Hypoellipticity for a class of kinetic equations

July 13, 2010, University of Wuhan

1. Examples of nonselfadjoint equations

2. Pseudodifferential techniques 3. A kinetic equation **Uncertainty relations**

Harmonic oscillator, Coulomb potential, Hardy's inequality Kolmogorov equation, Fokker-Planck equations

1. Examples of nonselfadjoint equations

Uncertainty relations

Uncertainty relations Harmonic oscillator, Coulomb potential, Hardy's inequi Kolmogorov equation. Fokker-Planck equations

1. Examples of nonselfadjoint equations

Uncertainty relations

With $D_x = \frac{1}{2i\pi} \frac{d}{dx}$ (self-adjoint), ix(skew-adjoint), we have

 $2\operatorname{\mathsf{Re}}\langle D_{x}u,ixu\rangle=\langle D_{x}u,ixu\rangle+\langle ixu,D_{x}u\rangle=\langle (-ixD_{x}+D_{x}ix)u,u\rangle$

Uncertainty relations Harmonic oscillator, Coulomb potential, Hardy's inequality Kolmogorov equation, Fokker-Planck equations

1. Examples of nonselfadjoint equations

Uncertainty relations

With $D_x = \frac{1}{2i\pi} \frac{d}{dx}$ (self-adjoint), ix(skew-adjoint), we have $2 \operatorname{Re}\langle D_x u, ixu \rangle = \langle D_x u, ixu \rangle + \langle ixu, D_x u \rangle = \langle (-ixD_x + D_xix)u, u \rangle$

$$2\operatorname{\mathsf{Re}}\langle D_{\mathsf{x}}u, i\mathsf{x}u\rangle = \langle [D_{\mathsf{x}}, i\mathsf{x}]u, u\rangle = \frac{1}{2\pi} \|u\|^2$$

Uncertainty relations Harmonic oscillator, Coulomb potential, Hardy's inequa Kolmogorov equation, Fokker-Planck equations

1. Examples of nonselfadjoint equations

Uncertainty relations

With $D_x = \frac{1}{2i\pi} \frac{d}{dx}$ (self-adjoint), ix(skew-adjoint), we have $2 \operatorname{Re}\langle D_x u, ixu \rangle = \langle D_x u, ixu \rangle + \langle ixu, D_x u \rangle = \langle (-ixD_x + D_xix)u, u \rangle$

$$2\operatorname{\mathsf{Re}}\langle D_{\mathsf{x}}u, i\mathsf{x}u\rangle = \langle [D_{\mathsf{x}}, i\mathsf{x}]u, u\rangle = \frac{1}{2\pi} \|u\|^2 \Longrightarrow \frac{1}{4\pi} \|u\|^2 \le \|D_{\mathsf{x}}u\| \|\mathsf{x}u\|$$

Uncertainty relations Harmonic oscillator, Coulomb potential, Hardy's inequal Kolmogorov equation. Fokker-Planck equations

1. Examples of nonselfadjoint equations

Uncertainty relations

With $D_x = \frac{1}{2i\pi} \frac{d}{dx}$ (self-adjoint), ix(skew-adjoint), we have $2 \operatorname{Re}\langle D_x u, ixu \rangle = \langle D_x u, ixu \rangle + \langle ixu, D_x u \rangle = \langle (-ixD_x + D_x ix)u, u \rangle$

$$2\operatorname{Re}\langle D_{x}u, ixu\rangle = \langle [D_{x}, ix]u, u\rangle = \frac{1}{2\pi} ||u||^{2} \Longrightarrow \frac{1}{4\pi} ||u||^{2} \leq ||D_{x}u|| ||xu||$$

and $\frac{1}{4\pi}$ is the largest constant (check the equality with $e^{-\pi x^{2}/2}$).

Uncertainty relations Harmonic oscillator, Coulomb potential, Hardy's inequality Kolmogorov equation, Fokker-Planck equations

(ロ) (同) (E) (E) (E)

1. Examples of nonselfadjoint equations

Uncertainty relations

With $D_x = \frac{1}{2i\pi} \frac{d}{dx}$ (self-adjoint), ix(skew-adjoint), we have $2 \operatorname{Re}\langle D_x u, ixu \rangle = \langle D_x u, ixu \rangle + \langle ixu, D_x u \rangle = \langle (-ixD_x + D_xix)u, u \rangle$

$$2 \operatorname{Re} \langle D_x u, i x u \rangle = \langle [D_x, i x] u, u \rangle = \frac{1}{2\pi} ||u||^2 \Longrightarrow \frac{1}{4\pi} ||u||^2 \le ||D_x u|| ||xu||$$

and $\frac{1}{4\pi}$ is the largest constant (check the equality with $e^{-\pi x^2/2}$).
As a result,

 $\|\frac{h}{2i\pi}\frac{du}{dx}\|\|xu\| \ge \frac{h}{4\pi}\|u\|^2$

Uncertainty relations Harmonic oscillator, Coulomb potential, Hardy's inequality Kolmogorov equation, Fokker-Planck equations

1. Examples of nonselfadjoint equations

Uncertainty relations

With
$$D_x = \frac{1}{2i\pi} \frac{d}{dx}$$
 (self-adjoint), ix (skew-adjoint), we have
 $2 \operatorname{Re}\langle D_x u, ixu \rangle = \langle D_x u, ixu \rangle + \langle ixu, D_x u \rangle = \langle (-ixD_x + D_xix)u, u \rangle$

$$2 \operatorname{Re}\langle D_{x}u, ixu \rangle = \langle [D_{x}, ix]u, u \rangle = \frac{1}{2\pi} ||u||^{2} \Longrightarrow \frac{1}{4\pi} ||u||^{2} \leq ||D_{x}u|| ||xu||$$

and $\frac{1}{4\pi}$ is the largest constant (check the equality with $e^{-\pi x^{2}/2}$).
As a result,

$$\|\frac{h}{2i\pi}\frac{du}{dx}\|\|xu\|\geq \frac{h}{4\pi}\|u\|^2 \quad i.e. \quad \Delta\xi_j\Delta x_j\geq \hbar/2,$$

Uncertainty relations Harmonic oscillator, Coulomb potential, Hardy's inequality Kolmogorov equation, Fokker-Planck equations

(ロ) (同) (E) (E) (E)

1. Examples of nonselfadjoint equations

Uncertainty relations

With $D_x = \frac{1}{2i\pi} \frac{d}{dx}$ (self-adjoint), ix(skew-adjoint), we have $2 \operatorname{Re}\langle D_x u, ixu \rangle = \langle D_x u, ixu \rangle + \langle ixu, D_x u \rangle = \langle (-ixD_x + D_xix)u, u \rangle$

$$2 \operatorname{Re}\langle D_{x}u, ixu \rangle = \langle [D_{x}, ix]u, u \rangle = \frac{1}{2\pi} ||u||^{2} \Longrightarrow \frac{1}{4\pi} ||u||^{2} \leq ||D_{x}u|| ||xu||$$

and $\frac{1}{4\pi}$ is the largest constant (check the equality with $e^{-\pi x^{2}/2}$).
As a result,

$$\|\frac{h}{2i\pi}\frac{du}{dx}\|\|xu\| \geq \frac{h}{4\pi}\|u\|^2 \quad i.e. \quad \Delta\xi_j \Delta x_j \geq \hbar/2,$$

the uncertainty relations.

Note also from the previous computations that, with $J=J^{*}$, $K^{*}=-K$

Note also from the previous computations that, with $J=J^{*}$, $K^{*}=-K$, we have

Note also from the previous computations that, with $J = J^*$, $K^* = -K$, we have

 $2\operatorname{\mathsf{Re}}\langle Ju, Ku\rangle = \langle Ju, Ku\rangle + \langle Ku, Ju\rangle = \langle (K^*J + J^*K)u, u\rangle$

Note also from the previous computations that, with $J = J^*$, $K^* = -K$, we have

 $2\operatorname{\mathsf{Re}}\langle Ju, Ku\rangle = \langle Ju, Ku\rangle + \langle Ku, Ju\rangle = \langle (K^*J + J^*K)u, u\rangle$

that is $2 \operatorname{Re}\langle Ju, Ku \rangle = \langle [J, K]u, u \rangle$.

・ロト ・回ト ・ヨト ・ヨト

Note also from the previous computations that, with $J = J^*$, $K^* = -K$, we have

$$2\operatorname{\mathsf{Re}}\langle Ju, Ku\rangle = \langle Ju, Ku\rangle + \langle Ku, Ju\rangle = \langle (K^*J + J^*K)u, u\rangle$$

that is $2 \operatorname{Re}\langle Ju, Ku \rangle = \langle [J, K]u, u \rangle$. The uncertainty relations are based upon the non-commutation of the operators D_x , *ix* which are such that $[D_x, 2i\pi x] = \operatorname{Id}$.

・ロト ・ ア・ ・ ヨト ・ ヨト

Note also from the previous computations that, with $J = J^*$, $K^* = -K$, we have

$$2\operatorname{\mathsf{Re}}\langle Ju, Ku\rangle = \langle Ju, Ku\rangle + \langle Ku, Ju\rangle = \langle (K^*J + J^*K)u, u\rangle$$

that is $2 \operatorname{Re}\langle Ju, Ku \rangle = \langle [J, K]u, u \rangle$. The uncertainty relations are based upon the non-commutation of the operators D_x , *ix* which are such that $[D_x, 2i\pi x] = \operatorname{Id}$.

A simple exercise (see next page): let \mathbb{H} be a Hilbert space, $J, K \in \mathcal{B}(\mathbb{H})$, then $[J, K] \neq Id$. The observables of Quantum Mechanics are unbounded operators.

ヘロン 人間 とくほど くほどう

1. Examples of nonselfadjoint equations	Uncertainty relations
2. Pseudodifferential techniques	Harmonic oscillator, Coulomb potential, Hardy's inequality
3. A kinetic equation	Kolmogorov equation, Fokker-Planck equations

Claim: Let $\mathbb E$ be a Banach space and let J,K be bounded operators on $\mathbb E$. Then $[J,K]\neq \mathsf{Id}$.

Reductio ad absurdum. If J, K are bounded operators with [J, K] = Id, then

(‡) for all integers
$$N \ge 1$$
, $[J, K^N] = NK^{N-1}$.

This is true for N = 1, and if true for some $N \ge 1$, then

$$[J, \mathcal{K}^{N+1}] = J\mathcal{K}^N\mathcal{K} - \mathcal{K}^{N+1}J = [J, \mathcal{K}^N]\mathcal{K} + \mathcal{K}^NJ\mathcal{K} - \mathcal{K}^{N+1}J = [J, \mathcal{K}^N]\mathcal{K} + \mathcal{K}^N = (N+1)\mathcal{K}^N, \ \textit{qed}.$$

Note that Property (‡) implies that for all $N \in \mathbb{N}^*$, $K^N \neq 0$: if we had $K^N = 0$ for some $N \geq 2$, then this would imply $K^{N-1} = 0$ and eventually K = 0, which is incompatible with [J, K] = Id. As a result, we get from (‡) that for all $N \geq 2$,

$$N\|K^{N-1}\| \leq 2\|J\|\|K^N\| \leq 2\|J\|\|K\|\|K^{N-1}\| \Longrightarrow N \leq 2\|J\|\|K\|,$$

which is impossible, proving the claim.

() < </p>

1. Examples of nonselfadjoint equations 2. Pseudodifferential techniques

3. A kinetic equation

Uncertainty relations Harmonic oscillator, Coulomb potential, Hardy's inequality Kolmogorov equation, Fokker-Planck equations

-

Harmonic oscillator

$$\langle (D_x^2 + x^2)u, u \rangle = \| \underbrace{(D_x - ix)}_{x} u \|^2 + \frac{1}{2\pi} \| u \|^2$$

annihilation operator

Uncertainty relations Harmonic oscillator, Coulomb potential, Hardy's inequality Kolmogorov equation, Fokker-Planck equations

1

Harmonic oscillator
$$\langle (D_x^2 + x^2)u, u \rangle = \| \underbrace{(D_x - ix)}_{x} u \|^2 + \frac{1}{2\pi} \| u \|^2$$

annihilation operator

so that
$$D_x^2 + x^2 = (D_x + ix)(D_x - ix) + \frac{1}{2\pi}$$

creation operator

Uncertainty relations Harmonic oscillator, Coulomb potential, Hardy's inequality Kolmogorov equation, Fokker-Planck equations

Harmonic oscillator
$$\langle (D_x^2 + x^2)u, u \rangle = \| \underbrace{(D_x - ix)}_{\text{annihilation}} u \|^2 + \frac{1}{2\pi} \|u\|^2$$

operator

so that
$$D_x^2 + x^2 = \underbrace{(D_x + ix)}_{\text{creation}} (D_x - ix) + \frac{1}{2\pi}$$
 and

operator

$$\sum_{1 \le j \le n} \pi (D_{x_j}^2 + x_j^2) = \frac{n}{2} + \pi \sum_{1 \le j \le n} C_j C_j^*$$

Uncertainty relations Harmonic oscillator, Coulomb potential, Hardy's inequality Kolmogorov equation, Fokker-Planck equations

・ロト ・回 ト ・ヨト ・ヨト

1

Harmonic oscillator
$$\langle (D_x^2 + x^2)u, u \rangle = \| \underbrace{(D_x - ix)}_{\text{annihilation operator}} u \|^2 + \frac{1}{2\pi} \| u \|^2$$

so that
$$D_x^2 + x^2 = \underbrace{(D_x + ix)}_{\text{creation}} (D_x - ix) + \frac{1}{2\pi}$$
 and

$$\sum_{1 \le j \le n} \pi (D_{x_j}^2 + x_j^2) = \frac{n}{2} + \pi \sum_{1 \le j \le n} C_j C_j^* \Longrightarrow \inf \pi (|D_x|^2 + |x|^2) = \frac{n}{2}$$

æ

Uncertainty relations Harmonic oscillator, Coulomb potential, Hardy's inequality Kolmogorov equation, Fokker-Planck equations

1

Harmonic oscillator
$$\langle (D_x^2 + x^2)u, u \rangle = \| \underbrace{(D_x - ix)}_{annihilation} u \|^2 + \frac{1}{2\pi} \| u \|^2$$

so that
$$D_x^2 + x^2 = \underbrace{(D_x + ix)}_{\text{creation}} (D_x - ix) + \frac{1}{2\pi}$$
 and

$$\sum_{1 \le j \le n} \pi (D_{x_j}^2 + x_j^2) = \frac{n}{2} + \pi \sum_{1 \le j \le n} C_j C_j^* \Longrightarrow \inf \pi (|D_x|^2 + |x|^2) = \frac{n}{2}$$

at the ground state $\phi_0=e^{-\pi|x|^2}2^{n/4}$ which solves

$$(D_j-ix_j)\phi_0=\frac{1}{2i\pi}(\partial_j+2\pi x_j)\phi_0=0,$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - わえぐ

Uncertainty relations Harmonic oscillator, Coulomb potential, Hardy's inequality Kolmogorov equation, Fokker-Planck equations

1

Harmonic oscillator
$$\langle (D_x^2 + x^2)u, u \rangle = \| \underbrace{(D_x - ix)}_{\text{annihilation}} u \|^2 + \frac{1}{2\pi} \| u \|^2$$

so that
$$D_x^2 + x^2 = \underbrace{(D_x + ix)}_{\text{creation}} (D_x - ix) + \frac{1}{2\pi}$$
 and

$$\sum_{1 \le j \le n} \pi (D_{x_j}^2 + x_j^2) = \frac{n}{2} + \pi \sum_{1 \le j \le n} C_j C_j^* \Longrightarrow \inf \pi (|D_x|^2 + |x|^2) = \frac{n}{2}$$

at the ground state $\phi_0=e^{-\pi|x|^2}2^{n/4}$ which solves

$$(D_j-ix_j)\phi_0=\frac{1}{2i\pi}(\partial_j+2\pi x_j)\phi_0=0,$$

 $C^{\alpha}\phi_0 = C_1^{\alpha_1} \dots C_n^{\alpha_n}\phi_0$ eigenvector with eigenvalue $\frac{n}{2} + |\alpha|$, discrete spectrum $\frac{n}{2} + \mathbb{N}$ for the harmonic oscillator.

Coulomb potential, Hardy's inequality. The study of nonselfadjoint operators may be useful to determine lowerbounds for selfadjoint operators:

Coulomb potential, Hardy's inequality. The study of nonselfadjoint operators may be useful to determine lowerbounds for selfadjoint operators:

$$\sum_{1\leq j\leq n} \|(D_j - i\phi_j)u\|^2 = \langle |D|^2 u, u\rangle + \langle |\phi|^2 u, u\rangle - \frac{1}{2\pi} \langle (\operatorname{div} \phi)u, u\rangle.$$

Coulomb potential, Hardy's inequality. The study of nonselfadjoint operators may be useful to determine lowerbounds for selfadjoint operators:

$$\sum_{1\leq j\leq n} \|(D_j - i\phi_j)u\|^2 = \langle |D|^2 u, u\rangle + \langle |\phi|^2 u, u\rangle - \frac{1}{2\pi} \langle (\operatorname{div} \phi)u, u\rangle.$$

Thus with
$$\phi=\mu x/|x|$$
, $|D|^2+\mu^2\geq rac{\mu}{2\pi}rac{(n-1)}{|x|}$

(ロ) (部) (E) (E)

Coulomb potential, Hardy's inequality. The study of nonselfadjoint operators may be useful to determine lowerbounds for selfadjoint operators:

$$\sum_{1\leq j\leq n} \|(D_j - i\phi_j)u\|^2 = \langle |D|^2 u, u\rangle + \langle |\phi|^2 u, u\rangle - \frac{1}{2\pi} \langle (\operatorname{div} \phi)u, u\rangle.$$

Thus with
$$\phi = \mu x/|x|$$
, $|D|^2 + \mu^2 \ge \frac{\mu}{2\pi} \frac{(n-1)}{|x|}$ and $\mu = \frac{e^2 m 4\pi}{h^2(n-1)}$
 $\frac{h^2|D|^2}{2m} - \frac{e^2}{|x|} = \frac{h^2|D|^2}{2m} - \frac{\mu h^2}{2\pi 2m} \frac{(n-1)}{|x|} \ge -\frac{\mu^2 h^2}{2m} = -\frac{e^4 m^2 16\pi^2 h^2}{h^4(n-1)^2 2m}$

(ロ) (部) (E) (E)

Coulomb potential, Hardy's inequality. The study of nonselfadjoint operators may be useful to determine lowerbounds for selfadjoint operators:

$$\sum_{1\leq j\leq n} \|(D_j-i\phi_j)u\|^2 = \langle |D|^2u, u\rangle + \langle |\phi|^2u, u\rangle - \frac{1}{2\pi} \langle (\operatorname{div} \phi)u, u\rangle.$$

Thus with
$$\phi = \mu x/|x|$$
, $|D|^2 + \mu^2 \ge \frac{\mu}{2\pi} \frac{(n-1)}{|x|}$ and $\mu = \frac{e^2 m 4\pi}{h^2(n-1)}$

$$\frac{h^2|D|^2}{2m} - \frac{e^2}{|x|} = \frac{h^2|D|^2}{2m} - \frac{\mu h^2}{2\pi 2m} \frac{(n-1)}{|x|} \ge -\frac{\mu^2 h^2}{2m} = -\frac{e^4 m^2 16\pi^2 h^2}{h^4 (n-1)^2 2m}$$

$$rac{h^2|D|^2}{2m}-rac{e^2}{|x|}\geq -rac{me^48\pi^2}{(n-1)^2h^2}>-\infty$$
 stability (and best constant).

We write again:

$$\sum_{1\leq j\leq n} \|(D_j - i\phi_j)u\|^2 = \langle |D|^2 u, u\rangle + \langle |\phi|^2 u, u\rangle - \frac{1}{2\pi} \langle (\operatorname{div} \phi)u, u\rangle.$$

We write again:

$$\sum_{1\leq j\leq n} \|(D_j - i\phi_j)u\|^2 = \langle |D|^2 u, u\rangle + \langle |\phi|^2 u, u\rangle - \frac{1}{2\pi} \langle (\operatorname{div} \phi)u, u\rangle.$$

Thus with $\phi = \nu \frac{x}{2\pi |x|^2}$, we get $|D|^2 + \frac{\nu^2}{4\pi^2 |x|^2} \ge \frac{\nu (n-2)}{4\pi^2 |x|^2}$, i.e.

(ロ) (部) (注) (注) (注)

We write again:

$$\sum_{1\leq j\leq n} \|(D_j - i\phi_j)u\|^2 = \langle |D|^2 u, u\rangle + \langle |\phi|^2 u, u\rangle - \frac{1}{2\pi} \langle (\operatorname{div} \phi)u, u\rangle.$$

Thus with $\phi = \nu \frac{x}{2\pi |x|^2}$, we get $|D|^2 + \frac{\nu^2}{4\pi^2 |x|^2} \ge \frac{\nu(n-2)}{4\pi^2 |x|^2}$, i.e. $(-\Delta) \ge |x|^{-2} \underbrace{\nu(n-2-\nu)}_{\text{largest at } \nu = \frac{n-2}{2}}$

・ロン ・回 と ・ ヨン ・ ヨン

We write again:

$$\sum_{1\leq j\leq n} \|(D_j-i\phi_j)u\|^2 = \langle |D|^2u, u\rangle + \langle |\phi|^2u, u\rangle - \frac{1}{2\pi} \langle (\operatorname{div} \phi)u, u\rangle.$$

Thus with
$$\phi = \nu \frac{x}{2\pi |x|^2}$$
, we get $|D|^2 + \frac{\nu^2}{4\pi^2 |x|^2} \ge \frac{\nu(n-2)}{4\pi^2 |x|^2}$, i.e.
 $(-\Delta) \ge |x|^{-2} \underbrace{\nu(n-2-\nu)}_{\text{largest at } \nu = \frac{n-2}{2}}$

and thus

$$(-\Delta) \ge (rac{n-2}{2})^2 rac{1}{|x|^2}$$
 (Hardy's inequality).

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Kolmogorov equation. In a 1934 Annals of Mathematics two-page paper (written in German) "zur Theorie der Brownschen Bewegung", A.N. Kolmogorov proposed a model for the 1D Brownian motion with the equation

Kolmogorov equation. In a 1934 Annals of Mathematics two-page paper (written in German) "zur Theorie der Brownschen Bewegung", A.N. Kolmogorov proposed a model for the 1D Brownian motion with the equation

$$\frac{\partial u}{\partial t} - y \frac{\partial u}{\partial x} - \frac{\partial^2 u}{\partial y^2} = f,$$

(ロ) (部) (E) (E)

Kolmogorov equation. In a 1934 Annals of Mathematics two-page paper (written in German) "zur Theorie der Brownschen Bewegung", A.N. Kolmogorov proposed a model for the 1D Brownian motion with the equation

$$\frac{\partial u}{\partial t} - y \frac{\partial u}{\partial x} - \frac{\partial^2 u}{\partial y^2} = f$$
, $x = \text{position}, y = \text{speed}.$

(ロ) (部) (E) (E)

Kolmogorov equation. In a 1934 Annals of Mathematics two-page paper (written in German) "zur Theorie der Brownschen Bewegung", A.N. Kolmogorov proposed a model for the 1D Brownian motion with the equation

$$\frac{\partial u}{\partial t} - y \frac{\partial u}{\partial x} - \frac{\partial^2 u}{\partial y^2} = f$$
, $x = \text{position}, y = \text{speed}.$

 $X_0 = \partial_t - y \partial_x$, $X_1 = \partial_y$ are divergence-free real vector fields,

・ロト ・ ア・ ・ ヨト ・ ヨト

Kolmogorov equation. In a 1934 Annals of Mathematics two-page paper (written in German) "zur Theorie der Brownschen Bewegung", A.N. Kolmogorov proposed a model for the 1D Brownian motion with the equation

$$\frac{\partial u}{\partial t} - y \frac{\partial u}{\partial x} - \frac{\partial^2 u}{\partial y^2} = f$$
, $x = \text{position}, y = \text{speed}.$

 $X_0 = \partial_t - y \partial_x$, $X_1 = \partial_y$ are divergence-free real vector fields, and

$$\mathcal{K}=X_0+X_1^*X_1,$$

・ロト ・ ア・ ・ ヨト ・ ヨト
Kolmogorov equation. In a 1934 Annals of Mathematics two-page paper (written in German) "zur Theorie der Brownschen Bewegung", A.N. Kolmogorov proposed a model for the 1D Brownian motion with the equation

$$\frac{\partial u}{\partial t} - y \frac{\partial u}{\partial x} - \frac{\partial^2 u}{\partial y^2} = f$$
, $x = \text{position}, y = \text{speed}.$

 $X_0 = \partial_t - y \partial_x$, $X_1 = \partial_y$ are divergence-free real vector fields, and

$$\mathcal{K} = X_0 + X_1^* X_1,$$

Tangent space=Lie(X_0, X_1) since $\partial_x = [X_0, X_1]$.

・ロト ・ ア・ ・ ヨト ・ ヨト

Kolmogorov equation. In a 1934 Annals of Mathematics two-page paper (written in German) "zur Theorie der Brownschen Bewegung", A.N. Kolmogorov proposed a model for the 1D Brownian motion with the equation

$$\frac{\partial u}{\partial t} - y \frac{\partial u}{\partial x} - \frac{\partial^2 u}{\partial y^2} = f$$
, $x = \text{position}, y = \text{speed}.$

 $X_0 = \partial_t - y \partial_x$, $X_1 = \partial_y$ are divergence-free real vector fields, and

$$\mathcal{K} = X_0 + X_1^* X_1,$$

Tangent space=Lie(X_0, X_1) since $\partial_x = [X_0, X_1]$. The operator is micro-hypoelliptic:

・ロト ・ ア・ ・ ヨト ・ ヨト

Kolmogorov equation. In a 1934 Annals of Mathematics two-page paper (written in German) "zur Theorie der Brownschen Bewegung", A.N. Kolmogorov proposed a model for the 1D Brownian motion with the equation

$$\frac{\partial u}{\partial t} - y \frac{\partial u}{\partial x} - \frac{\partial^2 u}{\partial y^2} = f$$
, $x = \text{position}, y = \text{speed}.$

 $X_0 = \partial_t - y \partial_x$, $X_1 = \partial_y$ are divergence-free real vector fields, and

$$\mathcal{K} = X_0 + X_1^* X_1,$$

Tangent space=Lie(X_0, X_1) since $\partial_x = [X_0, X_1]$. The operator is micro-hypoelliptic: $WFu = WF\mathcal{K}u$ (C^{∞} wave-front-sets).

Kolmogorov equation. In a 1934 Annals of Mathematics two-page paper (written in German) "zur Theorie der Brownschen Bewegung", A.N. Kolmogorov proposed a model for the 1D Brownian motion with the equation

$$\frac{\partial u}{\partial t} - y \frac{\partial u}{\partial x} - \frac{\partial^2 u}{\partial y^2} = f$$
, $x = \text{position}, y = \text{speed}.$

 $X_0 = \partial_t - y \partial_x$, $X_1 = \partial_y$ are divergence-free real vector fields, and

$$\mathcal{K} = X_0 + X_1^* X_1,$$

Tangent space=Lie (X_0, X_1) since $\partial_x = [X_0, X_1]$. The operator is micro-hypoelliptic: $WFu = WF\mathcal{K}u$ (C^{∞} wave-front-sets). The hypoellipticity follows from a 1967 Hörmander theorem.

・ロト ・回ト ・ヨト ・ヨト

 $\mathcal{K} = X_0 + X_1^* X_1, \quad X_0 = \partial_t - y \partial_x, \quad X_1 = \partial_y$

Loss of derivatives ? A priori estimates ? Everything can be computed explicitely using the flow of X_0 :

$$\mathcal{K} = X_0 + X_1^* X_1, \quad X_0 = \partial_t - y \partial_x, \quad X_1 = \partial_y$$

Loss of derivatives ? A priori estimates ? Everything can be computed explicitely using the flow of X_0 :

$$\begin{cases} t &= s \\ x &= x_1 - sx_2 \\ y &= x_2 \end{cases} \qquad \begin{cases} \frac{\partial}{\partial s} &= \frac{\partial}{\partial t} - y \frac{\partial}{\partial x} = X_0 \\ \frac{\partial}{\partial x_1} &= \frac{\partial}{\partial x} \\ \frac{\partial}{\partial x_2} &= -t \frac{\partial}{\partial x} + \frac{\partial}{\partial y} \end{cases} \qquad \qquad X_1 = s \partial_{x_1} + \partial_{x_2}$$

$$\mathcal{K} = X_0 + X_1^* X_1, \quad X_0 = \partial_t - y \partial_x, \quad X_1 = \partial_y$$

Loss of derivatives ? A priori estimates ? Everything can be computed explicitely using the flow of X_0 :

$$\begin{cases} t = s \\ x = x_1 - sx_2 \\ y = x_2 \end{cases} \begin{cases} \frac{\partial}{\partial s} = \frac{\partial}{\partial t} - y \frac{\partial}{\partial x} = X_0 \\ \frac{\partial}{\partial x_1} = \frac{\partial}{\partial x} \\ \frac{\partial}{\partial x_2} = -t \frac{\partial}{\partial x} + \frac{\partial}{\partial y} \end{cases} \qquad X_1 = s \partial_{x_1} + \partial_{x_2} \\ \mathcal{K} = \partial_s - (s \partial_{x_1} + \partial_{x_2})^2 = \underbrace{iD_s}_{skew} + \underbrace{(D_2 + sD_1)^2}_{self and \ge 0}.$$

$$\mathcal{K} = X_0 + X_1^* X_1, \quad X_0 = \partial_t - y \partial_x, \quad X_1 = \partial_y$$

Loss of derivatives ? A priori estimates ? Everything can be computed explicitely using the flow of X_0 :

$$\begin{cases} t = s \\ x = x_1 - sx_2 \\ y = x_2 \end{cases} \begin{cases} \frac{\partial}{\partial s} = \frac{\partial}{\partial t} - y \frac{\partial}{\partial x} = X_0 \\ \frac{\partial}{\partial x_1} = \frac{\partial}{\partial x} \\ \frac{\partial}{\partial x_2} = -t \frac{\partial}{\partial x} + \frac{\partial}{\partial y} \end{cases} \qquad X_1 = s \partial_{x_1} + \partial_{x_2} \\ \mathcal{K} = \partial_s - (s \partial_{x_1} + \partial_{x_2})^2 = \underbrace{iD_s}_{skew} + \underbrace{(D_2 + sD_1)^2}_{self and \ge 0}.$$

It is easy to solve explicitly that ODE with parameters: Fourier transform in the x_1, x_2 variables and we have to deal with

$$\frac{d}{ds} + (\xi_2 + s\xi_1)^2$$

1. Examples of nonselfadjoint equations

2. Pseudodifferential techniques 3. A kinetic equation Uncertainty relations Harmonic oscillator, Coulomb potential, Hardy's inequality Kolmogorov equation, Fokker-Planck equations

For
$$\widetilde{\mathcal{K}} = \frac{d}{ds} + (\xi_2 + s\xi_1)^2$$
, we have for $\xi_1 \neq 0$

For
$$\widetilde{\mathcal{K}} = \frac{d}{ds} + (\xi_2 + s\xi_1)^2$$
, we have for $\xi_1 \neq 0$

$$\widetilde{\mathcal{K}} = \frac{d}{ds} + \xi_1^2 (\xi_2/\xi_1 + s)^2 = i (D_\sigma - i\lambda\sigma^2), \qquad \sigma = s + \xi_2/\xi_1, \lambda = \xi_1^2,$$

For
$$\widetilde{\mathcal{K}} = \frac{d}{ds} + (\xi_2 + s\xi_1)^2$$
, we have for $\xi_1 \neq 0$

$$\widetilde{\mathcal{K}} = \frac{d}{ds} + \xi_1^2 (\xi_2/\xi_1 + s)^2 = i (D_\sigma - i\lambda\sigma^2), \qquad \sigma = s + \xi_2/\xi_1, \lambda = \xi_1^2,$$

and we get the standard subelliptic $\|\widetilde{\mathcal{K}}v\| \gtrsim \lambda^{1/3} \|v\| = |\xi_1|^{2/3} \|v\|$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

For
$$\widetilde{\mathcal{K}} = rac{d}{ds} + (\xi_2 + s\xi_1)^2$$
, we have for $\xi_1
eq 0$

$$\widetilde{\mathcal{K}} = \frac{d}{ds} + \xi_1^2 (\xi_2/\xi_1 + s)^2 = i (D_\sigma - i\lambda\sigma^2), \qquad \sigma = s + \xi_2/\xi_1, \lambda = \xi_1^2,$$

and we get the standard subelliptic $\|\widetilde{\mathcal{K}}v\| \gtrsim \lambda^{1/3} \|v\| = |\xi_1|^{2/3} \|v\|$. Moreover $\operatorname{Re}\langle \widetilde{\mathcal{K}}v, v \rangle = \|(\xi_2 + s\xi_1)v\|^2$ so that

イロン イヨン イヨン

For
$$\widetilde{\mathcal{K}} = rac{d}{ds} + (\xi_2 + s\xi_1)^2$$
, we have for $\xi_1
eq 0$

$$\widetilde{\mathcal{K}} = \frac{d}{ds} + \xi_1^2 (\xi_2/\xi_1 + s)^2 = i (D_\sigma - i\lambda\sigma^2), \qquad \sigma = s + \xi_2/\xi_1, \lambda = \xi_1^2,$$

and we get the standard subelliptic $\|\widetilde{\mathcal{K}}v\| \gtrsim \lambda^{1/3} \|v\| = |\xi_1|^{2/3} \|v\|$. Moreover $\operatorname{Re}\langle \widetilde{\mathcal{K}}v, v \rangle = \|(\xi_2 + s\xi_1)v\|^2$ so that

$$||u|| + ||\mathcal{K}u|| \gtrsim ||D_1|^{2/3}u|| + ||(D_2 + sD_1)u||$$

イロン イヨン イヨン

For
$$\widetilde{\mathcal{K}} = rac{d}{ds} + (\xi_2 + s\xi_1)^2$$
, we have for $\xi_1
eq 0$

$$\widetilde{\mathcal{K}} = \frac{d}{ds} + \xi_1^2 (\xi_2/\xi_1 + s)^2 = i (D_\sigma - i\lambda\sigma^2), \qquad \sigma = s + \xi_2/\xi_1, \lambda = \xi_1^2,$$

and we get the standard subelliptic $\|\widetilde{\mathcal{K}}v\| \gtrsim \lambda^{1/3} \|v\| = |\xi_1|^{2/3} \|v\|$. Moreover $\operatorname{Re}\langle \widetilde{\mathcal{K}}v, v \rangle = \|(\xi_2 + s\xi_1)v\|^2$ so that

$$||u|| + ||\mathcal{K}u|| \gtrsim |||D_1|^{2/3}u|| + ||(D_2 + sD_1)u||$$

which is an optimal estimate.

・ロト ・ ア・ ・ ヨト ・ ヨト

Fokker-Planck equations

 $\mathcal{P} =$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - つへで

Fokker-Planck equations

$$\mathcal{P} = \underbrace{\mathbf{v} \cdot \partial_{\mathbf{x}} - \nabla_{\mathbf{x}} \mathbf{V} \cdot \partial_{\mathbf{v}}}_{\mathbf{x}}$$

propagation skew-adjoint divergence-free vector field

Fokker-Planck equations

$$\mathcal{P} = \underbrace{\mathbf{v} \cdot \partial_{\mathbf{x}} - \nabla_{\mathbf{x}} \mathbf{V} \cdot \partial_{\mathbf{v}}}_{\mathbf{v}}$$

propagation skew-adjoint divergence-free vector field

 $\begin{array}{l} \mbox{harmonic oscillator} \\ \mbox{self-adjoint} \geq 0 \\ \mbox{missing the } x \mbox{ directions} \end{array}$

Fokker-Planck equations

$$\mathcal{P} = \underbrace{\mathbf{v} \cdot \partial_{\mathbf{x}} - \nabla_{\mathbf{x}} \mathbf{V} \cdot \partial_{\mathbf{v}}}_{\text{propagation}} \qquad \underbrace{-\Delta_{\mathbf{v}} + \frac{|\mathbf{v}|}{\mathbf{v}}}_{\text{propagation}}$$

skew-adjoint divergence-free vector field

missing the x directions

(ロ) (部) (E) (E)

With $\mathcal{P} = X_0 + \sum_{1 \le j \le d} C_j C_j^*$, we expect that a suitable assumption on the potential V(x)

Fokker-Planck equations

$$\mathcal{P} = \underbrace{v \cdot \partial_{x} - \nabla_{x} V \cdot \partial_{v}}_{\text{propagation}}_{\text{skew-adjoint}} \underbrace{-\Delta_{v} + \frac{|v|^{2}}{4} - \frac{d}{2}}_{\text{harmonic oscillator}}_{\text{self-adjoint } \geq 0}$$

With $\mathcal{P} = X_0 + \sum_{1 \le j \le d} C_j C_j^*$, we expect that a suitable assumption on the potential V(x) will ensure that the iterated brackets of X_0, C_1, \ldots, C_d have some ellipticity property

Fokker-Planck equations

$$\mathcal{P} = \underbrace{v \cdot \partial_{x} - \nabla_{x} V \cdot \partial_{v}}_{\text{propagation}}_{\text{skew-adjoint}} \underbrace{-\Delta_{v} + \frac{|v|^{2}}{4} - \frac{d}{2}}_{\text{harmonic oscillator}}_{\text{self-adjoint } \geq 0}$$

With $\mathcal{P} = X_0 + \sum_{1 \le j \le d} C_j C_j^*$, we expect that a suitable assumption on the potential V(x) will ensure that the iterated brackets of X_0, C_1, \ldots, C_d have some ellipticity property (here the creation operators are the $C_j = \frac{d}{idv_i} + iv_j/2$).

Wick quantization Subellipticity for pseudodifferential equations Commutator argument

2. Pseudodifferential techniques

Wick quantization. $X, Y \in \mathbb{R}^{2n}$, $\Pi(X, Y) = e^{-\frac{\pi}{2}|X-Y|^2}e^{-i\pi[X,Y]}$, with $[X, Y] = [(x, \xi), (y, \eta)] = \xi \cdot y - \eta \cdot x$.

Wick quantization Subellipticity for pseudodifferential equations Commutator argument

2. Pseudodifferential techniques

Wick quantization. $X, Y \in \mathbb{R}^{2n}$, $\Pi(X, Y) = e^{-\frac{\pi}{2}|X-Y|^2}e^{-i\pi[X,Y]}$, with $[X, Y] = [(x, \xi), (y, \eta)] = \xi \cdot y - \eta \cdot x$.

Wick quantization Subellipticity for pseudodifferential equations Commutator argument

(ロ) (部) (E) (E)

2. Pseudodifferential techniques

Wick quantization. $X, Y \in \mathbb{R}^{2n}$, $\Pi(X, Y) = e^{-\frac{\pi}{2}|X-Y|^2}e^{-i\pi[X,Y]}$, with $[X, Y] = [(x, \xi), (y, \eta)] = \xi \cdot y - \eta \cdot x$.

We define

$$(Wu)(y,\eta) = \langle u, \varphi_{y,\eta} \rangle_{L^2(\mathbb{R}^n)}, \quad \varphi_{y,\eta}(x) = 2^{n/4} e^{-\pi |x-y|^2} e^{2i\pi (x-\frac{y}{2})\cdot \eta}.$$

Wick quantization Subellipticity for pseudodifferential equations Commutator argument

2. Pseudodifferential techniques

Wick quantization. $X, Y \in \mathbb{R}^{2n}$, $\Pi(X, Y) = e^{-\frac{\pi}{2}|X-Y|^2}e^{-i\pi[X,Y]}$, with $[X, Y] = [(x, \xi), (y, \eta)] = \xi \cdot y - \eta \cdot x$.

We define

$$(Wu)(y,\eta) = \langle u, \varphi_{y,\eta} \rangle_{L^2(\mathbb{R}^n)}, \quad \varphi_{y,\eta}(x) = 2^{n/4} e^{-\pi |x-y|^2} e^{2i\pi (x-\frac{y}{2})\cdot \eta}.$$

We have $W: L^2(\mathbb{R}^n) \longrightarrow L^2(\mathbb{R}^{2n})$ isometric, not onto,

 $W^*W = Id_{L^2(\mathbb{R}^n)}$: reconstruction formula, W isometric, $WW^* = \Pi_0$: projection operator onto ranW with oper-kernel Π .

(ロ) (同) (E) (E) (E)

Let a be a Hamiltonian: we can use the Weyl quantization with the formula

$$(a^{w}u)(x) = \iint e^{2i\pi\langle x-y,\xi\rangle} a(\frac{x+y}{2},\xi)u(y)dyd\xi$$

Let *a* be a Hamiltonian: we can use the Weyl quantization with the formula

$$(a^{w}u)(x) = \iint e^{2i\pi\langle x-y,\xi\rangle} a(\frac{x+y}{2},\xi)u(y)dyd\xi$$

or the Wick quantization as given by $a^{Wick} = W^* a W$,

$$\begin{array}{c} L^{2}(\mathbb{R}^{2n}) \xrightarrow{a} L^{2}(\mathbb{R}^{2n}) \\ \hline & (\text{multiplication by } a) \end{array} \xrightarrow{} L^{2}(\mathbb{R}^{2n}) \\ w \uparrow & \downarrow w^{*} \\ L^{2}(\mathbb{R}^{n}) \xrightarrow{a^{\text{Wick}}} L^{2}(\mathbb{R}^{n}) \end{array}$$

Let *a* be a Hamiltonian: we can use the Weyl quantization with the formula

$$(a^{w}u)(x) = \iint e^{2i\pi\langle x-y,\xi\rangle} a(\frac{x+y}{2},\xi)u(y)dyd\xi$$

or the Wick quantization as given by $a^{Wick} = W^* a W$,

If a is a semi-classical symbol, i.e. such that

$$|(\partial_x^lpha \partial_\xi^eta \mathsf{a})(x,\xi,h)| \leq C_{lphaeta} h^{-1+rac{|lpha|+|eta|}{2}}.$$

Let *a* be a Hamiltonian: we can use the Weyl quantization with the formula

$$(a^{w}u)(x) = \iint e^{2i\pi\langle x-y,\xi\rangle} a(\frac{x+y}{2},\xi)u(y)dyd\xi$$

or the Wick quantization as given by $a^{Wick} = W^* a W$,

If a is a semi-classical symbol, i.e. such that

$$|(\partial_x^{lpha}\partial_{\xi}^{eta}a)(x,\xi,h)| \leq C_{lphaeta}h^{-1+rac{|lpha|+|eta|}{2}}$$

then $a^{Wick} - a^w \in \mathcal{B}(L^2(\mathbb{R}^n))$ so the change is harmless if we expect to prove some subelliptic estimate.

Subellipticity for pseudodifferential equations. We consider an evolution equation

$$D_t + iq(t,x,\xi)^w, \quad 0 \leq q \in S^1_{semiclass}.$$

Subellipticity for pseudodifferential equations. We consider an evolution equation

$$D_t + iq(t,x,\xi)^w, \quad 0 \leq q \in S^1_{semiclass}.$$

We replace it by

$$D_t + iq(t, x, \xi)^{Wick} = W^*(D_t + iq)W,$$

Subellipticity for pseudodifferential equations. We consider an evolution equation

$$D_t + iq(t,x,\xi)^w, \quad 0 \leq q \in S^1_{semiclass}.$$

We replace it by

$$D_t + iq(t, x, \xi)^{Wick} = W^*(D_t + iq)W,$$

and we apply the isometric W to get a somehow equivalent evolution equation

$$D_t + i \Pi_0 q \Pi_0$$
, $\Pi_0 = W W^*$ Toeplitz operator.

Subellipticity for pseudodifferential equations. We consider an evolution equation

$$D_t + iq(t,x,\xi)^w, \quad 0 \leq q \in S^1_{semiclass}.$$

We replace it by

$$D_t + iq(t, x, \xi)^{Wick} = W^*(D_t + iq)W,$$

and we apply the isometric W to get a somehow equivalent evolution equation

 $D_t + i \Pi_0 q \Pi_0$, $\Pi_0 = W W^*$ Toeplitz operator.

We start with the study of the ODE $D_t + iq$: not so difficult but we need a

1. Examples of nonselfadjoint equations	
2. Pseudodifferential techniques	Subellipticity for pseudodifferential equations
3. A kinetic equation	

Lemma A.

 1. Examples of nonselfadjoint equations
 Vick quantization

 2. Pseudodifferential techniques
 Subellipticity for pseudodifferential equations

 3. A kinetic equation
 Commutator argument

Lemma A. Let $k \ge 1, \delta > 0, C > 0, I$ be an interval of \mathbb{R} , $f: I \to \mathbb{R}$ such that $\inf_{t \in I} |f^{(k)}(t)| \ge \delta.$

 1. Examples of nonselfadjoint equations
 Wick quantization

 2. Pseudodifferential techniques
 Subellipticity for pseudodifferential equations

 3. A kinetic equation
 Commutator argument

Lemma A. Let $k \ge 1, \delta > 0, C > 0, I$ be an interval of \mathbb{R} , $f: I \to \mathbb{R}$ such that $\inf_{t \in I} |f^{(k)}(t)| \ge \delta.$

Then for all h > 0,

$$\left| \{t \in I, |f(t)| \leq Ch^k\} \right| \leq h\alpha(C/\delta, k).$$

3

・ロト ・回ト ・ヨト ・ヨト
Lemma A. Let $k \ge 1, \delta > 0, C > 0$, I be an interval of \mathbb{R} , $f: I \to \mathbb{R}$ such that $\inf_{t \in I} |f^{(k)}(t)| \ge \delta.$

Then for all h > 0,

$$\left| \{t \in I, |f(t)| \leq Ch^k\} \right| \leq h\alpha(C/\delta, k).$$

Proof by induction on k and we note that the conclusion can be fulfilled for k non-integer for some f merely continuous (e.g. fractional powers).

Theorem A. $q \in S^1_{semiclas}$ real-valued such that $q = 0 \Longrightarrow d_{x,\xi}q = 0$ (e.g. $q \ge 0$). Then, if $|\partial_t^k q|h \ge \delta > 0$

1. Examples of nonselfadjoint equations
 2. Pseudodifferential techniques
 3. A kinetic equation
 Commutator argument

Theorem A. $q \in S^1_{semiclas}$ real-valued such that $q = 0 \Longrightarrow d_{x,\xi}q = 0$ (e.g. $q \ge 0$). Then, if $|\partial_t^k q|h \ge \delta > 0$ $||D_t u + iq(t, x, D_x)u|| \ge h^{-\frac{1}{k+1}}||u||$

Theorem A. $q \in S^1_{semiclas}$ real-valued such that $q = 0 \Longrightarrow d_{x,\xi}q = 0$ (e.g. $q \ge 0$). Then, if $|\partial_t^k q|h \ge \delta > 0$ $||D_t u + iq(t, x, D_x)u|| \gtrsim h^{-\frac{1}{k+1}}||u||$

This is a subelliptic estimate and we describe here an extension of a method used by F. Treves to handle this type of estimate.

Theorem A. $q \in S^1_{semiclas}$ real-valued such that $q = 0 \Longrightarrow d_{x,\xi}q = 0$ (e.g. $q \ge 0$). Then, if $|\partial_t^k q|h \ge \delta > 0$ $||D_t u + iq(t, x, D_x)u|| \gtrsim h^{-\frac{1}{k+1}}||u||$

This is a subelliptic estimate and we describe here an extension of a method used by F. Treves to handle this type of estimate. *Proof, step 1:* use the reduction to $D_t + i\Pi_0 q\Pi_0$, $\Pi_0 = WW^*$ Toeplitz operator introduced above,

・ロン ・回 と ・ ヨン ・ ヨン

Theorem A. $q \in S^1_{semiclas}$ real-valued such that $q = 0 \Longrightarrow d_{x,\xi}q = 0$ (e.g. $q \ge 0$). Then, if $|\partial_t^k q|h \ge \delta > 0$ $||D_t u + iq(t, x, D_x)u|| \ge h^{-\frac{1}{k+1}}||u||$

This is a subelliptic estimate and we describe here an extension of a method used by F. Treves to handle this type of estimate. *Proof, step 1:* use the reduction to $D_t + i\Pi_0 q\Pi_0$, $\Pi_0 = WW^*$ Toeplitz operator introduced above, *Proof, step 2:* use the Lemma A on the Lebesgue measure to

handle the ODE $D_t + iq$.

・ロト ・聞ト ・ヨト ・ヨト

Theorem A. $q \in S^1_{semiclas}$ real-valued such that $q = 0 \Longrightarrow d_{x,\xi}q = 0$ (e.g. $q \ge 0$). Then, if $|\partial_t^k q|h \ge \delta > 0$ $||D_t u + iq(t, x, D_x)u|| \ge h^{-\frac{1}{k+1}}||u||$

This is a subelliptic estimate and we describe here an extension of a method used by F. Treves to handle this type of estimate. *Proof, step 1:* use the reduction to $D_t + i\Pi_0 q\Pi_0$, $\Pi_0 = WW^*$ Toeplitz operator introduced above, *Proof, step 2:* use the Lemma A on the Lebesgue measure to handle the ODE $D_t + iq$. *Proof, step 3:* since for $\Phi = Wu$,

known from step 2

$$\overbrace{D_t \Phi + iq \Phi} = D_t \Phi + iq \Pi_0 \Phi = D_t \Phi + i \Pi_0 q \Pi_0 \Phi + i (I - \Pi_0) q \Phi =$$

Theorem A. $q \in S^1_{semiclas}$ real-valued such that $q = 0 \Longrightarrow d_{x,\xi}q = 0$ (e.g. $q \ge 0$). Then, if $|\partial_t^k q|h \ge \delta > 0$ $||D_t u + iq(t, x, D_x)u|| \ge h^{-\frac{1}{k+1}}||u||$

This is a subelliptic estimate and we describe here an extension of a method used by F. Treves to handle this type of estimate. *Proof, step 1:* use the reduction to $D_t + i\Pi_0 q\Pi_0$, $\Pi_0 = WW^*$ Toeplitz operator introduced above, *Proof, step 2:* use the Lemma A on the Lebesgue measure to handle the ODE $D_t + iq$. *Proof, step 3:* since for $\Phi = Wu$,

known from step 2

$$\overrightarrow{D_t \Phi + iq \Phi} = D_t \Phi + iq \Pi_0 \Phi = D_t \Phi + i \Pi_0 q \Pi_0 \Phi + i (I - \Pi_0) q \Phi =$$

$$\underbrace{D_t \Phi + i \Pi_0 q \Pi_0 \Phi}_{\mathcal{L} \Phi: \text{ under scope}} + i \underbrace{[q, \Pi_0] \Phi}_{\text{a commutator term}}$$

Theorem A. $q \in S^1_{semiclas}$ real-valued such that $q = 0 \Longrightarrow d_{x,\xi}q = 0$ (e.g. $q \ge 0$). Then, if $|\partial_t^k q|h \ge \delta > 0$ $||D_t u + iq(t, x, D_x)u|| \ge h^{-\frac{1}{k+1}}||u||$

This is a subelliptic estimate and we describe here an extension of a method used by F. Treves to handle this type of estimate. *Proof, step 1:* use the reduction to $D_t + i\Pi_0 q\Pi_0$, $\Pi_0 = WW^*$ Toeplitz operator introduced above, *Proof, step 2:* use the Lemma A on the Lebesgue measure to handle the ODE $D_t + iq$. *Proof, step 3:* since for $\Phi = Wu$,

known from step 2

 $D_t \Phi + i \Pi_0 q \Pi_0 \Phi + i$

 $\mathcal{L}\Phi$: under scope

$$\overbrace{D_t \Phi + iq \Phi} = D_t \Phi + iq \Pi_0 \Phi = D_t \Phi + i \Pi_0 q \Pi_0 \Phi + i (I - \Pi_0) q \Phi =$$

a commutator term

we need to handle that commutator.

Commutator argument

The unwanted term here is with $\Phi = Wu$

$$\|[q, \Pi_0]\Phi\|^2 \leq \iint |q'_{x,\xi}|^2 |\Phi|^2 dx d\xi + C \|\Phi\|^2.$$

æ

・ロト ・回ト ・ヨト ・ヨト

 Wick quantization

 2. Pseudodifferential techniques
 3. A kinetic equation

 3. A kinetic equation
 Commutator argument

Commutator argument

The unwanted term here is with $\Phi = Wu$

$$\|[q,\Pi_0]\Phi\|^2 \leq \iint |q'_{x,\xi}|^2 |\Phi|^2 dx d\xi + C \|\Phi\|^2.$$

We can control $|q'_{x,\xi}|^2$ by C|q| since $q = 0 \Longrightarrow d_{x,\xi}q = 0$: the metric

・ロト ・ ア・ ・ ヨト ・ ヨト

Commutator argument

The unwanted term here is with $\Phi = Wu$

$$\|[q,\Pi_0]\Phi\|^2 \leq \iint |q'_{x,\xi}|^2 |\Phi|^2 dx d\xi + C \|\Phi\|^2.$$

We can control $|q'_{x,\xi}|^2$ by C|q| since $q = 0 \Longrightarrow d_{x,\xi}q = 0$: the metric

$$g=rac{dx^2+d\xi^2}{\lambda(t,x,\xi)}, \quad \lambda(t,x,\xi)=1+|q|+|d_{x,\xi}q|^2$$

is such that $q \in S(\lambda, g)$, and $\frac{\lambda}{1+|q|} \sim 1$ and the energy method will provide for free a term $\langle |q|\Phi, \Phi \rangle$.

イロト イポト イヨト イヨト

Presentation Proof Geometry of the characteristics

3. A kinetic equation

Presentation. Boltzmann equation: $0 \le f(t, x, v)$ probability density, $x \in \mathbb{R}^d$, $v \in \mathbb{R}^d$, $t \ge 0$,

$$\underbrace{\partial_t f + (\mathbf{v} \cdot \nabla_{\mathbf{x}})f}_{t} =$$

Q(f,f)(t,x,v),

transport

Collision term with some negativity properties

Presentation Proof Geometry of the characteristics

3. A kinetic equation

Presentation. Boltzmann equation: $0 \le f(t, x, v)$ probability density, $x \in \mathbb{R}^d$, $v \in \mathbb{R}^d$, $t \ge 0$,

$$\underbrace{\partial_t f + (\mathbf{v} \cdot \nabla_{\mathbf{x}})f}_{t} =$$

$$\underbrace{Q(f,f)(t,x,v)},$$

transport

Collision term with some negativity properties

$$Q(f,f) = \int_{\mathbb{R}^3} \int_{\mathbb{S}^2} B(v-v_*,\sigma) \Big\{ f(v'_*)f(v') - f(v_*)f(v) \Big\} d\sigma dv_*$$

3. A kinetic equation

Presentation. Boltzmann equation: $0 \le f(t, x, v)$ probability density, $x \in \mathbb{R}^d$, $v \in \mathbb{R}^d$, $t \ge 0$,

$$\underbrace{\partial_t f + (v \cdot \nabla_x) f}_{t} = \underbrace{Q}_{t}$$

 $\underbrace{Q(f,f)(t,x,v)}_{\text{Collision term with some negativity properties}},$

$$Q(f,f) = \int_{\mathbb{R}^3} \int_{\mathbb{S}^2} B(v-v_*,\sigma) \Big\{ f(v'_*)f(v') - f(v_*)f(v) \Big\} d\sigma dv_*$$

with

$$v' = rac{v+v_*}{2} + rac{|v-v_*|}{2}\sigma, \quad v'_* = rac{v+v_*}{2} - rac{|v-v_*|}{2}\sigma.$$

Conservation of momentum: $v + v_* = v' + v'_*$, Conservation of kinetic energy: $|v|^2 + |v_*|^2 = |v'|^2 + |v'_*|^2$.

 1. Examples of nonselfadjoint equations
 Presentation

 2. Pseudodifferential techniques
 Proof

 3. A kinetic equation
 Geometry of the characteristic

3. A kinetic equation

Presentation. Boltzmann equation: $0 \le f(t, x, v)$ probability density, $x \in \mathbb{R}^d$, $v \in \mathbb{R}^d$, $t \ge 0$,

$$\underbrace{\partial_t f + (v \cdot \nabla_x) f}_{} = \underbrace{Q(f, f)(t, x, v)}_{},$$

transport

Collision term with some negativity properties

$$Q(f,f) = \int_{\mathbb{R}^3} \int_{\mathbb{S}^2} B(v-v_*,\sigma) \Big\{ f(v'_*)f(v') - f(v_*)f(v) \Big\} d\sigma dv_*$$

with

$$v' = rac{v+v_*}{2} + rac{|v-v_*|}{2}\sigma, \quad v'_* = rac{v+v_*}{2} - rac{|v-v_*|}{2}\sigma.$$

Conservation of momentum: $v + v_* = v' + v'_*$, Conservation of kinetic energy: $|v|^2 + |v_*|^2 = |v'|^2 + |v'_*|^2$.

The cross-section $B(z, \sigma)$ depends only on |z| and $\cos \theta = \langle \frac{z}{|z|}, \sigma \rangle$.

イロン イ部ン イヨン イヨン 三日

 1. Examples of nonselfadjoint equations
 Presentation

 2. Pseudodifferential techniques
 Proof

 3. A kinetic equation
 Geometry of the characteristics

$$B(\mathbf{v}-\mathbf{v}_*,\sigma)=\Phi(|\mathbf{v}-\mathbf{v}_*|)b(\cos\theta),\quad\cos heta=\langlerac{\mathbf{v}-\mathbf{v}_*}{|\mathbf{v}-\mathbf{v}_*|},\sigma
angle$$

 1. Examples of nonselfadjoint equations
 Presentation

 2. Pseudodifferential techniques
 Proof

 3. A kinetic equation
 Geometry of the characteristics

$$B(v - v_*, \sigma) = \Phi(|v - v_*|)b(\cos \theta), \quad \cos \theta = \langle \frac{v - v_*}{|v - v_*|}, \sigma \rangle$$

$$\Phi(|
u-v_*|)=|
u-v_*|^{rac{\gamma-5}{\gamma-1}}, \quad b(\cos heta)\sim \kappa heta^{-2-2lpha}, \quad \kappa>0 \ heta
ightarrow 0$$

(日) (四) (三) (三) (三)

1. Examples of nonselfadjoint equations 2. Pseudodifferential techniques 3. A kinetic equation Geometry of the characteristics

$$B(v - v_*, \sigma) = \Phi(|v - v_*|)b(\cos \theta), \quad \cos \theta = \langle \frac{v - v_*}{|v - v_*|}, \sigma
angle$$

$$\Phi(|v-v_*|) = |v-v_*|^{rac{\gamma-5}{\gamma-1}}, \quad b(\cos heta) \sim \kappa heta^{-2-2lpha}, \quad \kappa > 0 \ heta o 0$$

 $0<lpha=rac{1}{\gamma-1}<1, \quad b(\cos heta) ext{ is not integrable on } \mathbb{S}^2.$

Э

イロン イヨン イヨン イヨン

 1. Examples of nonselfadjoint equations
 Presentation

 2. Pseudodifferential techniques
 Proof

 3. A kinetic equation
 Geometry of the characteristics

$$B(v - v_*, \sigma) = \Phi(|v - v_*|)b(\cos \theta), \quad \cos \theta = \langle \frac{v - v_*}{|v - v_*|}, \sigma
angle$$

$$\Phi(|
u-v_*|)=|
u-v_*|^{rac{\gamma-5}{\gamma-1}}, \quad b(\cos heta) \sim \kappa heta^{-2-2lpha}, \quad \kappa>0 \ heta
ightarrow 0$$

$$0 < lpha = rac{1}{\gamma-1} < 1, \quad b(\cos heta) ext{ is not integrable on } \mathbb{S}^2.$$

We have

$$\|(-\Delta)^{lpha/2}f\|^2\lesssim \langle -Q(f,f),f
angle+\|f\|^2$$

1. Examples of nonselfadjoint equations 2. Pseudodifferential techniques 3. A kinetic equation Geometry of the characteristics

$$B(v - v_*, \sigma) = \Phi(|v - v_*|)b(\cos \theta), \quad \cos \theta = \langle \frac{v - v_*}{|v - v_*|}, \sigma
angle$$

$$\Phi(|
u-v_*|)=|
u-v_*|^{rac{\gamma-5}{\gamma-1}}, \quad b(\cos heta)\sim\kappa heta^{-2-2lpha}, \quad \kappa>0 \ heta
ightarrow 0$$

$$0$$

We have

$$\|(-\Delta)^{lpha/2}f\|^2\lesssim \langle -Q(f,f),f
angle+\|f\|^2$$

and the subelliptic properties of the Boltzmann equation are closely related to the properties of the equation

イロン イヨン イヨン イヨン

1. Examples of nonselfadjoint equations	Presentation
2. Pseudodifferential techniques	
3. A kinetic equation	

studied in the Y. Morimoto – C.-J. Xu paper (J. Math. Kyoto Univ., 2007),

$$\mathcal{P}u \equiv \partial_t u + x \cdot \nabla_y u + \sigma_0 (-\Delta_x)^{\alpha} u = f,$$

(x, y) $\in \mathbb{R}^n \times \mathbb{R}^n, \quad 0 < \alpha < 1, \quad \sigma_0 > 0.$

1. Examples of nonselfadjoint equations	Presentation
2. Pseudodifferential techniques	
3. A kinetic equation	

studied in the Y. Morimoto – C.-J. Xu paper (J. Math. Kyoto Univ., 2007),

$$\mathcal{P}u \equiv \partial_t u + x \cdot \nabla_y u + \sigma_0 (-\Delta_x)^{\alpha} u = f,$$

(x,y) $\in \mathbb{R}^n \times \mathbb{R}^n, \quad 0 < \alpha < 1, \quad \sigma_0 > 0.$

To avoid the singularity at $\xi = 0$, we define, with $\chi \in C_c^{\infty}(\mathbb{R}^n)$, $\chi \equiv 1$ near 0, $\omega = 1 - \chi$,

$$M(\xi) = |\xi|^{2\alpha} \omega(\xi) + |\xi|^2 \chi(\xi)$$

1. Examples of nonselfadjoint equations	Presentation
2. Pseudodifferential techniques	Proof
3. A kinetic equation	Geometry of the characteristics

studied in the Y. Morimoto – C.-J. Xu paper (J. Math. Kyoto Univ., 2007),

$$\mathcal{P}u \equiv \partial_t u + x \cdot \nabla_y u + \sigma_0 (-\Delta_x)^{\alpha} u = f,$$

(x,y) $\in \mathbb{R}^n \times \mathbb{R}^n, \quad 0 < \alpha < 1, \quad \sigma_0 > 0.$

To avoid the singularity at $\xi = 0$, we define, with $\chi \in C_c^{\infty}(\mathbb{R}^n)$, $\chi \equiv 1$ near 0, $\omega = 1 - \chi$,

$$M(\xi) = |\xi|^{2\alpha} \omega(\xi) + |\xi|^2 \chi(\xi)$$

Theorem B. $||\mathcal{P}u|| + ||u|| \gtrsim ||D_x|^{2\alpha} u|| + ||D_y|^{\frac{2\alpha}{2\alpha+1}} u||$

96

Presentation Proof Geometry of the characteristics

$$\mathcal{P} = \partial_t + x \cdot \nabla_y + \sigma_0 (-\Delta_x)^{\alpha}$$

Proof. Fourier transform with respect to (x, y),

$$P = \partial_t - i\eta \cdot D_{\xi} + \sigma_0 |\xi|^{2\alpha}$$

 $P = \partial_t - \eta \cdot \partial_{\xi} + \sigma_0 |\xi|^{2\alpha} : \text{ following the flow of } \partial_t - \eta \cdot \partial_{\xi},$ which is divergence-free,

Presentation Proof Geometry of the characteristics

$$\mathcal{P} = \partial_t + x \cdot \nabla_y + \sigma_0 (-\Delta_x)^{\alpha}$$

Proof. Fourier transform with respect to (x, y),

$$P = \partial_t - i\eta \cdot D_{\xi} + \sigma_0 |\xi|^{2\alpha}$$

 $P = \partial_t - \eta \cdot \partial_{\xi} + \sigma_0 |\xi|^{2\alpha} : \text{ following the flow of } \partial_t - \eta \cdot \partial_{\xi},$ which is divergence-free,

$$\begin{cases} s &= t \\ x_1 &= \eta \\ x_2 &= \xi + t\eta \end{cases} \begin{cases} t &= s \\ \eta &= x_1 \\ \xi &= x_2 - sx_1 \end{cases}$$

Presentation Proof Geometry of the characteristics

$$\mathcal{P} = \partial_t + x \cdot \nabla_y + \sigma_0 (-\Delta_x)^{\alpha}$$

Proof. Fourier transform with respect to (x, y),

$$P = \partial_t - i\eta \cdot D_\xi + \sigma_0 |\xi|^{2\alpha}$$

 $P = \partial_t - \eta \cdot \partial_{\xi} + \sigma_0 |\xi|^{2\alpha} : \text{ following the flow of } \partial_t - \eta \cdot \partial_{\xi},$ which is divergence-free,

$$\begin{cases} s = t \\ x_1 = \eta \\ x_2 = \xi + t\eta \end{cases} \begin{cases} t = s \\ \eta = x_1 \\ \xi = x_2 - sx_1 \end{cases}$$
$$\frac{\partial}{\partial t} = \frac{\partial}{\partial s} + x_1 \frac{\partial}{\partial x_2}, \quad \eta \cdot \frac{\partial}{\partial \xi} = x_1 \cdot \frac{\partial}{\partial x_2}, \quad \partial_t - \eta \cdot \partial_{\xi} = \partial_s \end{cases}$$
$$P = \partial_s + |x_2 - sx_1|^{2\alpha}$$

Presentation Proof Geometry of the characteristics

$$P = \partial_s + |x_2 - sx_1|^{2\alpha} = \partial_s + |x_1|^{2\alpha} |x_2/x_1 - s|^{2\alpha}$$

$$P = \partial_s + |x_2 - sx_1|^{2\alpha} = \partial_s + |x_1|^{2\alpha} |x_2/x_1 - s|^{2\alpha}$$

$$egin{aligned} |x_1|^{rac{2lpha}{2lpha+1}} \int |u(s)|^2 ds &= |x_1|^{rac{2lpha}{2lpha+1}} \int_{|x_2-sx_1|^{2lpha}\geq |x_1|^{rac{2lpha}{2lpha+1}}} |u(s)|^2 ds \ &+ |x_1|^{rac{2lpha}{2lpha+1}} \int_{|x_2-sx_1|^{2lpha}\leq |x_1|^{rac{2lpha}{2lpha+1}}} |u(s)|^2 ds \end{aligned}$$

æ

イロト イロト イモト イモト

 1. Examples of nonselfadjoint equations
 Presentation

 2. Pseudodifferential techniques
 Proof

 3. A kinetic equation
 Geometry of the character

$$P = \partial_s + |x_2 - sx_1|^{2\alpha} = \partial_s + |x_1|^{2\alpha} |x_2/x_1 - s|^{2\alpha}$$

$$egin{aligned} |x_1|^{rac{2lpha}{2lpha+1}} \int |u(s)|^2 ds &= |x_1|^{rac{2lpha}{2lpha+1}} \int_{|x_2-sx_1|^{2lpha}\geq |x_1|^{rac{2lpha}{2lpha+1}}} |u(s)|^2 ds \ &+ |x_1|^{rac{2lpha}{2lpha+1}} \int_{|x_2-sx_1|^{2lpha}\leq |x_1|^{rac{2lpha}{2lpha+1}}} |u(s)|^2 ds \end{aligned}$$

We use a fractional version of Lemma A: the Lebesgue measure of $\{s, |x_2 - sx_1|^{2\alpha} \le |x_1|^{\frac{2\alpha}{2\alpha+1}}\} \le 2|x_1|^{-\frac{2\alpha}{2\alpha+1}}$ since $|x_2 - sx_1| \le |x_1|^{\frac{1}{2\alpha+1}} \Longrightarrow |x_2/x_1 - s| \le |x_1|^{\frac{1}{2\alpha+1}-1=-\frac{2\alpha}{2\alpha+1}}$

$$P = \partial_s + |x_2 - sx_1|^{2\alpha} = \partial_s + |x_1|^{2\alpha} |x_2/x_1 - s|^{2\alpha}$$

$$\begin{split} |x_1|^{\frac{2\alpha}{2\alpha+1}} \int |u(s)|^2 ds &= |x_1|^{\frac{2\alpha}{2\alpha+1}} \int_{|x_2 - sx_1|^{2\alpha} \ge |x_1|^{\frac{2\alpha}{2\alpha+1}}} |u(s)|^2 ds \\ &+ |x_1|^{\frac{2\alpha}{2\alpha+1}} \int_{|x_2 - sx_1|^{2\alpha} \le |x_1|^{\frac{2\alpha}{2\alpha+1}}} |u(s)|^2 ds \end{split}$$

We use a fractional version of Lemma A: the Lebesgue measure of $\{s, |x_2 - sx_1|^{2\alpha} \le |x_1|^{\frac{2\alpha}{2\alpha+1}}\} \le 2|x_1|^{-\frac{2\alpha}{2\alpha+1}}$ since $|x_2 - sx_1| < |x_1|^{\frac{1}{2\alpha+1}} \Longrightarrow |x_2/x_1 - s| < |x_1|^{\frac{1}{2\alpha+1} - 1 = -\frac{2\alpha}{2\alpha+1}}$

$$\begin{aligned} x_1|^{\frac{2\alpha}{2\alpha+1}} \|u\|^2 \\ &\leq \int |x_2 - sx_1|^{2\alpha} |u(s)|^2 ds + |x_1|^{\frac{2\alpha}{2\alpha+1}} 2|x_1|^{-\frac{2\alpha}{2\alpha+1}} \sup |u(s)|^2 \end{aligned}$$

$$P = \partial_s + |x_2 - sx_1|^{2\alpha} = \partial_s + |x_1|^{2\alpha} |x_2/x_1 - s|^{2\alpha}$$

$$\begin{split} |x_1|^{\frac{2\alpha}{2\alpha+1}} \int |u(s)|^2 ds &= |x_1|^{\frac{2\alpha}{2\alpha+1}} \int_{|x_2 - sx_1|^{2\alpha} \ge |x_1|^{\frac{2\alpha}{2\alpha+1}}} |u(s)|^2 ds \\ &+ |x_1|^{\frac{2\alpha}{2\alpha+1}} \int_{|x_2 - sx_1|^{2\alpha} \le |x_1|^{\frac{2\alpha}{2\alpha+1}}} |u(s)|^2 ds \end{split}$$

We use a fractional version of Lemma A: the Lebesgue measure of $\{s, |x_2 - sx_1|^{2\alpha} < |x_1|^{\frac{2\alpha}{2\alpha+1}}\} < 2|x_1|^{-\frac{2\alpha}{2\alpha+1}}$ since $|x_2 - sx_1| \le |x_1|^{\frac{1}{2\alpha+1}} \Longrightarrow |x_2/x_1 - s| < |x_1|^{\frac{1}{2\alpha+1} - 1 = -\frac{2\alpha}{2\alpha+1}}$

$$\begin{split} x_1|^{\frac{2\alpha}{2\alpha+1}} \|u\|^2 \\ &\leq \int |x_2 - sx_1|^{2\alpha} |u(s)|^2 ds + |x_1|^{\frac{2\alpha}{2\alpha+1}} 2|x_1|^{-\frac{2\alpha}{2\alpha+1}} \sup |u(s)|^2 \\ &\leq \operatorname{Re}\langle Pu, u \rangle + 2 \sup |u(s)|^2. \end{split}$$

1. Examples of nonselfadjoint equations	Presentation
2. Pseudodifferential techniques	Proof
3. A kinetic equation	Geometry of the characteristics

$P = \partial_s + |x_2 - sx_1|^{2\alpha}, \quad |x_1|^{\frac{2\alpha}{2\alpha+1}} ||u||^2 \le \operatorname{Re}\langle Pu, u \rangle + 2\sup |u(s)|^2$

1. Examples of nonselfadjoint equations	Presentation
2. Pseudodifferential techniques	Proof
3. A kinetic equation	Geometry of the characteristics

$$P = \partial_s + |x_2 - sx_1|^{2\alpha}, \quad |x_1|^{\frac{2\alpha}{2\alpha+1}} ||u||^2 \le \operatorname{Re}\langle Pu, u \rangle + 2\sup |u(s)|^2$$

$2\operatorname{\mathsf{Re}}\langle \mathsf{P} u, \mathsf{H}(\mathsf{T}-\mathsf{s})u\rangle \geq |u(\mathsf{T})|^2 \Longrightarrow 2\|\mathsf{P} u\|\|u\| \geq \sup |u(\mathsf{s})|^2$

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

1. Examples of nonselfadjoint equations	
2. Pseudodifferential techniques	Proof
3. A kinetic equation	

$$P = \partial_s + |x_2 - sx_1|^{2\alpha}, \quad |x_1|^{\frac{2\alpha}{2\alpha+1}} ||u||^2 \le \operatorname{Re}\langle Pu, u \rangle + 2\sup |u(s)|^2$$

 $2 \operatorname{Re}\langle Pu, H(T-s)u \rangle \ge |u(T)|^2 \Longrightarrow 2 \|Pu\| \|u\| \ge \sup |u(s)|^2$ and thus

 $|x_1|^{\frac{2\alpha}{2\alpha+1}}\|u\|^2 \leq 5\|Pu\|\|u\| \Longrightarrow |x_1|^{\frac{2\alpha}{2\alpha+1}}\|u\| \lesssim \|Pu\| \quad (\text{integrals w.r.t. } s).$

イロン イボン イヨン イヨン 三日
1. Examples of nonselfadjoint equations	
2. Pseudodifferential techniques	Proof
3. A kinetic equation	

$$P = \partial_s + |x_2 - sx_1|^{2\alpha}, \quad |x_1|^{\frac{2\alpha}{2\alpha+1}} ||u||^2 \le \operatorname{Re}\langle Pu, u \rangle + 2\sup |u(s)|^2$$

 $2 \operatorname{Re}\langle Pu, H(T-s)u \rangle \ge |u(T)|^2 \Longrightarrow 2 \|Pu\| \|u\| \ge \sup |u(s)|^2$ and thus

 $|x_1|^{\frac{2\alpha}{2\alpha+1}}\|u\|^2 \leq 5\|Pu\|\|u\| \Longrightarrow |x_1|^{\frac{2\alpha}{2\alpha+1}}\|u\| \lesssim \|Pu\| \quad (\text{integrals w.r.t. } s).$

We get

$$\||\eta|^{\frac{2\alpha}{2\alpha+1}}u\| \lesssim \|(\partial_t - \eta \cdot \partial_{\xi} + |\xi|^{2\alpha})u\|$$

イロン イ部ン イヨン イヨン 三日

1. Examples of nonselfadjoint equations 2. Pseudodifferential techniques 3. A kinetic equation Presentation Proof Geometry of the characteristics

$$c_0 \||\eta|^{\frac{2\alpha}{2\alpha+1}} u\| \le \|(\partial_t - \eta \cdot \partial_{\xi} + |\xi|^{2\alpha})u\|$$

1. Examples of nonselfadjoint equations 2. Pseudodifferential techniques 3. A kinetic equation Geometry

Presentation Proof Geometry of the characteristics

$$c_0 \||\eta|^{\frac{2\alpha}{2\alpha+1}} u\| \leq \|(\partial_t - \eta \cdot \partial_{\xi} + |\xi|^{2\alpha})u\|$$

As a result

$$(1+\beta)\|(\partial_t - \eta \cdot \partial_{\xi} + |\xi|^{2\alpha})u\|^2 + \|u\|^2$$

$$\geq \iiint |u|^2 (\beta c_0^2 |\eta|^{\frac{4\alpha}{2\alpha+1}} + |\xi|^{4\alpha} + \underbrace{2\alpha\eta \cdot \frac{\xi}{|\xi|}}_{\text{bad term}} + 1) dt d\eta d\xi.$$

111

æ

・ロン ・回と ・ヨン ・ヨン

 1. Examples of nonselfadjoint equations
 Presentation

 2. Pseudodifferential techniques
 Proof

 3. A kinetic equation
 Geometry of the chain

$$c_0 \||\eta|^{\frac{2\alpha}{2\alpha+1}} u\| \le \|(\partial_t - \eta \cdot \partial_{\xi} + |\xi|^{2\alpha})u\|$$

As a result

$$(1+\beta)\|(\partial_t - \eta \cdot \partial_{\xi} + |\xi|^{2\alpha})u\|^2 + \|u\|^2$$

$$\geq \iiint |u|^2 (\beta c_0^2 |\eta|^{\frac{4\alpha}{2\alpha+1}} + |\xi|^{4\alpha} + \underbrace{2\alpha\eta \cdot \frac{\xi}{|\xi|}}_{\text{hod turm}} + 1) dt d\eta d\xi.$$

bad term

・ロト ・回ト ・ヨト ・ヨト

However, Hölder's inequality implies

$$|\eta||\xi|^{2\alpha-1} = \left(|\eta|^{\frac{4\alpha}{2\alpha+1}}\right)^{\frac{2\alpha+1}{4\alpha}} \left(|\xi|^{4\alpha}\right)^{\frac{2\alpha-1}{4\alpha}} \le \frac{2\alpha+1}{4\alpha} |\eta|^{\frac{4\alpha}{2\alpha+1}} + \frac{2\alpha-1}{4\alpha} |\xi|^{4\alpha}$$

æ

 1. Examples of nonselfadjoint equations
 Presentation

 2. Pseudodifferential techniques
 Proof

 3. A kinetic equation
 Geometry of the characteristic

$$c_0 \||\eta|^{\frac{2\alpha}{2\alpha+1}} u\| \le \|(\partial_t - \eta \cdot \partial_{\xi} + |\xi|^{2\alpha})u\|$$

As a result

$$(1+\beta)\|(\partial_t - \eta \cdot \partial_{\xi} + |\xi|^{2\alpha})u\|^2 + \|u\|^2$$

$$\geq \iiint |u|^2 (\beta c_0^2 |\eta|^{\frac{4\alpha}{2\alpha+1}} + |\xi|^{4\alpha} + \underbrace{2\alpha\eta \cdot \frac{\xi}{|\xi|}}_{\text{bad term}} + 1) dt d\eta d\xi.$$

However, Hölder's inequality implies

$$\begin{split} |\eta||\xi|^{2\alpha-1} &= \left(|\eta|^{\frac{4\alpha}{2\alpha+1}}\right)^{\frac{2\alpha+1}{4\alpha}} \left(|\xi|^{4\alpha}\right)^{\frac{2\alpha-1}{4\alpha}} \leq \frac{2\alpha+1}{4\alpha} |\eta|^{\frac{4\alpha}{2\alpha+1}} + \frac{2\alpha-1}{4\alpha} |\xi|^{4\alpha} \\ \text{and for } \beta c_0^2 \geq \frac{2\alpha+1}{4\alpha}, \text{ we get} \\ &\||\xi|^{2\alpha} u\| + \||\eta|^{\frac{2\alpha}{2\alpha+1}} u\| \lesssim \|(\partial_t - \eta \cdot \partial_\xi + |\xi|^{2\alpha})u\|, \\ \text{which is Theorem B.} \end{split}$$

 1. Examples of nonselfadjoint equations
 Presentation

 2. Pseudodifferential techniques
 Proof

 3. A kinetic equation
 Geometry of the characteristics

Geometry of the characteristics. We consider an operator

$$\mathcal{L}=X_0+Q,\quad X_0^*=-X_0,\quad Q\geq 0,$$

so that X_0 is the skew-adjoint part (e.g. a divergence-free vector field) and Q is the self-adjoint part (e.g. a Laplacean in some of the variables).

 1. Examples of nonselfadjoint equations
 Presentation

 2. Pseudodifferential techniques
 Proof

 3. A kinetic equation
 Geometry of the characteristics

Geometry of the characteristics. We consider an operator

$$\mathcal{L}=X_0+Q,\quad X_0^*=-X_0,\quad Q\geq 0,$$

so that X_0 is the skew-adjoint part (e.g. a divergence-free vector field) and Q is the self-adjoint part (e.g. a Laplacean in some of the variables). An obvious thing to do: calculate

$$\operatorname{Re}\langle \mathcal{L}u, u \rangle = \langle Qu, u \rangle \geq \|Eu\|^2$$
, *E* partially elliptic.

Of course it is not enough, even in the simplest models.

(ロ) (部) (E) (E)

 1. Examples of nonselfadjoint equations
 Presentation

 2. Pseudodifferential techniques
 Proof

 3. A kinetic equation
 Geometry of the characteristics

Geometry of the characteristics. We consider an operator

$$\mathcal{L}=X_0+Q,\quad X_0^*=-X_0,\quad Q\geq 0,$$

so that X_0 is the skew-adjoint part (e.g. a divergence-free vector field) and Q is the self-adjoint part (e.g. a Laplacean in some of the variables). An obvious thing to do: calculate

$$\operatorname{Re}\langle \mathcal{L}u, u \rangle = \langle Qu, u \rangle \geq \|Eu\|^2$$
, *E* partially elliptic.

Of course it is not enough, even in the simplest models. The bicharacteristic curves of $iX_0 = a^w$, a real-valued, are

$$\dot{\gamma}(t; x, \xi) = H_a(\gamma(t; x, \xi))$$

Evaluate the $Lebesgue(\{t, q(\gamma(t, x, \xi)) \leq h^k \lambda\})$ say $\lesssim h$,

・ロト ・回ト ・ヨト ・ヨト

 1. Examples of nonselfadjoint equations
 Presentation

 2. Pseudodifferential techniques
 Proof

 3. A kinetic equation
 Geometry of the characteristics

Geometry of the characteristics. We consider an operator

$$\mathcal{L}=X_0+Q,\quad X_0^*=-X_0,\quad Q\geq 0,$$

so that X_0 is the skew-adjoint part (e.g. a divergence-free vector field) and Q is the self-adjoint part (e.g. a Laplacean in some of the variables). An obvious thing to do: calculate

$$\operatorname{Re}\langle \mathcal{L}u, u \rangle = \langle Qu, u \rangle \geq \|Eu\|^2$$
, *E* partially elliptic.

Of course it is not enough, even in the simplest models. The bicharacteristic curves of $iX_0 = a^w$, a real-valued, are

$$\dot{\gamma}(t; x, \xi) = H_a(\gamma(t; x, \xi))$$

Evaluate the Lebesgue $({t, q(\gamma(t, x, \xi)) \le h^k \lambda})$ say $\lesssim h$, then a subelliptic estimate with loss k/k + 1 derivatives follows:

$$\|\mathcal{L}u\|\gtrsim \lambda^{\frac{1}{k+1}}\|u\|.$$

(日) (四) (三) (三)

 1. Examples of nonselfadjoint equations
 Presentation

 2. Pseudodifferential techniques
 Proof

 3. A kinetic equation
 Geometry of the characteristics

Geometry of the characteristics. We consider an operator

$$\mathcal{L}=X_0+Q,\quad X_0^*=-X_0,\quad Q\geq 0,$$

so that X_0 is the skew-adjoint part (e.g. a divergence-free vector field) and Q is the self-adjoint part (e.g. a Laplacean in some of the variables). An obvious thing to do: calculate

$$\operatorname{Re}\langle \mathcal{L}u, u \rangle = \langle Qu, u \rangle \geq \|Eu\|^2$$
, *E* partially elliptic.

Of course it is not enough, even in the simplest models. The bicharacteristic curves of $iX_0 = a^w$, a real-valued, are

$$\dot{\gamma}(t; x, \xi) = H_a(\gamma(t; x, \xi))$$

Evaluate the Lebesgue $({t, q(\gamma(t, x, \xi)) \le h^k \lambda})$ say $\lesssim h$, then a subelliptic estimate with loss k/k + 1 derivatives follows:

$$\|\mathcal{L}u\| \gtrsim \lambda^{\frac{1}{k+1}} \|u\|.$$

The End

(ロ) (部) (E) (E)