
AUTOMATIC MEROMORPHY IN NON-ARCHIMEDEAN
GEOMETRY

by

Antoine Ducros

Abstract. — In this article, we prove that if U is a Zariski-open subset of a
reduced non-archimedean analytic space X and f is an analytic function on
U whose zero-locus is equal to Z X U for some Zariski-closed susbet Z of X,
then f extends to a meromorphic function on X (unique if U is dense). As a
corollary, we prove that if X is a reduced scheme locally of finite type over
an affinoid algebra, every analytic function on X an with algebraic zero-locus
is algebraic.

1. Introduction

The purpose of this text is to prove the following theorem and its corollary;
analytic spaces here have to be understood in the sense of Berkovich.

1.1. Theorem. — Let k be a complete, non-archimedean field and let X be
a reduced k-analytic space. Let U be a Zariski-open subset of X. Let f be an
analytic function on U . The following are equivalent :

(i) The function f can be extended to a meromorphic function on X.
(ii) The zero-locus of f is of the form Z XU for Z a Zariski-closed subset of

X (e.g., f is invertible on U).

1.2. Comments. — Implication (i)ñ(ii) is easy. So the actual content of
Theorem 1.1 is (ii)ñ(i). Note that for an analytic function f on U to fulfill
condition (ii) it suffices that the zero-locus T of f in U be closed in X. Indeed,
if this is the case, T “ T X U is Zariski-closed in X as checked on the open
cover of X by U and XzT .

1.3. Corollary. — Let X be a reduced scheme locally of finite type over an
affinoid algebra and let f be an analytic function on Xan. The following are
equivalent:
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(i) The function f is algebraic; i.e., it belongs to (the image of) OXpXq.
(ii) The zero-locus of f is algebraic, i.e., of the form Y an for Y a Zariski-

closed subset of X (e.g., f is an invertible analytic function on Xan).

1.4. Comments. — Implication (i)ñ(ii) is obvious. So the actual content
of Corollary 1.3 is (ii)ñ(i). Note that for an analytic function f on Xan to
fulfill condition (ii) it suffices that X be separated and that the zero-locus
T of f in Xan be compact. Indeed, if this is the case, then by compactness
T is contained in Uan for some quasi-compact open subscheme U of X. We
can choose by Nagata’s Theorem a proper compactification U of U over A.
Then T is a Zariski-closed subset of Uan as checked on the open cover of Uan

by Uan and U
an

zT , and so T is algebraic by GAGA, see for example [Poi10,
Appendix A].

1.5. Remark. — In Theorem 1.1, the meromorphic extension of f is not
unique in general (think of the case U “ H !), but it is as soon as U is dense
in X.

1.6. Remark. — Theorem 1.1 exhibits a typical non-archimedean feature.
Indeed, it fails definitely in the complex-analytic setting, as well as Corollary
1.3, as witnessed by the exponential function on A1,an

C .

1.7. Remark. — The reducedness assumption is necessary for Theorem 1.1
and Corollary 1.3 to hold, at least when k is not trivially valued. Indeed,
assume that |kˆ| ‰ t1u and choose f “

ř

ait
i P krrtss with infinite radius of

convergence which is not a polynomial. Then 1 ` εf is an invertible analytic
function on the k-analytic space A1,an

krεs
with ε a non-zero nilpotent element.

And f is not algebraic, nor does it admit any meromorphic extension to P1,an
krεs

.
If k is trivially valued, Theorem 1.1 and Corollary 1.3 also fail in general for

non-reduced spaces, as witnessed by the former example over the field K :“
kppsqq (equipped with any s-adic absolute value), the point being that Krεs is
a (non-strict) k-affinoid algebra. But if X is any (possibly non-reduced) k-
scheme locally of finite type over k itself (rather than over a k-affinoid algebra),
then every analytic function on Xan is algebraic – one checks it on affine
schemes by reducing to the case of the n-dimensional affine space, for which
this is obvious.

1.8. Remark. — When the ring of integers k˝ is a discrete valuation ring,
Piotr Achinger has suggested the following possible analogue of Theorem 1.1
for a special formal scheme X over k˝ (see [Ber96], §1 for a definition) : let
f be an analytic function on Xη whose zero-locus is of the form Yη for a
Zariski-closed formal subscheme Y of X; then f is bounded– thus in some
sense meromorphic from the formal viewpoint. This would be a beautiful and
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natural result, but we unfortunately do not know whether it holds. Adapting
our strategy to this situation would require one to establish formal analogues
of two results of Bartenwerfer that play a key role in our proof (see Proposition
2.10).

Strategy of the proof. — As noticed by one of the referees, the proof
ultimately consists in establishing a slightly easier particular case of Theorem
1.1 and then in showing that meromorphy ”can be detected curvewise” and
even ”discwise”. We shall more precisely prove the following results, from
which Theorem 1.1 will follow straightforwardly; we will then get Corollary 1.3
by combining Theorem 1.1 and GAGA results about meromorphic functions.

1.9. Lemma (Particular case of Theorem 1.1). — Let D be a (closed
or open) one-dimensional disc and let U Ă D be the complement of the origin.
Let f be an analytic function on U . The following are equivalent:

(i) the function f can be extended to a meromophic function on D; i.e., f
has no essential singularity at the origin;

(ii) the zero-locus of f is of the form Z X U for Z a Zariski-closed subset of
D; i.e., f is invertible on a punctured neighborhood of the origin.

1.10. Theorem (Discwise detection of meromorphy)
Let X be a reduced k-analytic space, let U be a Zariski-open subset of X

and let f be an analytic function on U . The following are equivalent:

(i) the function f can be extended to a meromorphic function on X ;
(ii) for every complete extension L of k, every one-dimensional (closed or

open) disc D over L, and every k-morphism φ : D Ñ X such that
φ´1pUq “ Dzt0u, the function φ˚f on Dzt0u admits an extension to
a meromorphic function on D.

1.11. About the proof of Lemma 1.9. — The direct implication is ob-
vious. For the converse implication one may assume by shrinking D that f is
invertible on U . The Lemma then follows easily from the very classical fact
that the power series f admits a dominant monomial. This is in some sense
the core argument on which Theroem 1.1 relies, and the only one that is spe-
cific to the non-archimedean world, and definitely prevents our method to be
adapted over C, see Remark 1.6.

1.12. Quick overview of the proof of Theorem 1.10. — The direct
implication is straightforward. Let us assume (ii) and prove (i). By arguing
componentwise one first reduces to the case where U is dense. One can then
argue G-locally and thus assume that X is affinoid. Up to performing a
suitable radicial ground field extension and modding out by nilpotents we
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can moreover assume that the normalization of X is geometrically normal,
and that the reduced irreducible components of XzU are genercially quasi-
smooth.

Relying upon these two facts we then reduce, by using normalization and the
previously known non-archimedean analogue (due to Bartenwerfer) of the clas-
sical extension theorem for arbitrary meromorphic functions through Zariski-
closed subsets of codimension ě 2 on a normal space, to the case where X is
quasi-smooth and where U is the complement of a quasi-smooth hypersurface
S; and then, by looking at the local structure of the embedding S ãÑ X, to
the the case where X is a product D ˆk Y with D a one-dimensional closed
disc and Y smooth and irreducible, and where S “ Y ˆ t0u. We then pick
a Zariski-generic point y of Y and denote by φ : DH pyq Ñ Y the embedding
of the fiber at y of the projection map X Ñ Y . By assumption (ii) φ˚f
has a meromorphic singularity at the origin of DH pyq; this means that the
coefficients of the power series defining f vanish at y for sufficiently negative
exponents. By genericity of y, the corresponding coefficients are actually zero
and f is meromorphic.

1.13. Structure of the paper. — Section 2 is devoted to the material in
non-Archimedean geometry that will be used in our proofs. The latter are
presented in section 3; the reader may go directly to section 3 and refer to
section 2 when needed.

2. Reminders on analytic geometry

2.1. General references. — Our framework is that of Berkovich spaces.
We refer the reader to the first chapters of [Ber90] and [Ber93] for the basic
definitions. [Duc09, section 3] and [Duc18, chapter 2] for the “commutative
algebra properties” (like being normal, reduced, etc.), [Duc09, section 4] for
the Zariski topology, [Duc09, section 6] and [Duc18, chapter 5] for the notion
of quasi-smoothness, [Duc09, section 5] for the normalization, and [Ber93,
§2.6] for the analytification of a scheme.

Let us mention that contrary to Berkovich we use the notation OX (rather
than OXG) for the structure sheaf of X for the G-topology, so that OXpV q

makes sense for any analytic domain V of X.

2.2. Analytic functions on annuli. — In some sense, the core argument
in the proof of Theorem 1.1, and the only step in which we show by kind
of an explicit computation that some function is meromorphic, relies on the
well-known description of invertible functions on (relative) annuli, which we
have chosen to recall here for the reader’s convenience.
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Let R1 and R2 be two positive real numbers with R1 ď R2. The annulus
tR1 ď |T | ď R2u Ă A1,an

k is an affinoid space whose algebra of analytic
functions is the set ktT {R2, R1T

´1u of power series
ř

iPZ aiT
i with coefficients

in k such that |ai|R
i
1 Ñ 0 when i Ñ ´8 and |ai|R

i
2 Ñ 0 when i Ñ `8, which

can be rephrased by saying that |ai|r
i Ñ 0 for |i| Ñ `8 for every r P rR1, R2s

(the Banach norm of ktT {R2, R1T
´1u maps

ř

aiT
i to the maximum of |ai|r

i

for i P Z and r P rR1, R2s). More generally if X “ M pAq is an affinoid algebra
then tr1 ď |T | ď R2u ˆk X is affinoid and its algebra of analytic functions is
ktT {R2, R1T

´1upbkA which is the set of power series
ř

aiT
i with coefficients

in A such that }ai}8r
i Ñ 0 for |i| Ñ 8 for every r P rR1, R2s.

Now let I be an arbitrary non-empty interval of Rˆ
`. By exhausting I with

compact intervals and using the G-sheaf property of analytic functions, we see
that the ring of analytic functions on t|T | P Iu Ă A1,an

k is the set of power
series

ř

iPZ aiT
i with ai P k for all i such that |ai|r

i Ñ 0 for |i| Ñ `8 for
every r P I; more generally, the ring of analytic functions on X ˆk t|T | P Iu is
the set of power series

ř

iPZ aiT
i with ai P A for all i such that }ai}

i
8 Ñ 0 for

|i| Ñ `8 for every r P I.

2.3. Lemma. — Let I be a non-empty interval of Rˆ
` and let f “

ř

aiT
i be

an analytic function on t|T | P Iu Ă A1,an
k . The following are equivalent:

(i) there exists j such that |ai|r
i ă |aj |rj for all i ‰ j and all r P I ;

(ii) f is invertible.

Proof. — If (i) holds then f can be written ajT
jp1`uq with |u| ă 1 everywhere

on t|T | P Iu, so f is invertible (and f´1 “ a´1
j T´j

ř

ℓ u
ℓ). Now assume that

f is invertible, and let us prove (i). We start by handling the particular
case where I is a singleton tru. In order to prove (i) we may enlarge the
ground field and rescale T and f , so we can assume that r “ 1 and then that
}f} “ maxi|ai| “ 1. As f is invertible, its image under the reduction map
ktT, T´1u Ñ rkrT, T´1s is invertible as well, so is of the form αT i for some
i P Z and α P rkˆ. Then |ai| “ 1 (and rai “ α) and |aj | ă 1 for every j ‰ i,
whence (i).

Now let us deal with general I. By the above for every r P I there is some
integer iprq such that |aiprq|r

i ą |aj |rj for every j ‰ iprq, and by connected-
ness of I it suffices to prove that r ÞÑ iprq is locally constant. But this is a
straightforward consequence of the fact that |ai|s

i Ñ 0 when |i| Ñ 8 for every
s P I.

The following lemma describes the local structure of a pair pS,Xq where
X is a quasi-smooth affinoid domain and S a quasi-smooth closed analytic
subspace of X. It is certainly well-known (such a description is for instance
carried out in the proof of [Ber99, Theorem 9.1]), but to our knowledge it
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is not stated explicitly in the litterature, so we have chosen to write it down
here.

2.4. Lemma. — Let X be a quasi-smooth affinoid space over a non-
archimedean field k, and les S be quasi-smooth closed analytic subspace of
X. Let x P S and let d be the codimension of S in X at d. There exists an
affinoid neighborhood V of x in X, a one-dimensional closed disc D, and an
isomorphism V » Dd ˆk pSXV q whose restriction to SXV is the composition
pS X V q » t0u ˆk pS X V q ãÑ Dd ˆk pS X V q.

Proof. — Let I be the ideal defining S and set n “ dimxX. The H pxq-
vector space ΩS{k b H pxq is of dimension n ´ d, and is the quotient of the
n-dimensional space ΩX{k b H pxq by the subspace generated by the dg b 1
for g P I. Therefore the latter subspace is d-dimensional and generated by
dg1 b 1, . . . ,dgd b 1 for some g1, . . . , gd. Let S1 be the Zariski closed subspace
of X defined by the ideal pg1, . . . , gdq. It contains x and is of dimension at least
n´ d at x by the Hauptidealsatz, and ΩS1{k b H pxq is of dimension n´ d by
construction. Therefore S1 is quasi-smooth of dimension n ´ d at x, so there
exists an affinoid neighborhood V of x such that S1 X V is quasi-smooth and
irreducible of dimension n ´ d. Then S X V is a closed analytic subspace of
S1 X V of dimension n ´ d at x, which forces the equality S X V “ S1 X V .
Otherwise said S X V is defined as a closed analytic subspace of V by the
equations g1 “ 0, . . . , gd “ 0. Pick analytic functions gd`1, . . . , gn on V such
that the dgi b 1 generate ΩS{k b H pxq. Then dg1 b 1, . . . ,dgn b 1 generate
ΩX{k bH pxq. The family pg1, . . . , gnq defines a map p from V to An,an

k , which
by compactness takes value in En for some suitable one-dimensional closed
disc E. Since S X V is described by the equations g1 “ 0, . . . , gd “ 0, one has
S X V “ p´1pt0u ˆ En´dq.

The maps p : V Ñ En and p|SXV : S X V Ñ t0u ˆ En´d » En´d are quasi-
étale at x by construction and in view of [Duc18, Lemma 5.4.5], so we can
shrink V around x so that both maps are quasi-étale. Let q be the quasi-étale
map Id ˆ p|SXV : Ed ˆ pS X V q Ñ En. By construction, p´1pt0u ˆEn´dq and
q´1pt0u ˆEn´dq are isomorphic as quasi-étale spaces over the closed analytic
subspace t0u ˆ En´d of En, since they both can be identified with

S X V t0u ˆ En´d
p|SXV

.

It follows by [Duc23, Lemma 2.7] (which itself relies on the henselian property
of a Berkovich space along a Zariski-closed subspace, see [Ber93, Prop. 4.3.4])
that there exists an analytic neighborhood U of t0u ˆ En´d in En such that
p´1pUq and q´1pUq are U -isomorphic. Up to shrinking U we can assume that
it is of the form Dd ˆEn´d where D is a closed one-dimensional disc. We thus
get an isomorphism between tv P V, |gipvq| ď r, i “ 1, . . . , du and Dd ˆk pSXV q
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whose first component is pg1, . . . , gdq and such that the induced isomorphism
between pg1, . . . , gdq´1p0q “ S X V and t0u ˆk pS X V q is the obvious one.

2.5. Meromorphic functions. — One can define straightforwardly a G-
sheaf of meromorphic functions KX on any analytic space X [Duc21, 2.23];
there is a natural embedding OX ãÑ KX ; if V “ M pAq is an affinoid domain
of X then KXpV q is the total ring of fractions of A [Duc21, 2.23.4]. As in the
scheme-theoretic case, every meromorphic funtion f has a sheaf of denomina-
tors; this is the coherent sheaf of ideals whose sections on an analytic domain
V consist of those g P OXpV q such that gf P OXpV q.

2.6. — Let A be an affinoid algebra, let X be an A-scheme of finite type
and let KX be the sheaf of meromorphic (or rational) functions on X. Let S ,
resp. T , be the subsheaf of OX , resp. OXan , consisting of those functions whose
germ at every point is a regular element of the corresponding local ring. The
structure map π : Xan Ñ X is a faithfully flat map of locally ringed spaces.
This implies that the natural arrow OX Ñ π˚OXan is injective, maps S into
π˚T , and induces an injective map of presheaves S ´1OX Ñ π˚T ´1OXan .
The presheaf T ´1OXan is separated, thus it embedds ito its sheafification
KXan , whence an injective map from S ´1OX ãÑ to π˚KXan and eventually
by sheafifyfing once again an injective map KX ãÑ π˚KXan .

2.7. Lemma. — Let f P KXpXq and let I Ă OX be its sheaf of denomina-
tors. Then I an is the sheaf of denominators of f viewed as a meromorphic
function on Xan.

Proof. — If J denotes the sheaf of denominators of f viewed as a meromor-
phic function on Xan, it is clear that I an Ă J . To show that this inclusion is
actually an isomorphism, one may argue locally on X, and thus assume that
X is affine. One can then write f “ g{h with g and h in OXpXq and h regular.
Then I is the kernel of the map OX Ñ OX{phq induced by multiplication by
g, and J is te kernel of the map OXan Ñ OXan{phq induced by multiplication
by g, hence J “ I an.

2.8. Lemma. — One has OXpXq “ KXpXq X OXanpXanq.

Proof. — The direct inclusion is obvious. For the converse one, let f be an
element of KXpXqXOXanpXanq and let I Ă OX be the sheaf of denominators
of f viewed as a meromorphic function on X. By Lemma 2.7 above, I an is
the sheaf of denominators of f viewed as a meromorphic function on Xan. The
fact that f P OpXanq means that 1 P I anpXanq, which we can reformulate
by saying that 1 is zero in pOXan{I anqpXanq. But by faithfull flatness of
Xan Ñ X, the map pOX{I qpXq Ñ pOXan{I anqpXanq is injective. Therefore
1 is zero in pOX{I qpXq, so 1 P I pXq and f P OXpXq.
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2.9. Proposition (See also Theorem 8.7 of [Meh22])
Assume that the scheme X is proper over A. The natural embedding

KXpXq ãÑ KXanpXanq is an isomorphism.

Proof. — Let f be a meromorphic function on Xan. By GAGA for coherent
sheaves (see [Poi10, Appendix A]), the sheaf denominators of f is of the form
I an for a (uniquely determined) sheaf of ideals I on X. Multiplication by
f defines a morphism from I an to OXan , which once again by GAGA comes
from a unique map from I to OX . In order to prove that f belongs to KXpXq,
it suffices to prove that on every affine open subscheme U of X, the sheaf I
has a regular section h (for if one denotes by g the image of h in in OpUq

one will have f “ g{h on Uan). So let U be an affine open subscheme of
X. Supppose that I pUq only consists of non-regular elements. This means
that I pUq is contained in the union of all associated primes of OXpUq, which
implies that it is contained in one of them. So there exists a non-zero element
b of OXpUq Ă OXanpUanq such that hb “ 0 for all h P I pUq. By the definition
of I an there is an affinoid G-covering pViq of Uan and for every i a section hi

of I anpViq which is a regular element of OXpViq. Since hi is a section of I an

we have hib|Vi “ 0. As hi is regular, this implies that b|Vi “ 0. Since the Vi’s
G-cover Uan this yields b “ 0, contradiction.

For proving Theorem 1.1 we will need three non-archimedean analogues of
classical complex-analytic results, all due to Bartenwerfer in the strict case.
We will prove them in general by reducing to the strict case. For doing this,
we shall use the following notation. If r is a k-free polyradius, that is, a finite
family pr1, . . . , rnq of positive numbers multiplicatively independent modulo
|kˆ|, we denote by kr the set of all power series

ř

IPZn aIT
I where the aI ’s

belong to k and |aI |rI Ñ 0 when |I| Ñ 8. The formula
ř

aIT
I ÞÑ maxI |aI |rI

is a multiplicative norm that makes kr a complete extension of k (see for
instance [Duc07, 1.2]). If A is a k-affinoid algebra we set Ar “ Apbkkr.
This is the set of power-series

ř

IPZn aIT
I where the aI ’s belong to k and

}aI}8r
I Ñ 0 when |I| Ñ 8.

2.10. Proposition (Bartenwerfer). — Let X be a k-analytic space and let
Z be a Zariski-closed subset of X with empty interior; set U “ XzZ.

(1) If X is normal any bounded holomorphic function on U extends to a
holomorphic function on X.

(2) If X is reduced and Z is everywhere of codimension ě 2 in X, then every
meromorphic function on U extends to a meromorphic function on X.

(3) If X is normal and Z is everywhere of codimension ě 2 in X, then every
holomorphic function on U extends to a holomorphic function on X.
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Proof. — If k is non-trivially valued andX is strictly k-analytic, (1) is [Bar76,
§3, Theorem] and (2) and (3) are particular cases of [Bar75, Theorem]. We
are just simply going to explain how to extend these statements when X is not
assumed to be strict. Everything being G-local on X, we can assume that X is
affinoid; and since for proving (2) one can replace X with its normalization, we
can assume that X is normal and, by arguing componentwise, irreducible. Let
A be the algebra of analytic functions on X. Let r be a k-free polyradius such
that |kr|ˆ ‰ t0u and Ar is kr-strict. The ring Ar is a normal integral domain –
this follows for instance from [Duc09, Exemple 3.3, Thm. 3.1 and 3.3], but an
elementary proof, can be found in [Duc03, Appendix]. Then Bartenwerfer’s
statements apply on the kr-analytic space Xr, and for deducing them on X it
suffices to prove the following:

(a) if f “
ř

aIT
I is an element of Ar whose restriction to Ur belongs to

OXpUq then f P A.

(b) If g “
ř

bIT
I and h “

ř

cIT
I are two elements of Ar with h ‰ 0 such

that the restriction of g{h to Ur belongs to KXpUq (where KX is the
sheaf of meromorphic functions on X), then g{h belongs to the ring of
fractions of A.

Let us prove (a). If V is an affinoid domain of U then by assumption the
element

ř

paI |V qT I of OXpV qr belongs to OXpV q, which means that aI |V “ 0
as soon as I ‰ 0. Since this holds for arbitrary V we see that aI |U “ 0 as soon
as I ‰ 0. As X is reduced and U is dense one has aI “ 0 as soon as I ‰ 0,
which proves that f P A.

Let us prove (b). Let E denote the set of indices I with cI ‰ 0 (it is non-
empty by assumption). Let V be a connected and non-empty affinoid domain
of U . As X is normal OXpV q is an integral domain, and by assumption there
exist u and v in OpV q with v ‰ 0 and g{h “ u{v as meromorphic functions
on Vr, which amounts to the equality gv “ hu in OXpV qr “ OXr pVrq. As
a consequence, if I P E then u{v “ bI{cI as meromorphic functions on V
(note that cI |V ‰ 0 since V is non-empty and X is irreducible and reduced)
and bI |V “ 0 if I P E. Therefore all meromorphic functions bI{cI for I P E
coincide on every irreducible affinoid domain V of the normal space U , then
coincide on the whole of U , and then of X since the latter is reduced ; let w
denote the common value of the bI{cI for I P E, as a meromorphic function on
X. If I R E then bI “ 0 on every irreducible affinoid domain V of the normal
space U , then on the whole of U , and then on X since the latter is reduced.
Hence g{h “ w, which ends the proof.
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3. The proofs

3.1. Proof of Lemma 1.9. — Implication (i)ñ(ii) is obvious, so let us
assume (ii) and prove (i). If f “ 0 then it obviously admits a meromorphic
extension to D. If f ‰ 0 assumption (ii) implies that f is invertible on a
punctured neighborhood of the origin, and since assertion (i) only concerns
the possible singularity of f at the origin, we can assume up to shrinking D
that f is an invertible function on U . Let t denote the coordinate function on
D and let R be the radius of D. The function f can be written as a power
series f “

ř

iPZ ait
i and since f is invertible, Lemma 2.3 ensures that there

exists some j such that |aj |rj ą |ai|r
i for every i ‰ j and every r P p0, Rq (and

even p0, Rs if D is closed). By letting r tend to zero we see that ai “ 0 for
every i ă j. Then f “

ř

iěj ait
i admits a meromorphic extension to d.

3.2. Proof of Theorem 1.10. — Let KX be the sheaf of meromorphic
functions on the space X and let pXiqiPI be the family of its reduced irreducible
components. Let X 1 be the normalization of X. We have KXpXq “ KX 1pX 1q:
indeed, this can be checked G-locally and thus enables to assume that X is
affinoid, in which case this just comes from the corresponding scheme-theoretic
statement. As a consequence, KXpXq “

ś

i KXipXiq. Let J be the set of
indices i such that XiXU ‰ H and set V “

Ť

iPJ Xi, equipped with its reduced
structure. Now, every morphism φ as in (ii) factors through V , and if f |V XU

admits a meromorphic extension pgiqiPJ to V , then f admits a meromorphic
extension to the whole of X, namely pfiqiPI with fi “ gi if i P J and fi “ 0
otherwise. Hence for proving our theorem we can replace X by V and thus
assume that U is dense.
3.2.1. — Assume that (i) holds and let φ as in (ii). Let W be an affinoid
domain of X containing φpxq. The pre-image φ´1pW q is an analytic domain
of D containing the origin, so this is a neighborhood of the later in D. Up to
shrinking D (this is harmless for proving (ii), which is a local property at the
origin) we can thus assume that φpDq Ă W ; otherwise said we can assume
that X is affinoid, say X “ M pAq. By assumption one can write f “ g{h
with h a non-zero divisor of A. As U is dense in X, the restriction h|U is not
identically zero, so that φ˚h|Dzt0u is not identically 0. This ensures that φ˚h
is a regular holomorphic function on the reduced irreducible space D, and in
view of the equality φ˚fφ˚h “ φ˚g on Dzt0u, the function φ˚f admits the
meromorphic extension φ˚g{φ˚h to the whole of D, whence (ii).
3.2.2. — We now start the proof of implication (ii)ñ(i), in several steps. So
we assume that (ii) holds. We shall use implicitly several times the following
fact: since the triple pX,U, fq satisfies (ii), for every analytic space Y defined
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over a complete extension K of k and every k-morphism ψ : Y Ñ X the triple
pY, ψ´1pUq, ψ˚fq still satisfies (ii) (over the ground field K).

As U is a dense Zariski-open subset of the reduced space X, the function
f as at most one meromorphic extension to X. This uniqueness property
also holds on any analytic domain of X, which will enable us to prove (i)
by argueing G-locally: indeed, since G-local meromorphic extensions will be
canonical, we will be able to glue them.

We make a first use of our right to argue G-locally by assuming that X is
affinoid, say X “ M pAq. We denote by p the characteristic exponent of k.
3.2.3. — Let n be an integer and set L “ k1{pn . Assume that the image of f
in OpUL,redq (which we shall still denote by f) has a meromorphic extension
to XL,red. We are going to prove that f has a meromorphic extension to X.
Note that for every affinoid k-algebra B one has pBpbkLqpn

Ă B (check it on
B bk L and use a limit argument), which implies by arguing G-locally that
OXpULqpn

Ă OXpUq.
By our assumption there exist g and h in AL :“ ApbkL with h regular (i.e.,

not a zero divisor) in AL,red such that f “ g{h in OpUL,redq. We have then
fh “ g ` N in OpULq for some nilpotent function N on UL (the sheaf of
locally nilpotent functions on UL is the restriction of the coherent sheaf on
XL associated with the nilradical of the noetherian ring A, so its sections are
actually nilpotent). It follows that for m ě n large enough fpm

hpm
“ gpm

in OpULq; but since m ě n all functions involved in this equality belong to
the subring OpUq of OpULq, so fpm

hpm
“ gpm should be understood as an

equality between analytic functions on U .
Set H “ hpm and G “ gpm , so that we have fpm

H “ G on U . Both G
and H belong to A. Let us show that H is a regular element of A. As X
is reduced, it suffices to show that the zero-locus of H does not contain any
irreducible component of X. But since h is a regular element of AL,red, the
zero-locus of h in XL, which is the same as the zero-locus of H, does not
contains any irreducible component of XL, and we conclude by noticing that
XL Ñ X induces a homeomorphism for the Zariski topologies on the source
and the target.

Since fpm
H “ G one has pfHqpm

“ GHpm´1 on U ; therefore the analytic
function fH is bounded on U . By the non-archimedean version of Riemann’s
extension theorem (essentially due to Bartenwerfer, see Proposition 2.10 (1)
for more details), fH extends to a holomorphic function on the normalization
X 1 on X. Therefore fH extends to a meromorphic function on X and so does
f since H is regular.
3.2.4. — If n is large enough, a result by Conrad [Con99, Lemma 3.3.1],
see also [Duc09, Thm. 6.10], ensures that the normalization of Xk1{pn is ge-
ometrically normal. In view of 3.2.3, it suffices to check that the image of f
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in OpUk1{pn
,redq extends to a meromorphic function on Xk1{pn

,red. As a con-
sequence, we may assume that the normalization X 1 of X is geometrically
normal (and then X 1

L is the normalization of XL for every complete extension
L of k, see [Duc09, Prop. 5.20]). Let U 1 be the pre-image of U in X 1.

Another result by Conrad [Con99, Thm. 3.3.8], see also [Duc09,
Thm. 6.11], ensures that for large enough n, the space pX 1

k1{pn zU 1
k1{pn qred

is geometrically reduced. So using again 3.2.3, we may moreover assume that
pX 1zU 1qred is geometrically reduced.
3.2.5. — By replacing X with X 1 and U with U 1 we can assume that X
is normal. And then by arguing componentwise we can assume that X is
moreover integral. Let n denote its dimension. As U is dense, XzU is a
Zariski-closed subset of X of dimension ď n´1. Let K be the completion of an
algebraic closure of k. Let Y denote the complement of the quasi-smooth locus
of X. The space XK is normal, therefore dimYK ď n´2, hence dimY ď n´2.
And the space pXzUqred,K is reduced, so it has a dense quasi-smooth locus.
Therefore pXzUqred has a dense quasi-smooth locus. Let us denote by Y 1 be
the union of Y , of all irreducible components of XzU of dimension ď n´2, and
of the non-quasi-smooth locus of pXzUqred. By construction, Y 1 is a Zariski-
closed subset of X of dimension ď n ´ 2. As X is reduced, it follows from
an extension theorem essentially due to Bartenwerfer (see Proposition 2.10
(2) for more details) that every meromorphic function on XzY 1 extends to
a meromorphic function on X. It is therefore sufficient to prove that f |V XU

extends to a meromorphic function on V for every affinoid domain V of XzY 1.
Hence we have reduced to the case where X is quasi-smooth and U is the
complement of a quasi-smooth hypersurface S.
3.2.6. — For proving the theorem we may once again argue locally on X.
The theorem obviously holds on XzS , and if x is a point of S it follows from
Lemma 2.4 that there exists an affinoid neighborhood V of x in X such that
pV, SXV q is isomorphic to Dˆk pSXV q ˆD, t0u ˆk pSXV qq for some closed
one-dimensional disc D. Moreover we can shrink V so that the smooth space
S X V is connected, hence irreducible (and reduced).

Therefore we can assume that X “ DˆkY for some irreducible and reduced
analytic space Y and some closed disc D and that S “ t0u ˆk Y . (The quasi-
smoothness of S » Y was useful for reducing to this product situation, but
will not be used anymore; the fact that Y is irreducible and reduced will be
sufficient.)

Let t be the coordinate function on D. By hypothesis, f is an analytic
function defined on pDzt0uqˆk Y , so it can be written

ř

iPZ bit
i where every bi

belongs to OpY q (2.2). Choose y P Y lying over the generic point of Spec OpY q.
The fiber of X “ Dˆk Y over y (through the second projection) is canonically
isomorphic to DH pyq; let φ : DH pyq Ñ X be the corresponding embedding. By
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construction, φ´1pUq “ DH pyqzt0u. It thus follows from our assumption (ii)
that φ˚f admits a meromorphic extension to DH pyq. Since φ˚f “

ř

i bipyqti,
this means that there is some j such that bipyq “ 0 for every i ď j. As y is
Zariski-generic on the reduced, irreducible space Y , this implies that bi “ 0
for every i ă j. Thus f “

ř

iěj bit
i extends to a meromorphic function on X,

which ends the proof of Theorem 1.10.

3.3. Proof of Theorem 1.1. — Let us assume that (i) holds. Let us choose
a meromorphic extension of f , which we still denote by f , and let I be its
sheaf of denominators. The J :“ I f is a coherent sheaf of ideals on X,
whose restriction to U is equal to pf |U q since I |U “ OU . Therefore the zero-
locus of f |U is the intersection of U and of the zero-locus of J , which is a
Zariski-closed subset of X, whence (ii).

Conversely, assume that (ii) holds. Let L be a complete extension of k,
let D be a one-dimensional disc over L and let φ : D Ñ X be a k-morphism
such that φ´1pUq “ Dzt0u. The zero-locus of the function φ˚f P ODpDzt0uq

is then equal to φ´1pZq X pDzt0uq. Therefore by Lemma 1.9 which we have
already proved (3.1), φ˚f admits an extension to a meromorphic function of
D. Since this holds for arbitrary pL,D,φq, Theorem 1.10 proven in 3.2 ensures
that f admits an extension to a meromorphic function on X, which ends the
proof of Theorem 1.1.

3.4. Proof of Corollary 1.3. — The direct implication is obvious. So let us
assume that the zero-locus of f is equal to Y an for some Zariski-closed subset
Y of the scheme X, and let us prove that f is algebraic. This statement
is local on X, which enables us to assume that X is affine. Let us choose
a reduced projective compactification X of X. The zero-locus of f on Xan

is then equal to Y
an

X Xan (where Y is the closure of Y in X) so that we
can apply Theorem 1.1 proved in 3.3 (taking X “ X

an and U “ Xan) and
conclude that the function f on Xan “is” then a meromorphic function on Xan.
By GAGA for meromorphic functions (see Prop. 2.9), f “is” a meromorphic
function on X. Then f is a meromorphic function on the scheme X inducing
a holomorphic function on Xan. By Lemma 2.8, f P OXpXq.
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[Duc21] , “Dévisser, découper, éclater et aplatir les espaces de Berkovich”,

Compos. Math. 157 (2021), no. 2, p. 236–302.
[Duc23] , “Utilisation de l’aplatissement en géométrie de Berkovich”,
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