

 \mathbf{R} associative ring with 1. Mod - \mathbf{R} = right \mathbf{R} -modules.

 $\{A_i; f_i^j\}_{i \leq j \in I}$ direct system of *R*-modules; $M \in Mod - R$

• $\operatorname{Hom}_R(\varinjlim A_i, M) \cong \varprojlim \operatorname{Hom}_R(A_i, M)$

ullet [Auslander, '78] $oldsymbol{M}$ is pure injective if and only

 $\operatorname{Ext}^1_R(\varinjlim A_i, M) \cong \varprojlim \operatorname{Ext}^1_R(A_i, M)$

Look for conditions under which

 $\operatorname{Ext}^1_R(A_i,M) = 0, \forall i \in I \Rightarrow \operatorname{Ext}^1_R(\varinjlim A_i,M) = 0$

COUNTABLE DIRECT SYSTEMS

$$A_1 \xrightarrow{f_1} A_2 \xrightarrow{f_2} A_3 \to \ldots \to A_n \xrightarrow{f_n} A_{n+1} \to \ldots$$

 $[\text{Jensen '66}]: 0 \to \oplus_{n \in \mathbb{N}} A_n \xrightarrow{\phi} \oplus_{n \in \mathbb{N}} A_n \to \varinjlim A_n \to 0$

 $\phi arepsilon_n = arepsilon_n - arepsilon_{n+1} f_n$

 $\varepsilon_n \colon A_n \to \bigoplus_{n \in \mathbb{N}} A_n$ denotes the canonical embedding.

Assume $\operatorname{Ext}_{R}^{1}(A_{n}, M) = 0$, for every $n \in \mathbb{N}$ and write $\operatorname{Hom}_{R}(-, M) = \operatorname{H}(-, M)$, then:

 $0 \to \varprojlim_{n \in \mathbb{N}} H(A_n, M) \to \prod_{n \in \mathbb{N}} H(A_n, M) \stackrel{H(\phi, M)}{\to} \prod_{n \in \mathbb{N}} H(A_n, M) \to \operatorname{Ext}^1_R(\varinjlim_R A_n, M) \to 0.$

For a countable inverse system:

$$\dots H_{n+1} \stackrel{g_n}{
ightarrow} H_n \dots
ightarrow H_3 \stackrel{g_2}{
ightarrow} H_2 \stackrel{g_1}{
ightarrow} H_1$$

$$egin{aligned} 0 &
ightarrow ec{\operatorname{Im}} H_n
ightarrow ec{\operatorname{Im}} H_n
ightarrow ec{\operatorname{Im}} H_n
ightarrow ec{\operatorname{Im}} ^1 H_n
ightarrow 0. \ & \Delta((h_n)_{n\in\mathbb{N}}) = ((h_n - g_n(h_{n+1})_{n\in\mathbb{N}})) \ & \Delta((h_n)_{n\in\mathbb{N}}) = ((h_n - g_n(h_{n+1})_{n\in\mathbb{N}}) \ & \Delta((h_n)_{n\in\mathbb{N}}) = ((h_n - g_n(h_{n+1})_{n\in\mathbb{N}})) \ & \Delta((h_n)_{n\in\mathbb{N}}) = ((h_n - g_n(h_{n+1})_{n\in\mathbb{N}}) \ & \Delta((h_n)_{n\in\mathbb{N}})$$

SUFFICIENT CONDITION.

DEFINITION

An inverse system $\{H_i; g_i^j\}_{i \le j \in I}$ of R-modules satisfies the Mittag-Leffler condition if for every $i \in I$ there exists $j \ge i$ such that

$$\mathrm{Im} g_i^j = \mathrm{Im} g_i^k, \ \ orall k \geq j$$

A countable inverse system:

$$\dots H_{n+1} \stackrel{g_n}{
ightarrow} H_n \dots
ightarrow H_3 \stackrel{g_2}{
ightarrow} H_2 \stackrel{g_1}{
ightarrow} H_1$$

satisfies the Mittag-Leffler condition if for every $m \in \mathbb{N}$ the chain:

 \dots Im $g_m \supseteq$ Im $g_m g_{m+1} \supseteq$ Im $g_m g_{m+1} g_{m+2} \dots$

is stationary.

THEOREM [Grothendieck, '60]

If $\{H_n; g_n\}_{n \in \mathbb{N}}$ satisfies the Mittag-Leffler condition then $\varprojlim^1 H_n = 0$

REMARK: If $\{H_n; g_n\}_n$ satisfies the Mittag-Leffler condition, so does $\{H_n^{(X)}; g_n^{(X)}\}_n$ for every set X.

THEOREM

[Emmanouil '96, Bass '61, Azumaya '87]

The following are equivalent;

(1) $\{H_n; g_n\}_n$ satisfies the Mittag-Leffler condition; (2) $\varprojlim {}^1 H_n^{(\mathbb{N})} = 0;$ (3) $\varprojlim {}^1 H_n^{(X)} = 0, \quad \forall X.$ • A_n finitely generated, then $H(A_n, M^{(X)}) \cong H(A_n, M)^{(X)}.$

• A_n finitely presented and N pure in M.

 $\{H(A_n, M)\}_n$ Mittag-Leffler $\Rightarrow \{H(A_n, N)\}_n$ Mittag-Leffler.

THEOREM [B, Herbera '05] Assume A_n finitely presented and $\operatorname{Ext}_R^1(A_n, M) = 0$, for every $n \in \mathbb{N}$. **TFAE**: (1) $\operatorname{Ext}_R^1(\varinjlim A_n, M^{(\mathbb{N})}) = 0$; (2) $\varprojlim^1 H(A_n, M)^{(\mathbb{N})} = 0$; (3) $\{H(A_n, M)\}_n$ satisfies the Mittag-Leffler condition. Moreover, $\operatorname{Ext}_R^1(\varinjlim A_n, M^{(\mathbb{N})}) = 0 \Rightarrow \operatorname{Ext}_R^1(\varinjlim A_n, N) = 0$ for every **pure submodule** N of M.

APPLICATION TO TILTING THEORY.

DEFINITION [Angeleri-Hügel, Coelho '01]

A right R-module T is n-tilting if and only if the following three conditions hold

$$\begin{split} & [(\boldsymbol{T1})] \text{ p.d.} T \leq n; \\ & [(\boldsymbol{T2})] \operatorname{Ext}_{R}^{i}(T, T^{(\lambda)}) = 0, \forall i \geq 1, \forall \lambda \text{ cardinals}; \\ & [(\boldsymbol{T3})] \ 0 \to R \to T_{0} \to T_{1} \to \ldots \to T_{r} \to 0, \\ & \boldsymbol{T_{i}} \in \operatorname{Add} \boldsymbol{T}, \operatorname{Add}(\boldsymbol{T}) = \text{direct summands of direct sums of copies of } T. \\ & \boldsymbol{T^{\perp}} = \{\boldsymbol{M} \in \operatorname{Mod} \boldsymbol{\cdot} \boldsymbol{R} \mid \operatorname{Ext}_{R}^{i}(\boldsymbol{T}, \boldsymbol{M}) = \boldsymbol{0}, \forall i \geq 1\} \\ & \text{ is called } \boldsymbol{n}\text{-tilting class.} \end{split}$$

 T^{\perp} is closed under direct sums.

 $\mathcal{A} = \{A \mid \operatorname{Ext}^i_R(A,M) = 0, orall i \geq 1, orall M \in T^\perp\}$

 (\mathcal{A}, T^{\perp}) is a cotorsion pair.

Classical tilting modules are finitely presented.

Link between the finite and the infinite case is given by the following notion:

DEFINITION [Angeleri, Herbera, Trlifaj '03] A tilting module T is of finite type if there exists a set $S \subseteq \text{mod} R$ of modules such that $T^{\perp} = S^{\perp}$. $(M \in \text{mod} R \quad \text{if} \ldots \rightarrow P_n \rightarrow \ldots \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0,$ P_i projective finitely generated.)

THEOREM

[B, Eklof, Herbera, Šťovíček, Trlifaj '04-'05]

Every *n*-tilting module is of finite type.

Proved in many steps, as follows:

THEOREM [B, Eklof, Trlifaj '04]

T 1-tilting module.

(a) $T^{\perp} = S^{\perp}$, where S is a set of countably presented modules.

(Proved in ZFC involving set-theoretic methods. Crucial fact: T^{\perp} is closed under direct sums.)

(b) Every countably presented module $A \in \mathcal{A}$ is a countable direct limit of finitely presented modules in \mathcal{A} .

THEOREM [B, Herbera '05]

Every 1-tilting module is of finite type.

Having the reduction to the countable case the results on the vanishing of $\lim_{t \to 0} 1$, imply that the tilting class is closed under pure submodules, hence it is definable.

By (b) the tilting class is of finite type.

THEOREM [Šťovíček, Trlifaj '05]

T *n*-tilting module.

 $T^{\perp} = S^{\perp}$, where S is a set of countably generated modules with countably generated syzygies modules.

THEOREM [B, Šťovíček '05]

T *n*-tilting module.

Every countably generated module $A \in \mathcal{A}$ is a countable direct limit of finitely presented modules in \mathcal{A} .

(Using set theoretic methods to filter the syzygies of modules in \mathcal{A}).

Hence, analogously to the $1\mbox{-tilting}$ case

THEOREM [B, Šťovíček '05]

Every *n*-tilting module is of finite type.

APPLICATION TO BAER MODULES.

R commutative domain.

DEFINITION An *R*-module *B* is called a Baer module if $\operatorname{Ext}_{R}^{1}(B, T) = 0$ for every torsion module *T*.

[Baer '36]:

PROBLEM: Characterize the abelian groups G such that $\operatorname{Ext}_{\mathbb{Z}}^1(G,T) = 0$ for all torsion groups T.

• [Baer '36] countably generated groups G with this property must be free.

[Kaplansky '62]:

PROBLEM: Are Baer modules projective?

• [Kaplansky '62] Baer modules are flat and of projective dimension at most one.

- [Griffith '69] Baer groups are free.
- [Grimaldi '72] Baer modules over Dedekind domains are projective.

Using Shelah's Singular Compactness Theorem:

- [Eklof, Fuchs '88] Baer modules over valuation domains are projective.
- [Eklof, Fuchs, Shelah '90]

Reduction to the countable case.

A module B over an arbitrary domain is a Baer module if and only if

$$B = \bigcup_{\alpha} B_{\alpha}$$

continuous ascending chain of submod. such that the factors $B_{\alpha+1}/B_{\alpha}$ are countably generated Baer modules.

THEOREM [Angeleri-Hügel, B, Herbera, '05]

Baer modules over arbitrary commutative domains are projective.

SKETCH:

- ullet There is a pure embedding: $0 o R o \prod_{0
 eq r \in R} R/rR$
- **B** countably generated Baer module.

B is flat, proj.dim $B \leq 1$, so B is countably presented, hence there are F_n finitely generated free modules such that

$$0 o \oplus_{n \in \mathbb{N}} F_n \xrightarrow{\phi} \oplus_{n \in \mathbb{N}} F_n o \lim_{\longrightarrow} F_n = B o 0.$$

 $\begin{aligned} \operatorname{Ext}_{R}^{1}(\varinjlim F_{n}, T^{(\mathbb{N})}) &= 0 \text{ for every torsion module } T. \text{ If } T &= \bigoplus_{0 \neq r \in R} R/rR, \text{ then} \\ \{H(F_{n}, T)\}_{n \in \mathbb{N}} \text{ and } \{H(F_{n}, \prod_{0 \neq r \in R} R/rR)\} \text{ satisfy the Mittag-Leffler condition.} \\ \operatorname{So} \{H(F_{n}, R)\}_{n \in \mathbb{N}}\} \text{ satisfies Mittag-Leffler, hence} \\ \operatorname{Ext}_{R}^{1}(\varinjlim F_{n}, \bigoplus_{n \in \mathbb{N}} F_{n}) &= 0 \text{ and the sequence} \\ 0 \to \bigoplus_{n \in \mathbb{N}} F_{n} \xrightarrow{\phi} \bigoplus_{n \in \mathbb{N}} F_{n} \to \varinjlim F_{n} = B \to 0 \\ \text{splits.} \end{aligned}$

Σ cotorsion modules

DEFINITION A module M is cotorsion

if $\operatorname{Ext}_{R}^{1}(F, M) = 0$ for every flat module F. M is Σ -cotorsion if $M^{(X)}$ is cotorsion for every set X.

PROBLEM [Guil-Asensio, Herzog '05] Is a pure submodule of a Σ -cotorsion module again cotorsion?

(True for Σ -pure injective modules).

• Let $F = \varinjlim F_i$ where $\{F_i; f_i^j\}_i$ is a direct system of **finitely generated free** modules, then:.

$$\operatorname{Ext}_{R}^{n}(F, M) \cong \underset{I}{\underset{I}{\varprojlim}}^{n}(\operatorname{Hom}_{R}(F_{i}, M))$$

In fact,

[Jensen '72] $\{H_i; g_i^j\}_{i \le j \in I}$ inverse system of R-modules; there is a complex:

$$\begin{split} 0 &\to \varprojlim_{I} H_{i} \to \prod_{i \in I} H_{i} \stackrel{\Delta^{0}}{\to} \prod_{i_{0} \leq i_{1}} H_{i_{0}i_{1}} \stackrel{\Delta^{1}}{\to} \prod_{i_{0} \leq i_{1} \leq i_{2}} H_{i_{0}i_{1}i_{2}} \stackrel{\Delta_{2}}{\to} \dots \\ H_{i_{0}i_{1}\dots i_{n}} &= H_{i_{0}} \quad \forall i_{0} \leq i_{1} \leq \dots \leq i_{n} \\ \Delta^{0}((h_{i})_{i}) &= (h_{i_{0}} - g_{i_{0}}^{i_{1}}(h_{i_{1}}))_{i_{0} \leq i_{1}}; \\ \Delta^{1}((h_{i_{0}i_{1}})_{i_{0} \leq i_{1}} = (h_{i_{0}i_{2}} - h_{i_{0}i_{1}} - g_{i_{0}}^{i_{1}}(x_{i_{1}i_{2}}))_{i_{0} \leq i_{1} \leq i_{2}}; \\ & \varprojlim_{I}^{n} H_{i} = n^{th} \text{-cohomology group of the complex} \end{split}$$

 $\{A_i; f_i^j\}_{i < j \in I}$ direct system of *R*-modules; by the exactness of the direct limit there is an acyclic complex: $\cdots \stackrel{\delta_2}{
ightarrow} igoplus_{i_0 \leq i_1 \leq i_2} A_{i_0 i_1 i_2} \stackrel{\delta_1}{
ightarrow} igoplus_{i_0 \leq i_1} A_{i_0 i_1} \stackrel{\delta_0}{
ightarrow} igoplus_{i} A_i
ightarrow arline{\lim_{I}} A_i
ightarrow 0$ $A_{i_0i_1\ldots i_n} = A_{i_0} \quad \forall i_0 \leq i_1 \leq \cdots \leq i_n$ $\delta_0 \varepsilon_{i_0 i_1}(a) = \varepsilon_{i_0}(a) - \varepsilon_{i_1} f_{i_0}^{i_1}(a); (i_0 \le i_1)$ $\varepsilon_{i_0 i_1}$ canonical embedding. Let $M \in \mathsf{Mod} \cdot R$, we get the complex: $0 \to \varprojlim_{I} H(A_{i}, M) \to \prod_{i \in I} H(A_{i}, M) \xrightarrow{\Delta^{0}} \prod_{i_{0} \leq i_{1}} H(A_{i_{0}i_{1}}, M) \xrightarrow{\Delta^{1}}$ $H(A_{i_0i_1i_2}, M) \xrightarrow{\Delta_2} \dots$ $i_0 < i_1 < i_2$ $\Delta^n = H(\delta_n, M)$

If $\operatorname{Ext}_{\boldsymbol{R}}^{\boldsymbol{n}}(\boldsymbol{A_i},\boldsymbol{M}) = \boldsymbol{0} \ \forall n \in \mathbb{N}, i \in I$, the n^{th} -cohomology group is isomorphic to $\operatorname{Ext}^n_R(ec{\operatorname{Lim}} A_i, M)$, hence If M is Σ -cotorsion, then $\operatorname{Ext}_{R}^{1}(\varinjlim_{I} F_{i}, M^{(X)}) \cong \varprojlim_{I}^{1} \operatorname{Hom}(F_{i}, M^{(X)}) = 0$ for every direct system $\{F_i; f_i^j\}_{i < j \in I}$ of finitely generated free modules

PROPOSITION The following are equivalent:

(1) M is Σ -cotorsion;

(2) for every direct system $\{F_i; f_i^j\}_{i \le j \in I}$ of finitely generated free modules, $\lim_{I \to I} {}^1 H(F_i, M)^{(X)} = 0.$

• Necessary condition

 $\{H_i; g_i^j\}_{i \le j \in I}$ inverse system of R-modules, if $\varprojlim_I H_i^{(X)} = 0$, then

every countable subsystem $\{H_{i_n}\}_{n\in\mathbb{N}}$ satisfies the Mittag-Leffler condition.

• Sufficient condition?

PROBLEM Find a necessary and sufficient condition for the vanishing of

$$\varprojlim_{I} H(F_i, M)^{(X)}$$

If the condition is inherited by pure submodules, then pure submodules of Σ -cotorsion modules are again cotorsion.