξ2q′′(u)∂xv

For (H) to be satisfied, we need only

q′′(u0(x0))v ′0(x0) > 0

22 Onset of instability for a class of non-linear PDE systems
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∂tu + ∂xv = 0, q′(u0(x0)) = 0, q′′(u0(x0))v ′0(x0) > 0.

∂tv + ∂xq(u) = 0, p = µ2 − q′(u)ξ2

Take for instance q(u) = u(u2 − 1), u0(x0) = 3−1/2, v ′0(x0) > 0, (q′(u) = 3u2 − 1)

-1
+1

0
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1. Introduction
2. Our results

3. Proofs

Definition of Hadamard instability
Assumptions
Theorem and examples

In fact q′(u(t, x0)) = q′(u0(x0))︸ ︷︷ ︸
=0

− q′′(u0(x0))v ′(x0)︸ ︷︷ ︸
>0

t + O(t2), and the

characteristic polynomial is

µ2 − q′(u)ξ2 = µ2 + tσ(t)ξ2, σ(0) > 0.

The roots (∼ ±it1/2ξ) are not smooth, which is not surprising because of
multiple characteristics. The system resembles to

∂t

(
u1

u2

)
+

(
0 1
−t 0

)
∂x

(
u1

u2

)
= 0,

(
u1(0)
u2(0)

)
=

(
1
0

)
.

The matrix

(
0 1
−t 0

)
is nilpotent at t = 0 and that system cannot be reduced

to a collection of scalar first order equations.

Not surprising either : do not expect a system with multiple roots to
behave as several possibly coupled scalar equations unless some miracle
happens (smooth double roots, semi-simple matrix). In fact nilpotency is
generic in that case.
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However, it is interesting in that case to check direcly that a
classical second order ODE, the Airy equation, describes the
instability of this system pretty well.

∂t

(
u1

u2

)
+

(
0 1
−t 0

)
∂x

(
u1

u2

)
= 0,

(
u1(0)
u2(0)

)
=

(
1
0

)
.

Fourier transform v(t, ξ) = û(t, ξ) :

∂t

(
v1

v2

)
+

(
0 1
−t 0

)
iξ

(
v1

v2

)
= 0,

{
v̇1 + iξv2 = 0,

v̇2 − itξv1 = 0,

v̈1 = −iξv̇2 = −iξitξv1 = tξ2v1,

and thus v1(t, ξ) = A(tξ2/3) where A is an Airy function, i.e. a
solution of A′′(s)− sA(s) = 0.
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and thus v1(t, ξ) = A(tξ2/3) where A is an Airy function, i.e. a
solution of A′′(s)− sA(s) = 0.
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)
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(
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u2
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= 0,

(
u1(0)
u2(0)
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(
1
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)
.

Taking into account the initial data we find the solutions

u1(t, x) = A(λ2/3t)e ixλ, u2(t, x) = A′(λ2/3t)iλ−1/3e ixλ

where A is a Airy function (solution of A′′(s)− sA(s) = 0) such
that A(0) = 1,A′(0) = 0.

With the notation Ai for the standard Airy function (Inverse
Fourier transform of e iξ

3/3), we find with j = e2iπ/3,

A(s) =
1

(1− j)Ai(0)

(
Ai(js)−jAi(s)

)
(note Ai(0) = 3−1/6Γ(1/3)/(2π) > 0).
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u1(t, x) = A(λ2/3t)e ixλ, u2(t, x) = A′(λ2/3t)iλ−1/3e ixλ

A(s) =
1

(1− j)Ai(0)

(
Ai(js)− jAi(s)

)
A(s) is increasing exponentially as ec1s

3/2

for s > 0 from the term Ai(js), since
Ai(s) decreases exponentially. We have in particular

c0λ
−N0−1ec1λt

3/2

≤ ‖u(t)‖H−N0 (|x|≤1/λ), ‖u(0)‖HN0 (|x|≤R0) ≤ C1λ
N0

and

‖u(t =
(lnλ)2/3(ln lnλ)

λ2/3
)‖H−N0 (K0) ≤ C‖u(0)‖HN0 (L0) is impossible,

since λt3/2 = (λ2/3t)3/2 = (lnλ)(ln lnλ)3/2 and

exp (lnλ)(ln lnλ)3/2 = λ(ln lnλ)3/2

� λM0 .
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Example 2 : Klein-Gordon-Zakharov.

Another example is the family of systems in one space dimension
∂t

(
u
v

)
+ ∂x

(
v
u

)
+

(
α 0
0 0

)
∂x

(
n
m

)
= (n + 1)

(
v
−u

)
,

∂t

(
n
m

)
+ c∂x

(
m
n

)
+

(
α 0
0 0

)
∂x

(
u
v

)
= ∂x

(
0

u2 + v 2

)
,

indexed by α, c ∈ R. The symbol of the first-order operator is

AKGZ(t, x , ξ) =


0 1 α 0
1 0 0 0
α 0 0 c
−2u −2v c 0

 ξ.

In the case c /∈ {−1, 1} and α = 0, it has four distinct eigenvalues

{±c,±1}

for any values of u, v . This implies that this system is strictly hyperbolic,
hence locally well-posed in Hs , for s > 3/2.
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[Colin-Ebrard-Gallice-Texier] proved that if c /∈ {−1, 1}
and α = 0, the system is locally well-posed in Hs(R), for s > 1/2.
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AKGZ(t, x , ξ) =


0 1 α 0
1 0 0 0
α 0 0 c
−2u −2v c 0

 ξ.

We look at this for c /∈ {−1,+1} and α 6= 0. The characteristic polynomial is
p(µ) = (µ2 − c2)(µ2 − 1)− α2µ2 + 2αc(v + uµ)

p(0) = c2 + 2αcv = 0 if v0(x0) = −c/2α

p′(0) = 2αcu = 0 if u0(x0) = 0.

To check (H), we calculate at t = 0, µ = 0, x = x0,

1

2

∂p

∂t

∂2p

∂µ2
= −(1 + c2 + α2)2αc∂tv = (1 + c2 + α2)2αc∂xu,
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Burgers-like complex systems
We consider a complex scalar quasi-linear equation

(‡) ∂tu +
d∑

j=1

aj(t, x , u)∂xj u = b(t, x , u), u(0, x) = ω(x).

L = ∂t +
∑d

j=1 aj(t, x , v)∂xj + b(t, x , v)∂v , holomorphic vector

field,

ν0 = (a1, . . . , ad),

ν1 =
(
L(a1), . . . ,L(ad)

)
= L(ν0), νk = L(νk−1) = Lk(ν0).

ν0 = (a1, . . . , ad),

ν1 =
(
L(a1), . . . ,L(ad)

)
= L(ν0), νk = L(νk−1) = Lk(ν0).

We shall assume that, for some (x0, v0), there exists k ∈ N such
that Im νk(0, x0, v0) 6= 0.
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∂tu + a(t, x , u) · ∂xu = b(t, x , u), u|t=0 = ω(x).

Im ν0(0, x0, v0) = Im a(0, x0, ω(x0)) 6= 0 is the ellipticity
assumption.
With Im ν1 = Im a′t + Re a · Im a′x + Im(ba′v ), the next
assumption is

Im ν0

(
0, x , ω(x)

)
≡ 0,

Im ν1

(
0, x0, ω(x0)

)
6= 0.

And so on : with ν2 = Lν1, ν1 = Lν0, ν0 = a,
L = ∂t + a · ∂x + b∂v ,

Im ν0

(
0, x , ω(x)

)
≡ 0,

Im ν1

(
0, x , ω(x)

)
≡ 0,

Im ν2

(
0, x0, ω(x0)

)
6= 0.
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Theorem (N.L, Y. Morimoto, C.-J.Xu, Amer. J. Math. 132, (2010) )

Let k ∈ N. If the Cauchy problem

∂tu + a(t, x , u) · ∂xu = b(t, x , u), u|t=0 = u0(x).

has a C k+1 solution for t ≥ 0 on near (0, x0), and ∀x ∈ Ω, ∀j with 0 ≤ j < k,

Im νj(0, x , u0(x)) = 0, Im νk
(
0, x0, u0(x0)

)
6= 0,

then, for all ξ ∈ Sd−1 such that Im νk(0, x0, u0(x0)) · ξ > 0, the point (x0, ξ) /∈
the analytic wave-front-set of u0.

So the existence of a merely continuous solution forces the initial datum to
have some analyticity properties. This triggers instability since “most” initial
data won’t give rise to a solution. If u0 analytic, use Cauchy Kovalevskaya to
get a local solution, then perturb in C∞ that u0 : no solution. Métivier
proved that result in the elliptic case (k = 0).
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The C∞ wave-front-set : (x0, ξ0) /∈WF∞u : ∃χ ∈ C∞c , χ(x0) 6= 0,
∃W0 ∈ Vξ0/|ξ0| with

∀N, ∃CN ,∀ξ ∈W0,∀λ ≥ 1, |χ̂u(λξ)| ≤ CNλ
−N .

We have of course p1(WF∞u) = singsupp u ⊂ singsuppA u.

The analytic wave-front-set WFA(u) ⊃WF∞(u) is such that

p1(WFAu) = singsuppA u.

It is convenient to use the Fourier-Bros-Iagolnitzer transform of
v ∈ E ′(Rd),

(Tv)(z , λ) =

∫
Rd

e−πλ(z−x)2
v(x)dx , z ∈ C, λ > 0.

(x0, ξ0) /∈WFA(u) means

∃W0 ∈ Vx0−iξ0 ,∃χ0 ∈ C∞c (Ω), χ0(x) = 1 near x0,∃ε0 > 0 with

sup
λ≥1,z∈W0

eε0λ|(Tχ0u)(z , λ)|e−πλ(Im z)2
< +∞.
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3. Proofs

First reductions. Our reference solution φ on [0,T0]× U0(x0) :

∂tφ+
∑

1≤j≤d
Aj(t, x , φ)∂xjφ = b(t, x , φ), φ(0, x) = φ0(x).

A perturbed datum :

uε(0, x) = φ0(x) + εNϕ0

(x − x0

εκ
)
, N large, κ > 0,

which is assumed to giving rise to some solution

∂tuε +
∑

1≤j≤d
Aj(t, x , uε)∂xj uε = b(t, x , uε).

We write the equation satisfied by

uε − φ = vε, vε(t = 0) = εNϕ0

(x − x0

εκ
)
.
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∂t
(
φ+ vε

)
+
∑

1≤j≤d
Aj(t, x , φ+ vε)∂xj

(
φ+ vε

)
= b(t, x , φ+ vε).

∂tφ+ ∂tvε +
{

A(t, x , φ+ vε)− A(t, x , φ)
}
· ∇x

(
φ+ vε

)
+A(t, x , φ) · ∇xφ+ A(t, x , φ) · ∇xvε

= b(t, x , φ+ vε)− b(t, x , φ) + b(t, x , φ).

∂tvε+A(t, x , φ+vε) ·∇xvε+
{

A(t, x , φ+vε)−A(t, x , φ)
}
·∇x

(
φ
)

= b(t, x , φ+ vε)− b(t, x , φ).
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∂tvε + A(t, x , φ+ vε) · ∇xvε

= −Ã(t, x , φ, vε)vε∇x

(
φ
)

+ B(t, x , φ, vε) · vε

∂tvε + A(t, x , φ) · ∇xvε

= −Ã(t, x , φ, vε)vε∇xvε−Ã(t, x , φ, vε)vε∇x

(
φ
)

+B(t, x , φ, vε)·vε

{
∂tvε + A(t, x , φ) · ∇xvε = C1(t, x , φ, vε)vε∇xvε + C0(t, x , φ, vε) · vε
vε(0, x) = εNϕ0

(
x
εκ

)
(we took x0 = 0).

38 Onset of instability for a class of non-linear PDE systems



1. Introduction
2. Our results

3. Proofs

First reductions
Duhamel’s principle and pseudodifferential flows
Stratification of the boundary of the instability region

{
∂tvε + A(t, x , φ) · ∇xvε = C1(t, x , φ, vε)vε∇xvε + C0(t, x , φ, vε) · vε
vε(0, x) = εNϕ0

(
x
εκ

)
(we took x0 = 0).

We define

vε(t, x) = εNwε
(
t,

y︷︸︸︷
x

εκ
)

and we find
εN∂twε + εN−κA(t, εκy , φ(t, εκy)) · ∇ywε

= C1(t, εκy , φ(t, εκy), εNwε)ε
Nwεε

N−κ∇ywε

+C0(t, εκy , φ(t, εκy), εNwε) · εNwε

wε(0, y) = ϕ0(y)

39 Onset of instability for a class of non-linear PDE systems



1. Introduction
2. Our results

3. Proofs

First reductions
Duhamel’s principle and pseudodifferential flows
Stratification of the boundary of the instability region


∂twε + ε−1A(t, εκy , φ(t, εκy)) · ε1−κ(∇ywε)(t, y)

= ε−1C1

(
t, εκy , φ(t, εκy), εNwε(t, y)

)
wε(t, y)εNε1−κ(∇ywε)(t, y)

+C0

(
t, εκy , φ(t, εκy), εNwε(t, y)

)
· wε(t, y)

wε(0, y) = ϕ0(y)


∂twε + ε−1A(t, εκy , φ(t, εκy)) · ε1−κ(∇ywε)(t, y)

= εN−1Ω1

(
t, εκy , εNwε(t, y)

)
wε(t, y)ε1−κ(∇ywε)(t, y)

+Ω0

(
t, εκy , εNwε(t, y)

)
· wε(t, y)

wε(0, y) = ϕ0(y)
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• κ = 0 corresponds to the already known elliptic case where a
non-real root exists :


∂twε + A(t, y , φ(t, y)) · (∇ywε)(t, y)

= εNΩ1

(
t, εy , εNwε(t, y)

)
wε(t, y)(∇ywε)(t, y)

+Ω0

(
t, y , εNwε(t, y)

)
· wε(t, y)

wε(0, y) = ϕ0(y),

leading to a Lax-Mizohata type instability result.
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• κ = 1/3 corresponds to our Airy-like case, Van der Waals &
Klein-Gordon-Zakharov examples :



∂twε + ε−1A(t, ε1/3y , φ(t, ε1/3y))ε2/3(∇ywε)(t, y)

= εNε−1Ω1

(
t, ε1/3y , εNwε(t, y)

)
wε(t, y)ε2/3(∇ywε)(t, y)

+Ω0

(
t, ε1/3y , 0

)
wε(t, y)

+εNΩ2

(
t, ε1/3y , εNwε(t, y)

)
wε(t, y)2

wε(0, y) = ϕ0(y).

◦ The term

εNε−1Ω1

(
t, ε1/3y , εNwε(t, y)

)
wε(t, y)ε2/3(∇ywε)(t, y)

is a non-linear perturbation of the lhs.

◦ The term Ω0

(
t, ε1/3y , 0

)
wε(t, y) is a linear term, eligible for the lhs.

◦ The term εNΩ2

(
t, ε1/3y , εNwε(t, y)

)
wε(t, y)2 will be considered as a source

term.
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• κ = 1/3 corresponds to our Airy-like case, Van der Waals & Klein-Gordon-Zakharov
examples :


∂twε + ε−1P

(
t, ε1/3y ,wε(t, y)

)
ε2/3∇ywε + Q

(
t, ε1/3y

)
wε(t, y)

= εNΩ2

(
t, ε1/3y , εNwε(t, y)

)
wε(t, y)2

wε(0, y) = ϕ0(y),

where P is close to A(t, ε1/3y , φ(t, ε1/3y)) and the source term

εNΩ2

(
t, ε1/3y , εNwε(t, y)

)
wε(t, y)2

is small.
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Duhamel’s principle and pseudodifferential flows
We shall use pseudodifferential operators with matrix-valued
symbols Q satisfying

|(∂ky ∂lηQ)(t, y , η)| ≤ Cklε
−1εk/3ε2l/3, k + l ≤ N,

for instance defined as

Q(t, y , η) = ε−1Q1(t, ε1/3y , ε2/3η),

where the matrix Q1 has N derivatives bounded. This version of a
semi-classical calculus can be provided with a graded algebra of
pseudodifferential operators.
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We solve the system of ODE for S(t; τ),

∂tS + ε−1Q1(t, ε1/3y , ε2/3η)S = 0, S(τ, τ) = Id .

We use S(t, τ) = Op(S(t, τ, y , η)) as an approximate parametrix for our
Cauchy problem and we find

wε = S(t, 0)ϕ0 + εN
∫ t

0

S(t, τ)Ω2dτ + ρε.

• The term ρε is a small remainder, thanks to a semi-classical
pseudodifferential argument.
• Condition (H) implies some exponential increase for S(t, 0)ϕ0, provided we
choose the vector-valued ϕ0 properly, namely a cutoff function × an
eigenvector.
• Next, we have also some upper bounds for S(t, τ) and the integral term must
be shown as not perturbing the exponential increase.
• Two assets for this : the εN in front and, using reductio ad absurdum, we
may assume that we have a priori bounds on wε (the term Ω2 depends
non-linearly on wε).
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Stratification of the boundary of the instability region
• We have seen that a toy model for Hadamard instability in the
presence of a non-real root is the scalar equation

∂t + i∂x .
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• Assuming that the roots are real and at most double, our toy
model is no longer a scalar equation, but is a system

µ = 2, ν = 1,

(
0 1
−t 0

)
, λ2 + t = 0 has singular roots,

µ = 2, ν = 2,

(
0 1
−t2 0

)
, λ2 + t2 = 0 has smooth roots,

are two examples in the non-semi-simple case .

The semi-simple case is easier

µ = 2,

(
0 t
−t 0

)
, λ2 + t2 = 0 has smooth roots.
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• Now assume that for our PDE system, hyperbolic at initial time,

∂tu + A(t, x , u) · ∂xu = b(t, x , u) on t > 0, u|t=0 = u0(x).

Au(t, x , ξ) =
∑

1≤j≤d

Aj (t, x , u(t, x))ξj , pu(λ; t, x , ξ) = det
(
Au(t, x , ξ)− λ IdN

)
,

we have a triple root

p =
∂p

∂λ
=
∂2p

∂λ2
= 0,

∂3p

∂λ3
6= 0, at t = 0, x = x0, ξ = ξ0 ∈ Sd−1.

We check the (nilpotent) matrix (the semi-simple-case should be easier to
handle and the case where the minimal polynomial has degree two is dealt with
before) 0 1 0

0 0 1
0 0 0

 and its perturbations

 0 1 b1t
a1t 0 1
a2t a3t 0
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We have∣∣∣∣∣∣
−λ 1 b1t
a1t −λ 1
a2t a3t −λ

∣∣∣∣∣∣
= (−λ)(λ2 − a3t)− a1t(−λ− a3b1t2) + a2t(1 + b1tλ)

= −λ3 + λt
(
a3 + a1 + a2b1t

)
+ a1a3b1t3 + a2t,

and the discriminant is

−∆(t) = −4t3(a3 + a1 + a2b1t
)3

+ 27
(
a1a3b1t3 + a2t

)2
.

Assuming a2 6= 0, we find that ∆(t) < 0 near t = 0 (and 0 at
t = 0), so that the polynomial has two complex conjugate non-real
roots and one real root.
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It seems interesting to check the one-dimensional 3× 3 system

∂tu +

0 1 0
0 0 1
t 0 0

 ∂xu

and to calculate the solution of

Ṁ + iξ

0 1 0
0 0 1
t 0 0

M = 0
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∣∣∣∣∣∣
−X 1 0

0 −X 1
t 0 −X

∣∣∣∣∣∣ = −X 3 + t, roots {t1/3, t1/3j , t1/3j2}

{iξt1/3, iξt1/3j , iξt1/3j2}

and if ξ > 0, t > 0,

iξt1/3j = iξt1/3(−1

2
+ i

√
3

2
) = ξt1/3(− i

2
−
√

3

2
), Re

(
iξt1/3j

)
< 0
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It turns out that this is related to special functions solutions of the
fourth-order scalar equation

f (4)(t) + atf ′(t) + bf (t) = 0, a, b non-zero complex parameters,

an ODE that can be solved explicitly, thanks to the fact that the
Fourier transform of tv(t) is i d

dτ v̂ so that the above equation on
the Fourier side is first-order with 0 as a regular singular point,

(iτ)4f̂ (τ) + ai
d

dτ

(
iτ f̂ (τ)

)
+ bf̂ (τ) = 0,

g = f̂ , aτg ′ = (b − a)g + τ4g ,

τg ′ = (c + a−1τ4)g , c = (b − a)a−1.
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• We could go on : assume that for our PDE system, hyperbolic at initial time, with
size N × N,

∂tu + A(t, x , u) · ∂xu = b(t, x , u) on t > 0, u|t=0 = u0(x).

Au(t, x , ξ) =
∑

1≤j≤d

Aj (t, x , u(t, x))ξj , pu(λ; t, x , ξ) = det
(
Au(t, x , ξ)− λ IdN

)
,

has a root with multiplicity ν ≥ 2,

p =
∂p

∂λ
= · · · =

∂ν−1p

∂λν−1
= 0,

∂νp

∂λν
6= 0, at t = 0, x = x0, ξ = ξ0 ∈ Sd−1.

We check the (nilpotent) matrix with size ν

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
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and its perturbation 

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
−t 0 0 0 0 0 0 0 0 0


with characteristic polynomial (−1)ν(λν + t) and eigenvalues

t1/νe iπ( 2k−1
ν

), 0 ≤ k < ν with imaginary part t1/ν sin( 2πk−π
ν

), so that

Re
(
iξt1/νe iπ( 2k−1

ν
)) = −ξt1/ν sin(

2πk − π
ν

) < 0,

if for instance

t > 0, ξ > 0, 1 <
2k − 1

ν
< 2, i.e.

ν + 1

2
< k <

2ν + 1

2
,

for ν = 2, k = 2, for ν ≥ 3,
2ν + 1

2
−
ν + 1

2
=
ν

2
> 1.
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Of course many other perturbations are relevant, each of it giving rise to another
model such as 

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
t2 0 0 0 0 0 0 0 0 1
−t t2 0 0 0 0 0 0 0 0


.

This would produce a lot of special functions which could be of interest in the study of
instability for systems of PDE.
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∂tu + A(t, x, u) · ∂xu = b(t, x, u) on t > 0, u|t=0 = u0(x),

Au(t, x, ξ) =
∑

1≤j≤d

Aj (t, x, u(t, x))ξj , pu(µ; t, x, ξ) = det
(
Au(t, x, ξ)− µ IdN

)
.

◦ When the hyperbolicity is strict, local well-posedness occurs.
• Hadamard’s well-posedness requires hyperbolicity : when a non-real root
shows up at time 0, instability occurs : this is the “elliptic” case and the related
model is a scalar equation, the ∂̄ equation.
• When weak hyperbolicity occurs at t = 0 with roots intending to exit the real
line, instability occurs. When the roots are at most double, our Condition (H)
above, a non-linear condition depending only on the data, ensures instability.
The related model is no longer scalar, but is a 2× 2 system closely related to
Airy’s equation.
• When weak hyperbolicity occurs at t = 0, with a root of multiplicity ν ≥ 2, it
is quite likely that some sufficient non-linear conditions (depending only on the
data) for instability can be described “macroscopically” (without actually
computing the roots). The typical models will be some ν × ν system which are
related in some cases to higher-order scalar ODE involving some special
functions.
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(
Au(t, x, ξ)− µ IdN

)
.

◦ When the hyperbolicity is strict, local well-posedness occurs.
• Hadamard’s well-posedness requires hyperbolicity : when a non-real root
shows up at time 0, instability occurs : this is the “elliptic” case and the related
model is a scalar equation, the ∂̄ equation.

• When weak hyperbolicity occurs at t = 0 with roots intending to exit the real
line, instability occurs. When the roots are at most double, our Condition (H)
above, a non-linear condition depending only on the data, ensures instability.
The related model is no longer scalar, but is a 2× 2 system closely related to
Airy’s equation.
• When weak hyperbolicity occurs at t = 0, with a root of multiplicity ν ≥ 2, it
is quite likely that some sufficient non-linear conditions (depending only on the
data) for instability can be described “macroscopically” (without actually
computing the roots). The typical models will be some ν × ν system which are
related in some cases to higher-order scalar ODE involving some special
functions.
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