Composition of Toeplitz pseudodifferential operators with rough symbols

Nicolas Lerner
Université Paris VI

1. Introduction
2. Statements 3. Proofs
operators A variation
The composition problem

1. Introduction

1. Introduction

oderators

A variation
The composition problem

Classical Toeplitz operators

Classical Toeplitz operators

Let a be a bounded measurable function on the unit circle \mathbb{T}^{1}. The operator of multiplication by a is of course bounded on $L^{2}\left(\mathbb{T}^{1}\right)$.

Classical Toeplitz operators

Let a be a bounded measurable function on the unit circle \mathbb{T}^{1}. The operator of multiplication by a is of course bounded on $L^{2}\left(\mathbb{T}^{1}\right)$. Now we are interested in the Hardy space:

$$
H^{2}\left(\mathbb{T}^{1}\right)=\left\{u \in L^{2}\left(\mathbb{T}^{1}\right), \operatorname{spec} u=\operatorname{supp} \hat{u}=\mathbb{Z}_{+}\right\}=\mathbf{P}_{+}\left(L^{2}\left(\mathbb{T}^{1}\right)\right)
$$

The Toeplitz operator with symbol a is the operator $\mathbf{P}_{+} a \mathbf{P}_{+}$.

Classical Toeplitz operators

Let a be a bounded measurable function on the unit circle \mathbb{T}^{1}. The operator of multiplication by a is of course bounded on $L^{2}\left(\mathbb{T}^{1}\right)$. Now we are interested in the Hardy space:

$$
H^{2}\left(\mathbb{T}^{1}\right)=\left\{u \in L^{2}\left(\mathbb{T}^{1}\right), \operatorname{spec} u=\operatorname{supp} \hat{u}=\mathbb{Z}_{+}\right\}=\mathbf{P}_{+}\left(L^{2}\left(\mathbb{T}^{1}\right)\right)
$$

The Toeplitz operator with symbol a is the operator $\mathbf{P}_{+} a \mathbf{P}_{+}$. In particular for $u(x)=\sum_{k \in \mathbb{Z}} \hat{u}(k) e^{2 i \pi k x}, \mathbf{P}_{+} u=\sum_{k \in \mathbb{N}} \hat{u}(k) e^{2 i \pi k x}$,

$$
\left(\mathbf{P}_{+} a \mathbf{P}_{+} u\right)(x)=\sum_{j \in \mathbb{N}} e^{2 i \pi j x}\left(\hat{a} * \widehat{\mathbf{P}_{+} u}\right)(j)
$$

1. Introduction
2. Statements
3. Proofs

A variation
The composition problem

$\mathbf{P}_{+} a \mathbf{P}_{+}$is the operator

$\mathbf{P}_{+} a \mathbf{P}_{+}$is the operator

$$
(\hat{u}(k))_{k \in \mathbb{N}} \mapsto\left(\sum_{k \in \mathbb{N}} \hat{a}(j-k) \hat{u}(k)\right)_{j \in \mathbb{N}},
$$

that is the operator from $\ell^{2}(\mathbb{N})$ into itself given by the infinite

 matrix$\mathbf{P}_{+} a \mathbf{P}_{+}$is the operator

$$
(\hat{u}(k))_{k \in \mathbb{N}^{\mapsto} \mapsto}\left(\sum_{k \in \mathbb{N}} \hat{a}(j-k) \hat{u}(k)\right)_{j \in \mathbb{N}}
$$

that is the operator from $\ell^{2}(\mathbb{N})$ into itself given by the infinite matrix

$$
\left(m_{j, k}\right)_{j, k \in \mathbb{N}}=(\hat{a}(j-k))_{j, k \in \mathbb{N}} .
$$

These matrices are constant on the parallels to the diagonal Composition of this tvoe of matrices is an interesting question
$\mathbf{P}_{+} a \mathbf{P}_{+}$is the operator

$$
(\hat{u}(k))_{k \in \mathbb{N}^{\mapsto} \mapsto}\left(\sum_{k \in \mathbb{N}} \hat{a}(j-k) \hat{u}(k)\right)_{j \in \mathbb{N}}
$$

that is the operator from $\ell^{2}(\mathbb{N})$ into itself given by the infinite matrix

$$
\left(m_{j, k}\right)_{j, k \in \mathbb{N}}=(\hat{a}(j-k))_{j, k \in \mathbb{N}}
$$

These matrices are constant on the parallels to the diagonal. Composition of this type of matrices is an interesting question:

According to the previous discussion, it is
$\mathbf{P}_{+} a \mathbf{P}_{+}$is the operator

$$
(\hat{u}(k))_{k \in \mathbb{N}} \mapsto\left(\sum_{k \in \mathbb{N}} \hat{a}(j-k) \hat{u}(k)\right)_{j \in \mathbb{N}},
$$

that is the operator from $\ell^{2}(\mathbb{N})$ into itself given by the infinite matrix

$$
\left(m_{j, k}\right)_{j, k \in \mathbb{N}}=(\hat{a}(j-k))_{j, k \in \mathbb{N}}
$$

These matrices are constant on the parallels to the diagonal. Composition of this type of matrices is an interesting question:

According to the previous discussion, it is

$\mathbf{P}_{+} a \mathbf{P}_{+}$is the operator

$$
(\hat{u}(k))_{k \in \mathbb{N}} \mapsto\left(\sum_{k \in \mathbb{N}} \hat{a}(j-k) \hat{u}(k)\right)_{j \in \mathbb{N}},
$$

that is the operator from $\ell^{2}(\mathbb{N})$ into itself given by the infinite matrix

$$
\left(m_{j, k}\right)_{j, k \in \mathbb{N}}=(\hat{a}(j-k))_{j, k \in \mathbb{N}}
$$

These matrices are constant on the parallels to the diagonal. Composition of this type of matrices is an interesting question:

$$
\text { what is } \quad \mathbf{P}_{+} a \mathbf{P}_{+} \mathbf{P}_{+} b \mathbf{P}_{+} \text {? }
$$

According to the previous discussion, it is

$\mathbf{P}_{+} a \mathbf{P}_{+}$is the operator

$$
(\hat{u}(k))_{k \in \mathbb{N}} \mapsto\left(\sum_{k \in \mathbb{N}} \hat{a}(j-k) \hat{u}(k)\right)_{j \in \mathbb{N}}
$$

that is the operator from $\ell^{2}(\mathbb{N})$ into itself given by the infinite matrix

$$
\left(m_{j, k}\right)_{j, k \in \mathbb{N}}=(\hat{a}(j-k))_{j, k \in \mathbb{N}}
$$

These matrices are constant on the parallels to the diagonal. Composition of this type of matrices is an interesting question:

$$
\text { what is } \quad \mathbf{P}_{+} a \mathbf{P}_{+} \mathbf{P}_{+} b \mathbf{P}_{+} \text {? }
$$

According to the previous discussion, it is

$$
m_{j, k}=\sum_{l \in \mathbb{N}} \hat{a}(j-I) \hat{b}(I-k)
$$

We have indeed

$$
\widehat{a b}(j-k)=(\hat{a} * \hat{b})(j-k)=\sum_{I \in \mathbb{Z}} \hat{a}(j-I) \hat{b}(I-k)=\sum_{p \in \mathbb{Z}} \hat{a}(j-k-p) \hat{b}(p) .
$$

and there is no obvious reason for which

$$
m_{j, k}=\sum_{I \in \mathbb{N}} \hat{a}(j-l) \hat{b}(I-k)=\sum_{p \geq-k} \hat{a}(j-k-p) \hat{b}(p),
$$

should depend only on $j-k$.
Toeplitz matrices have been extensively studied, and the book of M. Embree \& L. Trefethen, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators (Princeton University Press, 2005), is providing many results on the spectrum (and pseudospectrum...to be defined later...) for this type of matrices.

1. Introduction

Classical Toeplitz operators

A variation

Let us consider the Fock-Bargmann space

1. Introduction
2. Statements 3. Proofs
operators

A variation

Let us consider the Fock-Bargmann space

$\mathbb{H}=\left\{u \in L^{2}\left(\mathbb{R}_{y, \eta}^{2 n}\right)\right.$ such that $u=f(z) e^{-\frac{\pi}{2}|z|^{2}}, z=\eta+i y, f$ entire. $\}$

A variation

Let us consider the Fock-Bargmann space
$\mathbb{H}=\left\{u \in L^{2}\left(\mathbb{R}_{y, \eta}^{2 n}\right)\right.$ such that $u=f(z) e^{-\frac{\pi}{2}|z|^{2}}, z=\eta+i y, f$ entire. $\}$

A variation

Let us consider the Fock-Bargmann space
$\mathbb{H}=\left\{u \in L^{2}\left(\mathbb{R}_{y, \eta}^{2 n}\right)\right.$ such that $u=f(z) e^{-\frac{\pi}{2}|z|^{2}}, z=\eta+i y, f$ entire. $\}$
We note that $\mathbb{H}=\operatorname{ker}\left(\frac{\partial}{\partial \bar{z}}+\frac{\pi}{2} z\right) \cap L^{2}\left(\mathbb{C}^{n}\right)$: \mathbb{H} is a closed subspace

A variation

Let us consider the Fock-Bargmann space
$\mathbb{H}=\left\{u \in L^{2}\left(\mathbb{R}_{y, \eta}^{2 n}\right)\right.$ such that $u=f(z) e^{-\frac{\pi}{2}|z|^{2}}, z=\eta+i y, f$ entire. $\}$
We note that $\mathbb{H}=\operatorname{ker}\left(\frac{\partial}{\partial \bar{z}}+\frac{\pi}{2} z\right) \cap L^{2}\left(\mathbb{C}^{n}\right): \mathbb{H}$ is a closed subspace of $L^{2}\left(\mathbb{C}^{n}\right)$.

Now, let a be a bounded measurable function defined on \mathbb{C}^{n} : the operator of multiplication by a is of course bounded on $L^{2}\left(\mathbb{C}^{n}\right)$ and the Toeplitz operator with symbol a

A variation

Let us consider the Fock-Bargmann space
$\mathbb{H}=\left\{u \in L^{2}\left(\mathbb{R}_{y, \eta}^{2 n}\right)\right.$ such that $u=f(z) e^{-\frac{\pi}{2}|z|^{2}}, z=\eta+i y, f$ entire. $\}$
We note that $\mathbb{H}=\operatorname{ker}\left(\frac{\partial}{\partial \bar{z}}+\frac{\pi}{2} z\right) \cap L^{2}\left(\mathbb{C}^{n}\right): \mathbb{H}$ is a closed subspace of $L^{2}\left(\mathbb{C}^{n}\right)$.

Now, let a be a bounded measurable function defined on \mathbb{C}^{n} :
the Toeplitz operator with symbol a is
PaP , where P is the orthogonal projection on IH.

A variation

Let us consider the Fock-Bargmann space
$\mathbb{H}=\left\{u \in L^{2}\left(\mathbb{R}_{y, \eta}^{2 n}\right)\right.$ such that $u=f(z) e^{-\frac{\pi}{2}|z|^{2}}, z=\eta+i y, f$ entire. $\}$
We note that $\mathbb{H}=\operatorname{ker}\left(\frac{\partial}{\partial \bar{z}}+\frac{\pi}{2} z\right) \cap L^{2}\left(\mathbb{C}^{n}\right): \mathbb{H}$ is a closed subspace of $L^{2}\left(\mathbb{C}^{n}\right)$.

Now, let a be a bounded measurable function defined on \mathbb{C}^{n} : the operator of multiplication by a is of course bounded on $L^{2}\left(\mathbb{C}^{n}\right)$ and the Toeplitz operator with symbol a
$\mathbf{P a P}$, where \mathbf{P} is the orthogonal projection on \mathbb{H}.

A variation

Let us consider the Fock-Bargmann space
$\mathbb{H}=\left\{u \in L^{2}\left(\mathbb{R}_{y, \eta}^{2 n}\right)\right.$ such that $u=f(z) e^{-\frac{\pi}{2}|z|^{2}}, z=\eta+i y, f$ entire. $\}$
We note that $\mathbb{H}=\operatorname{ker}\left(\frac{\partial}{\partial \bar{z}}+\frac{\pi}{2} z\right) \cap L^{2}\left(\mathbb{C}^{n}\right): \mathbb{H}$ is a closed subspace of $L^{2}\left(\mathbb{C}^{n}\right)$.

Now, let a be a bounded measurable function defined on \mathbb{C}^{n} : the operator of multiplication by a is of course bounded on $L^{2}\left(\mathbb{C}^{n}\right)$ and the Toeplitz operator with symbol a is
$\mathbf{P a} \mathbf{P}, \quad$ where \mathbf{P} is the orthogonal projection on \mathbb{H}.
It is a bounded operator on $L^{2}\left(\mathbb{C}^{n}\right)$.

A variation

Let us consider the Fock-Bargmann space
$\mathbb{H}=\left\{u \in L^{2}\left(\mathbb{R}_{y, \eta}^{2 n}\right)\right.$ such that $u=f(z) e^{-\frac{\pi}{2}|z|^{2}}, z=\eta+i y, f$ entire. $\}$
We note that $\mathbb{H}=\operatorname{ker}\left(\frac{\partial}{\partial \bar{z}}+\frac{\pi}{2} z\right) \cap L^{2}\left(\mathbb{C}^{n}\right): \mathbb{H}$ is a closed subspace of $L^{2}\left(\mathbb{C}^{n}\right)$.

Now, let a be a bounded measurable function defined on \mathbb{C}^{n} : the operator of multiplication by a is of course bounded on $L^{2}\left(\mathbb{C}^{n}\right)$ and the Toeplitz operator with symbol a is
$\mathbf{P a} \mathbf{P}, \quad$ where \mathbf{P} is the orthogonal projection on \mathbb{H}.
It is a bounded operator on $L^{2}\left(\mathbb{C}^{n}\right)$.

There are plenty of good reasons to study these operators. Let us give a few.

REASON 1: They are directly linked to the so-called coherent states method, introduced by V. Bargmann, F.A. Berezin, V. Fock, G.-C. Wick and others, and used by manifold authors.

Maybe instead of displaying now what is the coherent states method, let us check one of its main consequences, the sharp Gårding inequality.

There are plenty of good reasons to study these operators. Let us give a few.

REASON 1: They are directly linked to the so-called coherent states method, introduced by V. Bargmann, F.A. Berezin, V. Fock, G.-C. Wick and others, and used by manifold authors.

Maybe instead of displaying now what is the coherent states method, let us check one of its main consequences, the sharp Gårding inequality.

There are plenty of good reasons to study these operators. Let us give a few.

REASON 1: They are directly linked to the so-called coherent states method, introduced by V. Bargmann, F.A. Berezin, V. Fock, G.-C. Wick and others, and used by manifold authors.

Maybe instead of displaying now what is the coherent states method, let us check one of its main consequences, the sharp Gårding inequality.

We consider a Hamiltonian, i.e. a function $a(x, \xi)$ defined on the phase space $\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}$. .

We consider a Hamiltonian, i.e. a function $a(x, \xi)$ defined on the phase space $\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}$. Let us assume that a is real-valued, smooth, bounded, with all its derivatives bounded.
The first thing that you can do is to quantize that Hamiltonian, i.e. to associate linearly to a a bounded operator on $L^{2}\left(\mathbb{R}^{n}\right)$.

We consider a Hamiltonian, i.e. a function $a(x, \xi)$ defined on the phase space $\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}$. Let us assume that a is real-valued, smooth, bounded, with all its derivatives bounded.
The first thing that you can do is to quantize that Hamiltonian, i.e. to associate linearly to a a bounded operator on $L^{2}\left(\mathbb{R}^{n}\right)$.

Using for instance, H. Weyl formula, we define with $h \in(0,1]$,

We consider a Hamiltonian, i.e. a function $a(x, \xi)$ defined on the phase space $\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}$. Let us assume that a is real-valued, smooth, bounded, with all its derivatives bounded.
The first thing that you can do is to quantize that Hamiltonian, i.e. to associate linearly to a a bounded operator on $L^{2}\left(\mathbb{R}^{n}\right)$.

Using for instance, H. Weyl formula, we define with $h \in(0,1]$,

$$
\left(a^{W e y l_{h}} u\right)(x)=\iint_{\mathbb{R}^{n} \times \mathbb{R}^{n}} e^{2 i \pi\langle x-y, \xi\rangle} a\left(\frac{x+y}{2}, h \xi\right) u(y) d y d \xi .
$$

It is easy to prove that, with the strong assumptions made on a, the operator $a^{W e y l h}$ is bounded selfadjoint on $L^{2}\left(\mathbb{R}^{n}\right)$.

It is easy to prove that, with the strong assumptions made on a, the operator $a^{W e y l h}$ is bounded selfadjoint on $L^{2}\left(\mathbb{R}^{n}\right)$.

Let us assume now that a is a non-negative function: then $\exists C>0, \forall h \in(0,1]$,

$$
a^{\text {Weylh }}+C h \geq 0 \quad \text { as an operator. }
$$

This is true also for matrix-valued Hamiltonian and even for $a(x, \xi) \in \mathcal{B}_{\text {selfadjoint }}(H), H$ Hilbert space; then non-negativity of $a(x, \xi)$ means non-negativity of the selfadjoint "matrix" $a(x, \xi)$

It is easy to prove that, with the strong assumptions made on a, the operator $a^{W e y I_{h}}$ is bounded selfadjoint on $L^{2}\left(\mathbb{R}^{n}\right)$.

Let us assume now that a is a non-negative function: then $\exists C>0, \forall h \in(0,1]$,

$$
a^{\text {Weylh }}+C h \geq 0 \quad \text { as an operator. }
$$

This is true also for matrix-valued Hamiltonian and even for $a(x, \xi) \in \mathcal{B}_{\text {selfadjoint }}(H)$, H Hilbert space; then non-negativity of $a(x, \xi)$ means non-negativity of the selfadjoint "matrix" $a(x, \xi)$.

The proof of that sharp Gårding inequality is simple: defining a semi-classical version of the projection \mathbf{P}_{h}, we get

The proof of that sharp Gårding inequality is simple: defining a semi-classical version of the projection \mathbf{P}_{h}, we get
(1) The Toeplitz operator $\mathrm{P}_{h} \mathrm{P}_{h} \geq 0$ since $a \geq 0$.
(2) The difference $a^{\text {Weyl }} / \mathrm{P}-\mathbf{P}_{h} a \mathbf{P}_{h}$ is $O(h)$ in operator norm.

The proof of that sharp Gårding inequality is simple: defining a semi-classical version of the projection \mathbf{P}_{h}, we get
(1) The Toeplitz operator $\mathbf{P}_{h} a \mathbf{P}_{h} \geq 0$ since $a \geq 0$.
(2) The difference a ${ }^{\text {Weyl } h}-P_{h} a P_{h}$ is $O(h)$ in operator norm.

The proof of that sharp Gårding inequality is simple: defining a semi-classical version of the projection \mathbf{P}_{h}, we get
(1) The Toeplitz operator $\mathbf{P}_{h} a \mathbf{P}_{h} \geq 0$ since $a \geq 0$.
(2) The difference $a^{\text {Weyl }}$ h $-\mathbf{P}_{h} \mathrm{a} \mathbf{P}_{h}$ is $O(h)$ in operator norm.

As a result

The proof of that sharp Gårding inequality is simple: defining a semi-classical version of the projection \mathbf{P}_{h}, we get
(1) The Toeplitz operator $\mathbf{P}_{h} a \mathbf{P}_{h} \geq 0$ since $a \geq 0$.
(2) The difference $a^{\text {Weyl }}$ h $-\mathbf{P}_{h} a \mathbf{P}_{h}$ is $O(h)$ in operator norm.

As a result

$$
a^{\text {Weyl }_{h}}=a^{\text {Weyl }_{h}}-\mathbf{P}_{h} a \mathbf{P}_{h}+\mathbf{P}_{h} a \mathbf{P}_{h} \geq O(h)
$$

Although (2) is not completely obvious, it means simply that the Toeplitz quantization $\mathbf{P}_{h} a \mathbf{P}_{h}$ of the Hamiltonian a is close to the Weyl quantization and it is not difficult to check directly the Weyl symbols.

The proof of that sharp Gårding inequality is simple: defining a semi-classical version of the projection \mathbf{P}_{h}, we get
(1) The Toeplitz operator $\mathbf{P}_{h} a \mathbf{P}_{h} \geq 0$ since $a \geq 0$.
(2) The difference a ${ }^{\text {Weyl }}{ }_{h}-\mathbf{P}_{h} a \mathbf{P}_{h}$ is $O(h)$ in operator norm.

As a result

$$
a^{W_{e y} l_{h}}=a^{W_{e y} I_{h}}-\mathbf{P}_{h} a \mathbf{P}_{h}+\mathbf{P}_{h} a \mathbf{P}_{h} \geq O(h)
$$

Although (2) is not completely obvious, it means simply that the Toeplitz quantization $\mathbf{P}_{h} a \mathbf{P}_{h}$ of the Hamiltonian a is close to the Weyl quantization and it is not difficult to check directly the Weyl symbols.

Reason 2. Minimization of the Gross-Pitaevski energy. For $\psi \in L^{2}\left(\mathbb{R}^{2}\right)$,

$$
E_{G P}(\psi)=\frac{1}{2}\left\langle q^{\text {Weyl }} u, u\right\rangle+\frac{g}{2} \int_{\mathbb{R}^{2}}|\psi|^{4} d x
$$

Reason 2. Minimization of the Gross-Pitaevski energy. For $\psi \in L^{2}\left(\mathbb{R}^{2}\right)$,

$$
\begin{gathered}
E_{G P}(\psi)=\frac{1}{2}\left\langle q^{\text {Weyl }} u, u\right\rangle+\frac{g}{2} \int_{\mathbb{R}^{2}}|\psi|^{4} d x, \\
q=\left(\xi_{1}+\omega x_{2}\right)^{2}+\left(\xi_{2}-\omega x_{1}\right)^{2}+\epsilon^{2}\left(x_{1}^{2}+x_{2}^{2}\right)
\end{gathered}
$$

$2 E_{G P}(\psi)=\left\|\frac{1}{i \pi}(\bar{\partial}+\pi \omega z) \psi\right\|^{2}+\frac{\omega}{\pi}\|\psi\|^{2}+\epsilon^{2}\||x| \psi\|^{2}+g \int$

Reason 2. Minimization of the Gross-Pitaevski energy. For $\psi \in L^{2}\left(\mathbb{R}^{2}\right)$,

$$
\begin{gathered}
E_{G P}(\psi)=\frac{1}{2}\left\langle q^{\text {Weyl }} u, u\right\rangle+\frac{g}{2} \int_{\mathbb{R}^{2}}|\psi|^{4} d x \\
q=\left(\xi_{1}+\omega x_{2}\right)^{2}+\left(\xi_{2}-\omega x_{1}\right)^{2}+\epsilon^{2}\left(x_{1}^{2}+x_{2}^{2}\right) \\
2 E_{G P}(\psi)=\left\|\frac{1}{i \pi}(\bar{\partial}+\pi \omega z) \psi\right\|^{2}+\frac{\omega}{\pi}\|\psi\|^{2}+\epsilon^{2}\||x| \psi\|^{2}+g \int|\psi|^{4} d x . \\
\text { We define the Lowest Landau Level space with parameter } \omega \text { as } \\
L L L_{\omega}=\left\{\psi \in L^{2}, \psi=f(z) e^{\left.-\pi \omega|z|^{2}\right\}=\operatorname{ker}(\bar{\partial}+\pi \omega z) \cap L^{2} .}\right.
\end{gathered}
$$

Reason 2. Minimization of the Gross-Pitaevski energy. For $\psi \in L^{2}\left(\mathbb{R}^{2}\right)$,

$$
\begin{gathered}
E_{G P}(\psi)=\frac{1}{2}\left\langle q^{\text {Weyl }} u, u\right\rangle+\frac{g}{2} \int_{\mathbb{R}^{2}}|\psi|^{4} d x \\
q=\left(\xi_{1}+\omega x_{2}\right)^{2}+\left(\xi_{2}-\omega x_{1}\right)^{2}+\epsilon^{2}\left(x_{1}^{2}+x_{2}^{2}\right)
\end{gathered}
$$

$2 E_{G P}(\psi)=\left\|\frac{1}{i \pi}(\bar{\partial}+\pi \omega z) \psi\right\|^{2}+\frac{\omega}{\pi}\|\psi\|^{2}+\epsilon^{2}\||x| \psi\|^{2}+g \int|\psi|^{4} d x$.
We define the Lowest Landau Level space with parameter ω as

$$
L L L_{\omega}=\left\{\psi \in L^{2}, \psi=f(z) e^{-\pi \omega|z|^{2}}\right\}=\operatorname{ker}(\bar{\partial}+\pi \omega z) \cap L^{2}
$$

Reason 2. Minimization of the Gross-Pitaevski energy. For $\psi \in L^{2}\left(\mathbb{R}^{2}\right)$,

$$
\begin{gathered}
E_{G P}(\psi)=\frac{1}{2}\left\langle q^{\text {Weyl }} u, u\right\rangle+\frac{g}{2} \int_{\mathbb{R}^{2}}|\psi|^{4} d x \\
q=\left(\xi_{1}+\omega x_{2}\right)^{2}+\left(\xi_{2}-\omega x_{1}\right)^{2}+\epsilon^{2}\left(x_{1}^{2}+x_{2}^{2}\right)
\end{gathered}
$$

$2 E_{G P}(\psi)=\left\|\frac{1}{i \pi}(\bar{\partial}+\pi \omega z) \psi\right\|^{2}+\frac{\omega}{\pi}\|\psi\|^{2}+\epsilon^{2}\||x| \psi\|^{2}+g \int|\psi|^{4} d x$.
We define the Lowest Landau Level space with parameter ω as

$$
L L L_{\omega}=\left\{\psi \in L^{2}, \psi=f(z) e^{-\pi \omega|z|^{2}}\right\}=\operatorname{ker}(\bar{\partial}+\pi \omega z) \cap L^{2} .
$$

Reduction to the minimization of

$$
E(u)=\||x| u\|_{L^{2}}^{2}+\omega^{2} g\|u\|_{L^{4}}^{4}, \quad u \in L L L_{\epsilon^{-1}}
$$

Reason 2. Minimization of the Gross-Pitaevski energy. For $\psi \in L^{2}\left(\mathbb{R}^{2}\right)$,

$$
\begin{gathered}
E_{G P}(\psi)=\frac{1}{2}\left\langle q^{\text {Weyl }} u, u\right\rangle+\frac{g}{2} \int_{\mathbb{R}^{2}}|\psi|^{4} d x \\
q=\left(\xi_{1}+\omega x_{2}\right)^{2}+\left(\xi_{2}-\omega x_{1}\right)^{2}+\epsilon^{2}\left(x_{1}^{2}+x_{2}^{2}\right)
\end{gathered}
$$

$2 E_{G P}(\psi)=\left\|\frac{1}{i \pi}(\bar{\partial}+\pi \omega z) \psi\right\|^{2}+\frac{\omega}{\pi}\|\psi\|^{2}+\epsilon^{2}\||x| \psi\|^{2}+g \int|\psi|^{4} d x$.
We define the Lowest Landau Level space with parameter ω as

$$
L L L_{\omega}=\left\{\psi \in L^{2}, \psi=f(z) e^{-\pi \omega|z|^{2}}\right\}=\operatorname{ker}(\bar{\partial}+\pi \omega z) \cap L^{2} .
$$

Reduction to the minimization of

$$
\begin{gathered}
E(u)=\||x| u\|_{L^{2}}^{2}+\omega^{2} g\|u\|_{L^{4}}^{4}, \quad u \in L L L_{\epsilon^{-1}} \\
E(u)=\int|x|^{2}|u(x)|^{2} d x+\omega^{2} g \int|u(x)|^{4} d x, L^{2} \ni u=f(z) e^{-\pi \epsilon^{-1}|z|^{2}}, f \text { entire. }
\end{gathered}
$$

Plenty of other reasons . . .
Microlocal defect measures (P. Gérard, L. Tartar),
Euler-Lagrange equation for the minimization of the previous problem,
L. Boutet de Monvel \& V. Guillemin geometric description of

Toeplitz operators on a manifold,

Plenty of other reasons ...
Microlocal defect measures (P. Gérard, L. Tartar),
Euler-Lagrange equation for the minimization of the previous problem,
L. Boutet de Monvel \& V. Guillemin geometric description of Toeplitz operators on a manifold,

New approaches of the Fefferman-Phong inequality,

Plenty of other reasons ...
Microlocal defect measures (P. Gérard, L. Tartar),
Euler-Lagrange equation for the minimization of the previous problem,
L. Boutet de Monvel \& V. Guillemin geometric description of Toeplitz operators on a manifold,

New approaches of the Fefferman-Phong inequality,
Gabor frames and various wavelets methods

Plenty of other reasons ...
Microlocal defect measures (P. Gérard, L. Tartar),
Euler-Lagrange equation for the minimization of the previous problem,
L. Boutet de Monvel \& V. Guillemin geometric description of Toeplitz operators on a manifold,

New approaches of the Fefferman-Phong inequality,
Gabor frames and various wavelets methods

Plenty of other reasons ...
Microlocal defect measures (P. Gérard, L. Tartar),
Euler-Lagrange equation for the minimization of the previous problem,
L. Boutet de Monvel \& V. Guillemin geometric description of Toeplitz operators on a manifold,

New approaches of the Fefferman-Phong inequality,
Gabor frames and various wavelets methods

The composition problem

We want to understand the composition of two Toeplitz operators with symbols a, b :

The composition problem

We want to understand the composition of two Toeplitz operators with symbols a, b :

The composition problem

We want to understand the composition of two Toeplitz operators with symbols a, b :

$$
\mathbf{P a} \underbrace{\mathbf{P P}}_{=\mathbf{P}} b \mathbf{P}=\mathbf{P a} a \mathbf{P} b \mathbf{P}=\underbrace{P[a, \mathbb{P}] b P}_{\text {hard part }}+\underbrace{P a b P}_{\text {Toeplitz }}
$$

The spectral theory of Toeplitz operators (Princeton University Press) have already studied that question extensively and in geometric terms when the symbols a, b are smooth functions

The composition problem

We want to understand the composition of two Toeplitz operators with symbols a, b :

$$
\mathbf{P a} \underbrace{\mathbf{P P}}_{=\mathbf{P}} b \mathbf{P}=\mathbf{P} a \mathbf{P} b \mathbf{P}=\underbrace{\mathbf{P}[a, \mathbf{P}] b \mathbf{P}}_{\text {hard part }}+\underbrace{\mathbf{P} a b \mathbf{P}}_{\begin{array}{c}
\text { Toeplitz } \\
\text { with symbol } a b
\end{array}} .
$$

> L. Boutet de Monvel \& V. Guillemin in their 1981 book,

> The spectral theory of Toeplitz operators (Princeton University Press) have already studied that question extensively and in geometric terms when the symbols a, b are smooth functions.

The composition problem

We want to understand the composition of two Toeplitz operators with symbols a, b :

$$
\mathbf{P a} \underbrace{\mathbf{P P}}_{=\mathbf{P}} b \mathbf{P}=\mathbf{P a} a \mathbf{P} b \mathbf{P}=\underbrace{\mathbf{P}[a, \mathbf{P}] b \mathbf{P}}_{\text {hard part }}+\underbrace{\mathbf{P a b P}}_{\begin{array}{c}
\text { Toeplitz } \\
\text { with symbol } a b
\end{array}} .
$$

L. Boutet de Monvel \& V. Guillemin in their 1981 book, The spectral theory of Toeplitz operators (Princeton University Press) have already studied that question extensively and in geometric terms when the symbols a, b are smooth functions.

Well, we want to understand that composition formula when one

The composition problem

We want to understand the composition of two Toeplitz operators with symbols a, b :

$$
\mathbf{P a} \underbrace{\mathbf{P P}}_{=\mathbf{P}} b \mathbf{P}=\mathbf{P} a \mathbf{P} b \mathbf{P}=\underbrace{\mathbf{P}[a, \mathbf{P}] b \mathbf{P}}_{\text {hard part }}+\underbrace{\mathbf{P} a b \mathbf{P}}_{\begin{array}{c}
\text { Toeeplitz } \\
\text { with symbol } a b
\end{array}} .
$$

L. Boutet de Monvel \& V. Guillemin in their 1981 book, The spectral theory of Toeplitz operators (Princeton University Press) have already studied that question extensively and in geometric terms when the symbols a, b are smooth functions.

Well, we want to understand that composition formula when one

The composition problem

We want to understand the composition of two Toeplitz operators with symbols a, b :

$$
\mathbf{P a} \underbrace{\mathbf{P P}}_{=\mathbf{P}} b \mathbf{P}=\mathbf{P a} a \mathbf{P} b \mathbf{P}=\underbrace{\mathbf{P}[a, \mathbf{P}] b \mathbf{P}}_{\text {hard part }}+\underbrace{\mathbf{P a b P}}_{\begin{array}{c}
\text { Toeplitz } \\
\text { with symbol ab }
\end{array}} .
$$

L. Boutet de Monvel \& V. Guillemin in their 1981 book, The spectral theory of Toeplitz operators (Princeton University Press) have already studied that question extensively and in geometric terms when the symbols a, b are smooth functions.

Well, we want to understand that composition formula when one of the symbols is quite singular, \qquad

The composition problem

We want to understand the composition of two Toeplitz operators with symbols a, b :

$$
\mathbf{P a} \underbrace{\mathbf{P P}}_{=\mathbf{P}} b \mathbf{P}=\mathbf{P a} a \mathbf{P} b \mathbf{P}=\underbrace{\mathbf{P}[a, \mathbf{P}] b \mathbf{P}}_{\text {hard part }}+\underbrace{\mathbf{P a b P}}_{\begin{array}{c}
\text { Toeplitz } \\
\text { with symbol } a b
\end{array}} .
$$

L. Boutet de Monvel \& V. Guillemin in their 1981 book, The spectral theory of Toeplitz operators (Princeton University Press) have already studied that question extensively and in geometric terms when the symbols a, b are smooth functions.

Well, we want to understand that composition formula when one of the symbols is quite singular, say no better than L^{∞}, and the other one has a couple of derivatives bounded.
interesting per se and also is useful to prove some energy estimates

The composition problem

We want to understand the composition of two Toeplitz operators with symbols a, b :

$$
\mathbf{P a} \underbrace{\mathbf{P P}}_{=\mathbf{P}} b \mathbf{P}=\mathbf{P a} a \mathbf{P} b \mathbf{P}=\underbrace{\mathbf{P}[a, \mathbf{P}] b \mathbf{P}}_{\text {hard part }}+\underbrace{\mathbf{P a b P}}_{\begin{array}{c}
\text { Toeplitz } \\
\text { with symbol ab }
\end{array}} .
$$

L. Boutet de Monvel \& V. Guillemin in their 1981 book, The spectral theory of Toeplitz operators (Princeton University Press) have already studied that question extensively and in geometric terms when the symbols a, b are smooth functions.

Well, we want to understand that composition formula when one of the symbols is quite singular, say no better than L^{∞}, and the other one has a couple of derivatives bounded. This question is interesting per se and also is useful to prove some energy estimates.

1. Introduction

2. STATEMENTS

Framework

For $X, Y \in \mathbb{R}^{2 n}$ we set

$$
\Pi_{H}(X, Y)=e^{-\frac{\pi}{2}|X-Y|^{2}} e^{-i \pi[X, Y]}
$$

where $[X, Y]$ is the symplectic form (if X

1. Introduction
2. Proofs

2. Statements

Framework

For $X, Y \in \mathbb{R}^{2 n}$ we set

$$
\Pi_{H}(X, Y)=e^{-\frac{\pi}{2}|X-Y|^{2}} e^{-i \pi[X, Y]}
$$

where $[X, Y]$ is the symplectic form (if $X=(x, \xi), Y=(y, \eta),\{X, Y]=\xi \cdot y-\eta \cdot x)$ The operator Π_{H} with kernel $\Pi_{H}(X, Y)$

1. Introduction

2. STATEMENTS

Framework

For $X, Y \in \mathbb{R}^{2 n}$ we set

$$
\Pi_{H}(X, Y)=e^{-\frac{\pi}{2}|X-Y|^{2}} e^{-i \pi[X, Y]}
$$

where $[X, Y]$ is the symplectic form (if $X=(x, \xi), Y=(y, \eta),[X, Y]=\xi \cdot y-\eta \cdot x)$.
The operator Π_{H} with kernel $\Pi_{H}(X, Y)$ is the orthogonal projection in $L^{2}\left(\mathbb{R}^{2 n}\right)$ on a proper closed subspace H,

1. Introduction

2. STATEMENTS

Framework
For $X, Y \in \mathbb{R}^{2 n}$ we set

$$
\Pi_{H}(X, Y)=e^{-\frac{\pi}{2}|X-Y|^{2}} e^{-i \pi[X, Y]}
$$

where $[X, Y]$ is the symplectic form (if $X=(x, \xi), Y=(y, \eta),[X, Y]=\xi \cdot y-\eta \cdot x)$.
The operator Π_{H} with kernel $\Pi_{H}(X, Y)$ is the orthogonal
projection in $L^{2}\left(\mathbb{R}^{2 n}\right)$ on a proper closed subspace H, canonically isomorphic to $L^{2}\left(\mathbb{R}^{n}\right)$

1. Introduction

2. STATEMENTS

Framework
For $X, Y \in \mathbb{R}^{2 n}$ we set

$$
\Pi_{H}(X, Y)=e^{-\frac{\pi}{2}|X-Y|^{2}} e^{-i \pi[X, Y]}
$$

where $[X, Y]$ is the symplectic form (if $X=(x, \xi), Y=(y, \eta),[X, Y]=\xi \cdot y-\eta \cdot x)$.
The operator Π_{H} with kernel $\Pi_{H}(X, Y)$ is the orthogonal projection in $L^{2}\left(\mathbb{R}^{2 n}\right)$ on a proper closed subspace H, canonically

2. STATEMENTS

Framework

For $X, Y \in \mathbb{R}^{2 n}$ we set

$$
\Pi_{H}(X, Y)=e^{-\frac{\pi}{2}|X-Y|^{2}} e^{-i \pi[X, Y]}
$$

where $[X, Y]$ is the symplectic form (if $X=(x, \xi), Y=(y, \eta),[X, Y]=\xi \cdot y-\eta \cdot x)$.
The operator Π_{H} with kernel $\Pi_{H}(X, Y)$ is the orthogonal projection in $L^{2}\left(\mathbb{R}^{2 n}\right)$ on a proper closed subspace H, canonically isomorphic to $L^{2}\left(\mathbb{R}^{n}\right)$.
$W: L^{2}\left(\mathbb{R}^{n}\right) \longrightarrow L^{2}\left(\mathbb{R}^{2 n}\right)$ by the formula

2. STATEMENTS

Framework

For $X, Y \in \mathbb{R}^{2 n}$ we set

$$
\Pi_{H}(X, Y)=e^{-\frac{\pi}{2}|X-Y|^{2}} e^{-i \pi[X, Y]}
$$

where $[X, Y]$ is the symplectic form (if $X=(x, \xi), Y=(y, \eta),[X, Y]=\xi \cdot y-\eta \cdot x)$.
The operator Π_{H} with kernel $\Pi_{H}(X, Y)$ is the orthogonal projection in $L^{2}\left(\mathbb{R}^{2 n}\right)$ on a proper closed subspace H, canonically isomorphic to $L^{2}\left(\mathbb{R}^{n}\right)$. In fact, one may define $W: L^{2}\left(\mathbb{R}^{n}\right) \longrightarrow L^{2}\left(\mathbb{R}^{2 n}\right)$ by the formula $(W u)(y, \eta)=\left\langle u, \varphi_{y, \eta}\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right)}$,

2. STATEMENTS

Framework

For $X, Y \in \mathbb{R}^{2 n}$ we set

$$
\Pi_{H}(X, Y)=e^{-\frac{\pi}{2}|X-Y|^{2}} e^{-i \pi[X, Y]}
$$

where $[X, Y]$ is the symplectic form (if $X=(x, \xi), Y=(y, \eta),[X, Y]=\xi \cdot y-\eta \cdot x)$.
The operator Π_{H} with kernel $\Pi_{H}(X, Y)$ is the orthogonal projection in $L^{2}\left(\mathbb{R}^{2 n}\right)$ on a proper closed subspace H, canonically isomorphic to $L^{2}\left(\mathbb{R}^{n}\right)$. In fact, one may define $W: L^{2}\left(\mathbb{R}^{n}\right) \longrightarrow L^{2}\left(\mathbb{R}^{2 n}\right)$ by the formula
$(W u)(y, \eta)=\left\langle u, \varphi_{y, \eta}\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right)}$,

2. STATEMENTS

Framework

For $X, Y \in \mathbb{R}^{2 n}$ we set

$$
\Pi_{H}(X, Y)=e^{-\frac{\pi}{2}|X-Y|^{2}} e^{-i \pi[X, Y]}
$$

where $[X, Y]$ is the symplectic form (if $X=(x, \xi), Y=(y, \eta),[X, Y]=\xi \cdot y-\eta \cdot x)$.
The operator Π_{H} with kernel $\Pi_{H}(X, Y)$ is the orthogonal projection in $L^{2}\left(\mathbb{R}^{2 n}\right)$ on a proper closed subspace H, canonically isomorphic to $L^{2}\left(\mathbb{R}^{n}\right)$. In fact, one may define $W: L^{2}\left(\mathbb{R}^{n}\right) \longrightarrow L^{2}\left(\mathbb{R}^{2 n}\right)$ by the formula

$$
(W u)(y, \eta)=\left\langle u, \varphi_{y, \eta}\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right)}, \quad \varphi_{y, \eta}(x)=2^{n / 4} e^{-\pi(x-y)^{2}} e^{2 i \pi\left(x-\frac{y}{2}\right) \eta}
$$

1. Introduction

It is standard and easy to see that

$W^{*} W=\operatorname{Id}_{L^{2}\left(\mathbb{R}^{n}\right)}\left(\right.$ reconstruction formula $\left.u(x)=\int_{\mathbb{R}^{2 n}} W u(Y) \varphi_{Y}(x) d Y\right)$,

1. Introduction

It is standard and easy to see that

$$
W^{*} W=\operatorname{ld}_{L^{2}\left(\mathbb{R}^{n}\right)}\left(\text { reconstruction formula } u(x)=\int_{\mathbb{R}^{2 n}} W u(Y) \varphi_{Y}(x) d Y\right)
$$

$$
W W^{*}=\Pi_{H}, \quad W \text { is an isomorphism from } L^{2}\left(\mathbb{R}^{n}\right) \text { onto } H
$$

1. Introduction

It is standard and easy to see that

$$
W^{*} W=\operatorname{ld}_{L^{2}\left(\mathbb{R}^{n}\right)}\left(\text { reconstruction formula } u(x)=\int_{\mathbb{R}^{2 n}} W u(Y) \varphi_{Y}(x) d Y\right)
$$

$$
W W^{*}=\Pi_{H}, \quad W \text { is an isomorphism from } L^{2}\left(\mathbb{R}^{n}\right) \text { onto } H
$$

$H=\left\{u \in L^{2}\left(\mathbb{R}_{y, \eta}^{2 n}\right)\right.$ such that $u=f(z) e^{-\frac{\pi}{2}|z|^{2}}, z=\eta+i y, f$ entire $\}$
which is the isotropic LLL, up to some normalization constant.

It is standard and easy to see that
$W^{*} W=\operatorname{ld}_{L^{2}\left(\mathbb{R}^{n}\right)}\left(\right.$ reconstruction formula $\left.u(x)=\int_{\mathbb{R}^{2 n}} W u(Y) \varphi_{Y}(x) d Y\right)$,

$$
W W^{*}=\Pi_{H}, \quad W \text { is an isomorphism from } L^{2}\left(\mathbb{R}^{n}\right) \text { onto } H
$$

$H=\left\{u \in L^{2}\left(\mathbb{R}_{y, \eta}^{2 n}\right)\right.$ such that $u=f(z) e^{-\frac{\pi}{2}|z|^{2}}, z=\eta+i y, f$ entire $\}$ which is the isotropic $L L L$, up to some normalization constant.

It is standard and easy to see that
$W^{*} W=\operatorname{ld}_{L^{2}\left(\mathbb{R}^{n}\right)}\left(\right.$ reconstruction formula $\left.u(x)=\int_{\mathbb{R}^{2 n}} W u(Y) \varphi_{Y}(x) d Y\right)$,

$$
W W^{*}=\Pi_{H}, \quad W \text { is an isomorphism from } L^{2}\left(\mathbb{R}^{n}\right) \text { onto } H
$$

$H=\left\{u \in L^{2}\left(\mathbb{R}_{y, \eta}^{2 n}\right)\right.$ such that $u=f(z) e^{-\frac{\pi}{2}|z|^{2}}, z=\eta+i y, f$ entire $\}$
which is the isotropic $L L L$, up to some normalization constant.
The Toeplitz operator with symbol $a(x, \xi)$ is

$$
\Pi_{H} a \Pi_{H}=W W^{*} a W W^{*}
$$

That operator is bounded on $L^{2}\left(\mathbb{R}^{2 n}\right)$ whenever $a \in L^{\infty}\left(\mathbb{R}^{2 n}\right)$ and we have obviously

It is standard and easy to see that
$W^{*} W=\operatorname{ld}_{L^{2}\left(\mathbb{R}^{n}\right)}\left(\right.$ reconstruction formula $\left.u(x)=\int_{\mathbb{R}^{2 n}} W u(Y) \varphi_{Y}(x) d Y\right)$,

$$
W W^{*}=\Pi_{H}, \quad W \text { is an isomorphism from } L^{2}\left(\mathbb{R}^{n}\right) \text { onto } H
$$

$H=\left\{u \in L^{2}\left(\mathbb{R}_{y, \eta}^{2 n}\right)\right.$ such that $u=f(z) e^{-\frac{\pi}{2}|z|^{2}}, z=\eta+i y, f$ entire $\}$
which is the isotropic $L L L$, up to some normalization constant.
The Toeplitz operator with symbol $a(x, \xi)$ is

$$
\Pi_{H} a \Pi_{H}=W W^{*} a W W^{*}
$$

That operator is bounded on $L^{2}\left(\mathbb{R}^{2 n}\right)$ whenever $a \in L^{\infty}\left(\mathbb{R}^{2 n}\right)$ and we have obviously

$$
\left\|\Pi_{H} a \Pi_{H}\right\|_{\mathcal{B}\left(L^{2}\left(\mathbb{R}^{2 n}\right)\right)} \leq\|a\|_{L^{\infty}\left(\mathbb{R}^{2 n}\right)}
$$

1. Introduction

Composition result

Theorem

Let a, b be in $L^{\infty}\left(\mathbb{R}^{2 n}\right)$ with $a^{\prime \prime} \in L^{\infty}\left(\mathbb{R}^{2 n}\right)$, we have

$$
\begin{align*}
& \Pi_{H} a \Pi_{H} b \Pi_{H}=\Pi_{H}\left(a b-\frac{1}{4 \pi} \nabla a \cdot \nabla b+\frac{1}{4 i \pi}\{a, b\}\right) \Pi_{H}+R, \tag{1}\\
& \|R\|_{\mathcal{B}\left(L^{2}\left(\mathbb{R}^{2 n}\right)\right)} \leq C(n)\left\|a^{\prime \prime}\right\|_{L \infty}\|b\|_{L \infty} . \tag{2}
\end{align*}
$$

The product $\nabla a \cdot \nabla b$ as well as the Poisson bracket $\{a, b\}$ above make sense as tempered distributions since ∇a is a Lipschitz continuous function and ∇b is the derivative of an L^{∞} function: in fact, we shall use as a definition

1. Introduction

Composition result

Theorem

Let a, b be in $L^{\infty}\left(\mathbb{R}^{2 n}\right)$ with $a^{\prime \prime} \in L^{\infty}\left(\mathbb{R}^{2 n}\right)$, we have

$$
\begin{align*}
& \Pi_{H} a \Pi_{H} b \Pi_{H}=\Pi_{H}\left(a b-\frac{1}{4 \pi} \nabla a \cdot \nabla b+\frac{1}{4 i \pi}\{a, b\}\right) \Pi_{H}+R, \tag{1}\\
&\|R\|_{\mathcal{B}\left(L^{2}\left(\mathbb{R}^{2 n}\right)\right)} \leq C(n)\left\|a^{\prime \prime}\right\|_{L^{\infty}}\|b\|_{L^{\infty}} \tag{2}
\end{align*}
$$

The product $\nabla a \cdot \nabla b$ as well as the Poisson bracket $\{a, b\}$ above make sense as tempered distributions since ∇a is a Lipschitz continuous function and ∇b is the derivative of an L^{∞} function: in fact, we shall use as a definition

Composition result

Theorem

Let a, b be in $L^{\infty}\left(\mathbb{R}^{2 n}\right)$ with $a^{\prime \prime} \in L^{\infty}\left(\mathbb{R}^{2 n}\right)$, we have

$$
\begin{align*}
& \Pi_{H} a \Pi_{H} b \Pi_{H}=\Pi_{H}\left(a b-\frac{1}{4 \pi} \nabla a \cdot \nabla b+\frac{1}{4 i \pi}\{a, b\}\right) \Pi_{H}+R, \tag{1}\\
&\|R\|_{\mathcal{B}\left(L^{2}\left(\mathbb{R}^{2 n}\right)\right)} \leq C(n)\left\|a^{\prime \prime}\right\|_{L^{\infty}}\|b\|_{L^{\infty}} \tag{2}
\end{align*}
$$

The product $\nabla a \cdot \nabla b$ as well as the Poisson bracket $\{a, b\}$ above make sense as tempered distributions since ∇a is a Lipschitz continuous function and ∇b is the derivative of an L^{∞} function: in fact, we shall use as a definition

$$
\nabla a \cdot \nabla b=\nabla \cdot(\underbrace{b}_{L^{\infty}} \underbrace{\nabla a}_{\text {Lip. }})-\underbrace{b}_{L^{\infty}} \underbrace{\Delta a}_{L^{\infty}} .
$$

Comments

$$
\begin{gathered}
\Pi_{H} a \Pi_{h} b \Pi_{H}=\Pi_{H}(\overbrace{\left(a b-\frac{1}{4 \pi}(\nabla a \cdot \nabla b)\right.}^{\text {symmetric in } a, b}+\frac{1}{4 i \pi} \overbrace{\{a, b\}}^{\text {anti-symmetric in } a, b}) \Pi_{H}+R, \\
\|R\|_{\mathcal{L}\left(L^{2}\left(\mathbb{R}^{2 n}\right)\right) \leq C(n)\left\|a^{\prime \prime}\right\|_{L^{\infty}}\|b\|_{L^{\infty}} .}
\end{gathered}
$$

As a result, we have, modulo $\mathcal{B}\left(L^{2}\left(\mathbb{R}^{2 n}\right)\right)$,

Comments

$$
\begin{gathered}
\Pi_{H} a \Pi_{h} b \Pi_{H}=\Pi_{H}(\overbrace{\left(a b-\frac{1}{4 \pi}(\nabla a \cdot \nabla b)\right.}^{\text {symmetric in } a, b}+\frac{1}{4 i \pi} \overbrace{\{a, b\}}^{\text {anti-symmetric in } a, b}) \Pi_{H}+R, \\
\|R\|_{\mathcal{L}\left(L^{2}\left(\mathbb{R}^{2 n}\right)\right) \leq C(n)\left\|a^{\prime \prime}\right\|_{L \infty}\|b\|_{L^{\infty}} .}
\end{gathered}
$$

As a result, we have, modulo $\mathcal{B}\left(L^{2}\left(\mathbb{R}^{2 n}\right)\right)$,

Comments

$$
\begin{aligned}
\Pi_{H} a \Pi_{h} b \Pi_{H}= & \Pi_{H}(\overbrace{a b-\frac{1}{4 \pi}(\nabla a \cdot \nabla b)}^{\text {symmetric in } a, b}+\frac{1}{4 i \pi} \overbrace{\{a, b\}}^{\text {anti-symmetric in } a, b}) \Pi_{H}+R, \\
& \|R\|_{\mathcal{L}\left(L^{2}\left(\mathbb{R}^{2 n}\right)\right)} \leq C(n)\left\|a^{a^{\prime}}\right\|_{L^{\infty}}\|b\|_{L^{\infty}} .
\end{aligned}
$$

As a result, we have, modulo $\mathcal{B}\left(L^{2}\left(\mathbb{R}^{2 n}\right)\right)$,

$$
\left[\Pi_{H} a \Pi_{H}, \Pi_{H} b \Pi_{H}\right] \equiv \frac{1}{2 i \pi} \Pi_{H}\{a, b\} \Pi_{H},
$$

Comments

$$
\begin{aligned}
\Pi_{H} a \Pi_{h} b \Pi_{H}= & \Pi_{H}(\overbrace{\left(a b-\frac{1}{4 \pi}(\nabla a \cdot \nabla b)\right.}^{\text {symmetric in } a, b}+\frac{1}{4 i \pi} \overbrace{\{a, b\}}^{\text {anti-symmetric in } a, b}) \Pi_{H}+R, \\
& \|R\|_{\mathcal{L}\left(L^{2}\left(\mathbb{R}^{2 n}\right)\right)} \leq C(n)\left\|a^{a^{\prime}}\right\|_{L^{\infty}}\|b\|_{L^{\infty}} .
\end{aligned}
$$

As a result, we have, modulo $\mathcal{B}\left(L^{2}\left(\mathbb{R}^{2 n}\right)\right)$,

$$
\begin{gathered}
{\left[\Pi_{H} a \Pi_{H}, \Pi_{H} b \Pi_{H}\right] \equiv \frac{1}{2 i \pi} \Pi_{H}\{a, b\} \Pi_{H},} \\
\Pi_{H} a \Pi_{H} b \Pi_{H}+\Pi_{H} b \Pi_{H} a \Pi_{H} \equiv 2 a b-\frac{1}{2 \pi} \Pi_{H} \nabla a \cdot \nabla b \Pi_{H} .
\end{gathered}
$$

1. Introduction

Moreover there are some versions of theses equalities for matrix-valued Hamiltonians a, b

1. Introduction

Moreover there are some versions of theses equalities for matrix-valued Hamiltonians a, b
$\left[\Pi_{H} a \Pi_{H}, \Pi_{H} b \Pi_{H}\right] \equiv \Pi_{H}\left(\frac{\{a, b\}-\{b, a\}}{4 i \pi}+[a, b]+\frac{\nabla b \cdot \nabla a-\nabla a \cdot \nabla b}{4 \pi}\right) \Pi_{H}$,

1. Introduction

Moreover there are some versions of theses equalities for matrix-valued Hamiltonians a, b
$\left[\Pi_{H} a \Pi_{H}, \Pi_{H} b \Pi_{H}\right] \equiv \Pi_{H}\left(\frac{\{a, b\}-\{b, a\}}{4 i \pi}+[a, b]+\frac{\nabla b \cdot \nabla a-\nabla a \cdot \nabla b}{4 \pi}\right) \Pi_{H}$,

$$
\begin{gathered}
\Pi_{H} a \Pi_{H} b \Pi_{H}+\Pi_{H} b \Pi_{H} a \Pi_{H} \equiv \\
\Pi_{H}\left(a b+b a-\frac{1}{4 \pi}(\nabla a \cdot \nabla b+\nabla b \cdot \nabla a)+\frac{1}{2 i \pi}(\{a, b\}+\{b, a\})\right) \Pi_{H}
\end{gathered}
$$

where

Moreover there are some versions of theses equalities for matrix-valued Hamiltonians a, b
$\left[\Pi_{H} a \Pi_{H}, \Pi_{H} b \Pi_{H}\right] \equiv \Pi_{H}\left(\frac{\{a, b\}-\{b, a\}}{4 i \pi}+[a, b]+\frac{\nabla b \cdot \nabla a-\nabla a \cdot \nabla b}{4 \pi}\right) \Pi_{H}$,

$$
\begin{gathered}
\Pi_{H} a \Pi_{H} b \Pi_{H}+\Pi_{H} b \Pi_{H} a \Pi_{H} \equiv \\
\Pi_{H}\left(a b+b a-\frac{1}{4 \pi}(\nabla a \cdot \nabla b+\nabla b \cdot \nabla a)+\frac{1}{2 i \pi}(\{a, b\}+\{b, a\})\right) \Pi_{H}
\end{gathered}
$$

where

$$
\nabla a \cdot \nabla b=\sum_{1 \leq j \leq n}\left(\partial_{x_{j}} a \partial_{x_{j}} b+\partial_{\xi_{j}} a \partial_{\xi_{j}} b\right),
$$

Moreover there are some versions of theses equalities for matrix-valued Hamiltonians a, b
$\left[\Pi_{H} a \Pi_{H}, \Pi_{H} b \Pi_{H}\right] \equiv \Pi_{H}\left(\frac{\{a, b\}-\{b, a\}}{4 i \pi}+[a, b]+\frac{\nabla b \cdot \nabla a-\nabla a \cdot \nabla b}{4 \pi}\right) \Pi_{H}$

$$
\begin{gathered}
\Pi_{H} a \Pi_{H} b \Pi_{H}+\Pi_{H} b \Pi_{H} a \Pi_{H} \equiv \\
\Pi_{H}\left(a b+b a-\frac{1}{4 \pi}(\nabla a \cdot \nabla b+\nabla b \cdot \nabla a)+\frac{1}{2 i \pi}(\{a, b\}+\{b, a\})\right) \Pi_{H}
\end{gathered}
$$

where

$$
\begin{gathered}
\nabla a \cdot \nabla b=\sum_{1 \leq j \leq n}\left(\partial_{x_{j}} a \partial_{x_{j}} b+\partial_{\xi_{j}} a \partial_{\xi_{j}} b\right), \\
\{a, b\}=\sum_{1 \leq j \leq n}\left(\partial_{\xi_{j}} a \partial_{x_{j}} b-\partial_{x_{j}} a \partial_{\xi_{j}} b\right) .
\end{gathered}
$$

1. Introduction
2. Statements
3. Proofs

ation

Classical applications Questions

3. Proof

A direct calculation

We have

$$
W^{*} a W=\int_{\mathbb{R}^{2 n}} a(Y) \Sigma_{Y} d Y, \quad\left(\Sigma_{Y} u\right)(x)=\left\langle u, \varphi_{y, \eta}\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right)} \varphi_{y, \eta}(x)
$$

1. Introduction

3. Proof

A direct calculation

We have

$$
W^{*} a W=\int_{\mathbb{R}^{2 n}} a(Y) \Sigma_{Y} d Y, \quad\left(\Sigma_{Y} u\right)(x)=\left\langle u, \varphi_{y, \eta}\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right)} \varphi_{y, \eta}(x),
$$

3. Proof

A direct calculation

We have

$$
W^{*} a W=\int_{\mathbb{R}^{2 n}} a(Y) \Sigma_{Y} d Y, \quad\left(\Sigma_{Y} u\right)(x)=\left\langle u, \varphi_{y, \eta}\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right)} \varphi_{y, \eta}(x),
$$

with $\quad \varphi_{y, \eta}(x)=2^{n / 4} e^{-\pi(x-y)^{2}} e^{2 i \pi\left(x-\frac{y}{2}\right) \eta}$.
Thus
$W W^{*} a W W^{*} W W^{*} b W W^{*}=W\left(W^{*} a W W^{*} b W\right) W^{*}$
and we shall calculate $W^{*} a W W^{*} b W$

3. Proof

A direct calculation

We have

$$
W^{*} a W=\int_{\mathbb{R}^{2 n}} a(Y) \Sigma_{Y} d Y, \quad\left(\Sigma_{Y} u\right)(x)=\left\langle u, \varphi_{y, \eta}\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right)} \varphi_{y, \eta}(x),
$$

with $\varphi_{y, \eta}(x)=2^{n / 4} e^{-\pi(x-y)^{2}} e^{2 i \pi\left(x-\frac{y}{2}\right) \eta}$.
Thus
$W W^{*} a W W^{*} W W^{*} b W W^{*}=W\left(W^{*} a W W^{*} b W\right) W^{*}$,
and we shall calculate $W^{*} a W W^{*} b W$.

3. Proof

A direct calculation

We have

$$
W^{*} a W=\int_{\mathbb{R}^{2 n}} a(Y) \Sigma_{Y} d Y, \quad\left(\Sigma_{Y} u\right)(x)=\left\langle u, \varphi_{y, \eta}\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right)} \varphi_{y, \eta}(x),
$$

with $\quad \varphi_{y, \eta}(x)=2^{n / 4} e^{-\pi(x-y)^{2}} e^{2 i \pi\left(x-\frac{y}{2}\right) \eta}$.
Thus
$W W^{*} a W W^{*} W W^{*} b W W^{*}=W\left(W^{*} a W W^{*} b W\right) W^{*}$, and we shall calculate $W^{*} a W W^{*} b W$.

1. Introduction
2. Statements 3. Proofs

rect calculation

Classical applications

 Questions
We see that

$$
W^{*} a W W^{*} b W=\iint_{\mathbb{R}^{2 n} \times \mathbb{R}^{2 n}} a(Y) b(Z) \Sigma_{Y} \Sigma_{Z} d Y d Z
$$

1. Introduction

We see that

$$
W^{*} a W W^{*} b W=\iint_{\mathbb{R}^{2 n} \times \mathbb{R}^{2 n}} a(Y) b(Z) \Sigma_{\gamma} \Sigma_{Z} d Y d Z
$$

We see that

$$
W^{*} a W W^{*} b W=\iint_{\mathbb{R}^{2 n} \times \mathbb{R}^{2 n}} a(Y) b(Z) \Sigma_{Y} \Sigma_{Z} d Y d Z
$$

We see that

$$
\begin{array}{r}
W^{*} a W W^{*} b W=\iint_{\mathbb{R}^{2 n} \times \mathbb{R}^{2 n}} a(Y) b(Z) \Sigma_{Y} \Sigma_{Z} d Y d Z \\
=\iint\left(a(Z)+a^{\prime}(Z)(Y-Z)+a_{2}(Z, Y)(Y-Z)^{2}\right) b(Z) \Sigma_{Y}
\end{array}
$$

We see that

$$
\begin{gathered}
W^{*} a W W^{*} b W=\iint_{\mathbb{R}^{2 n} \times \mathbb{R}^{2 n}} a(Y) b(Z) \Sigma_{Y} \Sigma_{Z} d Y d Z \\
=\iint\left(a(Z)+a^{\prime}(Z)(Y-Z)+a_{2}(Z, Y)(Y-Z)^{2}\right) b(Z) \Sigma_{Y} \Sigma_{Z} d Y d Z
\end{gathered}
$$

We see that

$$
\begin{gathered}
W^{*} a W W^{*} b W=\iint_{\mathbb{R}^{2 n} \times \mathbb{R}^{2 n}} a(Y) b(Z) \Sigma_{Y} \Sigma_{Z} d Y d Z \\
=\iint\left(a(Z)+a^{\prime}(Z)(Y-Z)+a_{2}(Z, Y)(Y-Z)^{2}\right) b(Z) \Sigma_{Y} \Sigma_{Z} d Y d Z
\end{gathered}
$$

We see that

$$
\begin{gathered}
W^{*} a W W^{*} b W=\iint_{\mathbb{R}^{2 n} \times \mathbb{R}^{2 n}} a(Y) b(Z) \Sigma_{Y} \Sigma_{Z} d Y d Z \\
=\iint\left(a(Z)+a^{\prime}(Z)(Y-Z)+a_{2}(Z, Y)(Y-Z)^{2}\right) b(Z) \Sigma_{Y} \Sigma_{Z} d Y d Z \\
=\int(a b)(Z) \Sigma_{Z} d Z+\iint a^{\prime}(Z)(Y-Z) \Sigma_{Y} d Y b(Z) \Sigma_{Z} d Z+R_{0}
\end{gathered}
$$

We see that

$$
\begin{gathered}
W^{*} a W W^{*} b W=\iint_{\mathbb{R}^{2 n} \times \mathbb{R}^{2 n}} a(Y) b(Z) \Sigma_{Y} \Sigma_{Z} d Y d Z \\
=\iint\left(a(Z)+a^{\prime}(Z)(Y-Z)+a_{2}(Z, Y)(Y-Z)^{2}\right) b(Z) \Sigma_{Y} \Sigma_{Z} d Y d Z \\
=\int(a b)(Z) \Sigma_{Z} d Z+\iint a^{\prime}(Z)(Y-Z) \Sigma_{Y} d Y b(Z) \Sigma_{Z} d Z+R_{0}
\end{gathered}
$$

We see that

$$
\begin{gathered}
W^{*} a W W^{*} b W=\iint_{\mathbb{R}^{2 n} \times \mathbb{R}^{2 n}} a(Y) b(Z) \Sigma_{Y} \Sigma_{Z} d Y d Z \\
=\iint\left(a(Z)+a^{\prime}(Z)(Y-Z)+a_{2}(Z, Y)(Y-Z)^{2}\right) b(Z) \Sigma_{Y} \Sigma_{Z} d Y d Z \\
=\int(a b)(Z) \Sigma_{Z} d Z+\iint a^{\prime}(Z)(Y-Z) \Sigma_{Y} d Y b(Z) \Sigma_{Z} d Z+R_{0}
\end{gathered}
$$

We see that

$$
\begin{gathered}
W^{*} a W W^{*} b W=\iint_{\mathbb{R}^{2 n} \times \mathbb{R}^{2 n}} a(Y) b(Z) \Sigma_{Y} \Sigma_{Z} d Y d Z \\
=\iint\left(a(Z)+a^{\prime}(Z)(Y-Z)+a_{2}(Z, Y)(Y-Z)^{2}\right) b(Z) \Sigma_{Y} \Sigma_{Z} d Y d Z \\
=\int(a b)(Z) \Sigma_{Z} d Z+\iint a^{\prime}(Z)(Y-Z) \Sigma_{Y} d Y b(Z) \Sigma_{Z} d Z+R_{0}
\end{gathered}
$$

with

We see that

$$
\begin{aligned}
& W^{*} a W W^{*} b W=\iint_{\mathbb{R}^{2 n} \times \mathbb{R}^{2 n}} a(Y) b(Z) \Sigma_{Y} \Sigma_{Z} d Y d Z \\
& =\iint\left(a(Z)+a^{\prime}(Z)(Y-Z)+a_{2}(Z, Y)(Y-Z)^{2}\right) b(Z) \Sigma_{Y} \Sigma_{Z} d Y d Z \\
& =\int(a b)(Z) \Sigma_{Z} d Z+\iint a^{\prime}(Z)(Y-Z) \Sigma_{Y} d Y b(Z) \Sigma_{Z} d Z+R_{0}, \\
& \text { with } \\
& R_{0}=\iiint_{0}^{1}(1-\theta) a^{\prime \prime}(Z+\theta(Y-Z))(Y-Z)^{2} b(Z) \Sigma_{Y} \Sigma_{Z} d Y d Z d \theta
\end{aligned}
$$

We see that

$$
\begin{gathered}
W^{*} a W W^{*} b W=\iint_{\mathbb{R}^{2 n} \times \mathbb{R}^{2 n}} a(Y) b(Z) \Sigma_{Y} \Sigma_{Z} d Y d Z \\
=\iint\left(a(Z)+a^{\prime}(Z)(Y-Z)+a_{2}(Z, Y)(Y-Z)^{2}\right) b(Z) \Sigma_{Y} \Sigma_{Z} d Y d Z \\
=\int(a b)(Z) \Sigma_{Z} d Z+\iint a^{\prime}(Z)(Y-Z) \Sigma_{Y} d Y b(Z) \Sigma_{Z} d Z+R_{0},
\end{gathered}
$$

with

$$
R_{0}=\iiint_{0}^{1}(1-\theta) a^{\prime \prime}(Z+\theta(Y-Z))(Y-Z)^{2} b(Z) \Sigma_{Y} \Sigma_{Z} d Y d Z d \theta
$$

REMARK. Let ω be a measurable function defined on $\mathbb{R}^{2 n} \times \mathbb{R}^{2 n}$ such that

$$
|\omega(Y, Z)| \leq \gamma_{0}(1+|Y-Z|)^{N_{0}}
$$

Then the operator $\iint \omega(Y, Z) \Sigma_{Y} \Sigma_{Z} d Y d Z$ is bounded on $L^{2}\left(\mathbb{R}^{n}\right)$ with $\mathcal{B}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)$ norm bounded above by a constant depending on γ_{0}, N_{0}.

This is an immediate consequence of Cotlar's lemma and of the estimate

Using that remark, we obtain that

Remark. Let ω be a measurable function defined on $\mathbb{R}^{2 n} \times \mathbb{R}^{2 n}$ such that

$$
|\omega(Y, Z)| \leq \gamma_{0}(1+|Y-Z|)^{N_{0}}
$$

Then the operator $\iint \omega(Y, Z) \Sigma_{Y} \Sigma_{Z} d Y d Z$ is bounded on $L^{2}\left(\mathbb{R}^{n}\right)$ with $\mathcal{B}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)$ norm bounded above by a constant depending on γ_{0}, N_{0}.

This is an immediate consequence of Cotlar's lemma and of the estimate

Using that remark, we obtain that

Remark. Let ω be a measurable function defined on $\mathbb{R}^{2 n} \times \mathbb{R}^{2 n}$ such that

$$
|\omega(Y, Z)| \leq \gamma_{0}(1+|Y-Z|)^{N_{0}}
$$

Then the operator $\iint \omega(Y, Z) \Sigma_{Y} \Sigma_{Z} d Y d Z$ is bounded on $L^{2}\left(\mathbb{R}^{n}\right)$ with $\mathcal{B}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)$ norm bounded above by a constant depending on γ_{0}, N_{0}.

This is an immediate consequence of Cotlar's lemma and of the estimate

$$
\left\|\Sigma_{Y} \Sigma_{Z}\right\|_{\mathcal{B}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)} \leq 2^{n} e^{-\frac{\pi}{2}|Y-Z|^{2}}
$$

Using that remark, we obtain that

$$
\left\|R_{0}\right\|_{\mathcal{L}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)} \leq C_{1}(n)\left\|a^{\prime \prime}\right\|_{L^{\infty}\left(\mathbb{R}^{2 n}\right)}\|b\|_{L^{\infty}\left(\mathbb{R}^{2 n}\right)}
$$

1. Introduction
2. Statements 3. Proofs
lation
Classical applications Questions

We check now

1. Introduction
2. Statements
3. Proofs

We check now $\int(Y-Z) \Sigma_{Y} d Y$

1. Introduction
2. Statements

We check now $\int(Y-Z) \Sigma_{Y} d Y$ whose Weyl symbol is, as a function of X,

We check now $\int(Y-Z) \Sigma_{Y} d Y$ whose Weyl symbol is, as a function of X,
$\int(Y-Z) 2^{n} e^{-2 \pi|X-Y|^{2}} d Y=\int(X-Z) 2^{n} e^{-2 \pi|X-Y|^{2}} d Y=X-Z$.

We check now $\int(Y-Z) \Sigma_{Y} d Y$ whose Weyl symbol is, as a function of X,
$\int(Y-Z) 2^{n} e^{-2 \pi|X-Y|^{2}} d Y=\int(X-Z) 2^{n} e^{-2 \pi|X-Y|^{2}} d Y=X-Z$.
So with $L_{Z}(X)=X-Z$, we have

We check now $\int(Y-Z) \Sigma_{Y} d Y$ whose Weyl symbol is, as a function of X,
$\int(Y-Z) 2^{n} e^{-2 \pi|X-Y|^{2}} d Y=\int(X-Z) 2^{n} e^{-2 \pi|X-Y|^{2}} d Y=X-Z$.
So with $L_{Z}(X)=X-Z$, we have $\int(Y-Z) \Sigma_{Y} d Y \Sigma_{Z}=(X-Z)^{w} \Sigma_{Z}=L_{Z}^{w} \Sigma_{Z}$

We check now $\int(Y-Z) \Sigma_{Y} d Y$ whose Weyl symbol is, as a function of X,
$\int(Y-Z) 2^{n} e^{-2 \pi|X-Y|^{2}} d Y=\int(X-Z) 2^{n} e^{-2 \pi|X-Y|^{2}} d Y=X-Z$.
So with $L_{Z}(X)=X-Z$, we have $\int(Y-Z) \Sigma_{Y} d Y \Sigma_{Z}=(X-Z)^{w} \Sigma_{Z}=L_{Z}^{w} \Sigma_{Z}$ and thus

$$
\begin{aligned}
\operatorname{Re} \int(Y-Z) \Sigma_{Y} d Y \Sigma_{Z}=\operatorname{Re}\left(L_{Z}^{w} \Sigma_{Z}\right) & =\left((X-Z) 2^{n} e^{-2 \pi|X-Z|^{2}}\right)^{w} \\
& =\frac{1}{4 \pi} \partial_{Z}\left(2^{n} e^{-2 \pi|X-Z|^{2}}\right)^{w}
\end{aligned}
$$

so that

We check now $\int(Y-Z) \Sigma_{Y} d Y$ whose Weyl symbol is, as a function of X,
$\int(Y-Z) 2^{n} e^{-2 \pi|X-Y|^{2}} d Y=\int(X-Z) 2^{n} e^{-2 \pi|X-Y|^{2}} d Y=X-Z$.
So with $L_{Z}(X)=X-Z$, we have $\int(Y-Z) \Sigma_{Y} d Y \Sigma_{Z}=(X-Z)^{w} \Sigma_{Z}=L_{Z}^{w} \Sigma_{Z}$ and thus

$$
\begin{aligned}
\operatorname{Re} \int(Y-Z) \Sigma_{Y} d Y \Sigma_{Z}=\operatorname{Re}\left(L_{Z}^{w} \Sigma_{Z}\right) & =\left((X-Z) 2^{n} e^{-2 \pi|X-Z|^{2}}\right)^{w} \\
& =\frac{1}{4 \pi} \partial_{Z}\left(2^{n} e^{-2 \pi|X-Z|^{2}}\right)^{w}
\end{aligned}
$$

so that

$$
\operatorname{Re} \int(Y-Z) \Sigma_{Y} d Y \Sigma_{Z}=\frac{1}{4 \pi} \partial_{Z}\left(\Sigma_{Z}\right)
$$

To simplify matters in this sketch, let us assume that both a and b are real-valued and let us limit ourselves to the computation of Re W* ${ }^{*} W W^{*} b W-\operatorname{Re} R_{0}=$

To simplify matters in this sketch, let us assume that both a and b are real-valued and let us limit ourselves to the computation of $\operatorname{Re} W^{*} a W W^{*} b W-\operatorname{Re} R_{0}=$

$$
\int(a b)(Z) \Sigma_{Z} d Z+\int a^{\prime}(Z) b(Z) \frac{1}{4 \pi} \partial_{Z} \Sigma_{Z} d Z=
$$

To simplify matters in this sketch, let us assume that both a and b are real-valued and let us limit ourselves to the computation of $\operatorname{Re} W^{*} a W W^{*} b W-\operatorname{Re} R_{0}=$

$$
\int(a b)(Z) \Sigma_{Z} d Z+\int a^{\prime}(Z) b(Z) \frac{1}{4 \pi} \partial_{Z} \Sigma_{Z} d Z=
$$

$\int\left((a b)(Z)-\frac{1}{4 \pi} a^{\prime}(Z) \cdot b^{\prime}(Z)\right) \Sigma_{Z} d Z-\int \frac{1}{4 \pi}$ trace $a^{\prime \prime}(Z) b(Z) \Sigma_{Z} d Z$,

To simplify matters in this sketch, let us assume that both a and b are real-valued and let us limit ourselves to the computation of $\operatorname{Re} W^{*} a W W^{*} b W-\operatorname{Re} R_{0}=$

$$
\begin{gathered}
\int(a b)(Z) \Sigma_{Z} d Z+\int a^{\prime}(Z) b(Z) \frac{1}{4 \pi} \partial_{Z} \Sigma_{Z} d Z= \\
\int\left((a b)(Z)-\frac{1}{4 \pi} a^{\prime}(Z) \cdot b^{\prime}(Z)\right) \Sigma_{Z} d Z-\int \frac{1}{4 \pi} \text { trace } a^{\prime \prime}(Z) b(Z) \Sigma_{Z} d Z
\end{gathered}
$$

providing the sought result.

To simplify matters in this sketch, let us assume that both a and b are real-valued and let us limit ourselves to the computation of $\operatorname{Re} W^{*} a W W^{*} b W-\operatorname{Re} R_{0}=$

$$
\int(a b)(Z) \Sigma_{Z} d Z+\int a^{\prime}(Z) b(Z) \frac{1}{4 \pi} \partial_{Z} \Sigma_{Z} d Z=
$$

$\int\left((a b)(Z)-\frac{1}{4 \pi} a^{\prime}(Z) \cdot b^{\prime}(Z)\right) \Sigma_{Z} d Z-\int \frac{1}{4 \pi}$ trace $a^{\prime \prime}(Z) b(Z) \Sigma_{Z} d Z$,
providing the sought result.

Classical applications

- Hypoellipticity for fractional operators such as

$$
\partial_{t}+v \cdot \partial_{x}+\left(-\Delta_{v}\right)^{\alpha}
$$

coming from the linearization of the Boltzmann equation.

- The composition formula was used by F. Hérau \& K.

Pravda-Starov to prove some anisotropic hypoelliptic estimates for Landau-type operators (J. Math. Pures Appl., 2011).

- Propagation of singularities for operators with rough complex
svmbols with a non-negative imaginary part.

Classical applications

- Hypoellipticity for fractional operators such as

$$
\partial_{t}+v \cdot \partial_{x}+\left(-\Delta_{v}\right)^{\alpha}
$$

coming from the linearization of the Boltzmann equation.

- The composition formula was used by F. HÉrau \& K.

Pravda-Starov to prove some anisotropic hypoelliptic estimates for Landau-type operators (J. Math. Pures Appl., 2011).

- Propagation of singularities for operators with rough complex symbols with a non-negative imaginary part.

Classical applications

- Hypoellipticity for fractional operators such as

$$
\partial_{t}+v \cdot \partial_{x}+\left(-\Delta_{v}\right)^{\alpha}
$$

coming from the linearization of the Boltzmann equation.

- The composition formula was used by F. HÉrau \& K.

Pravda-Starov to prove some anisotropic hypoelliptic estimates for Landau-type operators (J. Math. Pures Appl., 2011).

- Propagation of singularities for operators with rough complex symbols with a non-negative imaginary part.

Questions

Paving Conjecture. There exists $r \in \mathbb{N}$, such that for any
separable Hilbert space H, for any family of rank-one orthogonal
projections $\left(p_{j}\right)_{j \in \mathbb{N}}$ with $\sum_{j \in \mathbb{N}} p_{j}=\mathrm{Id}, p_{j} p_{k}=\delta_{j, k} p_{k}$, for all
$A \in \mathcal{B}(H)$, with $\|A\|=1$ such that for all $j, p_{j} A p_{j}=0$,
there exists P_{1}, \ldots, P_{r} such that

$$
\max _{1 \leq j \leq r}\left\|P_{j} A P_{j}\right\| \leq 1 / 2, \quad P_{j}=\sum_{l \in J_{j}} P_{l}, \quad \sum_{1 \leq j \leq r} P_{j}=\mid d .
$$

The universal status of the integer r (let's call it $r_{K S}$) above is quite scaring and it is tempting to doubt that such a universal integer could exist.
\qquad
\qquad
\qquad

Questions

Paving Conjecture. There exists $r \in \mathbb{N}$, such that for any separable Hilbert space H, for any family of rank-one orthogonal projections $\left(p_{j}\right)_{j \in \mathbb{N}}$ with $\sum_{j \in \mathbb{N}} p_{j}=\mathrm{Id}, p_{j} p_{k}=\delta_{j, k} p_{k}$, for all $A \in \mathcal{B}(H)$, with $\|A\|=1$ such that for all $j, p_{j} A p_{j}=0$, there exists P_{1}, \ldots, P_{r} such that

$$
\max _{1 \leq j \leq r}\left\|P_{j} A P_{j}\right\| \leq 1 / 2, \quad P_{j}=\sum_{l \in J_{j}} p_{l}, \quad \sum_{1 \leq j \leq r} P_{j}=\mathrm{Id} .
$$

The universal status of the integer r (let's call it $r_{K S}$) above is quite scaring and it is tempting to doubt that such a universal integer could exist.
\qquad
\qquad

Questions

Paving Conjecture. There exists $r \in \mathbb{N}$, such that for any separable Hilbert space H, for any family of rank-one orthogonal projections $\left(p_{j}\right)_{j \in \mathbb{N}}$ with $\sum_{j \in \mathbb{N}} p_{j}=\mathrm{Id}, p_{j} p_{k}=\delta_{j, k} p_{k}$, for all $A \in \mathcal{B}(H)$, with $\|A\|=1$ such that for all $j, p_{j} A p_{j}=0$, there exists P_{1}, \ldots, P_{r} such that

$$
\max _{1 \leq j \leq r}\left\|P_{j} A P_{j}\right\| \leq 1 / 2, \quad P_{j}=\sum_{l \in J_{j}} p_{l}, \quad \sum_{1 \leq j \leq r} P_{j}=\mathrm{Id} .
$$

The universal status of the integer r (let's call it $r_{K S}$) above is quite scaring and it is tempting to doubt that such a universal integer could exist.
That conjecture was shown to be equivalent to various other
conjectures, such as the Kadison-Singer conjecture, the Feichtinger conjecture

Questions

Paving Conjecture. There exists $r \in \mathbb{N}$, such that for any separable Hilbert space H, for any family of rank-one orthogonal projections $\left(p_{j}\right)_{j \in \mathbb{N}}$ with $\sum_{j \in \mathbb{N}} p_{j}=\mathrm{Id}, p_{j} p_{k}=\delta_{j, k} p_{k}$, for all $A \in \mathcal{B}(H)$, with $\|A\|=1$ such that for all $j, p_{j} A p_{j}=0$, there exists P_{1}, \ldots, P_{r} such that

$$
\max _{1 \leq j \leq r}\left\|P_{j} A P_{j}\right\| \leq 1 / 2, \quad P_{j}=\sum_{l \in J_{j}} p_{l}, \quad \sum_{1 \leq j \leq r} P_{j}=\mathrm{Id} .
$$

The universal status of the integer r (let's call it $r_{K S}$) above is quite scaring and it is tempting to doubt that such a universal integer could exist.
That conjecture was shown to be equivalent to various other conjectures, such as the Kadison-Singer conjecture, the Feichtinger conjecture ...

1. Introduction

The only known general cases supporting the conjecture are cases where the diagonal is dominant or where the coefficients of the matrix are all non-negative.
The general Toeplitz case (matrices $\left(a_{j k}\right)$ with $a_{j k}=\phi(j-k)$) is not known, nor is the pseudodifferential case, say on the circle. is Riemann integrable, H. Halpern proved that the Toeplitz operator with matrix $(\hat{a}(j-k))$ is uniformly pavable, i.e. there exists $N \in \mathbb{N}$ such that

The only known general cases supporting the conjecture are cases where the diagonal is dominant or where the coefficients of the matrix are all non-negative.
The general Toeplitz case (matrices $\left(a_{j k}\right)$ with $a_{j k}=\phi(j-k)$) is not known, nor is the pseudodifferential case, say on the circle.
However when

is Riemann integrable, H. Halpern, V. Kaftal \& G. Weiss proved that the Toeplitz operator with matrix $(\hat{a}(j-k))$ is uniformly pavable, i.e. there exists $N \in \mathbb{N}$ such that

The only known general cases supporting the conjecture are cases where the diagonal is dominant or where the coefficients of the matrix are all non-negative.
The general Toeplitz case (matrices $\left(a_{j k}\right)$ with $a_{j k}=\phi(j-k)$) is not known, nor is the pseudodifferential case, say on the circle. However when

$$
a(x)=\sum_{j \in \mathbb{Z}} \hat{a}(j) e^{2 i \pi x j}
$$

is Riemann integrable, H. Halpern, V. Kaftal \& G. Weiss proved that the Toeplitz operator with matrix $(\hat{a}(j-k))$ is uniformly pavable, i.e. there exists $N \in \mathbb{N}$ such that

$$
\max _{1 \leq I \leq N}\left\|P_{l}(A-\operatorname{diag} A) P_{l}\right\| \leq \frac{1}{2}\|A-\operatorname{diag} A\|, \quad P_{l}=\sum_{\substack{j \equiv l \\ \bmod N}} p_{j}
$$

One may conjecture, following the result on Laurent operators with Riemann integrable symbols that classical pseudodifferential
operators on the circle are uniformly pavable, as should be classical

One may conjecture, following the result on Laurent operators with Riemann integrable symbols that classical pseudodifferential operators on the circle are uniformly pavable, as should be

One may conjecture, following the result on Laurent operators with Riemann integrable symbols that classical pseudodifferential operators on the circle are uniformly pavable, as should be classical pseudodifferential operators on \mathbb{R}^{n},

One may conjecture, following the result on Laurent operators with Riemann integrable symbols that classical pseudodifferential operators on the circle are uniformly pavable, as should be classical pseudodifferential operators on \mathbb{R}^{n}, or on an open subset of \mathbb{R}^{n}.
so that A is identified with the matrix

One may conjecture, following the result on Laurent operators with Riemann integrable symbols that classical pseudodifferential operators on the circle are uniformly pavable, as should be classical pseudodifferential operators on \mathbb{R}^{n}, or on an open subset of \mathbb{R}^{n}. A pseudodifferential operator on the circle with symbol $a(x, k)$ $\left(x \in \mathbb{T}^{1}, k \in \mathbb{Z}\right)$ is

so that A is identified with the matrix

When a does not depend on the second variable, it is the operator

One may conjecture, following the result on Laurent operators with Riemann integrable symbols that classical pseudodifferential operators on the circle are uniformly pavable, as should be classical pseudodifferential operators on \mathbb{R}^{n}, or on an open subset of \mathbb{R}^{n}. A pseudodifferential operator on the circle with symbol $a(x, k)$ $\left(x \in \mathbb{T}^{1}, k \in \mathbb{Z}\right)$ is

$$
(A u)(x)=\sum_{j \in \mathbb{Z}} e^{2 i \pi \times j} \sum_{k \in \mathbb{Z}} \hat{a}(j-k, k) \hat{u}(k),
$$

so that A is identified with the matrix

When a does not depend on the second variable, it is the operator
of multinlication by a, Toenlitz onerator with symbol a.

One may conjecture, following the result on Laurent operators with Riemann integrable symbols that classical pseudodifferential operators on the circle are uniformly pavable, as should be classical pseudodifferential operators on \mathbb{R}^{n}, or on an open subset of \mathbb{R}^{n}. A pseudodifferential operator on the circle with symbol $a(x, k)$ $\left(x \in \mathbb{T}^{1}, k \in \mathbb{Z}\right)$ is

$$
(A u)(x)=\sum_{j \in \mathbb{Z}} e^{2 i \pi x j} \sum_{k \in \mathbb{Z}} \hat{a}(j-k, k) \hat{u}(k),
$$

so that A is identified with the matrix

$$
m_{j, k}=\hat{a}(j-k, k)
$$

When a does not depend on the second variable, it is the operator of multiplication by a, Toeplitz operator with symbol a.

The diagonal is 0 means that $\forall k \in \mathbb{Z}, \quad \int_{0}^{1} a(x, k) d x=0$.
semi-classical pseudodifferential operator on the circle is given by the matrix

$$
m_{j, k}(h)=\hat{a}^{1}(j-k, h k), \quad h \in(0,1],
$$

where the symbol a is defined on $\mathbb{T}^{1} \times \mathbb{R}$. The diagonal of such a matrix is given by

Instead of assuming that the diagonal is 0 , it would be natural to assume that the diagonal is $O(h)$ and mavbe formulate some semi-classical version of the paving conjecture.

The diagonal is 0 means that $\forall k \in \mathbb{Z}, \quad \int_{0}^{1} a(x, k) d x=0$. A semi-classical pseudodifferential operator on the circle is given by the matrix

$$
m_{j, k}(h)=\widehat{a}^{1}(j-k, h k), \quad h \in(0,1],
$$

where the symbol a is defined on $\mathbb{T}^{1} \times \mathbb{R}$. The diagonal of such a matrix is given by

$$
\hat{a}^{1}(0, h j)=\int_{0}^{1} a(x, h j) d x .
$$

Instead of assuming that the diagonal is 0 , it would be natural to assume that the diagonal is $O(h)$ and maybe formulate some semi-classical version of the paving conjecture.

The diagonal is 0 means that $\forall k \in \mathbb{Z}, \quad \int_{0}^{1} a(x, k) d x=0$. A semi-classical pseudodifferential operator on the circle is given by the matrix

$$
m_{j, k}(h)=\widehat{a}^{1}(j-k, h k), \quad h \in(0,1],
$$

where the symbol a is defined on $\mathbb{T}^{1} \times \mathbb{R}$. The diagonal of such a matrix is given by

$$
\widehat{a}^{1}(0, h j)=\int_{0}^{1} a(x, h j) d x
$$

Instead of assuming that the diagonal is 0 , it would be natural to assume that the diagonal is $O(h)$ and maybe formulate some semi-classical version of the paving conjecture.

More information on the topic of Toeplitz operators and their calculus (Wick calculus) is included in Section 2.4 of my book,

$$
\begin{gathered}
\text { Metrics on the Phase Space and } \\
\text { Non-Selfadjoint Pseudodifferential Operators, }
\end{gathered}
$$ published by Birkhäuser in 2010.

More information on the topic of Toeplitz operators and their calculus (Wick calculus) is included in Section 2.4 of my book,

Metrics on the Phase Space and
Non-Selfadjoint Pseudodifferential Operators, published by Birkhäuser in 2010.

Thank you for your attention

