Examen du 12 novembre 2018 2 heures

Les documents et les appareils électroniques ne sont pas autorisés.

A titre indicatif, nous donnons un barême approximatif:

Exercice 1: 4 points, Exercice 2: 10 points, Problème: 26 points.

Exercice 1.

Soit A un anneau commutatif. En utilisant un procédé de localisation, montrer que l'ensemble

$$rad(0) = \{x \in A | \exists n \ge 0, x^n = 0\}$$

des éléments nilpotents de A est égal à l'intersection des idéaux premiers de A.

Exercice 2.

Soit $A = H(\mathbb{C})$ l'anneau des fonctions holomorphes sur \mathbb{C} . Nous rappelons que les zéros d'une fonction holomorphe non nulle sont isolés et qu'une fonction nulle sur le disque unité est nulle sur \mathbb{C} (par prolongement analytique). Enfin toute fonction holomorphe sur C admet une primitive holomorphe sur \mathbb{C} .

- 1. Montrer que A est un anneau intègre.
- **2.** Pour $k \in \mathbb{N}$, nous notons I_k l'idéal de A des fonctions holomorphes qui s'annulent sur $\mathbb{N} \{0, \dots, k\}$.
- **2.a** Montrer que $f_k(z) = \frac{\sin(\pi z)}{z(z-1)\cdots(z-k)} \in I_k$. **2.b** En déduire que A n'est pas noethérien.
- **3.** Montrer que $f \in A$ est inversible si et seulement si il existe $g \in A$ avec $f = \exp(g)$.
- 4. Montrer que les éléments irréductibles de A sont les fonctions admettant un unique zéro simple.
- **5.** En déduire que A n'est pas factoriel.

Problème

Dans ce problème, A désigne un anneau commutatif unitaire.

Partie A. Lemme de Fitting

Un A-module M est dit artinien si toute suite décroissante de sous-modules est stationnaire.

- 1. Montrer qu'un A-module est artinien si et seulement si tout ensemble non vide de sous-modules de M possède un élément minimal pour l'inclusion.
- **2.** Soit N un sous-module d'un A-module M.
- **2.a** Soient L et L' des sous-M-modules tels que

$$L \subset L', L \cap N = L' \cap N \text{ et } (L+N)/N = (L'+N)/N.$$

Montrer que L = L'.

- **2.b** Montrer que M est artinien si et seulement si N et M/N sont artiniens.
- **3.** Soit M un A-module artinien et $n \in \mathbb{N}$. Montrer que M^n est artinien.
- **4.** Montrer que le \mathbb{Z} -module \mathbb{Z} est noethérien mais pas artinien.
- **5.** Soit p un nombre premier. Montrer que le \mathbb{Z} -module $\mathbb{Z}[1/p]/\mathbb{Z}$ est artinien mais pas noethérien.
- **6.** Dans cette question, M désigne un A-module artinien et noethérien et $f \in \text{Hom}_A(M,M)$ un endomorphisme de M.
- **6.a** Montrer que les suites de sous-modules (ker f^m) $_{m\in\mathbb{N}}$ et (im f^m) $_{m\in\mathbb{N}}$ sont stationnaires à partir d'un rang que nous notons n.

- **6.b** Montrer que $M = \ker f^n \oplus \operatorname{im} f^n$.
- **6.c** Montrer que la restriction de f à ker f^n est nilpotente et que la restriction de f à im f^n est un automorphisme.

Partie B. Théorème de Krull-Schmidt

Un A-module M est dit indécomposable si $M \neq \{0\}$ et s'il n'existe pas de décomposition de M en somme directe $M' \oplus M''$ de deux sous-modules non nuls.

Un A-module $M \neq \{0\}$ est dit simple s'il n'admet pas de sous-modules distincts de $\{0\}$ et M.

- 1.a Soit K un corps. A quelle condition un K-espace vectoriel est un K-module simple?
- **1.b** Quels sont les \mathbb{Z} -modules simples ?
- 1.c A quelle condition un idéal de A est un A-module simple?
- 1.d Montrer qu'un module simple est indécomposable.
- **2.a** Quels sont les \mathbb{Z} -modules de type fini indécomposables ?
- **2.b** L'anneau \mathbb{Z} admet-il des sous-modules simples ?
- 2.c Un module indécomposable est-il toujours simple ?
- **3.a** Soit M un A-module artinien. Montrer que M s'écrit comme somme directe finie $M = M_1 \oplus \cdots \oplus M_m$ de sous-modules indécomposables.
- **3.b** Soit M un A-module noethérien. Montrer que M s'écrit comme somme directe finie

$$M = M_1 \oplus \cdots \oplus M_m$$

de sous-modules indécomposables.

- **4.** Soit M un module indécomposable artinien et noethérien et $B = \operatorname{End}_A(M)$ l'anneau (non commutatif) de ses endomorphismes. Nous notons B^* le sous-ensemble des automorphismes de B. Soit $J = B B^*$.
- **4.a.** Montrer que J est stable par multiplication à droite et à gauche par des éléments de B.
- **4.b** Montrer que J est un sous-groupe de B.

Un sous-groupe de B stable par multiplication à droite et à gauche est dit idéal bilatère. L'anneau B est dit local s'il admet un unique idéal bilatère maximal pour l'inclusion.

- **4.c** En déduire que B est un anneau local.
- **5.a** Montrer qu'un A-module M dont l'anneau des endomorphismes $B = \operatorname{End}_A(M)$ est local, est indécomposable.
- **5.b** En déduire qu'un A-module M artinien et noethérien est indécomposable si et seulement si $\operatorname{End}_A(M)$ est local.
- **6.** Soient $M, M', N_1, N_2, \ldots, N_n$ des A-modules. Nous supposons les N_i indécomposables, $\operatorname{End}_A(M)$ local et

$$M \oplus M' \simeq N_1 \oplus \cdots \oplus N_n$$
.

Montrer qu'il existe $s \in \{1, ..., n\}$ tel que $M \simeq N_s$ et $M' \simeq \bigoplus_{t \neq s} N_t$.

7. Soient (M_1, \ldots, M_m) et (N_1, \ldots, N_n) deux familles finies de modules indécomposables. Nous supposons que les anneaux $\operatorname{End}_A(M_i)$ sont locaux et qu'il existe un isomorphisme

$$M_1 \oplus \cdots \oplus M_m \simeq N_1 \oplus \cdots \oplus N_n$$
.

7.a Montrer que m=n et qu'il existe une permutation σ de l'ensemble $\{1,\ldots,n\}$ telle que $M_{\sigma(i)}=N_i$.

7.b Soit M un A-module artinien et noethérien. Montrer qu'il existe une unique décomposition (à l'ordre près et à isomorphisme des modules près) en somme directe finie de sous-modules indécomposables.

Test November 12th 2018 2 hours

Documents and electronic devices are not allowed.

For information purpose, we give an approximative scoring method

Exercise 1: 4 points, Exercise 2: 10 points, Problem: 26 points.

Exercise 1.

Let A be a commutative ring. Using a localization process, prove that the set

$$rad(0) = \{x \in A | \exists n > 0, x^n = 0\}$$

of nilpotent elements of de A is equal to the intersection of prime ideals of A.

Exercise 2.

Let $A = H(\mathbb{C})$ be the ring of holomorphic function on \mathbb{C} . We remind that the zeros of a non zero holomorphic function are isolated and that a zero function on the unit disc is zero on \mathbb{C} (by analytic continuation). Moreover any homolomorphic function admits an holomorphic primitive over \mathbb{C} .

- **1.** Prove that A is an integral domain.
- **2.** For $k \in \mathbb{N}$, let I_k denote the ideal of A given by the functions vanishing on $\mathbb{N} \{0, \dots, k\}$.
- **2.a** Prove that $f_k(z) = \frac{\sin(\pi z)}{z(z-1)\cdots(z-k)} \in I_k$.
- **2.b** Deduce that A in not noetherian.
- **3.** Prove that $f \in A$ is invertible if and only if there exists $g \in A$ with $f = \exp(g)$.
- **4.** Prove that the irreducible elements of A are functions admitting an unique simple zero.
- **5.** Deduce that A is not an unique factorization domain.

Problem

In this problem, A is an unitary commutative ring.

Part A. Fitting's Lemma

An A-module M is said to be artinian if any decrasing sequence of submodules stabilizes.

- 1. Prove that a A-module is artinian if and only if any non empty set of submodules of M admits a minimal element for the inclusion.
- **2.** Let N be a submodule of a A-module M.
- **2.a** Let L and L' be submodules of M such that

$$L \subset L'$$
, $L \cap N = L' \cap N$ and $(L+N)/N = (L'+N)/N$.

Prove that L = L'.

- **2.b** Prove that M is artinian if and only if N and M/N are artinian.
- **3.** Let M be an artinian A-module and $n \in \mathbb{N}$. Prove that M^n is artinian.
- **4.** Prove that the \mathbb{Z} -module \mathbb{Z} is noetherian but not artinian.
- **5.** Let p be a prime number. Prove that the \mathbb{Z} -module $\mathbb{Z}[1/p]/\mathbb{Z}$ is artinian but not noetherian.
- **6.** In this question, M is an artinian and noetherian A-module and $f \in \text{Hom}_A(M, M)$ is an endomorphism of M.
- **6.a** Prove that the sequences of submodules $(\ker f^m)_{m\in\mathbb{N}}$ and $(\operatorname{im} f^m)_{m\in\mathbb{N}}$ stabilize for $m\geq n$.
- **6.b** Prove that $M = \ker f^n \oplus \operatorname{im} f^n$.
- **6.c** Prove that the restriction of f to ker f^n is nilpotent and that the restriction of f to im f^n is an

automorphism.

Part B. Krull-Schmidt's Theorem

An A-module M is said to be indecomposable if $M \neq \{0\}$ and decomposition of M as a direct sum $M' \oplus M''$ of two non zero submodules does not exist.

An A-module $M \neq \{0\}$ is said to be simple if it does not admit any submodules distinct from $\{0\}$ and M.

- **1.a** Let K be a field. When a K-vector space is a simple K-module?
- **1.b** Which are the simple \mathbb{Z} -modules?
- **1.c** When a ideal of A is a simple A-module?
- **1.d** Prove that a simple module is indecomposable.
- **2.a** Which are the finite type indecomposable \mathbb{Z} -modules?
- **2.b** Does the ring \mathbb{Z} admit simple submodules?
- **2.c** Is an indecomposable module always simple?
- **3.a** Let M be an artinian A-module. Prove that M can be written as a finite direct sum $M = M_1 \oplus \cdots \oplus M_m$ of indecomposable submodules.
- **3.b** Let M be a noetherian A-module. Prove that M can be written as a finite direct sum

$$M = M_1 \oplus \cdots \oplus M_m$$

of indecomposable submodules.

- **4.** Let M be an indecomposable artinian and noetherian module and $B = \operatorname{End}_A(M)$ the (non commutative) ring of its endomorphisms. We denote B^* the subset of automorphisms of B. Let $J = B B^*$.
- **4.a.** Prove that J is stable by multiplication to the right and to the left by elements of B.
- **4.b** Prove that J is a subgroup of B.

A subgroup of B stable by multiplication to the right and to the left is said to be a two-sided ideal. The ring B is said to be local if it admits an unique two-sided ideal maximal for inclusion.

- **4.c** Deduce that B is a local ring.
- **5.a** Prove that a A-module M with a local $B = \operatorname{End}_A(M)$ endomorphisms ring, is indecomposable.
- **5.b** Deduce that an artinian and noetherian A-module M is indecomposable if and only if $\operatorname{End}_A(M)$ is local.
- **6.** Let $M, M', N_1, N_2, \ldots, N_n$ be A-modules. We assume that the N_i 's are indecomposable, $\operatorname{End}_A(M)$ is local and

$$M \oplus M' \simeq N_1 \oplus \cdots \oplus N_n$$
.

Prove that there exists $s \in \{1, ..., n\}$ such that $M \simeq N_s$ and $M' \simeq \bigoplus_{t \neq s} N_t$.

7. Let (M_1, \ldots, M_m) and (N_1, \ldots, N_n) be two finite families of indecomposable modules. We assume that the ring $\operatorname{End}_A(M_i)$ are local and there exists an isomorphism

$$M_1 \oplus \cdots \oplus M_m \simeq N_1 \oplus \cdots \oplus N_n$$
.

7.a Prove that m = n and there exists a permutation σ of the set $\{1, \ldots, n\}$ such that $M_{\sigma(i)} = N_i$. **7.b** Let M be an artinian and noetherian A-module. Prove that there exists an unique decomposi-

7.b Let *M* be an artinian and noetherian *A*-module. Prove that there exists an unique decomposition (up to order and up to isomorphisms of the modules) as a finite direct sum of indecomposable submodules.

Correction succincte

Exercice 1.

Si \mathfrak{p} est un idéal premier de A et $x \in \operatorname{rad}(A)$. Ainsi il existe $n \geq 0$ tel que $x^n = 0 \in \mathfrak{p}$ donc $x \in \mathfrak{p}$. Réciproquement, supposons que $x \in A$ n'est pas nilpotent. Alors

$$S = \{1, x, x^2, \cdots\}$$

est un ensemble multiplicatif. Soit I un idéal maximal de l'anneau localisé $S^{-1}A$. Alors $\mathfrak{p} = A \cap I$ est un idéal premier de A, d'intersection vide avec S donc qui ne contient pas x.

Exercice 2.

- 1. Soient $f, g \in A$ avec fg = 0. Par conséquent dans le disque fermée, donc compact $\bar{B}(0,1)$, f ou g (disons f) admet une infinité de zéros. Donc f = 0 sur $\bar{B}(0,1)$ et donc nulle sur \mathbb{C} par prolongement analytique. Donc A est intégre.
- **2.a** Nous avons $f_k \in I_k I_{k-1}$.
- **2.b** La suite strictement croissante (I_k) n'est pas stationnaire dont A n'est pas noethérien.
- **3.** Si $f \in A^*$, alors il existe $g \in A^*$ telle que fg = 1, donc f ne s'annule pas sur \mathbb{C} . Réciproquement si $f \in A$ n'admet pas de zéro sur \mathbb{C} , alors $g = 1/f \in A^*$. Ainsi A^* est l'ensemble des éléments qui ne s'annulent pas sur \mathbb{C} .
- Si $f = \exp(g)$ alors f ne s'annule pas sur \mathbb{C} et $f \in A^*$. Réciproquement si $f \in A^*$, soit g une primitive holomorphe de f'/f sur \mathbb{C} . Ainsi $f/\exp(g) = a \in \mathbb{C}^*$ est constante sur \mathbb{C} et $f = a \exp(g)$. Soit $b \in C$ avec $a = \exp(b)$, on a $f = \exp(g + b)$.
- **4.** Soit $f \in A$ admettant un unique zéro simple z_0 et f = gh avec $g \notin A^*$. Alors g et h ne s'annulent pas sur $\mathbb{C} \{z_0\}$ et $g \notin A^*$ s'annule en z_0 . Donc h ne s'annule pas sur \mathbb{C} et $h \in A^*$ donc f est irréductible.
- Si $f \in A$ possédent au moins deux zéros z_1, z_2 comptés avec multiplicité alors $g(z) = \frac{f(z)}{(z-z_1)(z-z_2)} \in A$ et $f(z) = (z-z_1)(z-z_2)g(z)$ n'est pas irréductible.
- **5.** La fonction $f(z) = \sin(\pi z)$ a une infinité de zéros donc n'est pas produit fini d'éléments irréductibles de A. Donc A n'est pas factoriel.

Problème

Partie A.

1. Supposons qu'il existe un ensemble non vide \mathcal{N} de sous-modules de M qui ne possède pas d'éléments minimal pour l'inclusion. Alors nous pouvons construire une suite strictement décroissante d'éléments de \mathcal{N} . Donc M n'est pas artinien.

Réciproquement, soit $(N_n)_{n\in\mathbb{N}}$ une suite décroissante de sous-modules de M. L'ensemble $\mathcal{N}=\{N_n,n\in\mathbb{N}\}$ est non vide donc admet un élément minimal N_m . Comme la suite (N_n) est décroissante, elle est stationnaire pour $n\geq m$. Donc M est artinien.

- **2.a** Soit $x \in L'$. Alors il existe $y \in L$ et $n \in N$ avec x = y + n Ainsi $n = x y \in L' \cap N = L \cap N$ donc $n \in L$ et $x \in L$. D'où L = L'.
- **2.b** Si M est artinien, alors N et M/N sont artiniens.

Réciproquement, supposons N et M/N artiniens. Soit (L_n) une suite décroissante de sous-modules de M. Alors $(L_n \cap N)_{n \in \mathbb{N}}$ et $((L_n + N)/N)_{n \in \mathbb{N}}$ sont décroissantes donc stationnaires pour $n \geq m$. Donc $L_n \cap N = L_{n+1} \cap N$ et $L_n \cap N = L_{n+1} \cap N$ et $L_{n+1} \cap N$

3. Pour tout $n \in \mathbb{N}$, nous avons une suite exacte courte canonique

$$0 \longrightarrow M \longrightarrow M^{n+1} \longrightarrow M^n \longrightarrow 0$$

ce qui permet en utilisant 2.b de démontrer par récurrence sur n que M^n est artinien.

- **4.** Les sous-modules de \mathbb{Z} sont ses idéaux. Ils sont de la forme $m\mathbb{Z}$. Toute suite croissante d'idéaux de \mathbb{Z} est stationnaire mais la suite décroissante $2^n\mathbb{Z}$ d'idéaux n'est pas stationnaire.
- **5.** Les sous-modules propres de $\mathbb{Z}[1/p]/\mathbb{Z}$ sont les $\{a/p^n + \mathbb{Z}, a \in \mathbb{Z}\}$ pour $n \in \mathbb{N}$. Ils forment une suite

strictement croissante pour l'inclusion.

- **6.a** La suite de sous-modules (ker f^n) est croissante donc stationnaire car M est noethérien. La suite décroissante de sous-modules (imf^n) est stationnaire car M est artinien.
- **6.b** Si $x \in \ker f^m \cap \operatorname{im} f^m$ alors $x = f^m(y)$ et comme $f^m(x) = 0$, nous avons $y \in \ker f^{2m} = \ker f^m$ donc x = 0.
- Pour $x \in M$, $f^m(x) \in \text{im} f^m = \text{im} f^{2m}$, donc il existe $y \in M$ avec $f^m(x) = f^m(y)$. Donc x est la somme d'un élélement de ker f^m et d'un élément de im f^m .
- **6.c** La restriction de f à $\ker f^m$ est nilpotente ; la restriction de f à $\operatorname{im} f^m$ est surjective car $f^m(\operatorname{im} f^m) = f^m(\ker f^m + \operatorname{im} f^m) = f^m(M)$.

Partie B. Le théorème de Krull-Schmidt

- **1.a** Les K-espaces vectoriels simples sont les droites.
- **1.b** Les \mathbb{Z} -modules simples sont les groupes abéliens simples, i.e les groupes cycliques d'ordre p.
- 1.c L'idéal I est un A-module simple si et seulement si I est un idéal minimal.
- 1.d Clair.
- **2.a** Les \mathbb{Z} -modules de type fini indécomposables sont \mathbb{Z} et les groupes cyclique d'ordre p^n avec p premier et n > 0.
- **2.b** Les sous-modules non nuls de $\mathbb Z$ sont isomorphes à $\mathbb Z$ donc non simples.
- **2.c** Le \mathbb{Z} -module \mathbb{Z} est indécomposable et non simple.
- **3.a** Soit \mathcal{N} l'ensemble des sous-modules qui ne sont pas somme directe de modules indécomposables. Si \mathcal{N} est non vide, il admet un élément minimal N. Comme N n'est pas indécomposable, $N = N_1 \oplus N_2$ avec N_1, N_2 non nuls dont l'un au moins n'est pas somme de modules indécomposables, ce qui contredit la minimalité de N.
- **3.b** Soit \mathcal{M} l'ensemble des sous-modules N de M tels que M/N n'est pas somme de modules indécomposables. Nous raisonnons comme en 3.a en utilisant la noethérianité de M.
- **4.a** Notons $B = \operatorname{End}_A(M)$ et $J = B B^*$. D'après le lemme de Fitting (6.c), un élément $f \in B$ est nilpotent ou inversible. Donc J est l'ensemble des éléments nilpotents de B. Soit $f \in J$, comme f est nilpotent $\ker f \neq 0$ et $\operatorname{Coker} f \neq 0$. Donc pour tout $b \in B$, $\ker bf \neq 0$ et $\operatorname{Coker} fb \neq 0$ donc bf et fb ne sont pas inversibles, donc bf, $fb \in J$.
- **4.b** Soit $x, y \in J$. Si $x + y \notin J$, x + y est inversible d'inverse $b \in B$. Ainsi bx + by = 1 et $bx, by \in J$. Comme by est nilpotent bx = 1 by est inversible, ce qui est absurde! Par ailleurs $0 \in J$ et $-x \in J$ donc J est un sous-groupe de B.
- **4.c** Soit I un idéal bilatère de B propre, i.e. $I \neq B$. Alors I ne contient aucun élément inversible de B donc $I \subset J$.
- **5.a** Supposons M décomposable, $M = M_1 \oplus M_2$. Les projections π_1 et π_2 sont deux éléments non inversibles de B dont la somme $\pi_1 + \pi_2 = \operatorname{id}$ est inversible. Donc B n'est pas un anneau local.
- **5.b** Les questions 4c. et 5.a permettent de conclure.
- **6.** Notons $N = N_1 \oplus \cdots \oplus N_n$ et $\iota_j : N_j \longrightarrow N$ et $\pi_j : N \longrightarrow N_j$ les injections et les projections canoniques. Notons $(\varphi, \varphi') : M \oplus M' \longrightarrow N$ l'isomorphisme de l'énoncé et $(\psi, \psi') : N \longrightarrow M \oplus M'$ sa réciproque : $\psi \circ \varphi = \mathrm{id}_M$, $\psi' \circ \varphi' = \mathrm{id}_{M'}$, $\psi' \circ \varphi = 0$ et $\varphi \circ \psi + \varphi' \circ \psi' = \mathrm{id}_N$.

Alors $\mathrm{id}_M = \psi \circ \varphi = \sum_{j=1}^n \psi \circ \iota_j \circ \pi_j \circ \varphi$. Comme $\mathrm{End}_A(M)$ est un anneau local, un des termes de cette somme est inversible, disons $\psi \circ \iota_s \circ \pi_s \circ \varphi$. Alors $\pi_j \circ \varphi : M \longrightarrow N_j$ est injective, $\psi \circ \iota_j : N_j \longrightarrow M$ est surjective et $N_j = (\pi_j \circ \varphi) \oplus \ker(\psi \circ \iota_j)$. Or N_j est indécomposable. Donc $\pi_j \circ \varphi$ est surjective et $\psi \circ \iota_j$ est injectif. Donc $M \simeq N_j$.

Posons $\phi = (\psi \circ \iota_s \circ \pi_s \circ \varphi)^{-1}$. Ainsi

$$\phi \circ \psi \circ \iota_s \circ \pi_s \circ \varphi = \mathrm{id}_M \text{ et } \pi_s \circ \varphi \circ \phi \circ \psi \circ \iota_s = \mathrm{id}_{N_s}$$

Pour $t \neq s$, soit $\iota'_t = \psi' \circ \iota_s \in \operatorname{Hom}_A(N_t, M')$, et $\pi'_t = \pi_t \circ (\operatorname{id}_N - \varphi \circ \phi \circ \psi \circ \iota_s \circ \pi_s) \circ \varphi' \in \operatorname{Hom}_A(M', N_t)$. Alors $\pi'_t \circ \iota'_t = \operatorname{id}_{N_t}$, $\pi'_t \circ \iota'_j = 0$ si $t \neq j$ et $\sum_{t \neq s} \operatorname{id}_{M'}$. D'où $M' \simeq \bigoplus_{t \neq s} N'_t$.

- **7.a** Le résultat s'obtient par récurrence sur m à l'aide de B.6.
- 7.b Le résultat est un corollaire du lemme de Fitting (A.6) et de B.7.a.