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1. Examples

Kolmogorov example: K =
∂

∂t
− x

∂

∂y
− ∂2

∂x2

The vector field X0 =
∂

∂t
− x

∂

∂y
is propagating

The term
∂2u

∂x2
is a diffusion term

The operator is X0 + X ∗1 X1, with X1 =
∂

∂x

X0,X1, [X0,X1] is
∂

∂t
− x

∂

∂y
,
∂

∂x
,
∂

∂y
generates the tangent

space and K is hypoelliptic:

Ku ∈ C∞ =⇒ u ∈ C∞
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Hörmander’s operators
Subelliptic operators

1. Examples

Kolmogorov example: K =
∂

∂t
− x

∂

∂y
− ∂2

∂x2

The vector field X0 =
∂

∂t
− x

∂

∂y
is propagating

The term
∂2u

∂x2
is a diffusion term

The operator is X0 + X ∗1 X1, with X1 =
∂

∂x

X0,X1, [X0,X1] is
∂

∂t
− x

∂

∂y
,
∂

∂x
,
∂

∂y
generates the tangent

space and K is hypoelliptic:

Ku ∈ C∞ =⇒ u ∈ C∞

Coherent States Methods Hypoellipticity



1. Examples
2. Subellipticity result

3. Proof

Kolmogorov example
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K =
∂

∂t
− x

∂

∂y
− ∂2

∂x2

How many derivatives are lost with respect to the elliptic case ?
What a priori estimates can be proven ?

Change of variables

t = s, x = x1, y = x2 − sx1

∂u

∂s
=
∂u

∂t
− x

∂u

∂y
,

∂u

∂x1
+ s

∂u

∂x2
=
∂u

∂x

K = ∂s − (∂x1 + s∂x2)2

Fourier in the x1, x2 variables: we get an ODE

∂s + (ξ1 + sξ2)2

and, solving that ODE, we get

‖Ku‖0 & ‖u‖2/3
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Hörmander’s operators, X0 +
∑

1≤j≤r

X ∗j Xj

Xj real vector fields, whose Lie algebra generates the tangent space

X0 purely imaginary symbol,
∑

1≤j≤r X ∗j Xj nonnegative operator

optimal estimates for the regularity ?

Fokker-Planck operators, v · ∂x −∇V (x)∂v︸ ︷︷ ︸
propagation

−∆v +
v 2

4
− n

2︸ ︷︷ ︸
diffusion

Conditions on V (x) to get a compact resolvent ?
Global estimates ?
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Kolmogorov example
Hörmander’s operators
Subelliptic operators

Subelliptic operators pseudodifferential operators with complex
symbols p1 + ip2 satisfying some bracket condition and a geometric
condition.

The geometry of nonselfadjoint operators is largely
governed by the behaviour of their brackets.

First bracket analysis

p1 = p2 = 0 =⇒ {p1, p2} > 0: subelliptic estimate, prototype
creation operator

Dx + ix =
1

i

( d

dx
− x
)
, ‖hDxu + ixu‖L2 ≥ h1/2‖u‖L2

p1 = p2 = 0 =⇒ {p1, p2} < 0: quasi-mode, prototype annihilation
operator

Dx − ix =
1

i

( d

dx
+ x
)
,
(
h

d

dx
+ x
)
e−x2/2h = 0
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Kolmogorov example
Hörmander’s operators
Subelliptic operators

Second bracket analysis

p1 = p2 = {p1, p2} = 0 =⇒ {p1, {p1, p2}} 6= 0
p2 ≥ 0 or p2 ≤ 0
Then subellipticity with loss of 2/3 derivatives: semiclassically

‖p(x , hDx)u‖L2 ≥ h2/3‖u‖L2

. . . . . . . . . . . . . . . . . . . . . . . . More brackets . . . . . . . . . . . . . . . . . . . . . . . .
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Hörmander’s operators
Subelliptic operators

Second bracket analysis
p1 = p2 = {p1, p2} = 0 =⇒ {p1, {p1, p2}} 6= 0
p2 ≥ 0 or p2 ≤ 0
Then subellipticity with loss of 2/3 derivatives: semiclassically

‖p(x , hDx)u‖L2 ≥ h2/3‖u‖L2

. . . . . . . . . . . . . . . . . . . . . . . . More brackets . . . . . . . . . . . . . . . . . . . . . . . .

Coherent States Methods Hypoellipticity



1. Examples
2. Subellipticity result

3. Proof

Kolmogorov example
Hörmander’s operators
Subelliptic operators

Second bracket analysis
p1 = p2 = {p1, p2} = 0 =⇒ {p1, {p1, p2}} 6= 0
p2 ≥ 0 or p2 ≤ 0
Then subellipticity with loss of 2/3 derivatives: semiclassically

‖p(x , hDx)u‖L2 ≥ h2/3‖u‖L2

. . . . . . . . . . . . . . . . . . . . . . . . More brackets . . . . . . . . . . . . . . . . . . . . . . . .
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1. Examples
2. Subellipticity result
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Kolmogorov example
Hörmander’s operators
Subelliptic operators

Example: hDt + it2(hDx + tx2) symbol τ︸︷︷︸
p1

+i t2(ξ + tx2)︸ ︷︷ ︸
p2

p112 = 2ξ + 6tx2, p1112 = 6x2

H2
p112

(p1112) = 24 > 0, length: 3 + 3 + 4 = 10

‖(hDt + it2(hDx + tx2)u‖ & h
9

10 ‖u‖

Even that simple-looking example is pretty awkward.

Coherent States Methods Hypoellipticity



1. Examples
2. Subellipticity result

3. Proof

Kolmogorov example
Hörmander’s operators
Subelliptic operators

What . . . if all brackets vanish ?. . .
Do not expect subellipticity but

It is possible to prove semi-classical estimates with loss of one
derivative under condition (P) : this gives solvability of the adjoint

It is not possible to prove semi-classical estimates with loss of one
derivative under condition (ψ̄)

It is possible to prove semi-classical estimates with loss of 3/2
derivatives under condition (ψ̄) : this gives solvability of the adjoint

Condition (ψ̄) is necessary for any estimate to hold: when violated,
existence of a quasi-mode.
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1. Examples
2. Subellipticity result

3. Proof

Statement
Remarks
Strategy for the proof

2. Subellipticity result

Theorem

Let q(t, x , ξ) be a nonnegative smooth function defined on
Rt × R2n

x ,ξ, bounded as well as all its derivatives and such that

∂2k
t q ≥ c0 > 0. (1)

Then
‖h∂tu + q(t, x , hDx)u‖L2 ≥ h

2k
2k+1 ‖u‖L2

The index 2k
2k+1 is the best (smallest) possible if ∂j

tq = 0 for all
j < 2k somewhere
0 is the elliptic case inf q > 0
2
3 is the Kolmogorov case.
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1. Examples
2. Subellipticity result

3. Proof

Statement
Remarks
Strategy for the proof

Remarks
To prove such an estimate, do not count on the first bracket:

the
first bracket argument amounts simply to expanding the square

‖p1(x , hD)u + ip2(x , hD)u‖2 = ‖p1u‖2 + ‖p2u‖2 + 〈{p1, p2} u, u〉

That method fails miserably even for ‖hDtu + it2u‖2, since the
Poisson bracket is producing 2h〈tu, u〉 which is not nonnegative.

Another method has to be found: do not expand the square, find a
proper multiplier.
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2. Subellipticity result

3. Proof

Statement
Remarks
Strategy for the proof

Strategy for the proof

(1) Think about the ODE with parameters x , h, ξ
hDt ± iq(t, x , hξ)
Not very difficult to find estimates

(2) Use a coherent states method, or the so-called Wick calculus to
approximate the pseudodifferential operator hDt ± iq(t, x , hD)
by hDt ± iW ∗q(t, x , ξ)W , where W is a wave-packet transform

(3) Estimate the remainders in the approximation scheme.
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3. Proof

Statement
Remarks
Strategy for the proof

Theorem

Let q(t, x , ξ) be a smooth function defined on Rt × R2n
x ,ξ, bounded

as well as all its derivatives and such that

q = 0 =⇒ dx ,ξq = 0, (2)

q(t, x , ξ) > 0, s > t =⇒ q(s, x , ξ) ≥ 0 (3)

|∂k
t q| ≥ c0 > 0. (4)

Then
‖hDtu + iq(t, x , hDx)u‖L2 ≥ h

k
k+1 ‖u‖L2
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1. Examples
2. Subellipticity result

3. Proof

Coherent states, anti-Wick symbols, Wick calculus
Commutation properties
Conclusion

3. Proof

Wick calculus. Take a(x , ξ) ∈ L∞(R2n); its Wick quantization is
defined by

L2(R2n)
a−−−−−−−−−−−−→

(multiplication by a)
L2(R2n)

W

x yW ∗

L2(Rn) −−−−→
aWick

L2(Rn)

where
W : L2(Rn) −→ L2(R2n)

u 7→ Wu
and

(Wu)(y , η) =

∫
u(x)2n/4e−π(x−y)2

e−2iπ(x− y
2

)ηdx .

‖Wu‖L2(R2n) = ‖u‖L2(Rn): W is isometric as the partial Fourier

transform of (x , y) 7→ u(x)2n/4e−π(x−y)2
whose L2(R2n

x ,y ) norm is
‖u‖L2(Rn).
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transform of (x , y) 7→ u(x)2n/4e−π(x−y)2
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aWick = W ∗aW , πH = WW ∗, πHaπH = WaWickW ∗

W is not onto and πH is the orthogonal projection on
H = range W which is a closed proper subspace of L2(R2n).

Π(X ,Y ) = e−
π
2
|X−Y |2e−iπ[X ,Y ] is the kernel of πH.

where [X ,Y ] is the symplectic form

[(x , ξ), (y , η)] = ξ · y − η · x .
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Conclusion

Some nice features of that quantization:

a(x , ξ) ≥ 0 =⇒ aWick ≥ 0

q(h1/2x , h1/2ξ)Wick = q(h1/2x , h1/2ξ)Weyl + O(h), (q smooth).

‖h∂tu + q(t, h1/2x , h1/2ξ)Weylu‖L2(Rn) = ‖h∂tWu + πHqπHWu‖L2(R2n)

modulo h‖u‖L2(Rn), with q the multiplication by q(t, h1/2x , h1/2ξ)
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Elements of Wick calculus

πHa

πH︷ ︸︸ ︷
πH πH bπH = πHcπH ????

or W

aWick︷ ︸︸ ︷
W ∗aW

bWick︷ ︸︸ ︷
W ∗bW W ∗ = W

cWick︷ ︸︸ ︷
W ∗cW W ∗ ????

Lemma

For a, b ∈ L∞(R2n) real-valued with a′′ ∈ L∞(R2n), we have

aWickbWick =
(

ab − 1

4π
∇a · ∇b +

1

4iπ
{a, b}

)Wick
+ R,

‖R‖L(L2(Rn)) ≤ C (n)‖a′′‖L∞‖b‖L∞ .

We shall use as a definition ∇a · ∇b = ∇ · ( b︸︷︷︸
L∞

∇a︸︷︷︸
Lip.

)− b︸︷︷︸
L∞

∆a︸︷︷︸
L∞

.
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Conclusion

Commutation properties. We are reduced to investigate the
operator h∂t + πHq(t, h1/2X )πH acting on L2(Rt ;H).

We
have for Φ ∈ L2(Rt ;H)

h∂tΦ + πHq(t, h1/2X )πHΦ︸ ︷︷ ︸
our operator L

= h∂tΦ + q(t, h1/2X )Φ︸ ︷︷ ︸
the ODE LODE

+[πH, q(t, h1/2X )]Φ

To handle the commutator, we note that

kernel[πH, q(h1/2·)] = Π(X ,Y )q(h1/2Y )− q(h1/2X )Π(X ,Y )

that is
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e−
π
2
|X−Y |2e−iπ[X ,Y ]

(
h1/2∇q(h1/2Y )(Y − X ) + O(h)|X − Y |2

)
= h1/2∇q(h1/2Y )K0(X ,Y ) + O(h)K1(X ,Y )

and the operators κ0, κ1 with kernels K0,K1 are L2(R2n) bounded.
We have

‖h1/2κ0∇q(h1/2·)Φ‖L2(R2n) ≤ C0h1/2‖∇q(h1/2·)Φ‖L2(R2n)
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Since q is nonnegative with a bounded second derivative∫
h|(∇X q)(t, h1/2X )|2|Φ(t,X )|2dX

≤ 2‖q′′XX‖L∞(R2n)

∫
hq(t, h1/2X )|Φ(t,X )|2dX

≤ Ch‖LΦ‖‖Φ‖

where the last inequality follows from

〈h∂tΦ + πHq(t, h1/2X )πHΦ,Φ〉 =

∫
q(t, h1/2X )|Φ|2dX
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Going back to

h∂tΦ + πHq(t, h1/2X )πHΦ︸ ︷︷ ︸
our operator L

= h∂tΦ + q(t, h1/2X )Φ︸ ︷︷ ︸
the ODE LODE

+[πH, q(t, h1/2X )]Φ

Since we have proven that

‖[πH, q(t, h1/2X )]Φ‖ ≤ 2C2h1/2‖LΦ‖1/2‖Φ‖1/2 + C1h‖Φ‖

we get

‖LΦ‖+ C1h‖Φ‖ ≥ ‖LODE Φ‖ − 2C2h1/2‖LΦ‖1/2‖Φ‖1/2

and 2‖LΦ‖+ (C1 + C 2
2 )h‖Φ‖ ≥ ‖LODE Φ‖ ≥ c0h

2k
2k+1 ‖Φ‖

provided we swallow the fact that LODE is easy to handle.
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h∂tΦ + πHq(t, h1/2X )πHΦ︸ ︷︷ ︸
our operator L

= h∂tΦ + q(t, h1/2X )Φ︸ ︷︷ ︸
the ODE LODE

+[πH, q(t, h1/2X )]Φ

Since we have proven that
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we get
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and 2‖LΦ‖+ (C1 + C 2
2 )h‖Φ‖ ≥ ‖LODE Φ‖ ≥ c0h

2k
2k+1 ‖Φ‖

provided we swallow the fact that LODE is easy to handle.
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Handling LODE = L = Dt + iQ(t), assuming say Q ≥ 0 and

|{t,Q(t) ≤ δk}| ≤ Cδ

2 Re〈hDtΦ + iQΦ, iΦ〉 =

∫
2Q(t)|Φ(t)|2dt

2 Re〈hDtΦ + iQΦ, iH(t − T )Φ(t)〉 ≥ h‖Φ‖2
L∞

h
k

k+1

∫
|Φ(t)|2dt ≤ h
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Q(t)≤h

k
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|Φ(t)|2dt +

∫
Q(t)|Φ(t)|2dt

h
k

k+1 ‖Φ‖2 ≤ Ch
k

k+1
+ 1

k+1 ‖Φ‖2
L∞ + ‖LΦ‖‖Φ‖

≤ 2C‖LΦ‖‖Φ‖+ ‖LΦ‖‖Φ‖

and thus h
k

k+1 ‖Φ‖ ≤ ‖LΦ‖(2C + 1).
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Conclusion

For ip1 + q, p1 real, q ≥ 0, γ̇ = Hp1(γ), our main geometric
assumption:

|{t, q(γ(t)) ≤ δ2k}| ≤ Cδ,

Or essentially
∑

0≤j≤k |H
2j
p1 (q)| > 0, iterated bracket condition.

• Straightening of the propagation term.
• Reduction to an ODE along the characteristic curves of the
propagation term.
• It is of course not enough to multiply the equation by u to take
advantage of the nonnegativity of the term 〈qw u, u〉.
• It is also interesting to construct a multiplier for the “trivial
ODE” since it involves some type of singularity of the type of a
Heaviside function.
• Some simpler multiplier methods are available in the case k = 1.
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Details can be found in
Lecture Notes in Mathematics, #1949, Springer-Verlag, Berlin,
Fondazione C.I.M.E., Florence, 2008.

and also on the webpage
http://people.math.jussieu.fr/∼lerner/

Thank you for your attention
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