Hypoellipticity for a class of kinetic equations

July 13, 2010, University of Wuhan

1. Examples of nonselfadjoint equations

Uncertainty relations

1. Examples of nonselfadjoint equations

Uncertainty relations

With $D_{x}=\frac{1}{2 i \pi} \frac{d}{d x}$ (self-adjoint), $\quad i x($ skew-adjoint), we have $2 \operatorname{Re}\left\langle D_{x} u, i x u\right\rangle=\left\langle D_{x} u, i x u\right\rangle+\left\langle i x u, D_{x} u\right\rangle=\left\langle\left(-i x D_{x}+D_{x} i x\right) u, u\right\rangle$

1. Examples of nonselfadjoint equations

Uncertainty relations

With $D_{x}=\frac{1}{2 i \pi} \frac{d}{d x}$ (self-adjoint), $\quad i x($ skew-adjoint), we have $2 \operatorname{Re}\left\langle D_{x} u, i x u\right\rangle=\left\langle D_{x} u, i x u\right\rangle+\left\langle i x u, D_{x} u\right\rangle=\left\langle\left(-i x D_{x}+D_{x} i x\right) u, u\right\rangle$
$2 \operatorname{Re}\left\langle D_{x} u, i x u\right\rangle=\left\langle\left[D_{\times}, i x\right] u, u\right\rangle=\frac{1}{2 \pi}\|u\|^{2}$

1. Examples of nonselfadjoint equations

Uncertainty relations

With $D_{x}=\frac{1}{2 i \pi} \frac{d}{d x}$ (self-adjoint), ix(skew-adjoint), we have $2 \operatorname{Re}\left\langle D_{x} u, i x u\right\rangle=\left\langle D_{x} u, i x u\right\rangle+\left\langle i x u, D_{x} u\right\rangle=\left\langle\left(-i x D_{x}+D_{x} i x\right) u, u\right\rangle$
$2 \operatorname{Re}\left\langle D_{x} u, i x u\right\rangle=\left\langle\left[D_{x}, i x\right] u, u\right\rangle=\frac{1}{2 \pi}\|u\|^{2} \Longrightarrow \frac{1}{4 \pi}\|u\|^{2} \leq\left\|D_{x} u\right\|\|x u\|$

1. Examples of nonselfadjoint equations

Uncertainty relations

With $D_{x}=\frac{1}{2 i \pi} \frac{d}{d x}$ (self-adjoint), $\quad i x($ skew-adjoint $)$, we have $2 \operatorname{Re}\left\langle D_{x} u, i x u\right\rangle=\left\langle D_{x} u, i x u\right\rangle+\left\langle i x u, D_{x} u\right\rangle=\left\langle\left(-i x D_{x}+D_{x} i x\right) u, u\right\rangle$
$2 \operatorname{Re}\left\langle D_{x} u, i x u\right\rangle=\left\langle\left[D_{x}, i x\right] u, u\right\rangle=\frac{1}{2 \pi}\|u\|^{2} \Longrightarrow \frac{1}{4 \pi}\|u\|^{2} \leq\left\|D_{x} u\right\|\|x u\|$ and $\frac{1}{4 \pi}$ is the largest constant (check the equality with $e^{-\pi x^{2} / 2}$).

1. Examples of nonselfadjoint equations

Uncertainty relations

With $D_{x}=\frac{1}{2 i \pi} \frac{d}{d x}$ (self-adjoint), ix(skew-adjoint), we have $2 \operatorname{Re}\left\langle D_{x} u, i x u\right\rangle=\left\langle D_{x} u, i x u\right\rangle+\left\langle i x u, D_{x} u\right\rangle=\left\langle\left(-i x D_{x}+D_{x} i x\right) u, u\right\rangle$
$2 \operatorname{Re}\left\langle D_{x} u, i x u\right\rangle=\left\langle\left[D_{x}, i x\right] u, u\right\rangle=\frac{1}{2 \pi}\|u\|^{2} \Longrightarrow \frac{1}{4 \pi}\|u\|^{2} \leq\left\|D_{x} u\right\|\|x u\|$ and $\frac{1}{4 \pi}$ is the largest constant (check the equality with $e^{-\pi x^{2} / 2}$). As a result,

$$
\left\|\frac{h}{2 i \pi} \frac{d u}{d x}\right\|\|x u\| \geq \frac{h}{4 \pi}\|u\|^{2}
$$

1. Examples of nonselfadjoint equations

Uncertainty relations

With $D_{x}=\frac{1}{2 i \pi} \frac{d}{d x}$ (self-adjoint), $\quad i x($ skew-adjoint $)$, we have $2 \operatorname{Re}\left\langle D_{x} u, i x u\right\rangle=\left\langle D_{x} u, i x u\right\rangle+\left\langle i x u, D_{x} u\right\rangle=\left\langle\left(-i x D_{x}+D_{x} i x\right) u, u\right\rangle$
$2 \operatorname{Re}\left\langle D_{x} u, i x u\right\rangle=\left\langle\left[D_{x}, i x\right] u, u\right\rangle=\frac{1}{2 \pi}\|u\|^{2} \Longrightarrow \frac{1}{4 \pi}\|u\|^{2} \leq\left\|D_{x} u\right\|\|x u\|$ and $\frac{1}{4 \pi}$ is the largest constant (check the equality with $e^{-\pi x^{2} / 2}$). As a result,

$$
\left\|\frac{h}{2 i \pi} \frac{d u}{d x}\right\|\|x u\| \geq \frac{h}{4 \pi}\|u\|^{2} \quad \text { i.e. } \quad \Delta \xi_{j} \Delta x_{j} \geq \hbar / 2
$$

1. Examples of nonselfadjoint equations

Uncertainty relations

With $D_{x}=\frac{1}{2 i \pi} \frac{d}{d x}$ (self-adjoint), ix(skew-adjoint), we have $2 \operatorname{Re}\left\langle D_{x} u, i x u\right\rangle=\left\langle D_{x} u, i x u\right\rangle+\left\langle i x u, D_{x} u\right\rangle=\left\langle\left(-i x D_{x}+D_{x} i x\right) u, u\right\rangle$
$2 \operatorname{Re}\left\langle D_{x} u, i x u\right\rangle=\left\langle\left[D_{x}, i x\right] u, u\right\rangle=\frac{1}{2 \pi}\|u\|^{2} \Longrightarrow \frac{1}{4 \pi}\|u\|^{2} \leq\left\|D_{x} u\right\|\|x u\|$ and $\frac{1}{4 \pi}$ is the largest constant (check the equality with $e^{-\pi x^{2} / 2}$). As a result,

$$
\left\|\frac{h}{2 i \pi} \frac{d u}{d x}\right\|\|x u\| \geq \frac{h}{4 \pi}\|u\|^{2} \quad \text { i.e. } \quad \Delta \xi_{j} \Delta x_{j} \geq \hbar / 2
$$

the uncertainty relations.

Note also from the previous computations that, with $J=J^{*}$, $K^{*}=-K$

Note also from the previous computations that, with $J=J^{*}$, $K^{*}=-K$, we have

Note also from the previous computations that, with $J=J^{*}$, $K^{*}=-K$, we have
$2 \operatorname{Re}\langle J u, K u\rangle=\langle J u, K u\rangle+\langle K u, J u\rangle=\left\langle\left(K^{*} J+J^{*} K\right) u, u\right\rangle$

Note also from the previous computations that, with $J=J^{*}$, $K^{*}=-K$, we have

$$
2 \operatorname{Re}\langle J u, K u\rangle=\langle J u, K u\rangle+\langle K u, J u\rangle=\left\langle\left(K^{*} J+J^{*} K\right) u, u\right\rangle
$$

that is $2 \operatorname{Re}\langle J u, K u\rangle=\langle[J, K] u, u\rangle$.

Note also from the previous computations that, with $J=J^{*}$, $K^{*}=-K$, we have

$$
2 \operatorname{Re}\langle J u, K u\rangle=\langle J u, K u\rangle+\langle K u, J u\rangle=\left\langle\left(K^{*} J+J^{*} K\right) u, u\right\rangle
$$

that is $2 \operatorname{Re}\langle J u, K u\rangle=\langle[J, K] u, u\rangle$. The uncertainty relations are based upon the non-commutation of the operators D_{x}, ix which are such that $\left[D_{x}, 2 i \pi x\right]=\mathrm{Id}$.

Note also from the previous computations that, with $J=J^{*}$, $K^{*}=-K$, we have

$$
2 \operatorname{Re}\langle J u, K u\rangle=\langle J u, K u\rangle+\langle K u, J u\rangle=\left\langle\left(K^{*} J+J^{*} K\right) u, u\right\rangle
$$

that is $2 \operatorname{Re}\langle J u, K u\rangle=\langle[J, K] u, u\rangle$. The uncertainty relations are based upon the non-commutation of the operators D_{x}, ix which are such that $\left[D_{x}, 2 i \pi x\right]=\mathrm{Id}$.

A simple exercise (see next page): let \mathbb{H} be a Hilbert space, $J, K \in \mathcal{B}(\mathbb{H})$, then $[J, K] \neq \mathrm{Id}$. The observables of Quantum Mechanics are unbounded operators.

Claim: Let \mathbb{E} be a Banach space and let J, K be bounded operators on \mathbb{E}. Then $[J, K] \neq \mathrm{Id}$.
Reductio ad absurdum. If J, K are bounded operators with $[J, K]=$ Id, then

$$
\text { for all integers } N \geq 1, \quad\left[J, K^{N}\right]=N K^{N-1}
$$

This is true for $N=1$, and if true for some $N \geq 1$, then

$$
\left[J, K^{N+1}\right]=J K^{N} K-K^{N+1} J=\left[J, K^{N}\right] K+K^{N} J K-K^{N+1} J=\left[J, K^{N}\right] K+K^{N}=(N+1) K^{N}, \text { qed. }
$$

Note that Property (\ddagger) implies that for all $N \in \mathbb{N}^{*}, K^{N} \neq 0$: if we had $K^{N}=0$ for some $N \geq 2$, then this would imply $K^{N-1}=0$ and eventually $K=0$, which is incompatible with $[J, K]=$ Id. As a result, we get from (\ddagger) that for all $N \geq 2$,

$$
N\left\|K^{N-1}\right\| \leq 2\|J\|\left\|K^{N}\right\| \leq 2\|J\|\|K\|\left\|K^{N-1}\right\| \Longrightarrow N \leq 2\|J\|\|K\|
$$

which is impossible, proving the claim.

Harmonic oscillator $\left\langle\left(D_{x}^{2}+x^{2}\right) u, u\right\rangle=\|\underbrace{\left(D_{x}-i x\right)}_{\begin{array}{c}\text { anninilation } \\ \text { operator }\end{array}} u\|^{2}+\frac{1}{2 \pi}\|u\|^{2}$

Harmonic oscillator $\left\langle\left(D_{x}^{2}+x^{2}\right) u, u\right\rangle=\|\underbrace{\left(D_{x}-i x\right)} u\|^{2}+\frac{1}{2 \pi}\|u\|^{2}$ annihilation
 operator

so that $D_{x}^{2}+x^{2}=\underbrace{\left(D_{x}+i x\right)}_{\begin{array}{c}\text { creation } \\ \text { operator }\end{array}}\left(D_{x}-i x\right)+\frac{1}{2 \pi}$

Harmonic oscillator $\quad\left\langle\left(D_{x}^{2}+x^{2}\right) u, u\right\rangle=\|\underbrace{\left(D_{x}-i x\right)}_{\begin{array}{c}\text { annihilation } \\ \text { operator }\end{array}} u\|^{2}+\frac{1}{2 \pi}\|u\|^{2}$
so that $D_{x}^{2}+x^{2}=\underbrace{\left(D_{x}+i x\right)}_{\begin{array}{c}\text { creation } \\ \text { operator }\end{array}}\left(D_{x}-i x\right)+\frac{1}{2 \pi}$ and
$\sum_{1 \leq j \leq n} \pi\left(D_{x_{j}}^{2}+x_{j}^{2}\right)=\frac{n}{2}+\pi \sum_{1 \leq j \leq n} C_{j} C_{j}^{*}$

Harmonic oscillator $\quad\left\langle\left(D_{x}^{2}+x^{2}\right) u, u\right\rangle=\|\underbrace{\left(D_{x}-i x\right)}_{\begin{array}{c}\text { annihilation } \\ \text { operator }\end{array}} u\|^{2}+\frac{1}{2 \pi}\|u\|^{2}$

so that $D_{x}^{2}+x^{2}=\underbrace{\left(D_{x}+i x\right)}_{\begin{array}{c}\text { creation } \\ \text { operator }\end{array}}\left(D_{x}-i x\right)+\frac{1}{2 \pi}$ and

$$
\sum_{1 \leq j \leq n} \pi\left(D_{x_{j}}^{2}+x_{j}^{2}\right)=\frac{n}{2}+\pi \sum_{1 \leq j \leq n} C_{j} C_{j}^{*} \Longrightarrow \inf \pi\left(\left|D_{x}\right|^{2}+|x|^{2}\right)=\frac{n}{2}
$$

Harmonic oscillator $\quad\left\langle\left(D_{x}^{2}+x^{2}\right) u, u\right\rangle=\|\underbrace{\left(D_{x}-i x\right)}_{\begin{array}{c}\text { annihilation } \\ \text { operator }\end{array}} u\|^{2}+\frac{1}{2 \pi}\|u\|^{2}$
so that $D_{x}^{2}+x^{2}=\underbrace{\left(D_{x}+i x\right)}_{\begin{array}{c}\text { creation } \\ \text { operator }\end{array}}\left(D_{x}-i x\right)+\frac{1}{2 \pi}$ and

$$
\sum_{1 \leq j \leq n} \pi\left(D_{x_{j}}^{2}+x_{j}^{2}\right)=\frac{n}{2}+\pi \sum_{1 \leq j \leq n} C_{j} C_{j}^{*} \Longrightarrow \inf \pi\left(\left|D_{x}\right|^{2}+|x|^{2}\right)=\frac{n}{2}
$$

at the ground state $\phi_{0}=e^{-\pi|x|^{2}} 2^{n / 4}$ which solves

$$
\left(D_{j}-i x_{j}\right) \phi_{0}=\frac{1}{2 i \pi}\left(\partial_{j}+2 \pi x_{j}\right) \phi_{0}=0
$$

Harmonic oscillator $\quad\left\langle\left(D_{x}^{2}+x^{2}\right) u, u\right\rangle=\|\underbrace{\left(D_{x}-i x\right)}_{\begin{array}{c}\text { annihilation } \\ \text { operator }\end{array}} u\|^{2}+\frac{1}{2 \pi}\|u\|^{2}$
so that $D_{x}^{2}+x^{2}=\underbrace{\left(D_{x}+i x\right)}_{\begin{array}{c}\text { creation } \\ \text { operator }\end{array}}\left(D_{x}-i x\right)+\frac{1}{2 \pi}$ and
$\sum_{1 \leq j \leq n} \pi\left(D_{x_{j}}^{2}+x_{j}^{2}\right)=\frac{n}{2}+\pi \sum_{1 \leq j \leq n} C_{j} C_{j}^{*} \Longrightarrow \inf \pi\left(\left|D_{x}\right|^{2}+|x|^{2}\right)=\frac{n}{2}$
at the ground state $\phi_{0}=e^{-\pi|x|^{2}} 2^{n / 4}$ which solves

$$
\left(D_{j}-i x_{j}\right) \phi_{0}=\frac{1}{2 i \pi}\left(\partial_{j}+2 \pi x_{j}\right) \phi_{0}=0
$$

$C^{\alpha} \phi_{0}=C_{1}^{\alpha_{1}} \ldots C_{n}^{\alpha_{n}} \phi_{0}$ eigenvector with eigenvalue $\frac{n}{2}+|\alpha|$, discrete spectrum $\frac{n}{2}+\mathbb{N}$ for the harmonic oscillator.

Coulomb potential, Hardy's inequality. The study of nonselfadjoint operators may be useful to determine lowerbounds for selfadjoint operators:

Coulomb potential, Hardy's inequality. The study of nonselfadjoint operators may be useful to determine lowerbounds for selfadjoint operators:

$$
\left.\left.\sum_{1 \leq j \leq n}\left\|\left(D_{j}-i \phi_{j}\right) u\right\|^{2}=\left.\langle | D\right|^{2} u, u\right\rangle+\left.\langle | \phi\right|^{2} u, u\right\rangle-\frac{1}{2 \pi}\langle(\operatorname{div} \phi) u, u\rangle .
$$

Coulomb potential, Hardy's inequality. The study of nonselfadjoint operators may be useful to determine lowerbounds for selfadjoint operators:

$$
\left.\left.\sum_{1 \leq j \leq n}\left\|\left(D_{j}-i \phi_{j}\right) u\right\|^{2}=\left.\langle | D\right|^{2} u, u\right\rangle+\left.\langle | \phi\right|^{2} u, u\right\rangle-\frac{1}{2 \pi}\langle(\operatorname{div} \phi) u, u\rangle .
$$

Thus with $\phi=\mu x /|x|,|D|^{2}+\mu^{2} \geq \frac{\mu}{2 \pi} \frac{(n-1)}{|x|}$

Coulomb potential, Hardy's inequality. The study of nonselfadjoint

 operators may be useful to determine lowerbounds for selfadjoint operators:$$
\left.\left.\sum_{1 \leq j \leq n}\left\|\left(D_{j}-i \phi_{j}\right) u\right\|^{2}=\left.\langle | D\right|^{2} u, u\right\rangle+\left.\langle | \phi\right|^{2} u, u\right\rangle-\frac{1}{2 \pi}\langle(\operatorname{div} \phi) u, u\rangle
$$

Thus with $\phi=\mu x /|x|,|D|^{2}+\mu^{2} \geq \frac{\mu}{2 \pi} \frac{(n-1)}{|x|}$ and $\mu=\frac{e^{2} m 4 \pi}{h^{2}(n-1)}$

$$
\frac{h^{2}|D|^{2}}{2 m}-\frac{e^{2}}{|x|}=\frac{h^{2}|D|^{2}}{2 m}-\frac{\mu h^{2}}{2 \pi 2 m} \frac{(n-1)}{|x|} \geq-\frac{\mu^{2} h^{2}}{2 m}=-\frac{e^{4} m^{2} 16 \pi^{2} h^{2}}{h^{4}(n-1)^{2} 2 m}
$$

Coulomb potential, Hardy's inequality. The study of nonselfadjoint operators may be useful to determine lowerbounds for selfadjoint operators:

$$
\left.\left.\sum_{1 \leq j \leq n}\left\|\left(D_{j}-i \phi_{j}\right) u\right\|^{2}=\left.\langle | D\right|^{2} u, u\right\rangle+\left.\langle | \phi\right|^{2} u, u\right\rangle-\frac{1}{2 \pi}\langle(\operatorname{div} \phi) u, u\rangle
$$

Thus with $\phi=\mu x /|x|,|D|^{2}+\mu^{2} \geq \frac{\mu}{2 \pi} \frac{(n-1)}{|x|}$ and $\mu=\frac{e^{2} m 4 \pi}{h^{2}(n-1)}$

$$
\frac{h^{2}|D|^{2}}{2 m}-\frac{e^{2}}{|x|}=\frac{h^{2}|D|^{2}}{2 m}-\frac{\mu h^{2}}{2 \pi 2 m} \frac{(n-1)}{|x|} \geq-\frac{\mu^{2} h^{2}}{2 m}=-\frac{e^{4} m^{2} 16 \pi^{2} h^{2}}{h^{4}(n-1)^{2} 2 m}
$$

$$
\frac{h^{2}|D|^{2}}{2 m}-\frac{e^{2}}{|x|} \geq-\frac{m e^{4} 8 \pi^{2}}{(n-1)^{2} h^{2}}>-\infty \quad \text { stability (and best constant). }
$$

We write again:

$$
\left.\left.\sum_{1 \leq j \leq n}\left\|\left(D_{j}-i \phi_{j}\right) u\right\|^{2}=\left.\langle | D\right|^{2} u, u\right\rangle+\left.\langle | \phi\right|^{2} u, u\right\rangle-\frac{1}{2 \pi}\langle(\operatorname{div} \phi) u, u\rangle
$$

We write again:

$$
\left.\left.\sum_{1 \leq j \leq n}\left\|\left(D_{j}-i \phi_{j}\right) u\right\|^{2}=\left.\langle | D\right|^{2} u, u\right\rangle+\left.\langle | \phi\right|^{2} u, u\right\rangle-\frac{1}{2 \pi}\langle(\operatorname{div} \phi) u, u\rangle
$$

Thus with $\phi=\nu \frac{x}{2 \pi|x|^{2}}$, we get $|D|^{2}+\frac{\nu^{2}}{4 \pi^{2}|x|^{2}} \geq \frac{\nu(n-2)}{4 \pi^{2}|x|^{2}}$, i.e.

We write again:

$$
\left.\left.\sum_{1 \leq j \leq n}\left\|\left(D_{j}-i \phi_{j}\right) u\right\|^{2}=\left.\langle | D\right|^{2} u, u\right\rangle+\left.\langle | \phi\right|^{2} u, u\right\rangle-\frac{1}{2 \pi}\langle(\operatorname{div} \phi) u, u\rangle
$$

Thus with $\phi=\nu \frac{x}{2 \pi|x|^{2}}$, we get $|D|^{2}+\frac{\nu^{2}}{4 \pi^{2}|x|^{2}} \geq \frac{\nu(n-2)}{4 \pi^{2}|x|^{2}}$, i.e.

$$
(-\Delta) \geq|x|^{-2} \underbrace{\nu(n-2-\nu)}_{\text {largest at } \nu=\frac{n-2}{2}}
$$

We write again:

$$
\left.\left.\sum_{1 \leq j \leq n}\left\|\left(D_{j}-i \phi_{j}\right) u\right\|^{2}=\left.\langle | D\right|^{2} u, u\right\rangle+\left.\langle | \phi\right|^{2} u, u\right\rangle-\frac{1}{2 \pi}\langle(\operatorname{div} \phi) u, u\rangle
$$

Thus with $\phi=\nu \frac{x}{2 \pi|x|^{2}}$, we get $|D|^{2}+\frac{\nu^{2}}{4 \pi^{2}|x|^{2}} \geq \frac{\nu(n-2)}{4 \pi^{2}|x|^{2}}$, i.e.

$$
(-\Delta) \geq|x|^{-2} \underbrace{\nu(n-2-\nu)}_{\text {largest at } \nu=\frac{n-2}{2}}
$$

and thus

$$
(-\Delta) \geq\left(\frac{n-2}{2}\right)^{2} \frac{1}{|x|^{2}} \quad \text { (Hardy's inequality) }
$$

Kolmogorov equation. In a 1934 Annals of Mathematics two-page paper (written in German) "zur Theorie der Brownschen Bewegung", A.N. Kolmogorov proposed a model for the 1D Brownian motion with the equation

Kolmogorov equation. In a 1934 Annals of Mathematics two-page paper (written in German) "zur Theorie der Brownschen Bewegung", A.N. Kolmogorov proposed a model for the 1D Brownian motion with the equation

$$
\frac{\partial u}{\partial t}-y \frac{\partial u}{\partial x}-\frac{\partial^{2} u}{\partial y^{2}}=f
$$

Kolmogorov equation. In a 1934 Annals of Mathematics two-page paper (written in German) "zur Theorie der Brownschen Bewegung", A.N. Kolmogorov proposed a model for the 1D Brownian motion with the equation

$$
\frac{\partial u}{\partial t}-y \frac{\partial u}{\partial x}-\frac{\partial^{2} u}{\partial y^{2}}=f, \quad x=\text { position, } y=\text { speed. }
$$

Kolmogorov equation. In a 1934 Annals of Mathematics two-page paper (written in German) "zur Theorie der Brownschen Bewegung", A.N. Kolmogorov proposed a model for the 1D Brownian motion with the equation

$$
\frac{\partial u}{\partial t}-y \frac{\partial u}{\partial x}-\frac{\partial^{2} u}{\partial y^{2}}=f, \quad x=\text { position, } y=\text { speed. }
$$

$X_{0}=\partial_{t}-y \partial_{x}, \quad X_{1}=\partial_{y}$ are divergence-free real vector fields,

Kolmogorov equation. In a 1934 Annals of Mathematics two-page paper (written in German) "zur Theorie der Brownschen Bewegung", A.N. Kolmogorov proposed a model for the 1D Brownian motion with the equation

$$
\frac{\partial u}{\partial t}-y \frac{\partial u}{\partial x}-\frac{\partial^{2} u}{\partial y^{2}}=f, \quad x=\text { position, } y=\text { speed. }
$$

$X_{0}=\partial_{t}-y \partial_{x}, \quad X_{1}=\partial_{y}$ are divergence-free real vector fields, and

$$
\mathcal{K}=X_{0}+X_{1}^{*} X_{1},
$$

Kolmogorov equation. In a 1934 Annals of Mathematics two-page paper (written in German) "zur Theorie der Brownschen Bewegung", A.N. Kolmogorov proposed a model for the 1D Brownian motion with the equation

$$
\frac{\partial u}{\partial t}-y \frac{\partial u}{\partial x}-\frac{\partial^{2} u}{\partial y^{2}}=f, \quad x=\text { position, } y=\text { speed. }
$$

$X_{0}=\partial_{t}-y \partial_{x}, \quad X_{1}=\partial_{y}$ are divergence-free real vector fields, and

$$
\mathcal{K}=X_{0}+X_{1}^{*} X_{1}
$$

Tangent space $=\operatorname{Lie}\left(X_{0}, X_{1}\right)$ since $\partial_{x}=\left[X_{0}, X_{1}\right]$.

Kolmogorov equation. In a 1934 Annals of Mathematics two-page paper (written in German) "zur Theorie der Brownschen Bewegung", A.N. Kolmogorov proposed a model for the 1D Brownian motion with the equation

$$
\frac{\partial u}{\partial t}-y \frac{\partial u}{\partial x}-\frac{\partial^{2} u}{\partial y^{2}}=f, \quad x=\text { position, } y=\text { speed. }
$$

$X_{0}=\partial_{t}-y \partial_{x}, \quad X_{1}=\partial_{y}$ are divergence-free real vector fields, and

$$
\mathcal{K}=X_{0}+X_{1}^{*} X_{1}
$$

Tangent space $=\operatorname{Lie}\left(X_{0}, X_{1}\right)$ since $\partial_{x}=\left[X_{0}, X_{1}\right]$. The operator is micro-hypoelliptic:

Kolmogorov equation. In a 1934 Annals of Mathematics two-page paper (written in German) "zur Theorie der Brownschen Bewegung", A.N. Kolmogorov proposed a model for the 1D Brownian motion with the equation

$$
\frac{\partial u}{\partial t}-y \frac{\partial u}{\partial x}-\frac{\partial^{2} u}{\partial y^{2}}=f, \quad x=\text { position, } y=\text { speed. }
$$

$X_{0}=\partial_{t}-y \partial_{x}, \quad X_{1}=\partial_{y}$ are divergence-free real vector fields, and

$$
\mathcal{K}=X_{0}+X_{1}^{*} X_{1}
$$

Tangent space $=\operatorname{Lie}\left(X_{0}, X_{1}\right)$ since $\partial_{x}=\left[X_{0}, X_{1}\right]$. The operator is micro-hypoelliptic: $W F u=W F \mathcal{K} u \quad$ (C^{∞} wave-front-sets).

Kolmogorov equation. In a 1934 Annals of Mathematics two-page paper (written in German) "zur Theorie der Brownschen Bewegung", A.N. Kolmogorov proposed a model for the 1D Brownian motion with the equation

$$
\frac{\partial u}{\partial t}-y \frac{\partial u}{\partial x}-\frac{\partial^{2} u}{\partial y^{2}}=f, \quad x=\text { position, } y=\text { speed. }
$$

$X_{0}=\partial_{t}-y \partial_{x}, \quad X_{1}=\partial_{y}$ are divergence-free real vector fields, and

$$
\mathcal{K}=X_{0}+X_{1}^{*} X_{1}
$$

Tangent space $=\operatorname{Lie}\left(X_{0}, X_{1}\right)$ since $\partial_{x}=\left[X_{0}, X_{1}\right]$. The operator is micro-hypoelliptic: $W F u=W F \mathcal{K} u \quad$ (C^{∞} wave-front-sets). The hypoellipticity follows from a 1967 Hörmander theorem.

$$
\mathcal{K}=X_{0}+X_{1}^{*} X_{1}, \quad X_{0}=\partial_{t}-y \partial_{x}, \quad X_{1}=\partial_{y}
$$

Loss of derivatives ? A priori estimates ? Everything can be computed explicitely using the flow of X_{0} :

$$
\mathcal{K}=X_{0}+X_{1}^{*} X_{1}, \quad X_{0}=\partial_{t}-y \partial_{x}, \quad X_{1}=\partial_{y}
$$

Loss of derivatives ? A priori estimates ? Everything can be computed explicitely using the flow of X_{0} :

$$
\left\{\begin{array} { l l }
{ t } & { = s } \\
{ x } & { = x _ { 1 } - s x _ { 2 } } \\
{ y } & { = x _ { 2 } }
\end{array} \quad \left\{\begin{array}{ll}
\frac{\partial}{\partial s} & =\frac{\partial}{\partial t}-y \frac{\partial}{\partial x}=X_{0} \\
\frac{\partial}{\partial x_{1}} & =\frac{\partial}{\partial x} \\
\frac{\partial}{\partial x_{2}} & =-t \frac{\partial}{\partial x}+\frac{\partial}{\partial y}
\end{array} \quad X_{1}=s \partial_{x_{1}}+\partial_{x_{2}}\right.\right.
$$

$$
\mathcal{K}=X_{0}+X_{1}^{*} X_{1}, \quad X_{0}=\partial_{t}-y \partial_{x}, \quad X_{1}=\partial_{y}
$$

Loss of derivatives ? A priori estimates ? Everything can be computed explicitely using the flow of X_{0} :

$$
\begin{aligned}
& \left\{\begin{array} { l l }
{ t = s } \\
{ x = } & { x _ { 1 } - s x _ { 2 } } \\
{ y = } & { x _ { 2 } }
\end{array} \quad \left\{\begin{array}{l}
\frac{\partial}{\partial s}=\frac{\partial}{\partial t}-y \frac{\partial}{\partial x}=X_{0} \\
\frac{\partial}{\partial x_{1}}=\frac{\partial}{\partial x} \\
\frac{\partial}{\partial x_{2}}
\end{array}=-t \frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right.\right. \\
& \mathcal{K}=\partial_{s}-\left(s \partial_{x_{1}}+\partial_{x_{2}}\right)^{2}=\underbrace{i D_{s}}_{\text {skew }}+\underbrace{\left(D_{2}+s D_{1}\right)^{2}}_{\text {self and } \geq 0} .
\end{aligned}
$$

$$
\mathcal{K}=X_{0}+X_{1}^{*} X_{1}, \quad X_{0}=\partial_{t}-y \partial_{x}, \quad X_{1}=\partial_{y}
$$

Loss of derivatives ? A priori estimates ? Everything can be computed explicitely using the flow of X_{0} :

$$
\begin{aligned}
& t=s \quad\left\{\frac{\partial}{\partial s}=\frac{\partial}{\partial t}-y \frac{\partial}{\partial x}=X_{0}\right. \\
& \left\{\begin{array} { l l }
{ x = x _ { 1 } - s x _ { 2 } }
\end{array} \quad \left\{\begin{array}{ll}
\frac{\partial}{\partial x_{1}}=\frac{\partial}{\partial x} & X_{1}=s \partial_{x_{1}}+\partial_{x_{2}}
\end{array}\right.\right. \\
& y=x_{2} \\
& \frac{\partial}{\partial x_{2}}=-t \frac{\partial}{\partial x}+\frac{\partial}{\partial y} \\
& \mathcal{K}=\partial_{s}-\left(s \partial_{x_{1}}+\partial_{x_{2}}\right)^{2}=\underbrace{i D_{s}}_{\text {skew }}+\underbrace{\left(D_{2}+s D_{1}\right)^{2}}_{\text {self and } \geq 0} .
\end{aligned}
$$

It is easy to solve explicitely that ODE with parameters: Fourier transform in the x_{1}, x_{2} variables and we have to deal with

$$
\frac{d}{d s}+\left(\xi_{2}+s \xi_{1}\right)^{2}
$$

Family of parabolas $\quad s \mapsto\left(\xi_{2}+s \xi_{1}\right)^{2} \quad$ for $\xi_{1}^{2}+\xi_{2}^{2}=1$

For $\tilde{\mathcal{K}}=\frac{d}{d s}+\left(\xi_{2}+s \xi_{1}\right)^{2}$, we have for $\xi_{1} \neq 0$

For $\tilde{\mathcal{K}}=\frac{d}{d s}+\left(\xi_{2}+s \xi_{1}\right)^{2}$, we have for $\xi_{1} \neq 0$

$$
\widetilde{\mathcal{K}}=\frac{d}{d s}+\xi_{1}{ }^{2}\left(\xi_{2} / \xi_{1}+s\right)^{2}=i\left(D_{\sigma}-i \lambda \sigma^{2}\right), \quad \sigma=s+\xi_{2} / \xi_{1}, \lambda=\xi_{1}{ }^{2},
$$

For $\tilde{\mathcal{K}}=\frac{d}{d s}+\left(\xi_{2}+s \xi_{1}\right)^{2}$, we have for $\xi_{1} \neq 0$
$\widetilde{\mathcal{K}}=\frac{d}{d s}+\xi_{1}{ }^{2}\left(\xi_{2} / \xi_{1}+s\right)^{2}=i\left(D_{\sigma}-i \lambda \sigma^{2}\right), \quad \sigma=s+\xi_{2} / \xi_{1}, \lambda=\xi_{1}{ }^{2}$,
and we get the standard subelliptic $\|\widetilde{\mathcal{K}} v\| \gtrsim \lambda^{1 / 3}\|v\|=\left|\xi_{1}\right|^{2 / 3}\|v\|$.

For $\widetilde{\mathcal{K}}=\frac{d}{d s}+\left(\xi_{2}+s \xi_{1}\right)^{2}$, we have for $\xi_{1} \neq 0$
$\widetilde{\mathcal{K}}=\frac{d}{d s}+\xi_{1}{ }^{2}\left(\xi_{2} / \xi_{1}+s\right)^{2}=i\left(D_{\sigma}-i \lambda \sigma^{2}\right), \quad \sigma=s+\xi_{2} / \xi_{1}, \lambda=\xi_{1}{ }^{2}$,
and we get the standard subelliptic $\|\widetilde{\mathcal{K}} v\| \gtrsim \lambda^{1 / 3}\|v\|=\left|\xi_{1}\right|^{2 / 3}\|v\|$. Moreover $\operatorname{Re}\langle\widetilde{\mathcal{K}} v, v\rangle=\left\|\left(\xi_{2}+s \xi_{1}\right) v\right\|^{2}$ so that

For $\widetilde{\mathcal{K}}=\frac{d}{d s}+\left(\xi_{2}+s \xi_{1}\right)^{2}$, we have for $\xi_{1} \neq 0$
$\widetilde{\mathcal{K}}=\frac{d}{d s}+\xi_{1}{ }^{2}\left(\xi_{2} / \xi_{1}+s\right)^{2}=i\left(D_{\sigma}-i \lambda \sigma^{2}\right), \quad \sigma=s+\xi_{2} / \xi_{1}, \lambda=\xi_{1}{ }^{2}$,
and we get the standard subelliptic $\|\widetilde{\mathcal{K}} v\| \gtrsim \lambda^{1 / 3}\|v\|=\left|\xi_{1}\right|^{2 / 3}\|v\|$. Moreover $\operatorname{Re}\langle\widetilde{\mathcal{K}} v, v\rangle=\left\|\left(\xi_{2}+s \xi_{1}\right) v\right\|^{2}$ so that

$$
\|u\|+\|\mathcal{K} u\| \gtrsim\left\|\left|D_{1}\right|^{2 / 3} u\right\|+\left\|\left(D_{2}+s D_{1}\right) u\right\|
$$

For $\widetilde{\mathcal{K}}=\frac{d}{d s}+\left(\xi_{2}+s \xi_{1}\right)^{2}$, we have for $\xi_{1} \neq 0$
$\widetilde{\mathcal{K}}=\frac{d}{d s}+\xi_{1}{ }^{2}\left(\xi_{2} / \xi_{1}+s\right)^{2}=i\left(D_{\sigma}-i \lambda \sigma^{2}\right), \quad \sigma=s+\xi_{2} / \xi_{1}, \lambda=\xi_{1}{ }^{2}$,
and we get the standard subelliptic $\|\widetilde{\mathcal{K}} v\| \gtrsim \lambda^{1 / 3}\|v\|=\left|\xi_{1}\right|^{2 / 3}\|v\|$. Moreover $\operatorname{Re}\langle\widetilde{\mathcal{K}} v, v\rangle=\left\|\left(\xi_{2}+s \xi_{1}\right) v\right\|^{2}$ so that

$$
\|u\|+\|\mathcal{K} u\| \gtrsim\left\|\left|D_{1}\right|^{2 / 3} u\right\|+\left\|\left(D_{2}+s D_{1}\right) u\right\|
$$

which is an optimal estimate.

Fokker-Planck equations

$$
\mathcal{P}=
$$

Fokker-Planck equations

$$
\mathcal{P}=\underbrace{\text { divergence-free vector field }}_{\begin{array}{c}
\text { propagation } \\
\text { skew-adjoint }
\end{array}}
$$

Fokker-Planck equations

$$
\mathcal{P}=\underbrace{\text { divergence-free vector field }}_{\begin{array}{c}
\text { propagation } \\
\text { skew-adjoint }
\end{array}} \text { v•竕 }-\nabla_{x} V \cdot \partial_{v}
$$

$$
\underbrace{-\Delta_{v}+\frac{|v|^{2}}{4}-\frac{d}{2}}_{\begin{array}{c}
\text { harmonic oscillator } \\
\text { self-adjoint } \geq 0 \\
\text { missing the } x \text { directions }
\end{array}}
$$

Fokker-Planck equations

$$
\mathcal{P}=\underbrace{\underbrace{v \cdot \partial_{x}-\nabla_{x} V \cdot \partial_{v}}_{\begin{array}{c}
\text { harmonic oscillator } \begin{array}{c}
\text { self-adjoint } \geq 0 \\
\text { missing the } x \text { directions }
\end{array}
\end{array}} \quad \Delta_{v}+\frac{|v|^{2}}{4}-\frac{d}{2}}_{\begin{array}{c}
\text { propagation } \\
\text { skew-adjoint } \\
\text { divergence-free vector field }
\end{array}}
$$

With $\mathcal{P}=X_{0}+\sum_{1 \leq j \leq d} C_{j} C_{j}^{*}$, we expect that a suitable assumption on the potential $V(x)$

Fokker-Planck equations

$$
\mathcal{P}=\underbrace{\underbrace{v \cdot \partial_{x}-\nabla_{x} V \cdot \partial_{v}}_{\begin{array}{c}
\text { harmonic oscillator } \\
\text { selff-adjoint } \geq 0 \\
\text { missing the } x \text { directions }
\end{array}} \quad \underbrace{-\Delta_{v}+\frac{|v|^{2}}{4}-\frac{d}{2}}, \underbrace{2}}_{\begin{array}{c}
\text { propagation } \\
\text { skew-adjoint } \\
\text { divergence-free vector field }
\end{array}}
$$

With $\mathcal{P}=X_{0}+\sum_{1 \leq j \leq d} C_{j} C_{j}^{*}$, we expect that a suitable assumption on the potential $V(x)$ will ensure that the iterated brackets of $X_{0}, C_{1}, \ldots, C_{d}$ have some ellipticity property

Fokker-Planck equations

$$
\mathcal{P}=\underbrace{v \cdot \partial_{x}-\nabla_{x} V \cdot \partial_{v}}_{\begin{array}{c}
\text { propagation } \\
\text { skew-adjoint } \\
\text { divergence-free vector field }
\end{array}} \underbrace{-\Delta_{v}+\frac{|v|^{2}}{4}-\frac{d}{2}}_{\begin{array}{c}
\text { harmonic oscillator } \\
\text { self-adjoint } \geq 0 \\
\text { missing the } x \text { directions }
\end{array}}
$$

With $\mathcal{P}=X_{0}+\sum_{1 \leq j \leq d} C_{j} C_{j}^{*}$, we expect that a suitable assumption on the potential $V(x)$ will ensure that the iterated brackets of $X_{0}, C_{1}, \ldots, C_{d}$ have some ellipticity property (here the creation operators are the $\left.C_{j}=\frac{d}{i d v_{j}}+i v_{j} / 2\right)$.

2. Pseudodifferential techniques

Wick quantization. $X, Y \in \mathbb{R}^{2 n}, \quad \Pi(X, Y)=e^{-\frac{\pi}{2}|X-Y|^{2}} e^{-i \pi[X, Y]}$, with $[X, Y]=[(x, \xi),(y, \eta)]=\xi \cdot y-\eta \cdot x$.

2. Pseudodifferential techniques

Wick quantization. $X, Y \in \mathbb{R}^{2 n}, \quad \Pi(X, Y)=e^{-\frac{\pi}{2}|X-Y|^{2}} e^{-i \pi[X, Y]}$, with $[X, Y]=[(x, \xi),(y, \eta)]=\xi \cdot y-\eta \cdot x$.

2. Pseudodifferential techniques

Wick quantization. $X, Y \in \mathbb{R}^{2 n}, \quad \Pi(X, Y)=e^{-\frac{\pi}{2}|X-Y|^{2}} e^{-i \pi[X, Y]}$, with $[X, Y]=[(x, \xi),(y, \eta)]=\xi \cdot y-\eta \cdot x$.

We define

$$
(W u)(y, \eta)=\left\langle u, \varphi_{y, \eta}\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right)}, \quad \varphi_{y, \eta}(x)=2^{n / 4} e^{-\pi|x-y|^{2}} e^{2 i \pi\left(x-\frac{y}{2}\right) \cdot \eta}
$$

2. Pseudodifferential techniques

Wick quantization. $X, Y \in \mathbb{R}^{2 n}, \quad \Pi(X, Y)=e^{-\frac{\pi}{2}|X-Y|^{2}} e^{-i \pi[X, Y]}$, with $[X, Y]=[(x, \xi),(y, \eta)]=\xi \cdot y-\eta \cdot x$.

We define

$$
(W u)(y, \eta)=\left\langle u, \varphi_{y, \eta}\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right)}, \quad \varphi_{y, \eta}(x)=2^{n / 4} e^{-\pi|x-y|^{2}} e^{2 i \pi\left(x-\frac{y}{2}\right) \cdot \eta}
$$

We have $W: L^{2}\left(\mathbb{R}^{n}\right) \longrightarrow L^{2}\left(\mathbb{R}^{2 n}\right)$ isometric, not onto, $W^{*} W=\operatorname{Id}_{L^{2}\left(\mathbb{R}^{n}\right)}: \quad$ reconstruction formula, W isometric, $W W^{*}=\Pi_{0}: \quad$ projection operator onto ranW with oper-kernel Π.

Let a be a Hamiltonian: we can use the Weyl quantization with the formula

$$
\left(a^{w} u\right)(x)=\iint e^{2 i \pi\langle x-y, \xi\rangle} a\left(\frac{x+y}{2}, \xi\right) u(y) d y d \xi
$$

Let a be a Hamiltonian: we can use the Weyl quantization with the formula

$$
\left(a^{w} u\right)(x)=\iint e^{2 i \pi\langle x-y, \xi\rangle} a\left(\frac{x+y}{2}, \xi\right) u(y) d y d \xi
$$

or the Wick quantization as given by $a^{\text {Wick }}=W^{*} a W$,

$$
\begin{array}{cc}
L^{2}\left(\mathbb{R}^{2 n}\right) \xrightarrow[\text { (multiplication by a) }]{a} & L^{2}\left(\mathbb{R}^{2 n}\right) \\
w \uparrow & \downarrow w^{*} \\
L^{2}\left(\mathbb{R}^{n}\right) & \begin{array}{l}
a^{\text {Wick }}
\end{array} \\
L^{2}\left(\mathbb{R}^{n}\right)
\end{array}
$$

Let a be a Hamiltonian: we can use the Weyl quantization with the formula

$$
\left(a^{w} u\right)(x)=\iint e^{2 i \pi\langle x-y, \xi\rangle} a\left(\frac{x+y}{2}, \xi\right) u(y) d y d \xi
$$

or the Wick quantization as given by $a^{\text {Wick }}=W^{*} a W$,

$$
\begin{array}{cc}
L^{2}\left(\mathbb{R}^{2 n}\right) \xrightarrow[\text { (multiplication by a) }]{a} & L^{2}\left(\mathbb{R}^{2 n}\right) \\
w \uparrow & \downarrow W^{*} \\
L^{2}\left(\mathbb{R}^{n}\right) & \xrightarrow[a^{\text {Wick }}]{ } \\
L^{2}\left(\mathbb{R}^{n}\right)
\end{array}
$$

If a is a semi-classical symbol, i.e. such that

$$
\left|\left(\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a\right)(x, \xi, h)\right| \leq C_{\alpha \beta} h^{-1+\frac{|\alpha|+|\beta|}{2}}
$$

Let a be a Hamiltonian: we can use the Weyl quantization with the formula

$$
\left(a^{w} u\right)(x)=\iint e^{2 i \pi\langle x-y, \xi\rangle} a\left(\frac{x+y}{2}, \xi\right) u(y) d y d \xi
$$

or the Wick quantization as given by $a^{\text {Wick }}=W^{*} a W$,

If a is a semi-classical symbol, i.e. such that

$$
\left|\left(\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a\right)(x, \xi, h)\right| \leq C_{\alpha \beta} h^{-1+\frac{|\alpha|+|\beta|}{2}},
$$

then $a^{\text {Wick }}-a^{w} \in \mathcal{B}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)$ so the change is harmless if we expect to prove some subelliptic estimate.

Subellipticity for pseudodifferential equations. We consider an evolution equation

$$
D_{t}+i q(t, x, \xi)^{w}, \quad 0 \leq q \in S_{\text {semiclass. }}^{1} .
$$

Subellipticity for pseudodifferential equations. We consider an evolution equation

$$
D_{t}+i q(t, x, \xi)^{w}, \quad 0 \leq q \in S_{\text {semiclass }}^{1} .
$$

We replace it by

$$
D_{t}+i q(t, x, \xi)^{W i c k}=W^{*}\left(D_{t}+i q\right) W,
$$

Subellipticity for pseudodifferential equations. We consider an evolution equation

$$
D_{t}+i q(t, x, \xi)^{w}, \quad 0 \leq q \in S_{\text {semiclass }}^{1} .
$$

We replace it by

$$
D_{t}+i q(t, x, \xi)^{W i c k}=W^{*}\left(D_{t}+i q\right) W
$$

and we apply the isometric W to get a somehow equivalent evolution equation

$$
D_{t}+i \Pi_{0} q \Pi_{0}, \quad \Pi_{0}=W W^{*} \quad \text { Toeplitz operator. }
$$

Subellipticity for pseudodifferential equations. We consider an evolution equation

$$
D_{t}+i q(t, x, \xi)^{w}, \quad 0 \leq q \in S_{\text {semiclass. }}^{1}
$$

We replace it by

$$
D_{t}+i q(t, x, \xi)^{W i c k}=W^{*}\left(D_{t}+i q\right) W
$$

and we apply the isometric W to get a somehow equivalent evolution equation

$$
D_{t}+i \Pi_{0} q \Pi_{0}, \quad \Pi_{0}=W W^{*} \quad \text { Toeplitz operator. }
$$

We start with the study of the ODE $D_{t}+i q$: not so difficult but we need a

Lemma A.

Lemma A. Let $k \geq 1, \delta>0, C>0$, I be an interval of \mathbb{R},
$f: I \rightarrow \mathbb{R}$ such that

$$
\inf _{t \in I}\left|f^{(k)}(t)\right| \geq \delta .
$$

Lemma \mathbf{A}. Let $k \geq 1, \delta>0, C>0$, I be an interval of \mathbb{R}, $f: I \rightarrow \mathbb{R}$ such that

$$
\inf _{t \in I}\left|f^{(k)}(t)\right| \geq \delta
$$

Then for all $h>0$,

$$
\left|\left\{t \in I,|f(t)| \leq C h^{k}\right\}\right| \leq h \alpha(C / \delta, k)
$$

Lemma A. Let $k \geq 1, \delta>0, C>0$, I be an interval of \mathbb{R}, $f: I \rightarrow \mathbb{R}$ such that

$$
\inf _{t \in I}\left|f^{(k)}(t)\right| \geq \delta
$$

Then for all $h>0$,

$$
\left|\left\{t \in I,|f(t)| \leq C h^{k}\right\}\right| \leq h \alpha(C / \delta, k) .
$$

Proof by induction on k and we note that the conclusion can be fulfilled for k non-integer for some f merely continuous (e.g. fractional powers).

Theorem A. $q \in S_{\text {semiclas }}^{1}$ real-valued such that $q=0 \Longrightarrow d_{x, \xi} q=0($ e.g. $q \geq 0)$. Then, if $\left|\partial_{t}^{k} q\right| h \geq \delta>0$

Theorem A. $q \in S_{\text {semiclas }}^{1}$ real-valued such that $q=0 \Longrightarrow d_{x, \xi} q=0$ (e.g. $q \geq 0$). Then, if $\left|\partial_{t}^{k} q\right| h \geq \delta>0$

$$
\left\|D_{t} u+i q\left(t, x, D_{x}\right) u\right\| \gtrsim h^{-\frac{1}{k+1}\|u\|}
$$

Theorem A. $q \in S_{\text {semiclas }}^{1}$ real-valued such that $q=0 \Longrightarrow d_{x, \xi} q=0($ e.g. $q \geq 0)$. Then, if $\left|\partial_{t}^{k} q\right| h \geq \delta>0$

$$
\left\|D_{t} u+i q\left(t, x, D_{x}\right) u\right\| \gtrsim h^{-\frac{1}{k+1}}\|u\|
$$

This is a subelliptic estimate and we describe here an extension of a method used by F. Treves to handle this type of estimate.

Theorem A. $q \in S_{\text {semiclas }}^{1}$ real-valued such that $q=0 \Longrightarrow d_{x, \xi} q=0($ e.g. $q \geq 0)$. Then, if $\left|\partial_{t}^{k} q\right| h \geq \delta>0$

$$
\left\|D_{t} u+i q\left(t, x, D_{x}\right) u\right\| \gtrsim h^{-\frac{1}{k+1}}\|u\|
$$

This is a subelliptic estimate and we describe here an extension of a method used by F. Treves to handle this type of estimate. Proof, step 1: use the reduction to $D_{t}+i \Pi_{0} q \Pi_{0}, \Pi_{0}=W W^{*}$ Toeplitz operator introduced above,

Theorem A. $q \in S_{\text {semiclas }}^{1}$ real-valued such that $q=0 \Longrightarrow d_{x, \xi} q=0($ e.g. $q \geq 0)$. Then, if $\left|\partial_{t}^{k} q\right| h \geq \delta>0$

$$
\left\|D_{t} u+i q\left(t, x, D_{x}\right) u\right\| \gtrsim h^{-\frac{1}{k+1}}\|u\|
$$

This is a subelliptic estimate and we describe here an extension of a method used by F. Treves to handle this type of estimate. Proof, step 1: use the reduction to $D_{t}+i \Pi_{0} q \Pi_{0}, \Pi_{0}=W W^{*}$ Toeplitz operator introduced above, Proof, step 2: use the Lemma A on the Lebesgue measure to handle the ODE $D_{t}+i q$.

Theorem A. $q \in S_{\text {semiclas }}^{1}$ real-valued such that $q=0 \Longrightarrow d_{x, \xi} q=0($ e.g. $q \geq 0)$. Then, if $\left|\partial_{t}^{k} q\right| h \geq \delta>0$

$$
\left\|D_{t} u+i q\left(t, x, D_{x}\right) u\right\| \gtrsim h^{-\frac{1}{k+1}}\|u\|
$$

This is a subelliptic estimate and we describe here an extension of a method used by F. Treves to handle this type of estimate. Proof, step 1: use the reduction to $D_{t}+i \Pi_{0} q \Pi_{0}, \Pi_{0}=W W^{*}$ Toeplitz operator introduced above, Proof, step 2: use the Lemma A on the Lebesgue measure to handle the ODE $D_{t}+i q$.
Proof, step 3: since for $\Phi=W u$,
known from step 2

$$
\overbrace{D_{t} \Phi+i q \Phi}=D_{t} \Phi+i q \Pi_{0} \Phi=D_{t} \Phi+i \Pi_{0} q \Pi_{0} \Phi+i\left(I-\Pi_{0}\right) q \Phi=
$$

Theorem A. $q \in S_{\text {semiclas }}^{1}$ real-valued such that $q=0 \Longrightarrow d_{x, \xi} q=0($ e.g. $q \geq 0)$. Then, if $\left|\partial_{t}^{k} q\right| h \geq \delta>0$

$$
\left\|D_{t} u+i q\left(t, x, D_{x}\right) u\right\| \gtrsim h^{-\frac{1}{k+1}}\|u\|
$$

This is a subelliptic estimate and we describe here an extension of a method used by F . Treves to handle this type of estimate. Proof, step 1: use the reduction to $D_{t}+i \Pi_{0} q \Pi_{0}, \Pi_{0}=W W^{*}$ Toeplitz operator introduced above,
Proof, step 2: use the Lemma A on the Lebesgue measure to handle the ODE $D_{t}+i q$.
Proof, step 3: since for $\Phi=W u$,
known from step 2

$$
\overbrace{D_{t} \Phi+i q \Phi}=D_{t} \Phi+i q \Pi_{0} \Phi=D_{t} \Phi+i \Pi_{0} q \Pi_{0} \Phi+i\left(I-\Pi_{0}\right) q \Phi=
$$

$\underbrace{D_{t} \Phi+i \Pi_{0} q \Pi_{0} \Phi}_{\mathcal{L} \Phi: \text { under scope }}+i \underbrace{\left[q, \Pi_{0}\right] \Phi}_{\text {a commutator term }}$

Theorem A. $q \in S_{\text {semiclas }}^{1}$ real-valued such that $q=0 \Longrightarrow d_{x, \xi} q=0($ e.g. $q \geq 0)$. Then, if $\left|\partial_{t}^{k} q\right| h \geq \delta>0$

$$
\left\|D_{t} u+i q\left(t, x, D_{x}\right) u\right\| \gtrsim h^{-\frac{1}{k+1}}\|u\|
$$

This is a subelliptic estimate and we describe here an extension of a method used by F . Treves to handle this type of estimate. Proof, step 1: use the reduction to $D_{t}+i \Pi_{0} q \Pi_{0}, \Pi_{0}=W W^{*}$ Toeplitz operator introduced above,
Proof, step 2: use the Lemma A on the Lebesgue measure to handle the ODE $D_{t}+i q$.
Proof, step 3: since for $\Phi=W u$,
known from step 2

$$
\overbrace{D_{t} \Phi+i q \Phi}=D_{t} \Phi+i q \Pi_{0} \Phi=D_{t} \Phi+i \Pi_{0} q \Pi_{0} \Phi+i\left(I-\Pi_{0}\right) q \Phi=
$$

$\underbrace{D_{t} \Phi+i \Pi_{0} q \Pi_{0} \Phi}_{\mathcal{L} \Phi: \text { under scope }}+i \underbrace{\left[q, \Pi_{0}\right] \Phi}_{\text {a commutator term }}$ we need to handle that commutator.

Commutator argument

The unwanted term here is with $\Phi=W u$

$$
\left\|\left[q, \Pi_{0}\right] \Phi\right\|^{2} \leq \iint\left|q_{x, \xi}^{\prime}\right|^{2}|\Phi|^{2} d x d \xi+C\|\Phi\|^{2}
$$

Commutator argument

The unwanted term here is with $\Phi=W u$

$$
\left\|\left[q, \Pi_{0}\right] \Phi\right\|^{2} \leq \iint\left|q_{x, \xi}^{\prime}\right|^{2}|\Phi|^{2} d x d \xi+C\|\Phi\|^{2}
$$

We can control $\left|q_{x, \xi}^{\prime}\right|^{2}$ by $C|q|$ since $q=0 \Longrightarrow d_{x, \xi} q=0$: the metric

Commutator argument

The unwanted term here is with $\Phi=W u$

$$
\left\|\left[q, \Pi_{0}\right] \Phi\right\|^{2} \leq \iint\left|q_{x, \xi}^{\prime}\right|^{2}|\Phi|^{2} d x d \xi+C\|\Phi\|^{2}
$$

We can control $\left|q_{x, \xi}^{\prime}\right|^{2}$ by $C|q|$ since $q=0 \Longrightarrow d_{x, \xi} q=0$: the metric

$$
g=\frac{d x^{2}+d \xi^{2}}{\lambda(t, x, \xi)}, \quad \lambda(t, x, \xi)=1+|q|+\left|d_{x, \xi} q\right|^{2}
$$

is such that $q \in S(\lambda, g), \quad$ and $\frac{\lambda}{1+|q|} \sim 1$ and the energy method will provide for free a term $\langle | q|\Phi, \Phi\rangle$.

3. A kinetic equation

Presentation. Boltzmann equation: $0 \leq f(t, x, v)$ probability density, $x \in \mathbb{R}^{d}, v \in \mathbb{R}^{d}, t \geq 0$,

$$
\underbrace{\partial_{t} f+\left(v \cdot \nabla_{x}\right) f}_{\text {transport }}=\underbrace{Q(f, f)(t, x, v)}_{\begin{array}{c}
\text { Collision term with some } \\
\text { negativity properties }
\end{array}}
$$

3. A kinetic equation

Presentation. Boltzmann equation: $0 \leq f(t, x, v)$ probability density, $x \in \mathbb{R}^{d}, v \in \mathbb{R}^{d}, t \geq 0$,

$$
\begin{gathered}
\underbrace{\partial_{t} f+\left(v \cdot \nabla_{x}\right) f}_{\text {transport }}=\underbrace{Q(f, f)(t, x, v)}_{\begin{array}{c}
\text { Collision term with some } \\
\text { negativity properties }
\end{array}} \\
Q(f, f)=\int_{\mathbb{R}^{3}} \int_{\mathbb{S}^{2}} B\left(v-v_{*}, \sigma\right)\left\{f\left(v_{*}^{\prime}\right) f\left(v^{\prime}\right)-f\left(v_{*}\right) f(v)\right\} d \sigma d v_{*}
\end{gathered}
$$

3. A kinetic equation

Presentation. Boltzmann equation: $0 \leq f(t, x, v)$ probability density, $x \in \mathbb{R}^{d}, v \in \mathbb{R}^{d}, t \geq 0$,

$$
\underbrace{\partial_{t} f+\left(v \cdot \nabla_{x}\right) f}_{\text {transport }}=\underbrace{Q(f, f)(t, x, v)}_{\begin{array}{c}
\text { Collision term with some } \\
\text { negativivy properties }
\end{array}},
$$

$$
Q(f, f)=\int_{\mathbb{R}^{3}} \int_{\mathbb{S}^{2}} B\left(v-v_{*}, \sigma\right)\left\{f\left(v_{*}^{\prime}\right) f\left(v^{\prime}\right)-f\left(v_{*}\right) f(v)\right\} d \sigma d v_{*}
$$

with

$$
v^{\prime}=\frac{v+v_{*}}{2}+\frac{\left|v-v_{*}\right|}{2} \sigma, \quad v_{*}^{\prime}=\frac{v+v_{*}}{2}-\frac{\left|v-v_{*}\right|}{2} \sigma .
$$

Conservation of momentum: $v+v_{*}=v^{\prime}+v_{*}^{\prime}$, Conservation of kinetic energy: $|v|^{2}+\left|v_{*}\right|^{2}=\left|v^{\prime}\right|^{2}+\left|v_{*}^{\prime}\right|^{2}$.

3. A kinetic equation

Presentation. Boltzmann equation: $0 \leq f(t, x, v)$ probability density, $x \in \mathbb{R}^{d}, v \in \mathbb{R}^{d}, t \geq 0$,

$$
\underbrace{\partial_{t} f+\left(v \cdot \nabla_{x}\right) f}_{\text {transport }}=\underbrace{Q(f, f)(t, x, v)}_{\begin{array}{c}
\text { Collision term with some } \\
\text { negativity properties }
\end{array}}
$$

$$
Q(f, f)=\int_{\mathbb{R}^{3}} \int_{\mathbb{S}^{2}} B\left(v-v_{*}, \sigma\right)\left\{f\left(v_{*}^{\prime}\right) f\left(v^{\prime}\right)-f\left(v_{*}\right) f(v)\right\} d \sigma d v_{*}
$$

with

$$
v^{\prime}=\frac{v+v_{*}}{2}+\frac{\left|v-v_{*}\right|}{2} \sigma, \quad v_{*}^{\prime}=\frac{v+v_{*}}{2}-\frac{\left|v-v_{*}\right|}{2} \sigma
$$

Conservation of momentum: $v+v_{*}=v^{\prime}+v_{*}^{\prime}$, Conservation of kinetic energy: $|v|^{2}+\left|v_{*}\right|^{2}=\left|v^{\prime}\right|^{2}+\left|v_{*}^{\prime}\right|^{2}$.

The cross-section $B(z, \sigma)$ depends only on $|z|$ and $\cos \theta=\left\langle\frac{z}{|z|}, \sigma\right\rangle$.

$$
B\left(v-v_{*}, \sigma\right)=\Phi\left(\left|v-v_{*}\right|\right) b(\cos \theta), \quad \cos \theta=\left\langle\frac{v-v_{*}}{\left|v-v_{*}\right|}, \sigma\right\rangle
$$

$$
\begin{aligned}
& B\left(v-v_{*}, \sigma\right)=\Phi\left(\left|v-v_{*}\right|\right) b(\cos \theta), \quad \cos \theta=\left\langle\frac{v-v_{*}}{\left|v-v_{*}\right|}, \sigma\right\rangle \\
& \Phi\left(\left|v-v_{*}\right|\right)=\left|v-v_{*}\right|^{\frac{\gamma-5}{\gamma-1}}, \quad b(\cos \theta) \sim \kappa \theta^{-2-2 \alpha}, \quad \kappa>0 \\
& \theta \rightarrow 0
\end{aligned}
$$

$$
\begin{gathered}
B\left(v-v_{*}, \sigma\right)=\Phi\left(\left|v-v_{*}\right|\right) b(\cos \theta), \quad \cos \theta=\left\langle\frac{v-v_{*}}{\left|v-v_{*}\right|}, \sigma\right\rangle \\
\Phi\left(\left|v-v_{*}\right|\right)=\left|v-v_{*}\right|^{\frac{\gamma-5}{\gamma-1}}, \quad b(\cos \theta) \\
\sim \kappa \theta^{-2-2 \alpha}, \quad \kappa>0 \\
\theta \rightarrow 0 \\
0<\alpha=\frac{1}{\gamma-1}<1, \quad b(\cos \theta) \text { is not integrable on } \mathbb{S}^{2} .
\end{gathered}
$$

$$
\begin{gathered}
B\left(v-v_{*}, \sigma\right)=\Phi\left(\left|v-v_{*}\right|\right) b(\cos \theta), \quad \cos \theta=\left\langle\frac{v-v_{*}}{\left|v-v_{*}\right|}, \sigma\right\rangle \\
\Phi\left(\left|v-v_{*}\right|\right)=\left|v-v_{*}\right|^{\frac{\gamma-5}{\gamma-1}}, \quad b(\cos \theta) \\
\theta \rightarrow \kappa \theta^{-2-2 \alpha}, \quad \kappa>0 \\
\theta \rightarrow 0 \\
0<\alpha=\frac{1}{\gamma-1}<1, \quad b(\cos \theta) \text { is not integrable on } \mathbb{S}^{2} .
\end{gathered}
$$

We have

$$
\left\|(-\Delta)^{\alpha / 2} f\right\|^{2} \lesssim\langle-Q(f, f), f\rangle+\|f\|^{2}
$$

$$
\begin{aligned}
& B\left(v-v_{*}, \sigma\right)=\Phi\left(\left|v-v_{*}\right|\right) b(\cos \theta), \quad \cos \theta=\left\langle\frac{v-v_{*}}{\left|v-v_{*}\right|}, \sigma\right\rangle \\
& \Phi\left(\left|v-v_{*}\right|\right)=\left|v-v_{*}\right|^{\frac{\gamma-5}{\gamma-1}}, \quad b(\cos \theta) \sim \kappa \theta^{-2-2 \alpha}, \quad \kappa>0 \\
& \theta \rightarrow 0
\end{aligned}
$$

$$
0<\alpha=\frac{1}{\gamma-1}<1, \quad b(\cos \theta) \text { is not integrable on } \mathbb{S}^{2}
$$

We have

$$
\left\|(-\Delta)^{\alpha / 2} f\right\|^{2} \lesssim\langle-Q(f, f), f\rangle+\|f\|^{2}
$$

and the subelliptic properties of the Boltzmann equation are closely related to the properties of the equation
studied in the Y. Morimoto - C.-J. Xu paper (J. Math. Kyoto Univ., 2007),

$$
\begin{gathered}
\mathcal{P} u \equiv \partial_{t} u+x \cdot \nabla_{y} u+\sigma_{0}\left(-\Delta_{x}\right)^{\alpha} u=f \\
(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}, \quad 0<\alpha<1, \quad \sigma_{0}>0
\end{gathered}
$$

studied in the Y. Morimoto - C.-J. Xu paper (J. Math. Kyoto Univ., 2007),

$$
\begin{gathered}
\mathcal{P} u \equiv \partial_{t} u+x \cdot \nabla_{y} u+\sigma_{0}\left(-\Delta_{x}\right)^{\alpha} u=f \\
(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}, \quad 0<\alpha<1, \quad \sigma_{0}>0
\end{gathered}
$$

To avoid the singularity at $\xi=0$, we define, with $\chi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$, $\chi \equiv 1$ near $0, \omega=1-\chi$,

$$
M(\xi)=|\xi|^{2 \alpha} \omega(\xi)+|\xi|^{2} \chi(\xi)
$$

studied in the Y. Morimoto - C.-J. Xu paper (J. Math. Kyoto Univ., 2007),

$$
\begin{gathered}
\mathcal{P} u \equiv \partial_{t} u+x \cdot \nabla_{y} u+\sigma_{0}\left(-\Delta_{x}\right)^{\alpha} u=f \\
(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}, \quad 0<\alpha<1, \quad \sigma_{0}>0
\end{gathered}
$$

To avoid the singularity at $\xi=0$, we define, with $\chi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$, $\chi \equiv 1$ near $0, \omega=1-\chi$,

$$
M(\xi)=|\xi|^{2 \alpha} \omega(\xi)+|\xi|^{2} \chi(\xi)
$$

Theorem B. $\|\mathcal{P} u\|+\|u\| \gtrsim\left\|\left|D_{x}\right|^{2 \alpha} u\right\|+\left\|\left\lvert\, D_{y} \frac{2 \alpha}{2^{2 \alpha+1}} u\right.\right\|$

$$
\mathcal{P}=\partial_{t}+x \cdot \nabla_{y}+\sigma_{0}\left(-\Delta_{x}\right)^{\alpha}
$$

Proof. Fourier transform with respect to (x, y),

$$
P=\partial_{t}-i \eta \cdot D_{\xi}+\sigma_{0}|\xi|^{2 \alpha}
$$

$$
P=\partial_{t}-\eta \cdot \partial_{\xi}+\sigma_{0}|\xi|^{2 \alpha}: \quad \text { following the flow of } \partial_{t}-\eta \cdot \partial_{\xi},
$$

which is divergence-free,

$$
\mathcal{P}=\partial_{t}+x \cdot \nabla_{y}+\sigma_{0}\left(-\Delta_{x}\right)^{\alpha}
$$

Proof. Fourier transform with respect to (x, y),

$$
P=\partial_{t}-i \eta \cdot D_{\xi}+\sigma_{0}|\xi|^{2 \alpha}
$$

$$
P=\partial_{t}-\eta \cdot \partial_{\xi}+\sigma_{0}|\xi|^{2 \alpha}: \quad \text { following the flow of } \partial_{t}-\eta \cdot \partial_{\xi},
$$

which is divergence-free,

$$
\left\{\begin{array} { l l }
{ s } & { = t } \\
{ x _ { 1 } } & { = \eta } \\
{ x _ { 2 } } & { = \xi + t \eta }
\end{array} \quad \left\{\begin{array}{ll}
t & =s \\
\eta & =x_{1} \\
\xi & =x_{2}-s x_{1}
\end{array}\right.\right.
$$

$$
\mathcal{P}=\partial_{t}+x \cdot \nabla_{y}+\sigma_{0}\left(-\Delta_{x}\right)^{\alpha}
$$

Proof. Fourier transform with respect to (x, y),

$$
P=\partial_{t}-i \eta \cdot D_{\xi}+\sigma_{0}|\xi|^{2 \alpha}
$$

$$
P=\partial_{t}-\eta \cdot \partial_{\xi}+\sigma_{0}|\xi|^{2 \alpha}: \quad \text { following the flow of } \partial_{t}-\eta \cdot \partial_{\xi}
$$

which is divergence-free,

$$
\begin{gathered}
\left\{\begin{array} { l l }
{ s } & { = t } \\
{ x _ { 1 } } & { = \eta } \\
{ x _ { 2 } } & { = \xi + t \eta }
\end{array} \quad \left\{\begin{array}{ll}
t & =s \\
\eta & =x_{1} \\
\xi & =x_{2}-s x_{1}
\end{array}\right.\right. \\
\frac{\partial}{\partial t}=\frac{\partial}{\partial s}+x_{1} \frac{\partial}{\partial x_{2}}, \quad \eta \cdot \frac{\partial}{\partial \xi}=x_{1} \cdot \frac{\partial}{\partial x_{2}}, \quad \partial_{t}-\eta \cdot \partial_{\xi}=\partial_{s} \\
P=\partial_{s}+\left|x_{2}-s x_{1}\right|^{2 \alpha}
\end{gathered}
$$

1. Examples of nonselfadjoint equations
2. Pseudodifferential techniques
3. A kinetic equation

Presentation
Proof
Geometry of the characteristics

Family of curves $\quad s \mapsto\left|x_{2}-s x_{1}\right|^{2 \alpha} \quad$ for $x_{1}^{2}+x_{2}^{2}=1, \quad \alpha=1 / 4$

1. Examples of nonselfadjoint equations 2. Pseudodifferential techniques 3. A kinetic equation

$$
P=\partial_{s}+\left|x_{2}-s x_{1}\right|^{2 \alpha}=\partial_{s}+\left|x_{1}\right|^{2 \alpha}\left|x_{2} / x_{1}-s\right|^{2 \alpha}
$$

$$
P=\partial_{s}+\left|x_{2}-s x_{1}\right|^{2 \alpha}=\partial_{s}+\left|x_{1}\right|^{2 \alpha}\left|x_{2} / x_{1}-s\right|^{2 \alpha}
$$

$$
\begin{aligned}
\left|x_{1}\right|^{\frac{2 \alpha}{2 \alpha+1}} \int|u(s)|^{2} d s= & \left|x_{1}\right|^{\frac{2 \alpha}{2 \alpha+1}} \int_{\left|x_{2}-s x_{1}\right|^{2 \alpha} \geq\left|x_{1}\right|^{\frac{2 \alpha}{2 \alpha+1}}}|u(s)|^{2} d s \\
& +\left|x_{1}\right|^{\frac{2 \alpha}{2 \alpha+1}} \int_{\left|x_{2}-s x_{1}\right|^{2 \alpha} \leq\left|x_{1}\right|} \frac{2 \alpha}{2 \alpha+1}|u(s)|^{2} d s
\end{aligned}
$$

$$
P=\partial_{s}+\left|x_{2}-s x_{1}\right|^{2 \alpha}=\partial_{s}+\left|x_{1}\right|^{2 \alpha}\left|x_{2} / x_{1}-s\right|^{2 \alpha}
$$

$$
\begin{aligned}
\left|x_{1}\right|^{\frac{2 \alpha}{2 \alpha+1}} \int|u(s)|^{2} d s= & \left|x_{1}\right|^{\frac{2 \alpha}{2 \alpha+1}} \int_{\left|x_{2}-s x_{1}\right|^{2 \alpha} \geq\left|x_{1}\right|^{2 \alpha+1}}|u(s)|^{2} d s \\
& +\left|x_{1}\right|^{\frac{2 \alpha}{2 \alpha+1}} \int_{\left|x_{2}-s x_{1}\right|^{2 \alpha} \leq\left|x_{1}\right|^{\frac{2 \alpha}{2 \alpha+1}}}|u(s)|^{2} d s
\end{aligned}
$$

We use a fractional version of Lemma A : the Lebesgue measure of $\left\{s,\left|x_{2}-s x_{1}\right|^{2 \alpha} \leq\left|x_{1}\right|^{\frac{2 \alpha}{2 \alpha+1}}\right\} \leq 2\left|x_{1}\right|^{-\frac{2 \alpha}{2 \alpha+1}}$ since

$$
\left|x_{2}-s x_{1}\right| \leq\left|x_{1}\right|^{\frac{1}{2 \alpha+1}} \Longrightarrow\left|x_{2} / x_{1}-s\right| \leq\left|x_{1}\right|^{\frac{1}{2 \alpha+1}-1=-\frac{2 \alpha}{2 \alpha+1}}
$$

$$
P=\partial_{s}+\left|x_{2}-s x_{1}\right|^{2 \alpha}=\partial_{s}+\left|x_{1}\right|^{2 \alpha}\left|x_{2} / x_{1}-s\right|^{2 \alpha}
$$

$$
\begin{aligned}
&\left|x_{1}\right|^{\frac{2 \alpha}{2 \alpha+1}} \int|u(s)|^{2} d s=\left|x_{1}\right|^{\frac{2 \alpha}{2 \alpha+1}} \int_{\left|x_{2}-s x_{1}\right|^{2 \alpha} \geq\left|x_{1}\right|^{2 \alpha+1}}|u(s)|^{2} d s \\
&+\left|x_{1}\right|^{\frac{2 \alpha}{2 \alpha+1}} \int_{\left|x_{2}-s x_{1}\right|^{2 \alpha} \leq\left|x_{1}\right|^{\frac{2 \alpha}{2 \alpha+1}}}|u(s)|^{2} d s
\end{aligned}
$$

We use a fractional version of Lemma A : the Lebesgue measure of $\left\{s,\left|x_{2}-s x_{1}\right|^{2 \alpha} \leq\left|x_{1}\right|^{\frac{2 \alpha}{2 \alpha+1}}\right\} \leq 2\left|x_{1}\right|^{-\frac{2 \alpha}{2 \alpha+1}}$ since

$$
\left|x_{2}-s x_{1}\right| \leq\left|x_{1}\right|^{\frac{1}{2 \alpha+1}} \Longrightarrow\left|x_{2} / x_{1}-s\right| \leq\left|x_{1}\right|^{\frac{1}{2 \alpha+1}-1=-\frac{2 \alpha}{2 \alpha+1}}
$$

$$
\left|x_{1}\right|^{\frac{2 \alpha}{2 \alpha+1}}\|u\|^{2}
$$

$$
\leq \int\left|x_{2}-s x_{1}\right|^{2 \alpha}|u(s)|^{2} d s+\left|x_{1}\right|^{\frac{2 \alpha}{2 \alpha+1}} 2\left|x_{1}\right|^{-\frac{2 \alpha}{2 \alpha+1}} \sup |u(s)|^{2}
$$

$$
P=\partial_{s}+\left|x_{2}-s x_{1}\right|^{2 \alpha}=\partial_{s}+\left|x_{1}\right|^{2 \alpha}\left|x_{2} / x_{1}-s\right|^{2 \alpha}
$$

$$
\begin{aligned}
&\left|x_{1}\right|^{\frac{2 \alpha}{2 \alpha+1}} \int|u(s)|^{2} d s=\left|x_{1}\right|^{\frac{2 \alpha}{2 \alpha+1}} \int_{\left|x_{2}-s x_{1}\right|^{2 \alpha} \geq\left|x_{1}\right|^{2 \alpha+1}}|u(s)|^{2} d s \\
&+\left|x_{1}\right|^{\frac{2 \alpha}{2 \alpha+1}} \int_{\left|x_{2}-s x_{1}\right|^{2 \alpha} \leq\left|x_{1}\right|^{\frac{2 \alpha}{2 \alpha+1}}}|u(s)|^{2} d s
\end{aligned}
$$

We use a fractional version of Lemma A : the Lebesgue measure of $\left\{s,\left|x_{2}-s x_{1}\right|^{2 \alpha} \leq\left|x_{1}\right|^{\frac{2 \alpha}{2 \alpha+1}}\right\} \leq 2\left|x_{1}\right|^{-\frac{2 \alpha}{2 \alpha+1}}$ since

$$
\left|x_{2}-s x_{1}\right| \leq\left|x_{1}\right|^{\frac{1}{2 \alpha+1}} \Longrightarrow\left|x_{2} / x_{1}-s\right| \leq\left|x_{1}\right|^{\frac{1}{2 \alpha+1}-1=-\frac{2 \alpha}{2 \alpha+1}}
$$

$$
\left|x_{1}\right|^{\frac{2 \alpha}{2 \alpha+1}}\|u\|^{2}
$$

$$
\leq \int\left|x_{2}-s x_{1}\right|^{2 \alpha}|u(s)|^{2} d s+\left|x_{1}\right|^{\frac{2 \alpha}{2 \alpha+1}} 2\left|x_{1}\right|^{-\frac{2 \alpha}{2 \alpha+1}} \sup |u(s)|^{2}
$$

$$
\leq \operatorname{Re}\langle P u, u\rangle+2 \sup |u(s)|^{2}
$$

$$
P=\partial_{s}+\left|x_{2}-s x_{1}\right|^{2 \alpha}, \quad\left|x_{1}\right|^{\frac{2 \alpha}{2 \alpha+1}}\|u\|^{2} \leq \operatorname{Re}\langle P u, u\rangle+2 \sup |u(s)|^{2}
$$

$2 \operatorname{Re}\langle P u, H(T-s) u\rangle \geq|u(T)|^{2} \Longrightarrow 2\|P u\|\|u\| \geq \sup |u(s)|^{2}$
$P=\partial_{s}+\left|x_{2}-s x_{1}\right|^{2 \alpha}, \quad\left|x_{1}\right|^{\frac{2 \alpha}{2 \alpha+1}}\|u\|^{2} \leq \operatorname{Re}\langle P u, u\rangle+2 \sup |u(s)|^{2}$
$2 \operatorname{Re}\langle P u, H(T-s) u\rangle \geq|u(T)|^{2} \Longrightarrow 2\|P u\|\|u\| \geq \sup |u(s)|^{2}$ and thus

$$
\left\lvert\, x_{1} \frac{2 \alpha}{2 \alpha+1}_{\frac{2 \alpha}{}\left\|^{2} \leq 5\right\| P u\| \| u\left\|\Longrightarrow\left|x_{1}\right|^{\frac{2 \alpha}{2 \alpha+1}}\right\| u\|\lesssim\| P u \| \quad \text { (integrals w.r.t. s). }}^{\text {s }}\right.
$$

$P=\partial_{s}+\left|x_{2}-s x_{1}\right|^{2 \alpha}, \quad\left|x_{1}\right|^{\frac{2 \alpha}{2 \alpha+1}}\|u\|^{2} \leq \operatorname{Re}\langle P u, u\rangle+2 \sup |u(s)|^{2}$
$2 \operatorname{Re}\langle P u, H(T-s) u\rangle \geq|u(T)|^{2} \Longrightarrow 2\|P u\|\|u\| \geq \sup |u(s)|^{2}$ and thus

$$
\left|x_{1}\right|^{\frac{2 \alpha}{2 \alpha+1}}\|u\|^{2} \leq 5\|P u\|\|u\| \Longrightarrow\left|x_{1}\right|^{\frac{2 \alpha}{2 \alpha+1}}\|u\| \lesssim\|P u\| \quad \text { (integrals w.r.t. s). }
$$

We get

$$
\left\||\eta|^{\frac{2 \alpha}{2 \alpha+1}} u\right\| \lesssim\left\|\left(\partial_{t}-\eta \cdot \partial_{\xi}+|\xi|^{2 \alpha}\right) u\right\|
$$

1. Examples of nonselfadjoint equations 2. Pseudodifferential techniques 3. A kinetic equation

$$
\left.c_{0}\| \| \eta\right|^{\frac{2 \alpha}{2 \alpha+1}} u\|\leq\|\left(\partial_{t}-\eta \cdot \partial_{\xi}+|\xi|^{2 \alpha}\right) u \|
$$

$$
c_{0}\left\||\eta|^{\frac{2 \alpha}{2 \alpha+1}} u\right\| \leq\left\|\left(\partial_{t}-\eta \cdot \partial_{\xi}+|\xi|^{2 \alpha}\right) u\right\|
$$

As a result

$$
\begin{aligned}
& (1+\beta)\left\|\left(\partial_{t}-\eta \cdot \partial_{\xi}+|\xi|^{2 \alpha}\right) u\right\|^{2}+\|u\|^{2} \\
& \geq \iiint|u|^{2}(\beta c_{0}^{2}|\eta|^{\frac{4 \alpha}{2 \alpha+1}}+|\xi|^{4 \alpha}+\underbrace{2 \alpha \eta \cdot \frac{\xi}{|\xi|}|\xi|^{2 \alpha-1}}_{\text {bad term }}+1) d t d \eta d \xi
\end{aligned}
$$

$$
c_{0}\left\||\eta|^{\frac{2 \alpha}{2 \alpha+1}} u\right\| \leq\left\|\left(\partial_{t}-\eta \cdot \partial_{\xi}+|\xi|^{2 \alpha}\right) u\right\|
$$

As a result

$$
\begin{aligned}
& (1+\beta)\left\|\left(\partial_{t}-\eta \cdot \partial_{\xi}+|\xi|^{2 \alpha}\right) u\right\|^{2}+\|u\|^{2} \\
& \geq \iiint|u|^{2}(\beta c_{0}^{2}|\eta|^{\frac{4 \alpha}{2 \alpha+1}}+|\xi|^{4 \alpha}+\underbrace{2 \alpha \eta \cdot \frac{\xi}{|\xi|}|\xi|^{2 \alpha-1}}_{\text {bad term }}+1) d t d \eta d \xi
\end{aligned}
$$

However, Hölder's inequality implies
$|\eta||\xi|^{2 \alpha-1}=\left(|\eta|^{\frac{4 \alpha}{2 \alpha+1}}\right)^{\frac{2 \alpha+1}{4 \alpha}}\left(|\xi|^{4 \alpha}\right)^{\frac{2 \alpha-1}{4 \alpha}} \leq \frac{2 \alpha+1}{4 \alpha}|\eta|^{\frac{4 \alpha}{2 \alpha+1}}+\frac{2 \alpha-1}{4 \alpha}|\xi|^{4 \alpha}$

$$
c_{0}\left\||\eta|^{\frac{2 \alpha}{2 \alpha+1}} u\right\| \leq\left\|\left(\partial_{t}-\eta \cdot \partial_{\xi}+|\xi|^{2 \alpha}\right) u\right\|
$$

As a result

$$
\begin{aligned}
& (1+\beta)\left\|\left(\partial_{t}-\eta \cdot \partial_{\xi}+|\xi|^{2 \alpha}\right) u\right\|^{2}+\|u\|^{2} \\
& \geq \iiint|u|^{2}(\beta c_{0}^{2}|\eta \eta^{\frac{4 \alpha}{2 \alpha+1}}+|\xi|^{4 \alpha}+\underbrace{2 \alpha \eta \cdot \frac{\xi}{|\xi|}|\xi|^{2 \alpha-1}}_{\text {bad term }}+1) d t d \eta d \xi
\end{aligned}
$$

However, Hölder's inequality implies
$|\eta||\xi|^{2 \alpha-1}=\left(|\eta|^{\frac{4 \alpha}{2 \alpha+1}}\right)^{\frac{2 \alpha+1}{4 \alpha}}\left(|\xi|^{4 \alpha}\right)^{\frac{2 \alpha-1}{4 \alpha}} \leq \frac{2 \alpha+1}{4 \alpha}|\eta|^{\frac{4 \alpha}{2 \alpha+1}}+\frac{2 \alpha-1}{4 \alpha}|\xi|^{4 \alpha}$ and for $\beta c_{0}^{2} \geq \frac{2 \alpha+1}{4 \alpha}$, we get

$$
\left\||\xi|^{2 \alpha} u\right\|+\left\||\eta|^{\frac{2 \alpha}{2 \alpha+1}} u\right\| \lesssim\left\|\left(\partial_{t}-\eta \cdot \partial_{\xi}+|\xi|^{2 \alpha}\right) u\right\|,
$$

which is Theorem B.

Geometry of the characteristics. We consider an operator

$$
\mathcal{L}=X_{0}+Q, \quad X_{0}^{*}=-X_{0}, \quad Q \geq 0
$$

so that X_{0} is the skew-adjoint part (e.g. a divergence-free vector field) and Q is the self-adjoint part (e.g. a Laplacean in some of the variables).

Geometry of the characteristics. We consider an operator

$$
\mathcal{L}=X_{0}+Q, \quad X_{0}^{*}=-X_{0}, \quad Q \geq 0
$$

so that X_{0} is the skew-adjoint part (e.g. a divergence-free vector field) and Q is the self-adjoint part (e.g. a Laplacean in some of the variables). An obvious thing to do: calculate

$$
\operatorname{Re}\langle\mathcal{L} u, u\rangle=\langle Q u, u\rangle \geq\|E u\|^{2}, \quad E \text { partially elliptic. }
$$

Of course it is not enough, even in the simplest models.

Geometry of the characteristics. We consider an operator

$$
\mathcal{L}=X_{0}+Q, \quad X_{0}^{*}=-X_{0}, \quad Q \geq 0
$$

so that X_{0} is the skew-adjoint part (e.g. a divergence-free vector field) and Q is the self-adjoint part (e.g. a Laplacean in some of the variables). An obvious thing to do: calculate

$$
\operatorname{Re}\langle\mathcal{L} u, u\rangle=\langle Q u, u\rangle \geq\|E u\|^{2}, \quad E \text { partially elliptic. }
$$

Of course it is not enough, even in the simplest models. The bicharacteristic curves of i $X_{0}=a^{w}$, a real-valued, are

$$
\dot{\gamma}(t ; x, \xi)=H_{a}(\gamma(t ; x, \xi))
$$

Evaluate the $\operatorname{Lebesgue}\left(\left\{t, q(\gamma(t, x, \xi)) \leq h^{k} \lambda\right\}\right)$ say $\lesssim h$,

Geometry of the characteristics. We consider an operator

$$
\mathcal{L}=X_{0}+Q, \quad X_{0}^{*}=-X_{0}, \quad Q \geq 0
$$

so that X_{0} is the skew-adjoint part (e.g. a divergence-free vector field) and Q is the self-adjoint part (e.g. a Laplacean in some of the variables). An obvious thing to do: calculate

$$
\operatorname{Re}\langle\mathcal{L} u, u\rangle=\langle Q u, u\rangle \geq\|E u\|^{2}, \quad E \text { partially elliptic. }
$$

Of course it is not enough, even in the simplest models. The bicharacteristic curves of i $X_{0}=a^{w}$, a real-valued, are

$$
\dot{\gamma}(t ; x, \xi)=H_{a}(\gamma(t ; x, \xi))
$$

Evaluate the $\operatorname{Lebesgue}\left(\left\{t, q(\gamma(t, x, \xi)) \leq h^{k} \lambda\right\}\right)$ say $\lesssim h$, then a subelliptic estimate with loss $k / k+1$ derivatives follows:

$$
\|\mathcal{L} u\| \gtrsim \lambda^{\frac{1}{k+1}}\|u\| .
$$

Geometry of the characteristics. We consider an operator

$$
\mathcal{L}=X_{0}+Q, \quad X_{0}^{*}=-X_{0}, \quad Q \geq 0
$$

so that X_{0} is the skew-adjoint part (e.g. a divergence-free vector field) and Q is the self-adjoint part (e.g. a Laplacean in some of the variables). An obvious thing to do: calculate

$$
\operatorname{Re}\langle\mathcal{L} u, u\rangle=\langle Q u, u\rangle \geq\|E u\|^{2}, \quad E \text { partially elliptic. }
$$

Of course it is not enough, even in the simplest models. The bicharacteristic curves of i $X_{0}=a^{w}$, a real-valued, are

$$
\dot{\gamma}(t ; x, \xi)=H_{a}(\gamma(t ; x, \xi))
$$

Evaluate the Lebesgue $\left(\left\{t, q(\gamma(t, x, \xi)) \leq h^{k} \lambda\right\}\right)$ say $\lesssim h$, then a subelliptic estimate with loss $k / k+1$ derivatives follows:

$$
\begin{gathered}
\|\mathcal{L} u\| \gtrsim \lambda^{\frac{1}{k+1}}\|u\| . \\
\text { The End }
\end{gathered}
$$

