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R associative ring with 1. Mod -R= right R-modules.

{Ai; f
j
i }i≤j∈I direct system of R-modules; M∈ Mod -R

•HomR(lim
−→

Ai, M) ∼= lim
←−

HomR(Ai, M)

• [Auslander, ’78] M is pure injective if and only

Ext1R(lim
−→

Ai, M) ∼= lim
←−

Ext1R(Ai, M)

Look for conditions under which

Ext1R(Ai, M) = 0, ∀i ∈ I ⇒ Ext1R(lim
−→

Ai, M) = 0
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COUNTABLE DIRECT SYSTEMS

A1
f1

→ A2
f2

→ A3 → . . .→ An
fn

→ An+1 → . . .

[Jensen ’66]: 0→ ⊕n∈NAn
φ
→ ⊕n∈NAn → lim

−→
An → 0

φεn = εn − εn+1fn

εn : An → ⊕n∈NAn denotes the canonical embedding.
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Assume Ext1R(An, M) = 0, for every n ∈ N and write

HomR(−, M) = H(−, M), then:

0→ lim
←−

H(An, M)→
∏

n∈N
H(An, M)

H(φ,M)
→

∏

n∈N
H(An, M)→

Ext1R(lim
−→

An, M)→ 0.

For a countable inverse system:

. . . Hn+1
gn

→ Hn . . .→ H3
g2

→ H2
g1

→ H1

0→ lim
←−

Hn →
∏

n∈N

Hn
∆
→

∏

n∈N

Hn → lim
←−

1Hn → 0.

∆((hn)n∈N) = ((hn − gn(hn+1)n∈N)

∆ = H(φ, M), hence

Ext1R(lim
−→

An, M) ∼= lim
←−

1H(An, M)

Look for conditions implying the vanishing of lim
←−

1Hn.
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SUFFICIENT CONDITION.

DEFINITION

An inverse system {Hi; g
j
i}i≤j∈I of R-modules satisfies the Mittag-Leffler condition if for

every i ∈ I there exists j ≥ i such that

Imgj
i = Imgk

i , ∀k ≥ j

A countable inverse system:

. . . Hn+1
gn

→ Hn . . .→ H3
g2

→ H2
g1

→ H1

satisfies the Mittag-Leffler condition if for every m ∈ N the chain:

. . . Imgm ⊇ Imgmgm+1 ⊇ Imgmgm+1gm+2 . . .

is stationary.
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THEOREM [Grothendieck, ’60]

If {Hn; gn}n∈N satisfies the Mittag-Leffler condition then lim
←−

1Hn = 0

REMARK : If {Hn; gn}n satisfies the Mittag-Leffler condition, so does {H(X)
n ; g(X)

n }n

for every set X .

THEOREM

[Emmanouil ’96, Bass ’61, Azumaya ’87]

The following are equivalent;

(1) {Hn; gn}n satisfies the Mittag-Leffler condition;

(2) lim
←−

1H(N)
n = 0;

(3) lim
←−

1H(X)
n = 0, ∀X .
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•An finitely generated , then

H(An, M (X)) ∼= H(An, M)(X).

•An finitely presented and N pure in M .

{H(An, M)}n Mittag-Leffler⇒ {H(An, N)}n Mittag-Leffler.

THEOREM [B, Herbera ’05]

Assume An finitely presented and Ext1R(An, M) = 0, for every n ∈ N. TFAE:

(1) Ext1R(lim
−→

An, M (N)) = 0;

(2) lim
←−

1H(An, M)(N) = 0;

(3) {H(An, M)}n satisfies the Mittag-Leffler condition.

Moreover,

Ext1R(lim
−→

An, M (N)) = 0⇒ Ext1R(lim
−→

An, N) = 0

for every pure submodule N of M .
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APPLICATION TO TILTING THEORY.

DEFINITION [Angeleri-Hügel, Coelho ’01]

A right R-module T is n-tilting if and only if the following three conditions hold

[(T1)] p.d.T ≤ n;

[(T2)] Exti

R(T, T (λ)) = 0, ∀i ≥ 1, ∀λ cardinals;

[(T3)] 0→ R→ T0 → T1 → . . .→ Tr → 0,

Ti ∈ Add T , Add(T )= direct summands of direct sums of copies of T .

T ⊥ = {M ∈ Mod -R | Exti
R(T, M) = 0, ∀i ≥ 1}

is called n-tilting class.

T ⊥ is closed under direct sums.

A = {A | Exti
R(A, M) = 0, ∀i ≥ 1, ∀M ∈ T ⊥}

(A, T ⊥) is a cotorsion pair.
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Classical tilting modules are finitely presented.

Link between the finite and the infinite case is given by the following notion:

DEFINITION [Angeleri, Herbera, Trlifaj ’03] A tilting module T is of finite type if there exists a

set S ⊆ modR of modules such that T ⊥ = S⊥.

(M ∈ modR if . . .→ Pn → . . .→ P1 → P0 →M → 0,

Pi projective finitely generated.)

THEOREM

[B, Eklof, Herbera, Št’ovíček, Trlifaj ’04-’05]

Every n-tilting module is of finite type.

Proved in many steps, as follows:
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THEOREM [B, Eklof, Trlifaj ’04]

T 1-tilting module.

(a) T ⊥ = S⊥, where S is a set of countably presented modules.

(Proved in ZFC involving set-theoretic methods. Crucial fact: T ⊥ is closed under direct sums.)

(b) Every countably presented module A ∈ A is a countable direct limit of finitely presented

modules inA.

THEOREM [B, Herbera ’05]

Every 1-tilting module is of finite type.

Having the reduction to the countable case the results on the vanishing of lim
←−

1, imply that

the tilting class is closed under pure submodules, hence it is definable.

By (b) the tilting class is of finite type.
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THEOREM [Št’ovíček, Trlifaj ’05]

T n-tilting module.

T ⊥ = S⊥, where S is a set of countably generated modules with countably generated

syzygies modules.

THEOREM [B, Št’ovíček ’05]

T n-tilting module.

Every countably generated module A ∈ A is a countable direct limit of finitely presented

modules inA.

(Using set theoretic methods to filter the syzygies of modules in A).

Hence, analogously to the 1-tilting case

THEOREM [B, Št’ovíček ’05]

Every n-tilting module is of finite type.
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APPLICATION TO BAER MODULES.

R commutative domain.

DEFINITION An R-module B is called a Baer module if Ext1R(B, T ) = 0 for every

torsion module T .

[Baer ’36]:

PROBLEM : Characterize the abelian groups G such that Ext1
Z
(G, T ) = 0 for all torsion

groups T .

• [Baer ’36] countably generated groups G with this property must be free.

[Kaplansky ’62]:

PROBLEM: Are Baer modules projective?

• [Kaplansky ’62] Baer modules are flat and of projective dimension at most one.
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• [Griffith ’69] Baer groups are free.

• [Grimaldi ’72] Baer modules over Dedekind domains are projective.

Using Shelah’s Singular Compactness Theorem:

• [Eklof, Fuchs ’88] Baer modules over valuation domains are projective.

• [Eklof, Fuchs, Shelah ’90]

Reduction to the countable case.

A module B over an arbitrary domain is a Baer module if and only if

B =
⋃

α Bα

continuous ascending chain of submod. such that the factors Bα+1/Bα are countably

generated Baer modules.

THEOREM [Angeleri-Hügel, B, Herbera, ’05]

Baer modules over arbitrary commutative domains are projective.
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SKETCH:

• There is a pure embedding: 0→ R→
∏

0 6=r∈R R/rR

•B countably generated Baer module.

B is flat, proj.dimB ≤ 1, so B is countably presented, hence there are

Fn finitely generated free modules such that

0→ ⊕n∈NFn
φ
→ ⊕n∈NFn → lim

−→
Fn = B → 0.

Ext1R(lim
−→

Fn, T (N)) = 0 for every torsion module T . If T = ⊕0 6=r∈RR/rR, then

{H(Fn, T )}n∈N and {H(Fn,
∏

0 6=r∈R R/rR)} satisfy the Mittag-Leffler condition.

So {H(Fn, R)}n∈N}satisfies Mittag-Leffler, hence

Ext1R(lim
−→

Fn,⊕n∈NFn) = 0 and the sequence

0→ ⊕n∈NFn
φ
→ ⊕n∈NFn → lim

−→
Fn = B → 0

splits.
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Σ COTORSION MODULES

DEFINITION A module M is cotorsion

if Ext1R(F, M) = 0 for every flat module F .

M is Σ-cotorsion if M (X) is cotorsion for every set X .

PROBLEM [Guil-Asensio, Herzog ’05]

Is a pure submodule of a Σ-cotorsion module again cotorsion?

(True for Σ-pure injective modules).

• Let F = lim
−→

Fi where {Fi; f
j
i }i is a direct system of finitely generated free modules,

then:.

Extn
R(F, M) ∼= lim

←−
I

n(HomR(Fi, M)

In fact,
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[Jensen ’72] {Hi; g
j
i}i≤j∈I inverse system of R-modules; there is a complex:

0→ lim
←−

I

Hi →
∏

i∈I

Hi
∆0

→
∏

i0≤i1

Hi0i1

∆1

→
∏

i0≤i1≤i2

Hi0i1i2

∆2→ . . .

Hi0i1...in
= Hi0 ∀i0 ≤ i1 ≤ · · · ≤ in

∆0((hi)i) = (hi0 − gi1
i0

(hi1))i0≤i1 ;

∆1((hi0i1)i0≤i1 = (hi0i2 − hi0i1 − gi1
i0

(xi1i2))i0≤i1≤i2 ;

lim
←−

I

nHi = n th-cohomology group of the complex
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{Ai; f
j
i }i≤j∈I direct system of R-modules;

by the exactness of the direct limit there is an acyclic complex:

· · ·
δ2

→
⊕

i0≤i1≤i2

Ai0i1i2

δ1

→
⊕

i0≤i1

Ai0i1

δ0

→
⊕

i

Ai → lim
−→

I

Ai → 0

Ai0i1...in
= Ai0 ∀i0 ≤ i1 ≤ · · · ≤ in

δ0εi0i1(a) = εi0(a)− εi1f
i1
i0

(a); (i0 ≤ i1)

εi0i1 canonical embedding.

Let M ∈ Mod -R , we get the complex:

0→ lim
←−

I

H(Ai, M)→
∏

i∈I

H(Ai, M)
∆0

→
∏

i0≤i1

H(Ai0i1 , M)
∆1

→

∏

i0≤i1≤i2

H(Ai0i1i2 , M)
∆2

→ . . .

∆n = H(δn, M)
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If Extn
R(Ai, M) = 0 ∀n ∈ N, i ∈ I ,

the nth-cohomology group is isomorphic to Extn
R(lim
−→

I

Ai, M), hence

Extn
R(lim
−→

I

Ai, M) ∼= lim
←−

I

n Hom(Ai, M)

If M is Σ-cotorsion, then

Ext1R(lim
−→

I

Fi, M (X)) ∼= lim
←−

I

1 Hom(Fi, M (X)) = 0

for every direct system {Fi; f
j
i }i≤j∈I of finitely generated free modules
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PROPOSITION The following are equivalent:

(1) M is Σ-cotorsion;

(2) for every direct system {Fi; f
j
i }i≤j∈I of finitely generated free modules,

lim
←−

I

1H(Fi, M)(X) = 0.

• Necessary condition

{Hi; g
j
i}i≤j∈I inverse system of R-modules, if lim

←−
I

1H
(X)
i = 0, then

every countable subsystem {Hin
}n∈N satisfies the Mittag-Leffler condition.

• Sufficient condition?

PROBLEM Find a necessary and sufficient condition for the vanishing of

lim
←−

I

1H(Fi, M)(X)

If the condition is inherited by pure submodules, then pure submodules of Σ-cotorsion

modules are again cotorsion.
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