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Classical Toeplitz operators

Let a be a bounded measurable function on the unit circle T1. The
operator of multiplication by a is of course bounded on L2(T1).
Now we are interested in the Hardy space:

H2(T1) = {u ∈ L2(T1), spec u = supp û = Z+} = P+

(
L2(T1)

)
.

The Toeplitz operator with symbol a is the operator P+aP+. In
particular for u(x) =

∑
k∈Z û(k)e2iπkx , P+u =

∑
k∈N û(k)e2iπkx ,(

P+aP+u
)
(x) =

∑
j∈N

e2iπjx(â ∗ P̂+u)(j).
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k∈N û(k)e2iπkx ,(

P+aP+u
)
(x) =

∑
j∈N
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P+aP+ is the operator(
û(k)

)
k∈N 7→

(∑
k∈N

â(j − k)û(k)
)

j∈N
,

that is the operator from `2(N) into itself given by the infinite
matrix

(mj ,k)j ,k∈N =
(
â(j − k)

)
j ,k∈N.

These matrices are constant on the parallels to the diagonal.
Composition of this type of matrices is an interesting question:

what is P+aP+P+bP+?

According to the previous discussion, it is

mj ,k =
∑
l∈N

â(j − l)b̂(l − k).
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â(j − k)û(k)
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)

j∈N
,

that is the operator from `2(N) into itself given by the infinite
matrix

(mj ,k)j ,k∈N =
(
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â(j − l)b̂(l − k).

4



1. Introduction
2. Statements

3. Proofs

Classical Toeplitz operators
A variation

The composition problem

P+aP+ is the operator(
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We have indeed

âb(j−k) = (â∗b̂)(j−k) =
∑
l∈Z

â(j−l)b̂(l−k) =
∑
p∈Z

â(j−k−p)b̂(p).

and there is no obvious reason for which

mj ,k =
∑
l∈N

â(j − l)b̂(l − k) =
∑

p≥−k

â(j − k − p)b̂(p),

should depend only on j − k.

Toeplitz matrices have been extensively studied, and the book of
M. Embree & L. Trefethen, Spectra and Pseudospectra:
The Behavior of Nonnormal Matrices and Operators (Princeton
University Press, 2005), is providing many results on the spectrum
(and pseudospectrum. . . to be defined later. . . ) for this type of
matrices.
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A variation
Let us consider the Fock-Bargmann space

H ={u ∈ L2(R2n
y ,η) such that u = f (z)e−

π
2
|z|2 , z = η + iy , f entire.}

We note that H = ker( ∂
∂z̄ + π

2 z) ∩ L2(Cn) : H is a closed subspace
of L2(Cn).

Now, let a be a bounded measurable function defined on Cn: the
operator of multiplication by a is of course bounded on L2(Cn) and
the Toeplitz operator with symbol a is

PaP, where P is the orthogonal projection on H.

It is a bounded operator on L2(Cn).
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There are plenty of good reasons to study these operators. Let us
give a few.

Reason 1: They are directly linked to the so-called coherent
states method, introduced by V. Bargmann, F.A. Berezin, V. Fock,
G.-C. Wick and others, and used by manifold authors.

Maybe instead of displaying now what is the coherent states
method, let us check one of its main consequences, the sharp
Gårding inequality.
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The composition problem

We consider a Hamiltonian, i.e. a function a(x , ξ) defined on the
phase space Rn

x ×Rn
ξ . Let us assume that a is real-valued, smooth,

bounded, with all its derivatives bounded.
The first thing that you can do is to quantize that Hamiltonian,
i.e. to associate linearly to a a bounded operator on L2(Rn).

Using for instance, H. Weyl formula, we define with h ∈ (0, 1],

(aWeylhu)(x) =

∫∫
Rn×Rn

e2iπ〈x−y ,ξ〉a(
x + y

2
, hξ)u(y)dydξ.
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The composition problem

It is easy to prove that, with the strong assumptions made on a,
the operator aWeylh is bounded selfadjoint on L2(Rn).

Let us assume now that a is a non-negative function: then
∃C > 0, ∀h ∈ (0, 1],

aWeylh + Ch ≥ 0 as an operator.

This is true also for matrix-valued Hamiltonian and even for
a(x , ξ) ∈ Bselfadjoint(H), H Hilbert space; then non-negativity of
a(x , ξ) means non-negativity of the selfadjoint “matrix” a(x , ξ).
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The composition problem

The proof of that sharp Gårding inequality is simple: defining a
semi-classical version of the projection Ph, we get

(1) The Toeplitz operator PhaPh ≥ 0 since a ≥ 0.

(2) The difference aWeylh − PhaPh is O(h) in operator norm.

As a result

aWeylh = aWeylh − PhaPh + PhaPh ≥ O(h).

Although (2) is not completely obvious, it means simply that the
Toeplitz quantization PhaPh of the Hamiltonian a is close to the
Weyl quantization and it is not difficult to check directly the Weyl
symbols.
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A variation

The composition problem

Reason 2. Minimization of the Gross-Pitaevski energy. For
ψ ∈ L2(R2),

EGP(ψ) =
1

2
〈qWeylu, u〉+

g

2

∫
R2

|ψ|4dx ,

q = (ξ1 + ωx2)
2 + (ξ2 − ωx1)

2 + ε2(x2
1 + x2

2 )

2EGP(ψ) = ‖ 1

iπ
(∂̄ + πωz)ψ‖2 +

ω

π
‖ψ‖2 + ε2‖|x |ψ‖2 + g

∫
|ψ|4dx .

We define the Lowest Landau Level space with parameter ω as

LLLω = {ψ ∈ L2, ψ = f (z)e−πω|z|2} = ker(∂̄ + πωz) ∩ L2.

Reduction to the minimization of

E (u) = ‖|x |u‖2
L2 + ω2g‖u‖4

L4 , u ∈ LLLε−1

E (u) =

∫
|x |2|u(x)|2dx+ω2g

∫
|u(x)|4dx , L2 3 u = f (z)e−πε−1|z|2 , f entire.
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Classical Toeplitz operators
A variation

The composition problem

Plenty of other reasons . . .

Microlocal defect measures (P. Gérard, L. Tartar),

Euler-Lagrange equation for the minimization of the previous
problem,

L. Boutet de Monvel & V. Guillemin geometric description of
Toeplitz operators on a manifold,

New approaches of the Fefferman-Phong inequality,

Gabor frames and various wavelets methods

. . .
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The composition problem

The composition problem
We want to understand the composition of two Toeplitz operators
with symbols a, b:

Pa PP︸︷︷︸
=P

bP = PaPbP = P[a,P]bP︸ ︷︷ ︸
hard part

+ PabP︸ ︷︷ ︸
Toeplitz

with symbol ab

.

L. Boutet de Monvel & V. Guillemin in their 1981 book,
The spectral theory of Toeplitz operators (Princeton University
Press) have already studied that question extensively and in
geometric terms when the symbols a, b are smooth functions.

Well, we want to understand that composition formula when one
of the symbols is quite singular, say no better than L∞, and the
other one has a couple of derivatives bounded. This question is
interesting per se and also is useful to prove some energy estimates.
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Framework
A theorem
Comments

2. Statements

Framework
For X ,Y ∈ R2n we set

ΠH(X ,Y ) = e−
π
2
|X−Y |2e−iπ[X ,Y ]

where [X ,Y ] is the symplectic form (if X = (x, ξ), Y = (y, η), [X , Y ] = ξ · y − η · x).

The operator ΠH with kernel ΠH(X ,Y ) is the orthogonal
projection in L2(R2n) on a proper closed subspace H, canonically
isomorphic to L2(Rn). In fact, one may define
W : L2(Rn) −→ L2(R2n) by the formula

(Wu)(y , η) = 〈u, ϕy ,η〉L2(Rn), ϕy ,η(x) = 2n/4e−π(x−y)2e2iπ(x− y
2
)η.
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Framework
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It is standard and easy to see that

W ∗W = IdL2(Rn) (reconstruction formula u(x) =

∫
R2n

Wu(Y )ϕY (x)dY ),

WW ∗ = ΠH , W is an isomorphism from L2(Rn) onto H,

H ={u ∈ L2(R2n
y ,η) such that u = f (z)e−

π
2
|z|2 , z = η + iy , f entire}

which is the isotropic LLL, up to some normalization constant.
The Toeplitz operator with symbol a(x , ξ) is

ΠHaΠH = WW ∗aWW ∗.

That operator is bounded on L2(R2n) whenever a ∈ L∞(R2n) and
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Composition result

Theorem

Let a, b be in L∞(R2n) with a′′ ∈ L∞(R2n), we have

ΠHaΠHbΠH =ΠH

(
ab − 1

4π
∇a · ∇b +

1

4iπ
{a, b}

)
ΠH + R, (1)

‖R‖B(L2(R2n)) ≤ C (n)‖a′′‖L∞‖b‖L∞ . (2)

The product ∇a · ∇b as well as the Poisson bracket {a, b} above
make sense as tempered distributions since ∇a is a Lipschitz
continuous function and ∇b is the derivative of an L∞ function: in
fact, we shall use as a definition

∇a · ∇b = ∇ · ( b︸︷︷︸
L∞

∇a︸︷︷︸
Lip.

)− b︸︷︷︸
L∞

∆a︸︷︷︸
L∞

.
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Comments

ΠHaΠhbΠH = ΠH

( symmetric in a, b︷ ︸︸ ︷
ab − 1

4π
(∇a · ∇b) +

1

4iπ

anti-symmetric in a, b︷ ︸︸ ︷
{a, b}

)
ΠH+R,

‖R‖L(L2(R2n)) ≤ C (n)‖a′′‖L∞‖b‖L∞ .

As a result, we have, modulo B(L2(R2n)),

[
ΠHaΠH ,ΠHbΠH

]
≡ 1

2iπ
ΠH {a, b}ΠH ,

ΠHaΠHbΠH + ΠHbΠHaΠH ≡ 2ab − 1

2π
ΠH∇a · ∇bΠH .
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Moreover there are some versions of theses equalities for
matrix-valued Hamiltonians a, b

[
ΠHaΠH ,ΠHbΠH

]
≡ ΠH

({a, b} − {b, a}
4iπ

+[a, b]+
∇b · ∇a−∇a · ∇b

4π

)
ΠH ,

ΠHaΠHbΠH + ΠHbΠHaΠH ≡

ΠH

(
ab + ba− 1

4π
(∇a · ∇b +∇b · ∇a) +

1

2iπ
({a, b}+ {b, a})

)
ΠH ,

where
∇a · ∇b =

∑
1≤j≤n

(
∂xj a∂xj b + ∂ξj

a∂ξj
b
)
,

{a, b} =
∑

1≤j≤n

(
∂ξj

a∂xj b − ∂xj a∂ξj
b
)
.
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1. Introduction
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A direct calculation
Classical applications
Questions

3. Proof

A direct calculation
We have

W ∗aW =

∫
R2n

a(Y )ΣY dY , (ΣY u)(x) = 〈u, ϕy ,η〉L2(Rn)ϕy ,η(x),

with ϕy ,η(x) = 2n/4e−π(x−y)2e2iπ(x− y
2
)η.

Thus

WW ∗aWW ∗WW ∗bWW ∗ = W (W ∗aWW ∗bW )W ∗,

and we shall calculate W ∗aWW ∗bW .

19
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A direct calculation
Classical applications
Questions

We see that

W ∗aWW ∗bW =

∫∫
R2n×R2n

a(Y )b(Z )ΣY ΣZdYdZ

=

∫∫ (
a(Z )+a′(Z )(Y −Z )+a2(Z ,Y )(Y −Z )2

)
b(Z )ΣY ΣZdYdZ

=

∫
(ab)(Z )ΣZdZ +

∫∫
a′(Z )(Y − Z )ΣY dYb(Z )ΣZdZ + R0,

with
R0 =

∫∫∫ 1
0 (1− θ)a′′(Z + θ(Y − Z ))(Y − Z )2b(Z )ΣY ΣZdYdZdθ.

20
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Remark. Let ω be a measurable function defined on R2n × R2n

such that
|ω(Y ,Z )| ≤ γ0

(
1 + |Y − Z |

)N0 .

Then the operator
∫∫

ω(Y ,Z )ΣY ΣZdYdZ is bounded on L2(Rn)
with B(L2(Rn)) norm bounded above by a constant depending on
γ0,N0.

This is an immediate consequence of Cotlar’s lemma and of the
estimate

‖ΣY ΣZ‖B(L2(Rn)) ≤ 2ne−
π
2
|Y−Z |2 .

Using that remark, we obtain that

‖R0‖L(L2(Rn)) ≤ C1(n)‖a′′‖L∞(R2n)‖b‖L∞(R2n).
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We check now
∫

(Y − Z )ΣY dY whose Weyl symbol is, as a
function of X ,∫

(Y −Z )2ne−2π|X−Y |2dY =

∫
(X −Z )2ne−2π|X−Y |2dY = X −Z .

So with LZ (X ) = X − Z , we
have

∫
(Y − Z )ΣY dY ΣZ = (X − Z )wΣZ = Lw

Z ΣZ and thus

Re

∫
(Y −Z )ΣY dY ΣZ = Re(Lw

Z ΣZ ) =
(
(X −Z )2ne−2π|X−Z |2)w

=
1

4π
∂Z (2ne−2π|X−Z |2)w ,

so that

Re

∫
(Y − Z )ΣY dY ΣZ =

1

4π
∂Z (ΣZ ).
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To simplify matters in this sketch, let us assume that both a and b
are real-valued and let us limit ourselves to the computation of
Re W ∗aWW ∗bW − Re R0 =

∫
(ab)(Z )ΣZdZ +

∫
a′(Z )b(Z )

1

4π
∂ZΣZdZ =

∫ (
(ab)(Z )− 1

4π
a′(Z )·b′(Z )

)
ΣZdZ−

∫
1

4π
trace a′′(Z )b(Z )ΣZdZ ,

providing the sought result.
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Classical applications
• Hypoellipticity for fractional operators such as

∂t + v · ∂x + (−∆v )α,

coming from the linearization of the Boltzmann equation.

• The composition formula was used by F. Hérau & K.
Pravda-Starov to prove some anisotropic hypoelliptic estimates
for Landau-type operators (J. Math. Pures Appl., 2011).

• Propagation of singularities for operators with rough complex
symbols with a non-negative imaginary part.
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Questions
Paving Conjecture. There exists r ∈ N, such that for any
separable Hilbert space H, for any family of rank-one orthogonal
projections (pj)j∈N with

∑
j∈N pj = Id, pjpk = δj ,kpk , for all

A ∈ B(H), with ‖A‖ = 1 such that for all j , pjApj = 0,
there exists P1, . . . ,Pr such that

max
1≤j≤r

‖PjAPj‖ ≤ 1/2, Pj =
∑
l∈Jj

pl ,
∑

1≤j≤r

Pj = Id .

The universal status of the integer r (let’s call it rKS) above is
quite scaring and it is tempting to doubt that such a universal
integer could exist.
That conjecture was shown to be equivalent to various other
conjectures, such as the Kadison-Singer conjecture, the Feichtinger
conjecture . . .
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The only known general cases supporting the conjecture are cases
where the diagonal is dominant or where the coefficients of the
matrix are all non-negative.
The general Toeplitz case (matrices (ajk) with ajk = φ(j − k)) is
not known, nor is the pseudodifferential case, say on the circle.
However when

a(x) =
∑
j∈Z

â(j)e2iπxj

is Riemann integrable, H. Halpern, V. Kaftal & G. Weiss
proved that the Toeplitz operator with matrix (â(j − k)) is
uniformly pavable, i.e. there exists N ∈ N such that

max
1≤l≤N

‖Pl(A− diag A)Pl‖ ≤
1

2
‖A− diag A‖, Pl =

∑
j≡l
mod N

pj .
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One may conjecture, following the result on Laurent operators with
Riemann integrable symbols that classical pseudodifferential
operators on the circle are uniformly pavable, as should be classical
pseudodifferential operators on Rn, or on an open subset of Rn.
A pseudodifferential operator on the circle with symbol a(x , k)
(x ∈ T1, k ∈ Z) is

(Au)(x) =
∑
j∈Z

e2iπxj
∑
k∈Z

â(j − k, k)û(k),

so that A is identified with the matrix

mj ,k = â(j − k, k).

When a does not depend on the second variable, it is the operator
of multiplication by a, Toeplitz operator with symbol a.
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so that A is identified with the matrix
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mj ,k = â(j − k, k).

When a does not depend on the second variable, it is the operator
of multiplication by a, Toeplitz operator with symbol a.

27



1. Introduction
2. Statements

3. Proofs

A direct calculation
Classical applications
Questions

One may conjecture, following the result on Laurent operators with
Riemann integrable symbols that classical pseudodifferential
operators on the circle are uniformly pavable, as should be classical
pseudodifferential operators on Rn, or on an open subset of Rn.
A pseudodifferential operator on the circle with symbol a(x , k)
(x ∈ T1, k ∈ Z) is

(Au)(x) =
∑
j∈Z

e2iπxj
∑
k∈Z
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mj ,k = â(j − k, k).

When a does not depend on the second variable, it is the operator
of multiplication by a, Toeplitz operator with symbol a.

27



1. Introduction
2. Statements

3. Proofs

A direct calculation
Classical applications
Questions

One may conjecture, following the result on Laurent operators with
Riemann integrable symbols that classical pseudodifferential
operators on the circle are uniformly pavable, as should be classical
pseudodifferential operators on Rn, or on an open subset of Rn.
A pseudodifferential operator on the circle with symbol a(x , k)
(x ∈ T1, k ∈ Z) is

(Au)(x) =
∑
j∈Z

e2iπxj
∑
k∈Z
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The diagonal is 0 means that ∀k ∈ Z,
∫ 1
0 a(x , k)dx = 0. A

semi-classical pseudodifferential operator on the circle is given by
the matrix

mj ,k(h) = â1(j − k, hk), h ∈ (0, 1],

where the symbol a is defined on T1 × R. The diagonal of such a
matrix is given by

â1(0, hj) =

∫ 1

0
a(x , hj)dx .

Instead of assuming that the diagonal is 0, it would be natural to
assume that the diagonal is O(h) and maybe formulate some
semi-classical version of the paving conjecture.
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More information on the topic of Toeplitz operators and their
calculus (Wick calculus) is included in Section 2.4 of my book,

Metrics on the Phase Space and
Non-Selfadjoint Pseudodifferential Operators,

published by Birkhäuser in 2010.

Thank you for your attention
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