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1. Introduction

1.1. The present course comes from a
series of lectures we gave at Wuhan Univer-
sity, but its contents are significantly larger.
Our aim was to provide an introduction for
the understanding of the paper “The hyper-
focal subalgebra of a block” [10], to students
in group theory.

1.2. The subject of that paper, namely
the existence and the uniqueness of the hy-
perfocal subalgebra of a block, seems funda-
mental in Brauer block theory; for instance,
an important result in block theory, the
structure of the source algebra of a nilpotent
block (the main result in [9]), can be obtained
as a corollary. We subsequently succeeded
in shortening the proof and decided to issue
a complete and self-contained account which
will allow, we hope, a better understanding
of the subject.

1.3. About sixty years ago, Richard
Brauer introduced the block theory; his
purpose was to study the group algebra kG
of a finite group G over a field k of nonzero
characteristic p: any indecomposable two-
sided ideal which is also a direct summand of
kG determines a G-block. But Brauer’s main
discovery was perhaps the existence of fami-
lies of infinitely many nonisomorphic groups
having “a block in common”. Of course, the
expression “a block in common” demands a
definition; actually, more than one reason-
able definition might exist.

1.4. Our point of view is to consider
the so-called source algebra of a G-block,
which we introduced in “Pointed groups and
construction of characters” [7]; the origi-
nal purpose was just to study the nilpo-
tent blocks mentioned above, which were
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already introduced in “A Frobenius theorem
for blocks” [2]. Once the source algebra of
a nilpotent block was determined in “Nilpo-
tent blocks and their source algebras” [9], it
became more and more clear that the source

algebra of a G-block determines everything
concerning the G-block. Thus, for us, to say
that two groups have “a block in common”
means that we find a block in each one in
such a way that the corresponding source al-
gebras are isomorphic.

1.5. In this course, all the concepts men-
tioned above are carefully introduced. To
follow the exposition just requires familiar-
ity with the contents of [12], Wedderburn’s
Theorem, Nakayama’s Lemma and other ba-
sic algebraic topics; in other words, in this
text all the proofs are complete.

1.6. In order to study the relationship
between kG and the group algebra CG over
the complex numbers, Brauer considers the
group algebra OG over a local ring O of char-
acteristic zero fulfilling O/J(O) = k; then,
to relate kG and OG, the basic result con-
cerns the relationship between the idempo-
tents. Thus, we start by considering in §2
sufficient conditions on O to lift idempotents
from A/J(A) to A, for any O-algebra A ; our
method comes from [13,I1,§4].

1.7. In general, we do not need more hy-
potheses on k, and in those cases where we
do need k be “big enough”, we simply assume
that k is algebraically closed. From §3 on, we
assume that O is a complete discrete valua-
tion ring, which is enough for lifting idempo-
tents; we allow the possibility O = k, except
in the last three sections where the charac-
teristic of O has to be zero.
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1.8. In §3, we introduce the points and
the divisors on an O-algebra A ; actually, the
divisors on A and the isomorphism classes of
projective A-modules basically coincide, but
when considering several O-algebras together
with several algebra homomorphisms, the
divisor point of view is easier. Previously we
only considered points on A; in the present
course, the divisor point of view allows us to
replace the previous “embeddings” (see [7])
by the so-called embeddable isomorphisms.

1.9. In §4 we already consider a finite
group G, and an O-algebra A endowed with
a G-action, called a G-algebra; in fact, we
will consider a more general situation. Thus,
for any subgroup H of G, we can consider
the subalgebra A of elements fixed by H
and the divisors of AH, called H-divisors
on A. Then, an important construction is
the H-algebra A, relative to an H-divisor w
on A. Actually, A, is only defined up to an
embeddable isomorphism; this is a question
that we will analyse with care.

1.10. In §5, the advantage in considering
divisors instead of merely considering points
can already be understood; it is in the set of
all the H-divisors on A, when H runs over
the set of all the subgroups of G, that “res-
triction” and “induction” can be handled.
For the induction of H-divisors, we have to
construct a suitable G-algebra, in particular,
we get a generalization of the Higman Pro-
jectivity Condition. The H-divisors on A,
and their restrictions and inductions, have
already been introduced in “Induction, re-
striction and G-algebras” [1], but note that
the definition of the induction there does not

coincide with ours.
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Introduction

1.11. In §6, we introduce the local
pointed groups on A, together with the
source algebra of the H-algebra Ag associa-
ted with an H-point on A. In §7, we prove a
generalization of the Green Indecomposabi-
lity Theorem; this generalization is already
known (see [6] and [14,85]), but our proof
here is possibly new. In §8, we begin the
preparatory work for the proof of the exis-
tence of the hyperfocal subalgebra; here, in a
more general context than in [8], we intro-
duce the so-called A-fusions.

1.12. The A-fusions between K-divisors
on A, where K runs over the set of sub-
groups of G, is a very important tool because
if some K-divisors on A are “contained” in

an H-divisor w on A then their A-fusions

are preserved in the corresponding H-algebra
A, . As a matter of fact, we give a definition
of the A-fusions which improves on the for-
mulation given in [10]. Following a remark of
Fan Yun, we obtain results in §9 more general
than the corresponding ones in [10]; in §9, we
reach a key step in the proof for the existence
of the hyperfocal subalgebra.

1.13. In §10, we apply all the definitions
and results above to the case of the group
algebra; for instance, the G-points on OG are
just the G-blocks. In general, all the results
above have a particular form in the group
algebra; thus, here we prove again the main
result in {8] on the OG-fusions between the
local pointed groups on OG. Actually, the
OG-fusions between the local pointed groups
on OG only depend on the OG-fusions of
“few” local pointed groups to themselves,
like the maximal ones and the so-called

essential local pointed groups.
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1.14. In order to formulate this state-

ment we introduce in §11 the essential
pointed groups along with suitable defini-
tions; the fact that the OG-fusions only de-
pend on some OG-autofusions is also a key
point in the proof of existence of the hyperfo-
cal subalgebra. In §12, we study the particu-
larities of the source algebra of a G-block; we
exhibit an example with infinitely many pair-
wise nonisomorphic groups having “a block
in common”: the source algebras of their
principal blocks are pairwise isomorphic.

1.15. In §13, we introduce the hyperfocal
subalgebra in the source algebra of a G-block;
in general, in the algebra of a G-block there
is no such structure: this fact shows the ad-
vantage in considering the source algebra.
There, we describe the local pointed groups
on the hyperfocal subalgebra and the fusions
between them; moreover, from the existence
of the hyperfocal subalgebra we can already
prove the theorem on the structure of the
source algebras of nilpotent blocks.

1.16. In §14 and §15, we need some re-
sults on p-adic analysis; they basically de-
pend on the existence of the erponential
and the logarithmic functions in commuta-
tive O-algebras. In order to avoid any in-
terruption in the exposition, we collect these
results in §16.

1.17. Finally, in §14 and §15, we prove
the existence and the uniqueness of the
hyperfocal subalgebra; actually, because we
argue by induction, in order to prove exis-
tence we need to frame the uniqueness in a
stronger way. In §14, we prove this stronger
form of uniqueness employing a result of §16
which can be considered a result on noncom-
mutative cohomology: roughly speaking it
says that some 1-cocycle is a 1-coboundary.
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Introduction

1.18. In §15, we prove the existence
of the hyperfocal subalgebra; the key to the
proof is the existence of a suitable lifting (see
Corollary 15.9): in [4], Fan Yun already ob-
tained a result of this type. The proof we
give here is partially different from the proof
in [10]; in particular, the proof in [10] em-
ploys some results of [11] which are no longer
necessary here.

1.19. The elaboration of this course has
been made possible thanks to the collabo-
ration of many people: The invitation by
Wuhan University. The organization of
the series of lectures by Fan Yun, who
revised both the Chinese writing and the
mathematical content in this course with
great care, and encouraged me to issue a
complete account on the hyperfocal subal-
gebra. Zhang Ji Ping prepared for me
a mathematical English-Chinese vocabulary.
Joe Chuang carefully revised the English
part of this introduction. Alberto Arabia
created a computer program allowing me
to employ Chinese characters in my usual
TEX program, and a second one for the
two-column pattern. My Chinese language
teacher, Ru Xiao Lei, and my wife Isabel
helped me to implement the codes of about
seven thousand Chinese characters on the
computer. I deeply thank them all.
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2. Lifting Idempotents

2.1. In order to lift idempotents from
characteristic p to characteristic zero, the
safest method is to work over a complete
discrete valuation ring of characteristic zero
with a residue field of characteristic p. Yet,
as a matter of fact, the completeness is a suf-
ficient but not necessary condition. In this
section, we will discuss on this question.

2.2. Let O be a discrete valuation ring
such that k = O/J(O) is a field of charac-
teristic p, where J(O) denotes the radical
of O, and that its field of quotients X
has characteristic zero. That is to say,

we have a surjective group homomorphism
9: K* — Z fulfilling

{Aek|9() >0} =0—{0};

in particular, there is # € O such that
J(O) = 7O. Note that, if K’ is a Galois
extension of X, then from the norm map
MN: K™ — K* it is not difficult to define a sur-
jective group homomorphism ¥: K'* — Z;
moreover, it is easy to check that the set

N e K™ |nN) e 0}u {0}

coincides with the integral closure O’ of O
in X’; in other words, O’ still is a discrete
valuation ring.

2.3. Let {MA}nen be a sequence of
elements of X; whenever there is A € K
such that we have A — )\, € 71O for
any n € N, we say that the sequence
{M}nen has the limit A, and we write
A = lim, o {\n} (note that this condition is
stronger than the usual one). For instance,
if for any n € N we have )\, = ), this se-
quence obviously has the limit A. The se-
quences having a limit fulfill the so-called
Cauchy condition; in particular, for any
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n € N, we have

Anil — Ap € 71O

(actually, this condition is stronger than
Cauchy’s condition). Conversely, if all the
K-sequences fulfilling this condition have a
limit then we say that X and O are complete.

2.4. It is not difficult to construct a com-
plete field K containing K. We consider the
following equivalence relationship in the set
of all the sequences fulfilling condition 2.3.1:

if two sequences {An}nen and {n}nen of
this set fulfill

c Trn-HO

we say that they are equivalent. For instance,
fixing ¢ € N, if g, = Ag or A, according
ton < ¢ or n > ¢ then these sequences
are equivalent; moreover, {Azin}nen also
fulfills condition 2.3.1 and clearly is equi-
valent to {Ap }nen - Note that, if {A, }nen has
not the limit 0 then, for a suitable £, A, does
not belong to w¢+1@; thus, from condition
2.3.1 we get ¥ Agrn) = 9 Ae) for any n € N
(cf. 2.2.1).

2.5. Let K be the set of equivalent
classes of sequences of X which fulfill condi-
tion 2.3.1; clearly, the usual sum of sequences
determines a structure of commutative group
in K. Moreover, let A = {/’\\/n}neN and

= {/ﬂ\n/}neN be two nonzero elements of K ;
by the remarks above, we may assume that,
for any n € N, we have 9(\,) = 9¥(A;)
and Y(pn) = P uo); choose ¢ fulfilling
—9(A) £ £ and —Y(uo) < ¢; at that point,
since the difference

Ant1bntt = Anfin = Ant1(Bnt1 — in) + (Ant1 — ’\n)#na
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—
o

Ene NA I = 90);
24 6(0) = 0(No); 4% 7
Z,00)>0%84%2e0.

29. B, ZBTK H O
AFEN. E Mlnen RKH
— AR EG RS R AR
neNA

2.9.1

EH, 2R An = Do boens
HEEH ppm € O, £F
n,meN,&H

2.9.2 Ons1m

FET, 2.468TE, et
EEm< nﬁ’\n.m = Antl;
“l:bﬂj.v 7?4—;‘- ’\n+1,m_/\n,m /57{_
atlO, b mneN; BH
X A R & 2.3.1, FTVA
HEEne N TENE

293

AT 7Tn+10§ IX_*‘f’, {/\n,n}nEN
#2231, AMmEXAFFR
£ K-k

210, #—%, A 4EE&
m,neN R&Em>n#H

2.10.1

vk, RER LHGH TR
A5 {Am,m men, 3 A — X,
BT nnt10, ¥ n e N; ik
2%, B5) {Antnen AR N
HiEE, R Anlnen £ LT
R R &N 231 HEF A
A {An}nGN ﬁq%ﬂl\éﬁ’— k: ‘:'l’
kA EA B MR AT R
BKAZEN HFHL =K.

)\n+1,n+1 - )‘n,n = /\n+1,n+1 - /\n+1,n + )\n+1,n -

Lifting Idempotents

n € N; in this case, we just set (1) = 6());
in particular, note that we have 8(A) > 0 if
and only if AeO.

2.9. Finally, we claim that K and O
are complete. Let {;\n}nEN be a sequence of
elements of K such that, for any n € N, we
have

S\n+1 - :\n € 7r"+1@;

——~—

thus, if A\, = {M,m}nen then, for a suit-
able choice of pnm,m € O, where n,m € N,
we still have

- /\n,m) - 7Tn+1/1n,m € 7Tm+10;

recall that, according to the example in 2.4,
we may assume that A, = Anny1 for any
m < n; then, for any m,n € N, we obtain
Ant1m — An,m € 1O since all these se-
quences fulfill condition 2.3.1, forany n € N,
the difference

/\n,n s

belongs to #1100 thus, {Ann}nen fulfills
condition 2.3.1 and therefore determines an
element ) of K.

2.10. Moreover, for any m,n € N, it
suffices that m > n to get

m-1
’\m,m - A"‘m = Z()‘H—l,m - Ai,m) € ‘I'l'n+1(')'7
i=n

hence, it suffices to apply the example above
to the sequence { A, m }men to get that A=An
belongs to 71O for any nn € N; that is, the
sequence {5\” }nen has the limit ). Note that,
if {An}nen is a sequence in K which fulfills
condition 2.3.1, then the element of K de-
termined by the equivalent class of {\,}nen
actually is the limit of this sequence; hence,
if K is complete then we simply get K = K .
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2.11. EMERBE O-K
BB ARBLGHG O
HARAO-RE A TR
At . 25, wR O R
T A&, ML A-F 5| {an}nen
RE&E#HR an+1_an€~]n+la
L£PneN, ERARR; L
AW, Hlhac AN EE
neN&a—a, € JMH . AL,
Mg re NA J CrA,
MmrtiEE ne N TEe £

2.11.1

BF JUtntl mh A AR
#ead O- At EEn>r
*]—J(r+l)n+l C 7rn+l'A’F)T VL
Hlac AR EER>TA

2.11.2
Mo & A

2.11.3
#—F, HEEn <r LT
2.11.4

2.12. 4552, R A R
O-R#EHFfFRO-REEAS MK
AR A #FHEEneNA
fansr) —flan) e JmH P J!
2 AR A A fla)—f(arn)
Ez% 7T'n'+1.Al C J/ﬂ+lY M
%3] f(a) — flan) € J™HY
LR, {flan)}nen A
& fla). mBdRreJFa
(Do nen MR, T A
Seentt EAMMBHRAL -7
#i E; Af, A* 4 1+J.

A(r4+1)(n+1) — C(r41)n

11

2.11. We always assume that the O-
algebras are O-free O-modules of finite rank.
Let A be an O-algebra; denote by J the
radical of A. It is well-known that if O is
complete then it suffices that a sequence
{an}nen in A fulfills anyy — a, € J**! for
any n € N, to guarantee that it has a limit;
precisely, in that case there is a € A such
that a — a, € J**! for any n € N. Indeed,
we have J” C 7.A for a suitable r € N and
therefore, for any n € N, the difference

T
= Z(a(r+l)n+i+l - a(r+1)n+i)
i=0
belongs to J+Un+1. gince A is an O-free
O-module of finite rank and, for any n > r,
we have J(rtUn+l « gntl g thereisa € A
such that, for any n > r, we have

a = Q(r+1)n € ot A c gt s

and therefore we also have

(r+1)n

4= 0n =0 = Qr41)n + Z (ai — aiy) € J™;

i=n+l

moreover, for any n € N, we still obtain

r—1
a— Qan =a—ar+2(a1—+1 _ai) € Jn+l.

1=n

2.12. In particular, if A’ is an O-algebra
and f an O-algebra homomorphism from A
to A’ such that, for any n € N, we have
flans1) — flay,) € J™*!, where J' is the
radical of A’, then f(a) — f(ar) belongs
to 7"*t1. A" C J™*! and therefore we get
f(a) — f(an) € J™; in other terms,
{f(an)}nen has the limit f(a). Moreover,
if 7 € J then the sequence {3 j_o7¢}nen
has a limit, noted 3 ,.y7¢; this limit
actually coincides with the inverse of 1 — r;
consequently, A* contains 1 + J. Note that,
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HiEE, R K £ K1 Galois if K’ is a Galois extension of K, and
Fk, F0O K FO Et4% (O is the integral closure of O in K, then
KO, A O 5K &2 O and K’ are complete too.

XA,

AR 213 REO AZX4E&H%. Theorem 2.13. Assume that O is com-
FEAR—ARE O-R# &’ plete. Let A be a commutative O-algebra and
TRAMBHE 4 Jit AW I anideal of A. Denote by J the radical of A
xH A — A/J e8RMM  and by s: A — A/J the canonical map, and
#, H4 set t

() = (e [ae I} + M,

neN

£ (s(D)) = {s(@?*" laeI}.

neN

L s E—AKFEP R(I ) 3]  Then, s determines a bijection between
%pﬂ(s(I)) A M, B EJ’N(I) and %”R(S(I)) ; moreover, we have

2.13.2 £7(1) BP0 c &),

2.13.1

iER: #hiE &, ok a,b € A Proof: First of all, note that if a,b € A
#H R s(a) = s(b), Mast4  fulfill the equality s(a) = s(b) then, for any
EneNA —bP eJ*; neN, wehave a? — b € J**!; indeed,
BE, AEEBEME £l we argue by induction on n and may as-
#ALMBA n > 1 H B ¢ = sumethat n > 1 and that the element ¢ =

P T T BT I 2RA P — b7 belongs to J™ ; clearly, we have

2133 P = (b 4P €bP 4 pJn+ I C P 4 gL

M, R a, beﬁpk(l)ﬂﬁ Now, ifa, b Gﬁ»pN(I) then for anyn € N,
s EEneN A& a,, b€l  we can find a,,b, € I and 7,,,5, € J*T!
Br,, s, € 0 247 such that
2.13.4 a=(a,)" +71n, b= ()" +sn;
#3 R, ab BTTEHL in particular, ab belongs to the intersection
2.13.5 () ((@nbn)?" + J%1);
neN

M ab 4L&T 3”"(1) . %1 B, hence, abstill belongs to KPN(I) . Moreover, if
o R A s(a) = s(b) FRAEH  we have s(a) = s(b) then s(a,)?" = s(b,)?"

T The Chinese character % is pronounced “mi” as in “middle” and means“power”or “exponent”.
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s(an)?" = s(ba)?", A 0 =
s(an—bp)?" , XARA A/T £
BiEpty. F—FE, BHA/TE
B ARk s(an) = s(bn);
&4, 78]
2.13.6
meN

Bk s ALK
£P() 3 B (s(D)); A&
ERE A S LR BH. & a
R—A R (s(D) 0 Lk
2, AEEnEN AL anel
®AF s(an)” =a; HHA A

2.13.7

WREA A)J HAEHIER p
W 4 B AR, BT 0L R A AE B
s((ans1)?) = s(an); A, &
L

1

2.13.8 (Gn41)?

Mot ac l HATHEE
n>0% a-—(a,) € J!
(R, 2.11), K 4% %]

2.13.9
LHA, s(a) BT B (s(])).

##2.14. BEOAXEN.
HARORBHET R A
AWER. 4 JiL ANR, 54
st A — x‘ii‘?ﬁ%ﬁ@&'ﬂ‘, 1
A=A/] HEERFAIC],
k¥ I=s(I), 5E-ANEFRL
ic AR s(i) =1.mA, do
RicARANEFALEA
s(i') =1H ac A" & i = e,

iER: ERH ac A RKF
s(a) =7, 4B =3, en 00"

S((an+1)p)p":

13

and therefore we still have s(a, — b,)?" =0
since A/J has characteristic p. On the other
hand, since A/J is a direct product of fields,
we also get s(a,,) = s(b,,); thus, we obtain

a—be () Jmc [)=mA={0}.

meN

Hence, s determines an injective map

from %pR(I) to %pN(s(I)) ; we will prove that

this map is surjective too. Let @ be an

R
element of &7 (s(I)); explicitly, this means
that, for any n € N, there is a, € I such
that s(a,)?” = a; in particular, we get

a = s(an)?"

and therefore, since A/J is a direct pro-
duct of fields of characteristic p, we have
5((ant+1)?) = s(an); consequently, we also
obtain

— (@) = ((@ant1)?)" = (an)?" € JPHL.

Then, thereis a € I such that, forany n € N,
we have a — (a,)?" € J*t! (see 2.11), and
therefore we get

s(a) = (s(an))” =a;

that is to say, s(a) belongs to &7 N(s(I ) -

Corollary 2.14. Assume that O is com-
plete. Let A be an O-algebra and I an ideal
of A. Denote by J the radical of A and by
s:A — A the canonical map, where
A = A/J. For any idempotent 7 € I, where
I = s(I), there erists an idempotent i € A
such that s(i) = 7. Moreover, if i’ € A is
an idempotent such that s(i') = 7, then there

exists a € A* such that i =1°.

Proof: Clearly there is @ € A such that
s(a) =7;set B=3 yO-a"; then Bisa
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i B R ABFRE BA
BnJ = J(B); i, A&
B, BNI »#&% A Ik
BEARLHRN L HER
2.13, B X7 & T &P (s(I)) FA
HEie B HA s@) =1,
EB R s(i2) =2 =7; 3 AR
2213, B2 45T R (D),
it =i %B wRicA
R—AFEARMA (@) =7,
Mada =it +(1—i)(1~7);
—7@, BRia=ai', A—F
an

2.14.1

M, 2K ael+JcC A
(R, 2.11).

2.15. — & MH, BA—
N O-K# AR O-H, &40
ttleacAE1®acO0O®0 A
AFE1®ae KQ®p A H#
1Qac K®p A#HEFR—.
MA BEKKNO =0 2K

2.15.1

4rH 2.16. £ A R—A4 O-R&
. o RF-NKRoABEKR
FEALEKQoALLRAKR
#, MaHF - AWKREF
AEOQo AR LREKEH.

iEBR: K i RN AHBKRE
FE L AERIAKEAR
RBE ANELERRRSY.
M2, kiR ANA=000 A
MARETFERFAFLE T
Fo J' REAK®p At94E
EXRKRFFANELSEF

> i=i,

jedr

2.16.1

Lifting Idempotents

subalgebra of A and we have BN J = J(B);
consequently, up to the replacement of A
and I by B and BN I, we may assume
that A is commutative. Then, according to

Theorem 2.13, since 7 belongs to ﬁp“(s(l)) ,
there exists i € KPN(I) fulfilling s(i) = 7,
and in particular s(i%) = 72 = 7; according
to Theorem 2.13 again, since 2 also belongs
to %”N(I), we get 12 = i. Finally, if ' € A is
an idempotent fulfilling s(i") = 7, then con-
sider the element a = i1’ + (1 — 7)(1 — #');
on the one hand, we clearly have ia = ai’;
on the other hand, we get

s@)=2+(1-7)2=1,

and therefore we still get a € 1 +J C A*
(see 2.11).

2.15. As a general rule, since any
O-algebra A is an O-free O-module, we can
identify a € A with 1®a € O ®0 4,
1aeK® Aor1®a € K®p A. More-
over, since we have XN Q@ = O, we clearly
get

(K®o AN (O A)=A.

Proposition 2.16. Let A be an O-algebra.
If any primitive idempotent of K ®o A
remains primitive in K ®o A, then any
primitive idempotent of A still remains
primitive in O ®p A.

Proof: Let i be a primitive idempotent of
Aj; up to the replacement of A by 147, we
may assume that the unity element of A is
primitive. Then, let 7 be a nonzero idempo-
tent of A = O ®c A, and consider two sets
J' and J” of pairwise orthogonal primitive
idempotents such that

Yo i=1-i.

jEj”
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%—F @, iR A6918 &, On the other hand, from our hypothesis,
—ABRY e 7=18K®0A  aset of pairwise orthogonal primitive idem-
HAMEZEXARFFANHSE potents of K ®p A such that Zjer =1
HJEKQ0A B ZXBF¥ remains a set of primitive idempotents in
AL Kf, § TEHS]E  K®pA. Moreover, according to Lemma 2.17
2.17, BN T o] below, there are a bijective map 7: J — J,
R J=JUJ", #» (K®oA)* where J = J'U J”, and an element & in
ik akFRHEE jeJ  (K®oA)*suchthat 7(j) = 5% forany j € J;
Ar()=4%; 4 J =(r)"Y(J") in particular, setting J' = (7)~!(J’) and
5i=3 s JRAERE 1=4%. i = 2jerd, wegeti= i%. Obviously, we
FEE #AMMEMB L aec A; A8 may assume that & belongs to A; then, con-

4ik ¥ h, e NEHF sider h,£ € N such that
2.16.2 aler ™A, ierntA.
& {antnen 5 {bn}nen & Choose two sequences {an}nen and
A~ A 65548 4% {bn}nen of elements of A such that
2.16.3 a= lim {a,}, 7"a"!= lim {b,};
n—o0 n—oo

LA, 4 Enc NL#E  in other terms, for any n € N, the elements
4—an Farha! —b, HEF a—a, and 7471 —b, belong to 71 A. In
antL A 4502, 4 m>2h+{ particular, choosing m > 2h + £, we have
BE, 2RA

1= (am+ (@~ am)) (7 bm + (@' — 77" b))

2.16.4 N
=7 " ambm + ¢

¥ c BT amtl-h. A £ BT  where ¢ belongs to 7™*t1-". 4 and, at the
Ko A, ZR2AA anby, & same time, belongs to K ®o A since ambm
F A, AfmAH belongs to A ; consequently, we have

2.16.5 ce ™1 AN (K®o A) = nmt17hA

FHAWMAEL-c £AAPRZ  and therefore the element 1 — ¢ is inversible
TN vk am £K®0 AP in A; hence, a,, is inversible in K ®» A and
LRTHN, EHHA explicitly we have

(am) P =77 (1 - ¢)

o0
=nhb, + Z 7 hbne™;

n=1

2.16.6
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E#ani(am) ' BTKQ0A,
Rt BT A, X 2EH

2.16.7

BaTFEFX ANKRoA) = A,
BEARFA ami(am)™! B
F A, AT R AL FFA
R B

3@ 2.17. & LA —ABHF
& BA-NHREES LA
¥ wR JE5J RKAHAA
EEXARFFAHELGLA
Yiesd=1=2e, 7, WA
HEbcB BRI =Jb.

iERA: o R B 9k A R A
24, A& 4 ) Wedderburn &
2, %A R ER XM, R
X B MK ER Aok —
™~ BWEEREHE N £ F
N? = {0}; & B = BN,
BEA bitbe B B4
¥ wR i 2 BHARFE
4, Ma 142 KEH X
REH R 0 #£ £ € iBi

BE P o= 1, AR
0= (02— 0)2 =04 — 208 442
R A B E X AN K F T el
2.17.1

P n > 2, T 302 — 203
R-AFFL AAA i =
30223 HAT=302-203=4¢
vl a4 & KB,

WA, 344 dime(B) 4%
Rk L@ s R J
5 J R&HA BWHMEE
RARFHFAHELHF
Ygeil=1=3 557 MA,
B* R4 1+ N; A,
Bk B* —» B*Z %4

Lifting Idempotents

thus, @ i(am)”! belongs to K ®p A and,
simultaneously, it belongs to A since

i—ami(am)™ = (@~ am)i@") +ami (@ - (am)™");

hence, since AN (K ®p A) = A, the idempo-
tent @, i (am)~! belongs to A, and therefore
it coincides with the unity element; thus, 7
coincides with unity element too.

Lemma 2.17. Let L be a field and B an
L-algebra of finite dimension. If J and J’
are two sets of pairwise orthogonal primitive
idempotents of B such that Zjejj =1=
D jresJ’ s then there erists b € B* such that
J=Jb.

Proof: If the radical of B is zero, it suf-
fices to apply the Wedderburn Theorem to
prove the statement. Thus, we may assume
that the radical of B is not zero, and then B
has a nonzero ideal N such that N? = {0};
set B = B/N and denote by b the image
of b € B, first of all, we claim that if 7 is
a primitive idempotent of B then 7 still is
primitive; indeed, if we choose 0 # ¢ € iBi
fulfilling 22 = 7, then we get 0 = (2 —£)? =
24 — 243 + £2? according to our choice of N
and, from this equality, it is not difficult to
check that we have

" = (n—2)3 — (n - 3)¢2

for any n > 2, which easily implies that
3¢2 — 2% is an idempotent and therefore
we get 302 — 203 = i; since we have 7 =
3¢% — 203 = 7, 7is a primitive idempotent.
Now, we argue by induction on
dimg(B); according to the previous argu-
ment, J and J' are two sets of pairwise or-
thogonal primitive idempotents of B such
that 3 ,.;7 = 1 = ) ,.;7; moreover,
B* clearly contains 1 + N; consequently,
the canonical map B* — B* is surjective;
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XM, AE b c B Fm—A
R J - J R E
jeJ HT(G) =5 Ma £
¢ = S, ibr(); —F@T
33|

2.17.2

Mdr ¢ BTG, F—F @t
& jeldH je=jbr(j) =
cr(j) .

#i#2.18. AR O-R&E. 4
Jit AR EH s A-A)T=
ARHREH. BEKLR0A
HE-ANEREFALEKLRA
PaRERHE MaxtiE® A
HEEL I AE-NEEFR
icA®MFs()=7.HA, R
VeALR-ANMRFALM
s@) =1, WAL ec A RF
Z’ :,':a.

EE: RIRA N ABVMEL
EXRKBRFFANES 2T
Yesd =1HBRT A J"
BN AYGMELEL KRR
FAHELSET

2.18.1

we A 2.16, HEE je J,
FEAS() AAZLRKRR
o, A4, 322 217, HAER
mHrJ - JUJ"fac A
AN ET jeJ A () =
s(7). TR, AFHL s(a)=a
L EacARTHEN IR
B %4, & Nakayama 3| %, A
A = ATHE Aa = A. Ff

VAK
>

2.18.2 s(
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thus, there are b € B* and a bijective
map 7:J — J’ such that, for any j € J,
we have 'r—(]—) = F. Then, consider the ele-
ment ¢ = Zjejjb‘r(j) ; on the one hand, we
have

and therefore ¢ is inversible; on the other
hand, we have jc = jbr(j) = cr(j) for any
jed.

Corollary 2.18. Let A be an O-algebra.
Denote by J the radical of A and by
s:A — A= A/J the canonical map. Assume
that any primitive idempotent of K Qo A
remains primitive in K ®o A. Then, for any
idempotent 7 of A, there is an idempotent
i € A such that s(i) = 7. Moreover, ifi' € A
s also an idempotent such that s(i")
then there is a € A* such that i’ = i®.

::f’

Proof: Let J be a set of pairwise ortho-
gonal primitive idempotents of A such that
> jesd =1, and choose two sets J' and J"

of pairwise orthogonal primitive idempotents
of A such that

j=1-7.

According to Proposition 2.16, the idem-
potent s(j) is also primitive in A for any
j € J; then, according to Lemma 2.17,
there are an element @ € A* and a bijec-
tive map 7:J — J' U J” such that we have
7(j) = s(j)® for any j € J. But any ele-
ment a € A such that s(a) = @ is inversible
since, according to the Nakayama Lemma,
from Aa = A, we can deduce that Aa = A.

Hence, we have

s

) =t

J€(r)-1(J)
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B2E wRibi/ 2®mAN A Finally, if i and i/ are two idempotents
R FA®F s(i)=7=5(i"), of A such that s(i) =7 = s(i’) then, on the
ARa—F & c=ii'+(1-1)(1-i')  one hand, ¢ = 4’ + (1 —i)(1 — ¢') is inversible
L ETiHEM, BAM s(c) =1 since s(c) = 1 implies that Ac = 4; on the
T3 Ac= A; A—F5 &, 8 other hand, clearly we have ic = i1’ = ci’.
KFic=1i =ci'.
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