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1. Examples of nonselfadjoint equations

Uncertainty relations

With Dx = 1
2iπ

d
dx (self-adjoint), ix(skew-adjoint), we have

2 Re〈Dxu, ixu〉 = 〈Dxu, ixu〉+ 〈ixu,Dxu〉 = 〈(−ixDx + Dx ix)u, u〉

2 Re〈Dxu, ixu〉 = 〈[Dx , ix ]u, u〉 =
1

2π
‖u‖2

=⇒ 1

4π
‖u‖2 ≤ ‖Dxu‖‖xu‖

and 1
4π is the largest constant (check the equality with e−πx

2/2).
As a result,

‖ h

2iπ

du

dx
‖‖xu‖ ≥ h

4π
‖u‖2

i .e. ∆ξj∆xj ≥ ~/2,

the uncertainty relations. 444444

2



1. Examples of nonselfadjoint equations
2. Pseudodifferential techniques

3. A kinetic equation

Uncertainty relations
Harmonic oscillator, Coulomb potential, Hardy’s inequality
Kolmogorov equation, Fokker-Planck equations

1. Examples of nonselfadjoint equations

Uncertainty relations

With Dx = 1
2iπ

d
dx (self-adjoint), ix(skew-adjoint), we have

2 Re〈Dxu, ixu〉 = 〈Dxu, ixu〉+ 〈ixu,Dxu〉 = 〈(−ixDx + Dx ix)u, u〉

2 Re〈Dxu, ixu〉 = 〈[Dx , ix ]u, u〉 =
1

2π
‖u‖2

=⇒ 1

4π
‖u‖2 ≤ ‖Dxu‖‖xu‖

and 1
4π is the largest constant (check the equality with e−πx

2/2).
As a result,

‖ h

2iπ

du

dx
‖‖xu‖ ≥ h

4π
‖u‖2

i .e. ∆ξj∆xj ≥ ~/2,

the uncertainty relations. 444444

3



1. Examples of nonselfadjoint equations
2. Pseudodifferential techniques

3. A kinetic equation

Uncertainty relations
Harmonic oscillator, Coulomb potential, Hardy’s inequality
Kolmogorov equation, Fokker-Planck equations

1. Examples of nonselfadjoint equations

Uncertainty relations

With Dx = 1
2iπ

d
dx (self-adjoint), ix(skew-adjoint), we have

2 Re〈Dxu, ixu〉 = 〈Dxu, ixu〉+ 〈ixu,Dxu〉 = 〈(−ixDx + Dx ix)u, u〉

2 Re〈Dxu, ixu〉 = 〈[Dx , ix ]u, u〉 =
1

2π
‖u‖2

=⇒ 1

4π
‖u‖2 ≤ ‖Dxu‖‖xu‖

and 1
4π is the largest constant (check the equality with e−πx

2/2).
As a result,

‖ h

2iπ

du

dx
‖‖xu‖ ≥ h

4π
‖u‖2

i .e. ∆ξj∆xj ≥ ~/2,

the uncertainty relations. 444444

4



1. Examples of nonselfadjoint equations
2. Pseudodifferential techniques

3. A kinetic equation

Uncertainty relations
Harmonic oscillator, Coulomb potential, Hardy’s inequality
Kolmogorov equation, Fokker-Planck equations

1. Examples of nonselfadjoint equations

Uncertainty relations

With Dx = 1
2iπ

d
dx (self-adjoint), ix(skew-adjoint), we have

2 Re〈Dxu, ixu〉 = 〈Dxu, ixu〉+ 〈ixu,Dxu〉 = 〈(−ixDx + Dx ix)u, u〉

2 Re〈Dxu, ixu〉 = 〈[Dx , ix ]u, u〉 =
1

2π
‖u‖2 =⇒ 1

4π
‖u‖2 ≤ ‖Dxu‖‖xu‖

and 1
4π is the largest constant (check the equality with e−πx

2/2).
As a result,

‖ h

2iπ

du

dx
‖‖xu‖ ≥ h

4π
‖u‖2

i .e. ∆ξj∆xj ≥ ~/2,

the uncertainty relations. 444444

5



1. Examples of nonselfadjoint equations
2. Pseudodifferential techniques

3. A kinetic equation

Uncertainty relations
Harmonic oscillator, Coulomb potential, Hardy’s inequality
Kolmogorov equation, Fokker-Planck equations

1. Examples of nonselfadjoint equations

Uncertainty relations

With Dx = 1
2iπ

d
dx (self-adjoint), ix(skew-adjoint), we have

2 Re〈Dxu, ixu〉 = 〈Dxu, ixu〉+ 〈ixu,Dxu〉 = 〈(−ixDx + Dx ix)u, u〉

2 Re〈Dxu, ixu〉 = 〈[Dx , ix ]u, u〉 =
1

2π
‖u‖2 =⇒ 1

4π
‖u‖2 ≤ ‖Dxu‖‖xu‖

and 1
4π is the largest constant (check the equality with e−πx

2/2).

As a result,

‖ h

2iπ

du

dx
‖‖xu‖ ≥ h

4π
‖u‖2

i .e. ∆ξj∆xj ≥ ~/2,

the uncertainty relations. 444444

6



1. Examples of nonselfadjoint equations
2. Pseudodifferential techniques

3. A kinetic equation

Uncertainty relations
Harmonic oscillator, Coulomb potential, Hardy’s inequality
Kolmogorov equation, Fokker-Planck equations

1. Examples of nonselfadjoint equations

Uncertainty relations

With Dx = 1
2iπ

d
dx (self-adjoint), ix(skew-adjoint), we have

2 Re〈Dxu, ixu〉 = 〈Dxu, ixu〉+ 〈ixu,Dxu〉 = 〈(−ixDx + Dx ix)u, u〉

2 Re〈Dxu, ixu〉 = 〈[Dx , ix ]u, u〉 =
1

2π
‖u‖2 =⇒ 1

4π
‖u‖2 ≤ ‖Dxu‖‖xu‖

and 1
4π is the largest constant (check the equality with e−πx

2/2).
As a result,

‖ h

2iπ

du

dx
‖‖xu‖ ≥ h

4π
‖u‖2

i .e. ∆ξj∆xj ≥ ~/2,

the uncertainty relations. 444444

7



1. Examples of nonselfadjoint equations
2. Pseudodifferential techniques

3. A kinetic equation

Uncertainty relations
Harmonic oscillator, Coulomb potential, Hardy’s inequality
Kolmogorov equation, Fokker-Planck equations

1. Examples of nonselfadjoint equations

Uncertainty relations

With Dx = 1
2iπ

d
dx (self-adjoint), ix(skew-adjoint), we have

2 Re〈Dxu, ixu〉 = 〈Dxu, ixu〉+ 〈ixu,Dxu〉 = 〈(−ixDx + Dx ix)u, u〉

2 Re〈Dxu, ixu〉 = 〈[Dx , ix ]u, u〉 =
1

2π
‖u‖2 =⇒ 1

4π
‖u‖2 ≤ ‖Dxu‖‖xu‖

and 1
4π is the largest constant (check the equality with e−πx

2/2).
As a result,

‖ h

2iπ

du

dx
‖‖xu‖ ≥ h

4π
‖u‖2 i .e. ∆ξj∆xj ≥ ~/2,

the uncertainty relations. 444444

8



1. Examples of nonselfadjoint equations
2. Pseudodifferential techniques

3. A kinetic equation

Uncertainty relations
Harmonic oscillator, Coulomb potential, Hardy’s inequality
Kolmogorov equation, Fokker-Planck equations

1. Examples of nonselfadjoint equations

Uncertainty relations

With Dx = 1
2iπ

d
dx (self-adjoint), ix(skew-adjoint), we have

2 Re〈Dxu, ixu〉 = 〈Dxu, ixu〉+ 〈ixu,Dxu〉 = 〈(−ixDx + Dx ix)u, u〉

2 Re〈Dxu, ixu〉 = 〈[Dx , ix ]u, u〉 =
1

2π
‖u‖2 =⇒ 1

4π
‖u‖2 ≤ ‖Dxu‖‖xu‖

and 1
4π is the largest constant (check the equality with e−πx

2/2).
As a result,

‖ h

2iπ

du

dx
‖‖xu‖ ≥ h

4π
‖u‖2 i .e. ∆ξj∆xj ≥ ~/2,

the uncertainty relations.

444444

9



1. Examples of nonselfadjoint equations
2. Pseudodifferential techniques

3. A kinetic equation

Uncertainty relations
Harmonic oscillator, Coulomb potential, Hardy’s inequality
Kolmogorov equation, Fokker-Planck equations

Note also from the previous computations that, with J = J∗,
K ∗ = −K

, we have

2 Re〈Ju,Ku〉 = 〈Ju,Ku〉+ 〈Ku, Ju〉 = 〈(K ∗J + J∗K )u, u〉

that is 2 Re〈Ju,Ku〉 = 〈[J,K ]u, u〉. The uncertainty relations are
based upon the non-commutation of the operators Dx , ix which are
such that [Dx , 2iπx ] = Id.

A simple exercise (see next page): let H be a Hilbert space, J,K ∈ B(H),

then [J,K ] 6= Id. The observables of Quantum Mechanics are unbounded

operators. 88888
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Claim: Let E be a Banach space and let J,K be bounded operators

on E. Then [J,K ] 6= Id .
Reductio ad absurdum. If J,K are bounded operators with [J,K ] = Id, then

(‡) for all integers N ≥ 1, [J,KN ] = NKN−1.

This is true for N = 1, and if true for some N ≥ 1, then

[J,KN+1] = JKNK − KN+1J = [J,KN ]K + KNJK − KN+1J = [J,KN ]K + KN = (N + 1)KN
, qed.

Note that Property (‡) implies that for all N ∈ N∗,KN 6= 0: if we had KN = 0
for some N ≥ 2, then this would imply KN−1 = 0 and eventually K = 0, which
is incompatible with [J,K ] = Id. As a result, we get from (‡) that for all N ≥ 2,

N‖KN−1‖ ≤ 2‖J‖‖KN‖ ≤ 2‖J‖‖K‖‖KN−1‖ =⇒ N ≤ 2‖J‖‖K‖,

which is impossible, proving the claim.

16



1. Examples of nonselfadjoint equations
2. Pseudodifferential techniques

3. A kinetic equation

Uncertainty relations
Harmonic oscillator, Coulomb potential, Hardy’s inequality
Kolmogorov equation, Fokker-Planck equations

Harmonic oscillator 〈(D2
x +x2)u, u〉 = ‖ (Dx − ix)︸ ︷︷ ︸

annihilation
operator

u‖2+
1

2π
‖u‖2

so that D2
x + x2 = (Dx + ix)︸ ︷︷ ︸

creation
operator

(Dx − ix) + 1
2π and

∑
1≤j≤n

π(D2
xj

+ x2
j ) =

n

2
+ π

∑
1≤j≤n

CjC
∗
j

=⇒ inf π(|Dx |2 + |x |2) =
n

2

at the ground state φ0 = e−π|x |
2
2n/4 which solves

(Dj − ixj)φ0 =
1

2iπ
(∂j + 2πxj)φ0 = 0,

Cαφ0 = Cα1
1 . . .Cαn

n φ0 eigenvector with eigenvalue n
2
+ |α|, discrete spectrum

n
2
+ N for the harmonic oscillator.
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Coulomb potential, Hardy’s inequality. The study of nonselfadjoint
operators may be useful to determine lowerbounds for selfadjoint
operators:

∑
1≤j≤n

‖(Dj − iφj)u‖2 = 〈|D|2u, u〉+ 〈|φ|2u, u〉 − 1

2π
〈(div φ)u, u〉.

Thus with φ = µx/|x |, |D|2 + µ2 ≥ µ
2π

(n−1)
|x | and µ = e2m4π

h2(n−1)

h2|D|2

2m
− e2

|x |
=

h2|D|2

2m
− µh2

2π2m

(n − 1)

|x |
≥ −µ

2h2

2m
= − e4m216π2h2

h4(n − 1)22m

h2|D|2

2m
− e2

|x |
≥ − me48π2

(n − 1)2h2
> −∞ stability (and best constant).
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=
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‖(Dj − iφj)u‖2 = 〈|D|2u, u〉+ 〈|φ|2u, u〉 − 1

2π
〈(div φ)u, u〉.

Thus with φ = ν x
2π|x |2 , we get |D|2 + ν2

4π2|x |2 ≥
ν(n−2)
4π2|x |2 , i.e.

(−∆) ≥ |x |−2 ν(n − 2− ν)︸ ︷︷ ︸
largest at ν = n−2

2

and thus

(−∆) ≥
(n − 2

2

)2 1

|x |2
(Hardy’s inequality).
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Kolmogorov equation. In a 1934 Annals of Mathematics two-page
paper (written in German) “zur Theorie der Brownschen Bewegung”,
A.N. Kolmogorov proposed a model for the 1D Brownian motion
with the equation

∂u

∂t
− y

∂u

∂x
− ∂2u

∂y2
= f ,

x =position, y =speed.

X0 = ∂t − y∂x , X1 = ∂y are divergence-free real vector fields,
and

K = X0 + X ∗1 X1,

Tangent space=Lie(X0,X1) since ∂x = [X0,X1]. The operator is
micro-hypoelliptic: WFu = WFKu (C∞ wave-front-sets). The
hypoellipticity follows from a 1967 Hörmander theorem.
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K = X0 + X ∗1 X1, X0 = ∂t − y∂x , X1 = ∂y

Loss of derivatives ? A priori estimates ? Everything can be
computed explicitely using the flow of X0:


t = s

x = x1 − sx2

y = x2


∂
∂s = ∂

∂t − y ∂
∂x = X0

∂
∂x1

= ∂
∂x

∂
∂x2

= −t ∂∂x + ∂
∂y

X1 = s∂x1+∂x2

K = ∂s − (s∂x1 + ∂x2)2 = iDs︸︷︷︸
skew

+ (D2 + sD1)2︸ ︷︷ ︸
self and ≥ 0

.

It is easy to solve explicitely that ODE with parameters: Fourier
transform in the x1, x2 variables and we have to deal with

d

ds
+ (ξ2 + sξ1)2
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0

Family of parabolas s 7→ (ξ2 + sξ1)2 for ξ2
1 + ξ2

2 = 1
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For K̃ = d
ds + (ξ2 + sξ1)2, we have for ξ1 6= 0

K̃ =
d

ds
+ξ1

2(ξ2/ξ1+s)2 = i
(
Dσ−iλσ2

)
, σ = s+ξ2/ξ1, λ = ξ1

2,

and we get the standard subelliptic ‖K̃v‖ & λ1/3‖v‖ = |ξ1|2/3‖v‖.

Moreover Re〈K̃v , v〉 = ‖(ξ2 + sξ1)v‖2 so that

‖u‖+ ‖Ku‖ & ‖|D1|2/3u‖+ ‖(D2 + sD1)u‖

which is an optimal estimate.
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Fokker-Planck equations

P =

v · ∂x −∇xV · ∂v︸ ︷︷ ︸
propagation
skew-adjoint

divergence-free vector field

−∆v +
|v |2

4
− d

2︸ ︷︷ ︸
harmonic oscillator

self-adjoint ≥0
missing the x directions

With P = X0 +
∑

1≤j≤d CjC
∗
j , we expect that a suitable

assumption on the potential V (x) will ensure that the iterated
brackets of X0,C1, . . . ,Cd have some ellipticity property (here the
creation operators are the Cj = d

idvj
+ ivj/2).
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1. Examples of nonselfadjoint equations
2. Pseudodifferential techniques

3. A kinetic equation

Wick quantization
Subellipticity for pseudodifferential equations
Commutator argument

2. Pseudodifferential techniques

Wick quantization. X ,Y ∈ R2n, Π(X ,Y ) = e−
π
2
|X−Y |2e−iπ[X ,Y ],

with [X ,Y ] = [(x , ξ), (y , η)] = ξ · y − η · x .

We define

(Wu)(y , η) = 〈u, ϕy ,η〉L2(Rn), ϕy ,η(x) = 2n/4e−π|x−y |
2
e2iπ(x− y

2
)·η.

We have W : L2(Rn) −→ L2(R2n) isometric, not onto,

W ∗W = IdL2(Rn) : reconstruction formula, W isometric,

WW ∗ = Π0 : projection operator onto ranW with oper-kernel Π.
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Let a be a Hamiltonian: we can use the Weyl quantization with
the formula

(awu)(x) =

∫∫
e2iπ〈x−y ,ξ〉a(

x + y

2
, ξ)u(y)dydξ

or the Wick quantization as given by aWick = W ∗aW ,

L2(R2n)
a−−−−−−−−−−−−→

(multiplication by a)
L2(R2n)

W

x yW ∗

L2(Rn) −−−−→
aWick

L2(Rn)

If a is a semi-classical symbol, i.e. such that

|(∂αx ∂
β
ξ a)(x , ξ, h)| ≤ Cαβh

−1+ |α|+|β|
2 ,

then aWick − aw ∈ B(L2(Rn)) so the change is harmless if we
expect to prove some subelliptic estimate.
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Subellipticity for pseudodifferential equations. We consider an
evolution equation

Dt + iq(t, x , ξ)w , 0 ≤ q ∈ S1
semiclass .

We replace it by

Dt + iq(t, x , ξ)Wick = W ∗(Dt + iq
)
W ,

and we apply the isometric W to get a somehow equivalent
evolution equation

Dt + iΠ0qΠ0, Π0 = WW ∗ Toeplitz operator.

We start with the study of the ODE Dt + iq: not so difficult but
we need a
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Wick quantization
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Commutator argument

Lemma A.

Let k ≥ 1, δ > 0,C > 0, I be an interval of R,
f : I → R such that

inf
t∈I
|f (k)(t)| ≥ δ.

Then for all h > 0,∣∣∣{t ∈ I , |f (t)| ≤ Chk}
∣∣∣ ≤ hα(C/δ, k).

Proof by induction on k and we note that the conclusion can be
fulfilled for k non-integer for some f merely continuous (e.g.
fractional powers).
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Theorem A. q ∈ S1
semiclas real-valued such that

q = 0 =⇒ dx ,ξq = 0 (e.g. q ≥ 0). Then, if |∂kt q|h ≥ δ > 0

‖Dtu + iq(t, x ,Dx)u‖ & h−
1

k+1 ‖u‖
This is a subelliptic estimate and we describe here an extension of

a method used by F. Treves to handle this type of estimate.
Proof, step 1: use the reduction to Dt + iΠ0qΠ0, Π0 = WW ∗

Toeplitz operator introduced above,
Proof, step 2: use the Lemma

2

A on the Lebesgue measure to
handle the ODE Dt + iq.
Proof, step 3: since for Φ = Wu,

known from step 2︷ ︸︸ ︷
DtΦ + iqΦ = DtΦ + iqΠ0Φ = DtΦ + iΠ0qΠ0Φ + i(I −Π0)qΦ =

DtΦ + iΠ0qΠ0Φ︸ ︷︷ ︸
LΦ: under scope

with step 1

+i [q,Π0]Φ︸ ︷︷ ︸
a commutator term

we need to handle that commutator.
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Commutator argument
The unwanted term here is with Φ = Wu

‖[q,Π0]Φ‖2 ≤
∫∫
|q′x ,ξ|2|Φ|2dxdξ + C‖Φ‖2.

We can control |q′x ,ξ|2 by C |q| since q = 0 =⇒ dx ,ξq = 0: the
metric

g =
dx2 + dξ2

λ(t, x , ξ)
, λ(t, x , ξ) = 1 + |q|+ |dx ,ξq|2

is such that q ∈ S(λ, g), and λ
1+|q| ∼ 1 and the energy method

will provide for free a term 〈|q|Φ,Φ〉.
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1. Examples of nonselfadjoint equations
2. Pseudodifferential techniques

3. A kinetic equation

Presentation
Proof
Geometry of the characteristics

3. A kinetic equation

Presentation. Boltzmann equation: 0 ≤ f (t, x , v) probability
density, x ∈ Rd , v ∈ Rd , t ≥ 0,

∂t f + (v · ∇x)f︸ ︷︷ ︸
transport

= Q(f , f )(t, x , v)︸ ︷︷ ︸
Collision term with some

negativity properties

,

Q(f , f ) =

∫
R3

∫
S2

B(v − v∗, σ)
{
f (v ′∗)f (v ′)− f (v∗)f (v)

}
dσdv∗

with

v ′ =
v + v∗

2
+
|v − v∗|

2
σ, v ′∗ =

v + v∗
2
− |v − v∗|

2
σ.

Conservation of momentum: v + v∗ = v ′ + v ′∗,
Conservation of kinetic energy: |v |2 + |v∗|2 = |v ′|2 + |v ′∗|2.

The cross-section B(z , σ) depends only on |z | and cos θ = 〈 z
|z| , σ〉.
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2. Pseudodifferential techniques
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Presentation
Proof
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B(v − v∗, σ) = Φ(|v − v∗|)b(cos θ), cos θ = 〈 v − v∗
|v − v∗|

, σ〉

Φ(|v − v∗|) = |v − v∗|
γ−5
γ−1 , b(cos θ) ∼

θ → 0
κθ−2−2α, κ > 0

0 < α =
1

γ − 1
< 1, b(cos θ) is not integrable on S2.

We have

‖(−∆)α/2f ‖2 . 〈−Q(f , f ), f 〉+ ‖f ‖2

and the subelliptic properties of the Boltzmann equation are
closely related to the properties of the equation
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1. Examples of nonselfadjoint equations
2. Pseudodifferential techniques

3. A kinetic equation

Presentation
Proof
Geometry of the characteristics

studied in the Y. Morimoto – C.-J. Xu paper (J. Math. Kyoto
Univ., 2007),

Pu ≡ ∂tu + x · ∇yu + σ0(−∆x)αu = f ,

(x , y) ∈ Rn × Rn, 0 < α < 1, σ0 > 0.

To avoid the singularity at ξ = 0, we define, with χ ∈ C∞c (Rn),
χ ≡ 1 near 0, ω = 1− χ,

M(ξ) = |ξ|2αω(ξ) + |ξ|2χ(ξ)

Theorem B. ‖Pu‖+ ‖u‖ & ‖|Dx |2αu‖+ ‖|Dy |
2α

2α+1 u‖
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1. Examples of nonselfadjoint equations
2. Pseudodifferential techniques

3. A kinetic equation

Presentation
Proof
Geometry of the characteristics

P = ∂t + x · ∇y + σ0(−∆x)α

Proof. Fourier transform with respect to (x , y),

P = ∂t − iη · Dξ + σ0|ξ|2α

P = ∂t − η · ∂ξ + σ0|ξ|2α : following the flow of ∂t − η · ∂ξ,
which is divergence-free,


s = t

x1 = η

x2 = ξ + tη


t = s

η = x1

ξ = x2 − sx1

∂

∂t
=

∂

∂s
+ x1

∂

∂x2
, η · ∂

∂ξ
= x1 ·

∂

∂x2
, ∂t − η · ∂ξ = ∂s

P = ∂s + |x2 − sx1|2α
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Proof
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Family of curves s 7→ |x2 − sx1|2α for x2
1 + x2

2 = 1, α = 1/4
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1. Examples of nonselfadjoint equations
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Presentation
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P = ∂s + |x2 − sx1|2α = ∂s + |x1|2α|x2/x1 − s|2α

|x1|
2α

2α+1

∫
|u(s)|2ds = |x1|

2α
2α+1

∫
|x2−sx1|2α≥|x1|

2α
2α+1

|u(s)|2ds

+ |x1|
2α

2α+1

∫
|x2−sx1|2α≤|x1|

2α
2α+1

|u(s)|2ds

We use a fractional version of Lemma

2

A: the Lebesgue measure of

{s, |x2 − sx1|2α ≤ |x1|
2α

2α+1 } ≤ 2|x1|−
2α

2α+1 since

|x2 − sx1| ≤ |x1|
1

2α+1 =⇒ |x2/x1 − s| ≤ |x1|
1

2α+1
−1=− 2α

2α+1

|x1|
2α

2α+1 ‖u‖2

≤
∫
|x2 − sx1|2α|u(s)|2ds + |x1|

2α
2α+1 2|x1|−

2α
2α+1 sup |u(s)|2

≤ Re〈Pu, u〉+ 2 sup |u(s)|2

.
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P = ∂s + |x2 − sx1|2α, |x1|
2α

2α+1 ‖u‖2 ≤ Re〈Pu, u〉+ 2 sup |u(s)|2

2 Re〈Pu,H(T − s)u〉 ≥ |u(T )|2 =⇒ 2‖Pu‖‖u‖ ≥ sup |u(s)|2 and
thus

|x1|
2α

2α+1 ‖u‖2 ≤ 5‖Pu‖‖u‖ =⇒ |x1|
2α

2α+1 ‖u‖ . ‖Pu‖ (integrals w.r.t. s).

We get

‖|η|
2α

2α+1 u‖ . ‖(∂t − η · ∂ξ + |ξ|2α)u‖
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∫∫∫

|u|2
(
βc2

0 |η|
4α

2α+1 + |ξ|4α + 2αη · ξ
|ξ|
|ξ|2α−1︸ ︷︷ ︸

bad term

+1
)
dtdηdξ.

However, Hölder’s inequality implies

|η||ξ|2α−1 =
(
|η|

4α
2α+1

) 2α+1
4α
(
|ξ|4α

) 2α−1
4α ≤ 2α + 1

4α
|η|

4α
2α+1 +

2α− 1

4α
|ξ|4α

and for βc2
0 ≥ 2α+1

4α , we get
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2α

2α+1 u‖ . ‖(∂t − η · ∂ξ + |ξ|2α)u‖,

which is Theorem

3

B.
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Geometry of the characteristics. We consider an operator

L = X0 + Q, X ∗0 = −X0, Q ≥ 0,

so that X0 is the skew-adjoint part (e.g. a divergence-free vector
field) and Q is the self-adjoint part (e.g. a Laplacean in some of
the variables).

An obvious thing to do: calculate

Re〈Lu, u〉 = 〈Qu, u〉 ≥ ‖Eu‖2, E partially elliptic.

Of course it is not enough, even in the simplest models. The
bicharacteristic curves of iX0 = aw , a real-valued, are

γ̇(t; x , ξ) = Ha

(
γ(t; x , ξ)

)
Evaluate the Lebesgue

(
{t, q

(
γ(t, x , ξ)

)
≤ hkλ}

)
say . h, then a

subelliptic estimate with loss k/k + 1 derivatives follows:

‖Lu‖ & λ
1

k+1 ‖u‖.
The End
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