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Differential Equations
Tutorial #1: answers.

Exercise 1. Solve the following non-homogeneous linear differential equation:

f (3) = 4f (2) − 5f ′ + 2f + 4e3t

with the initial conditions

f(0) = 7, f ′(0) = 15, f ′′(0) = 40.

Solution. We call (E) the equation. By the linear Cauchy-Lipschitz theorem, there will be
a unique solution satisfying the initial condition; it will even be defined on all the interval
(unspecified here, so we take it to be R).
We first consider the associated homogeneous equation (EH):

f (3) = 4f (2) − 5f ′ + 2f.

The linear Cauchy-Lipschitz theorem predicts that all solutions are defined on R, and that the
set SH of solutions of (EH) is a 3-dimensional vector space. A basis can be given computing the
eigenvalues of the associated matrix:

A =

0 1 0
0 0 1
2 −5 4

 .
The characteristic polynomial of A is χA(λ) = −λ3+4λ2−5λ+2 (which also is the “characteristic
equation” in the old-style method); it has 1 as an obvious root. Now −λ3 + 4λ2 − 5λ + 2 =
−(λ − 1)(λ2 − 3λ + 2); here again 1 is an obvious root of the second factor, which yields
χA(λ) = −(λ− 1)2(λ− 2).
It follows that the roots are, with multiplicity, 1, 1, 2; consequently, the functions et, tet, e2t form
a basis of the space SH . Now always by the Cauchy-Lipschitz theorem, the space S of solutions
of (E) is an affine space directed by SH , i.e. S = f1 + SH where f1 is any solution of (E).
It is reasonable to look for one admissible f1 as λe3t; such a function is a solution iff 33λ =
4 · 32λ − 5 · 3λ + 2λ + 4, i.e. iff 4λ = 4. So the map e3t is a solution of (E), and by the above,
any solution of (E) is of the form:

aet + btet + ce2t + e3t

It remains to find the only triple (a, b, c) satisfying the initial condition (existence and uniqueness
have already been explained above). This gives rise to the linear system:

a +c = 7− 1
a +b +2c = 15− 3
a +2b +4c = 40− 9

In augmented matrix form, using Gauß elimination: 1 0 1 6
1 1 2 12
1 2 4 31

 −−−−−−−→
L2←L2−L1
L3←L3−L1

 1 0 1 6
0 1 1 6
0 2 3 25

 −−−−−−−−→
L3←L3−2L2

 1 0 1 6
0 1 1 6
0 0 1 13


Hence c = 13 and a = b = −7. As a conclusion, the only solution is:

−7(1 + t)et + 13e2t + e3t
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Exercise 2. Solve the following ordinary differential equation:

(E) : F ′(t) = A · F (t) +B(t),

where
A =

(
2 3
−1 −2

)
, and B(t) =

(
1
b(t)

)
.

Hint: first solve the homogeneous equation, then try to find a special solution of (E) of the form
F (t) = exp(tA) · Λ(t), with Λ : R→M2(R) a differentiable map.

Solution. We first attack the homogeneous equation (EH) : F ′(t) = A · F (t). As we know,
solutions are of the form exp(tA) ·X0, where the initial condition X0 ranges over R2.
We then look for one solution of (E) in the recommended form, namely as F1(t) = exp(tA) ·Λ(t).
For this to be a solution, one needs:

(exp(tA) · Λ(t))′ = A exp(tA)Λ(t) +B(t),

which simplifies into exp(tA) · Λ′(t) = B(t), or equivalently Λ′(t) = exp(−tA) · B(t), which we
now determine.
To compute the matrix exponential we determine the eigenvalues: since tr(A) = 0 and det(A) =
−1, they are ±1. Let us determine the corresponding eigenspaces:

E1(A) = ker(A− I2) = ker
(

1 3
−1 −3

)
= R

(
3
−1

)
;

and
E−1(A) = ker(A+ I2) = ker

(
3 3
−1 −1

)
= R

(
1
−1

)
.

So let us introduce the coordinate change matrix:

P =
(

3 1
−1 −1

)

which has inverse
P−1 = −1

2

(
−1 −1
1 3

)
= 1

2

(
1 1
−1 −3

)
.

Now PAP−1 and P (tA)P−1 are diagonal, with:

P (tA)P−1 =
(
t
−t

)
,

the exponential of which is easy to guess, so that:

exp(tA) = P−1
(
et

e−t

)
P

= 1
2

(
1 1
−1 −3

)(
et

e−t

)(
3 1
−1 −1

)

= 1
2

(
1 1
−1 −3

)(
3et et

−e−t −e−t

)

= 1
2

(
3et − e−t et − e−t

3(e−t − et) 3e−t − et

)

2



sol
uti

on
s

We then get (mind the −t, which is what we want):

exp(−tA) ·B(t) = 1
2

(
−et + 3e−t −et + e−t

3(et − e−t) 3et − e−t

)
·
(

1
b(t)

)
Integrating formally one then gets Λ(t) and F1(t) = exp(tA) · Λ(t) explicitly. One can check,
with patience, that this is a solution.
Finally, the general solution of (E) has the form F1(t) + exp(tA) · F0 for F0 ∈ R2.

Exercise 3. Determine the exponential of the following matrix:

A =

 2 1 −1
−1 0 1
0 0 2


Solution. We first determine the spectre by computing the characteristic polynomial, which we
obtain by expanding the first column:

χA(λ) = |A− λI3| = (2− λ) ·
∣∣∣∣∣−λ 1

0 2− λ

∣∣∣∣∣+
∣∣∣∣∣1 −1
0 2− λ

∣∣∣∣∣
= −λ · (2− λ)2 + (2− λ) = (2− λ)(1− 2λ+ λ2)
= −(λ− 2)(λ− 1)2

At this stage it is unclear whether the matrix will be diagonalisable, but this does not look
favorable. And a computation confirms this:

E1(A) = ker

 1 1 −1
−1 −1 1
0 0 1

 = ker
(

1 1 0
0 0 1

)
= R

 1
−1
0


which is 1-dimensional, whereas the algebraic multiplicity of the eigenvalue 1 is equal to 2. Still,

we let v1 =

 1
−1
0

.
We have to dig deeper and investigate:

ker(A− I3)2 = ker

0 0 −1
0 0 1
0 0 1

 = Vect


1

0
0

 ,
0

1
0




So the vector v2 =

1
0
0

 lies in the second kernel, but not in the first (in symbols, v2 ∈ ker(A−

I3)2 \ ker(A− I3)). Notice that there are many possible choices for v2.
We finally turn to:

E2(A) = ker

 0 1 −1
−1 −2 1
0 0 0

 = R

 1
−1
−1



and we let v3 =

 1
−1
−1

.
All the above suggests to introduce the coordinate change matrix from the standard basis to
basis (v1, v2, v3):

P =

 1 1 1
−1 0 −1
0 0 −1
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which has inverse:

P−1 = −

 0 1 −1
−1 −1 0
0 0 1

 =

0 −1 1
1 1 0
0 0 −1


It is a fact only discretely suggested in class that P−1AP has a decent form; let us check it here:

P−1AP =

0 −1 1
1 1 0
0 0 −1


 2 1 −1
−1 0 1
0 0 2


 1 1 1
−1 0 −1
0 0 −1


=

0 −1 1
1 1 0
0 0 −1


 1 2 2
−1 −1 −2
0 0 −2


=

1 1 0
0 1 0
0 0 2


The latter rewrites as D +N , where:

D =

1
1

2

 and N =

0 1 0
0 0 0
0 0 0


are diagonal, resp. nilpotent (N2 = 0), and commute.
From this we obtain:

exp(P−1AP ) = exp(D) · exp(N) =

e e
e2

 ·
1 1 0

0 1 0
0 0 1

 =

e e 0
0 e 0
0 0 e2


It remains to compute:

exp(A) = P exp(P−1AP )P−1 =

 1 1 1
−1 0 −1
0 0 −1


e e 0

0 e 0
0 0 e2


0 −1 1

1 1 0
0 0 −1


=

 1 1 1
−1 0 −1
0 0 −1


e 0 e
e e 0
0 0 −e2


=

2e e e− e2

−e 0 e2 − e
0 0 e2
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