Sorbonne Université

Année universitaire 2023-2024, licence 3, Algèbre (UE 3M270), feuille de TD numéro 2.

Exercice 1. Soit G un groupe. On note G^{op} l'ensemble G muni de la loi «renversée» * définie par la formule g*h=hg. Montrez que G^{op} est un groupe et prouvez qu'il est isomorphe à G.

Exercice 2. Soit $X = \{a, b, c, d\}$ un ensemble à quatre éléments. Donnez la liste de toutes les relations d'équivalence sur X.

Exercice 3. Soient E et F deux ensembles, soit $\mathscr R$ une relation d'équivalence sur E et soit $\mathscr S$ une relation d'équivalence sur F. On note $\mathscr R \times \mathscr S$ la relation sur $E \times F$ définie par la condition

$$(x,y)(\mathscr{R}\times\mathscr{S})(z,t) \iff x\mathscr{R}z \text{ et } y\mathscr{S}t.$$

Montrez que $\mathscr{R} \times \mathscr{S}$ est une relation d'équivalence, et que l'ensemble quotient $(E \times F)/(\mathscr{R} \times \mathscr{S})$ est en bijection naturelle avec $E/\mathscr{R} \times F/\mathscr{S}$.

Exercice 4. Soit X un ensemble et soit \mathscr{R} une relation d'équivalence sur X. Un système de représentants de \mathscr{R} est un sous-ensemble X_0 de X qui rencontre une et une seule fois chaque classe d'équivalence.

- (a) Pouvez-vous donner une définition équivalente d'un système de représentants qui fasse intervenir l'application quotient $p: X \to X/\mathcal{R}$?
- (b) Soit n un entier > 0. Donnez un système de représentants de la congruence modulo n dans \mathbb{Z} .

Exercice 5. Soit G un groupe et soit (H_i) une famille de sous-groupes distingués de G. Montrez que $\bigcap_i H_i$ est un sous-groupe distingué de G.

Exercice 6. Soit G un groupe et soit Γ le groupe des automorphismes intérieurs de G. Montrez que Γ est un sous-groupe distingué de $\operatorname{Aut}(G)$.

Exercice 7. Soit G un groupe et soit H sous-groupe de G tel que G/H ait exactement deux éléments. Montrez que H est distingué dans G.

Exercice 8. Soit G un groupe et soit H un sous-groupe de G. Posons

$$K = \bigcap_{g \in G} gHg^{-1}.$$

Montrez que K est le plus grand sous-groupe distingué de G contenu dans H.

Exercice 9. Soit G un groupe et soit P une partie de G. Montrez qu'il existe un plus petit sous-groupe distingué de G contenant P. Montrez que ce sous-groupe coïncide avec le groupe engendré par $\{gpg^{-1}\}_{g\in G, p\in P}$.

Exercice 10. On admet l'existence du groupe quaternionique Q. C'est un groupe à 8 éléments

$$\{1, -1, i, j, k, -i, -j, -k\}$$

dont la loi est notée multiplicativement et vérifie d'une part les égalités suggérées par la notation (-1) (par exemple $(-1)^2 = 1$ et $(-1) \cdot i = -i$), d'autre part les formules suivantes :

$$i^2 = j^2 = k^2 = -1, ij = k, ji = -k, jk = i, kj = -i, ki = j, jk = -i.$$

- (a) Déterminez le centre de Q.
- (b) Décrire pour chacun des éléments de Q le sous-groupe qu'il engendre.
- (c) Donnez la liste de tous les sous-groupes de Q.
- (d) Vérifiez que tout sous-groupe de ${\cal Q}$ est distingué.