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Note also from the previous computations that, with J = J*,
K* = —K , we have

2Re(Ju, Ku) = (Ju, Ku) + (Ku, Ju) = (K*J + J*K)u, u)

that is 2 Re(Ju, Ku) = ([J, K]u, u). The uncertainty relations are
based upon the non-commutation of the operators D,, ix which are
such that [Dy, 2imx] = Id.

A simple exercise (see next page): let H be a Hilbert space, J, K € B(H),
then [J, K] # Id. The observables of Quantum Mechanics are unbounded
operators.
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Claim: Let E be a Banach space and let J,K be bounded operators
on E. Then [J,K]#Id.
Reductio ad absurdum. If J, K are bounded operators with [J, K] = Id, then

(1) for all integers N > 1, [J,K"] = Nk
This is true for N = 1, and if true for some N > 1, then
U, KN = JkN ik — KV = 10, KNIK + KV K = KV = [0, kVIK 4+ KY = (V4 1)KY, ged.

Note that Property (1) implies that for all N € N*, K" £ 0: if we had K¥ =0
for some N > 2, then this would imply KV~ = 0 and eventually K = 0, which
is incompatible with [J, K] = Id. As a result, we get from () that for all N > 2,

NIIKM A< 201K < 20K K = N < 2] )IK]I,

which is impossible, proving the claim.
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(Dj — ixj)o = 5-=(0; + 27x;)¢po = 0,

2im
C%o = Ci™* ... Ci" o eigenvector with eigenvalue § + |a|, discrete spectrum

5 + N for the harmonic oscillator.
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We write again:

> (D —ig;)ull?® = (IDIPu, u) + (|6 u, U>*%<(diV¢)u, u).

1<<n

2 12 v(n—2)
‘D‘ 4m2|x]2 = 4x2|x|2’

Thus with ¢ = Vﬁ, we get i.e.

(=A) > ]X|_2 v(n—2—-v)

n—2

largest at v = 5

(Hardy's inequality).
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Kolmogorov equation. In a 1934 Annals of Mathematics two-page
paper (written in German) “zur Theorie der Brownschen Bewegung”,
A.N. Kolmogorov proposed a model for the 1D Brownian motion

with the equation
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ot y@x dy? , X =position, y =spee

Xo = 0r —y0x, X1 = 0, are divergence-free real vector fields,

and
K= Xo + Xle,

Tangent space=Lie(Xp, X1) since 0y = [Xp, X1]. The operator is
micro-hypoelliptic: WFu = WFKu (C* wave-front-sets). The
hypoellipticity follows from a 1967 Hormander theorem.



1. Examples of nonselfadjoint equations Uncertainty relations
Harmonic oscillator, Coulomb potential, Hardy’s inequality

Kolmogorov equation, Fokker-Planck equations

K:X0+X£X1 Xo :Ut*y(i)x, X1 ZOy

Loss of derivatives ? A priori estimates ? Everything can be
computed explicitely using the flow of Xp:



1. Examples of nonselfadjoint equations Uncertainty relations
Harmonic oscillator, Coulomb potential, Hardy’s inequality

Kolmogorov equation, Fokker-Planck equations

K:X0+X£X1 Xo :Ut*y(i)x, X1 ZOy

Loss of derivatives ? A priori estimates ? Everything can be
computed explicitely using the flow of Xp:

_ 9 _ 0 ,0 _

t =s 55 =t Yox =X

X = X1 = S5X2 8%1 = % X1 = SOy, +0x,
_ 9 _ _4+0 4, O

y =X Oxo t8x+8y



1. Examples of nonselfadjoint equations Uncertainty relations

Harmonic oscillator, Coulomb potential, Hardy’s inequality
Kolmogorov equation, Fokker-Planck equations

K=Xo+X{ X1, Xo=0r—ydx, X1=0,

Loss of derivatives ? A priori estimates ? Everything can be
computed explicitely using the flow of Xp:

_ 9 _ 0 ,0 _

t =s 55 =t Yox =X

X = X1 = S5X2 8%1 = % X1 = SOy, +0x,
_ 9 _ _4+0 4, O

y =X Oxo t8x+8y

K =05 — (s0y, + 0x,)* = iDs + (D2 + sDy1)?.
~ Y——
skew self and >0



1. Examples of nonselfadjoint equations Uncertainty relations
Harmonic oscillator, Coulomb potential, Hardy’s inequality

Kolmogorov equation, Fokker-Planck equations

K= Xo + Xle, Xo = 0 — y()x X1 = ()y

Loss of derivatives ? A priori estimates ? Everything can be
computed explicitely using the flow of Xp:

_ o _90_,90 _

t =s 95 — ot Yox = X0

X = X1 — SX2 8%(1 = % X1 = 58X1+8X2
_ 0 _ _3+0 4 0

y =X Oxo t8x+8y

K =05 — (s0y, + 0x,)* = iDs + (D2 + sDy1)?.
~ Y——
skew self and >0

It is easy to solve explicitely that ODE with parameters: Fourier
transform in the xq, x> variables and we have to deal with

d

P (& +s€1)?
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For K=4 1+ (& +561)%  we have for & # 0

K= %+512(52/§1+s)2 =i(Ds=iXo%), 0 =st&H/6,A =67

and we get the standard subelliptic ||Kv| > AY3||v|| = &[>3 v].

Moreover Re(Kv, v) = ||(& + s&1)v||? so that
lull + 1Kull Z 101> ull + [I(D2 + sDy)u]

which is an optimal estimate.
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1. Examples of nonselfadjoint equations Uncertainty relations
Harmonic oscillator, Coulomb potential, Hardy’s inequality

Kolmogorov equation, Fokker-Planck equations

Fokker-Planck equations

v _d
P= v -0x—V,V-0, A, + - =
propagation ~—
skew-adjoint harmonic oscillator

self-adjoint >0

divergence-free vector field L . .
g missing the x directions

With P = Xo + > 1<j<d GjCf', we expect that a suitable
assumption on the potential V/(x) will ensure that the iterated
brackets of Xy, Ci, ..., Cy have some ellipticity property (here the
creation operators are the C; = % +ivj/2).

J
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2. Pseudodifferential techniques

Wick quantization. X, Y € R?", T(X,Y) = e 3IX=YP g—in[X, Y]
with [X, Y] =[(x,£), (y,m)] =&y —n-x.

We define

n —m|x—y|? 2ir(x—%)-
(W)(y,m) = (U, yn)2(eny,  pyn(x) = 2"t Pe2inbs)m,

We have W : L2(R") — L2(IR?") isometric, not onto,

W*W = Id;>gny :  reconstruction formula, W isometric,

WW* =Tlg: projection operator onto ranW with oper-kernel I1.
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2. Pseudodifferential techniques Subellipticity for pseudodifferential equations

Commutator argument

Let a be a Hamiltonian: we can use the Weyl quantization with
the formula

(@u)) = [ [ e r9a LY €ty dyet

or the Wick quantization as given by a"Vick = W*alW,

L2(R2n) a L2(R2n)

(multiplication by a)

W] [

PRY  —— PR

aWick
If ais a semi-classical symbol, i.e. such that
_ 1y lalF18I
(9207 a)(x,&, h)| < Caph™" 2

then a"Vick — a7 € B(L?(R™)) so the change is harmless if we
expect to prove some subelliptic estimate.
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Commutator argument

Subellipticity for pseudodifferential equations. We consider an
evolution equation

Dt + iq(t,X,f)W, 0 S qc Sslemiclass‘
We replace it by
. Wick __ * :
D; + iq(t, x, €) = W*(D: +iq) W,

and we apply the isometric W to get a somehow equivalent
evolution equation

D; + iMpgMg, Mg = WW* Toeplitz operator.

We start with the study of the ODE D; + ig: not so difficult but
we need a
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2. Pseudodifferential techniques Subellipticity for pseudodifferential equations

Commutator argument

Lemma A. Let k > 1,6 > 0,C > 0, / be an interval of R,
f : ] — R such that
inf [F(K)(t)] > 6.

tel
Then for all h > 0,

{t € 1,|f(t)] < Ch*}| < ha(C/5, k).

Proof by induction on k and we note that the conclusion can be
fulfilled for k non-integer for some f merely continuous (e.g.
fractional powers).
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Theorem A. g € S} real-valued such that

semiclas

q=0=d,¢q=0 (e.g. g >0). Then, if |0fqlh>6>0
1

[Deu+iq(t, x, Di)ul| Z h™ =T |uf
This is a subelliptic estimate and we describe here an extension of
a method used by F. Treves to handle this type of estimate.
Proof, step 1: use the reduction to D; + illgqlg, My = WW*
Toeplitz operator introduced above,
Proof, step 2: use the Lemma A on the Lebesgue measure to
handle the ODE D; + iq.
Proof, step 3: since for & = W,

known from step 2

—
Di® + ig® = Dy +igMo® = Dy + iMogMo® +i(/ — Mo)gd =

Di® + iMogMo® +i  [q,Mo|® we need to handle that commutator.
—_——
L&: under scope a commutator term
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Commutator argument

Commutator argument
The unwanted term here is with ® = Wu

I, NoJ|1? < / / | ¢ 2|0 Pdxde + C[o]2

We can control |q)’<£\2 by C|q| since g =0 = d,¢q = 0: the
metric

dx? + d¢? 5
= ——7, At =1 dx
&= Ntx ) (t,x,6) = 1+ |q] + [dieql
is such that g € S(\,g), and %Iql
will provide for free a term (|q|®, ®).

~ 1 and the energy method
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3. A kinetic equation

Presentation. Boltzmann equation: 0 < (¢, x, v) probability
density, x € ]Rd, v E ]Rd, t >0,
ot +(v-V)f = Q(f,F)(t,x,v) ,

Vv
transport Collision term with some
negativity properties

Q(f, F) —/ / B(v — v ){ F(V)F(V) — F()F(v) }dod,
R3 J§?
with
V4 ve o |v— v V4 ve  |v— v
V/: 2*+ 2*0_’ Vi: 2*_ 2*
Conservation of momentum: v + v, = v/ + v/,
Conservation of kinetic energy: |v|? + |vi|? = |V/|2 + | V.

2.
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3. A kinetic equation

Presentation. Boltzmann equation: 0 < (¢, x, v) probability
density, x € ]Rd, v E ]Rd, t >0,
ot +(v-V)f = Q(f,F)(t,x,v) ,

Vv
transport Collision term with some
negativity properties

Q(f, F) —/ / B(v — v ){ F(V)F(V) — F()F(v) }dod,
R3 J§?
with
V4 ve o |v— v V4 ve  |v— v
V/: 2*+ 2*0_’ Vi: 2*_ 2*
Conservation of momentum: v + v, = v/ + v/,
Conservation of kinetic energy: |v|? + |vi|? = |V/|2 + |V]|2.

The cross-section B(z, o) depends only on |z| and cosf = <‘Z‘,a>.
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3. A kinetic equation Geometry of the characteristics

V — Vi

B(v — vi,0) = ®(|v — vi|)b(cos#), cosh = ( |,a)

v — v

<D(|v—v*|):\v—v*|%i, b(cosf) ~ kO 22 k>0
0 —0

1
O<a= 1< 1, b(cos®) is not integrable on S?.
r}/ J—
We have
I(=2)*2F | S (~Q(F, ). F) + I

and the subelliptic properties of the Boltzmann equation are
closely related to the properties of the equation
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3. A kinetic equation Geometry of the characteristics

studied in the Y. Morimoto — C.-J. Xu paper (J. Math. Kyoto
Univ., 2007),

Pu=0iu+x-Vyu+oo(—Ax)u =",
(x,y) eER"XR" O0<a<l, og9>0.

To avoid the singularity at £ = 0, we define, with x € C°(R"),
X=1lnear0,w=1-—y,

M(&) = [£PPw(&) + 1€°x (&)

2a
Theorem B. [[Pul| + [lu]] 2 [[ID:[2u] + 1D, |25 u]
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Proof. Fourier transform with respect to (x, y),
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P =0+ x-V,+oo(—Ax)"

Proof. Fourier transform with respect to (x, y),
P = 0; — in - D¢ + oo|€|?*
P =0 —n-0+00l¢[**: following the flow of 9; — 1 - Ok,

which is divergence-free,

S =t t =S

X1 =" n o o=x1

xp =&+t § =x2—sx
0 0 d 0 0
a—a‘i-xla—xza 77'8—§—X1'8—X27 Oy —n - 0 = 05

P = 85 + |xo — sx1|**
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Family of curves s+ |x —sxq[?* forx2+x3 =1, a=1/4
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P=0s+ |x— 5X1\2”' = 0s + \Xl\z“\xz/xl — 5\2”’
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P =05+ |xo — sx1 2% = 05 + |x1|*Y|xa/x1 — 5|**

M / u(s)2ds = || 2557 / . Ju(s)ds
|X2—SX1|20‘2|X1|20¢7+1

20 2
+ |xa |21 2 |U(S)|7ds
xa—sx1 |2 <|xq | 2241
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P =05+ |xo — sx1 2% = 05 + |x1|*Y|xa/x1 — 5|**

M / u(s)2ds = || 2557 / . Ju(s)ds
|X2—SX1|2°‘2|X1|20¢7+1

20 2
+ |xa |21 2 |U(S)|7ds
xa—sx1 |2 <|xq | 2241

We use a fractional version of Lemma A: the Lebesgue measure of
2c _ 2 .

{s,|x2 — sx1|?% < |xq|2a+1} < 2|xq| 2241 since

1=

e —sa| < |X1|2alﬁ = |x/x1 — 5| < |X1|2‘11ﬁ_ — 2%
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P = 0s + |x2 — sx1]?% = 0s + |x1|*¥|x2/x1 — 5[**

M / u(s)2ds = || 2557 / . Ju(s)ds
|X2—SX1|2°‘2|X1|20¢7+1

20 2
+ |xa |21 2 |U(S)|7ds
xa—sx1 |2 <|xq | 2241

We use a fractional version of Lemma A: the Lebesgue measure of
2c _ 2 .

{s,|x2 — sx1|?% < |xq|2a+1} < 2|xq| 2241 since

1=

e —sa| < |X1|2alﬁ = |x/x1 — 5| < |X1|2‘11ﬁ_ — 2%

It | 2057 || |2

< /|x2—sx1|2o‘|u(s)|2ds—|— x| 2551 2|xg | 2091 sup | u(s)[?
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P = 0s + |x2 — sx1]?% = 0s + |x1|*¥|x2/x1 — 5[**

M / u(s)2ds = || 2557 / . Ju(s)ds
|X2—SX1|2°‘2|X1|20¢7+1

20 2
+ |xa |21 2 |U(S)|7ds
xa—sx1 |2 <|xq | 2241

We use a fractional version of Lemma A: the Lebesgue measure of
2 _ 2 .
{s,|xa — 5x1]?% < |xq|2a+1} < 2|xq|” 241 since

e — sx1| < | = |xa/xi — s| < |x |7 I mE

221 2
< [ |x- 20 2 L — 2 2
< 2 — sx1|“¥|u(s)|°ds + |x1|22+12|xq | 2241 sup |u(s)|

< Re(Pu, u) + 2sup |u(s)|?.
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2a
)

P =0+ |x —sq 21 || ul|? < Re(Pu, u) + 2sup |u(s)|?

Ix1
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P =0+ |x —sal?®,  |xi|=01]u]? < Re(Pu, u) + 2sup |u(s)[?

2Re(Pu, H(T — s)u) > |u( T)\2 = 2||Pul|||u|| > sup \u(s)|2
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P =0+ |x —sal?®,  |xi|=01]u]? < Re(Pu, u) + 2sup |u(s)[?

2Re(Pu, H(T — s)u) > |u( T)\2 = 2||Pul|||u|| > sup \u(s)|2 and
thus

|25 |[u]]? < 5| Pul|jull = [x1 |25 |u]] S [|Pul|  (integrals w.r.t. s)
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P =0+ |x —sal?®,  |xi|=01]u]? < Re(Pu, u) + 2sup |u(s)[?

2Re(Pu, H(T — s)u) > |u( T)\2 = 2||Pul|||u|| > sup \u(s)|2 and
thus

|25 |[u]]? < 5| Pul|jull = [x1 |25 |u]] S [|Pul|  (integrals w.r.t. s)

We get
2o
]2+t ull S 11(De =1 - e + €17 ull
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As a result
(14 B)1(@: — -9 + 1€P*)ul® + [l ul?
/// P (BeRln|=T + |¢* + 2an mmml +1) dtdnde.

bad term
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21yl < [|(0 — - O + |E[PY)u||

[l

As a result
(14 B)1(@: — -9 + 1€P*)ul® + [l ul?
/// P (BeRln|=T + |¢* + 2an mmml +1) dtdnde.

bad term
However, Holder's inequality implies

- _4a | 2041 20-1 2o+ 1 w0 2o
nlg)>*~ = (In|zast) o (|g*) = < ol LI s

1
€[
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2« . ‘
21yl < [|(0 — - O + |E[PY)u||

[l

As a result
(14 B)1(@: — -9 + 1€P*)ul® + [l ul?
/// P (BeRln|=T + |¢* + 2an mmml +1) dtdnde.

bad term
However, Holder's inequality implies
_ _4a_| 2041 22-1 Qa+1, | 4 2«
][22 = (|n|zas1) e (Jgf*) = < ol LI s

and for B¢ > 29t we get

1
€[

€2 ull + [1nl257 ull < 11(0e — - B + [€**)ul,

which is Theorem B.
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Geometry of the characteristics. We consider an operator
L=Xo+Q, Xy=-Xo, Q=>0,

so that Xj is the skew-adjoint part (e.g. a divergence-free vector
field) and Q is the self-adjoint part (e.g. a Laplacean in some of
the variables).
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L=Xo+Q, Xy=-Xo, Q=>0,

so that Xj is the skew-adjoint part (e.g. a divergence-free vector
field) and Q is the self-adjoint part (e.g. a Laplacean in some of
the variables). An obvious thing to do: calculate

Re(Lu,u) = (Qu,u) > ||Eul|?, E partially elliptic.

Of course it is not enough, even in the simplest models.
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L=Xo+Q, Xy=-Xo, Q=>0,

so that Xj is the skew-adjoint part (e.g. a divergence-free vector
field) and Q is the self-adjoint part (e.g. a Laplacean in some of
the variables). An obvious thing to do: calculate

Re(Lu,u) = (Qu,u) > ||Eul|?, E partially elliptic.

Of course it is not enough, even in the simplest models. The
bicharacteristic curves of iXg = a%, a real-valued, are

Yt x,€) = Ha(y(t: x,€))
Evaluate the Lebesgue({t, q(v(t,x,f)) < hk)\}) say < h,
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Geometry of the characteristics. We consider an operator
L=Xo+Q, Xy=-Xo, Q=>0,

so that Xj is the skew-adjoint part (e.g. a divergence-free vector
field) and Q is the self-adjoint part (e.g. a Laplacean in some of
the variables). An obvious thing to do: calculate

Re(Lu,u) = (Qu,u) > ||Eul|?, E partially elliptic.

Of course it is not enough, even in the simplest models. The
bicharacteristic curves of iXg = a%, a real-valued, are

Yt x,€) = Ha(y(t: x,€))
Evaluate the Lebesgue({t, q(v(t,x,f)) < hk)\}) say < h, then a

subelliptic estimate with loss k/k + 1 derivatives follows:

Lull 2 A7 [|u].
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Geometry of the characteristics. We consider an operator
L=Xo+Q, Xy=-Xo, Q=>0,

so that Xj is the skew-adjoint part (e.g. a divergence-free vector
field) and Q is the self-adjoint part (e.g. a Laplacean in some of
the variables). An obvious thing to do: calculate

Re(Lu,u) = (Qu,u) > ||Eul|?, E partially elliptic.

Of course it is not enough, even in the simplest models. The
bicharacteristic curves of iXg = a%, a real-valued, are

Y(tix, ) = Ha(v(t: x,€))
Evaluate the Lebesgue({t, q(v(t,x,f)) < hk)\}) say < h, then a
subelliptic estimate with loss k/k + 1 derivatives follows:
l£ull 2 A% u].
The End
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