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Abstract

We will show that two different constructions lead to the same ac-

tions of cyclic groups on some Abelian groups. The first of these con-

structions lives in the framework of the theory of operads, and more pre-

cisely comes from the notion of anticyclic operad. The other construction

is provided by the Coxeter transformation, which is the action induced

by the Auslander-Reiten functor on the Grothendieck group of a finite-

dimensional algebra of finite global dimension.

There are only two examples so far for this relationship. The first one is

between the Diassociative operad and the sequence of hereditary algebras

of the An quivers. This is of course a very classical setting. The other one

is between the Dendriform operad and the sequence of incidence algebras

of the Tamari lattices. This is related to some more recent developments,

such as the theory of cluster algebras.

1 Introduction

This talk will deal with some hint at a new relationship between two mathe-
matical domains. This is not a new theory, but only two interesting examples.

The first domain is the theory of operads, which originated in algebraic
topology in the 1960’s and has more recently known a new sequence of develop-
ment, related to the moduli spaces of curves and algebraic geometry. The other
domain is representation theory, more precisely the study of representations of
finite dimensional algebras of finite global dimension. Here the main objects are
the Abelian categories of modules and the bounded derived categories of these,
which are triangulated categories.

In each of these two domains, we will present some construction of free
Abelian groups endowed with an action of a cyclic group:

τ ∈ EndZ(ZN ) with τn = Id, (1)

for some N and n. The main point of the talk is to observe that these two
actions are closely related and to propose some conjectural explanation for this
link.
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2 Operads

2.1 Basics and examples

Let us first recall briefly the basics of the theory of operads. We will only use
so-called non-symmetric operads and just call them operads for short.

The notion of operad can be defined in any monoidal category. We will use
the category of Abelian groups.

Definition 1 An operad P is the data of a sequence {P(n)}n∈N of Abelian

groups, of a distinguished element 1 ∈ P(1) and of composition maps ◦i from

P(n) ⊗Z P(m) to P(n + m − 1) for each n, m and each 1 ≤ i ≤ n. This data

must satisfy some axioms, modelled after the properties of the first example

below: unity, associativity of nested compositions and commutativity of disjoint

compositions.

Let us give some examples.
Example 1: the endomorphism operads
Pick any free Abelian group V of finite rank. Let P(n) = HomZ(V ⊗n, V ).

Let 1 be the identity map in P(1). Let ◦i be the composition of multilinear
maps defined, for f ∈ P(n) and g ∈ P(m), by

(f ◦i g)(x1, . . . , xm+n−1) = f(x1, . . . , g(xi, . . . , xi+m−1), . . . , xm+n−1). (2)

These data define the so-called endomorphism operad of V .
Example 2: the associative operad
Let Assoc(n) be the free Abelian group of rank 1 with basis bn. Let 1 be b1

and let
bn ◦i bm = bn+m−1. (3)

The axioms are easily checked and this defines the associative operad Assoc.
Example 3: the diassociative operad (Loday)
Let Dias(n) be the free Abelian group of rank n with basis {en

1 , . . . , en
n}. Let

1 be e1
1. The composition maps are defined by

en
k ◦i em

` = en+m−1

j , (4)

where j is given by the following rule:











k if i > k,

k + ` − 1 if i = k,

k + n − 1 if i < k.

(5)

This is more easily understood using the following graphical description.
The basis element en

k is associated with the following tree (corolla) endowed
with a colored path from the leaf k to the root. Then the composition en

k ◦i em
`

is associated to the grafting of the corolla for em
` on the leaf i of the corolla for

en
k . In the resulting tree, only one leaf is linked to the root by a colored path.

The index j of this leaf (numbering leaves of the tree from left to right) provides
the result of the composition.

2



e
5
4

e
1
3

e
5
4

e
1
3

=
3

o
7
6

e

Just like for associative algebras, there exist notions of a free operad gener-
ated by a collection {E(n)}n≥2 of Abelian groups, of an ideal in an operad, and
of a quotient operad. Therefore one can speak of a presentation by generators
and relations of an operad.

Let us give some examples of such presentations.
Example 2: the associative operad The operad Assoc is generated by

b2 ∈ Assoc(2). One can compute that

b2 ◦1 b2 = b2 ◦2 b2 = b3. (6)

The operad Assoc is presented by the generator b2 and the relation

b2 ◦1 b2 = b2 ◦2 b2. (7)

Remark: this relation can be thought of as the axiom of associativity, i.e.

the fact that
(x · y) · z = x · (y · z) (8)

holds in any associative algebra (A, ·). Indeed, if the product map is denoted
by m from A ⊗ A to A, then identity (8) can be written in the endomorphism
operad of A as m ◦1 m = m ◦2 m, formally the same as the relation of Assoc.

Example 3: the diassociative operad
The operad Dias is generated by Dias(2) = Z{e2

1, e
2
2}. One can compute

(using the graphical description of Dias) that

e3
1 = e2

1 ◦1 e2
1 = e2

1 ◦2 e2
1 = e2

1 ◦2 e2
2, (9)

e3
2 = e2

2 ◦2 e2
1 = e2

1 ◦1 e2
2, (10)

e3
3 = e2

2 ◦2 e2
2 = e2

2 ◦1 e2
1 = e2

2 ◦1 e2
2. (11)

This provides a presentation of the operad Dias. From this presentation, one can
find the axioms of the notion of diassociative algebra, as above for associative
algebras.

2.2 Anticyclic operads

We will need the more sophisticated notion of anticyclic operad. This is an
operad endowed with additional structure.

Definition 2 An anticyclic operad P is an operad P together with the data of

endomorphisms τn of P(n) satisfying

τ1(1) = −1, (12)

τn+1
n = Id, (13)

τn+m−1(x ◦n y) = −τm(y) ◦1 τn(x), (14)

τn+m−1(x ◦i y) = τn(x) ◦i+1 y, (15)

where x ∈ P(n), y ∈ P(m) and 1 ≤ i ≤ n − 1.
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This notion has been introduced by Getzler and Kapranov.
Our aim is now to show that the operad Dias can be upgraded to an anti-

cyclic operad. This could be done by defining all the maps τn and checking the
axioms. It is though much simpler to use the presentation of Dias by generators
and relations. One then just has to define τ on the generators and to check
compatibility with the relations.

Let us define τ2 by

τ2(e
2
1) = −e2

1 + e2
2, (16)

τ2(e
2
2) = −e2

1. (17)

Thus the matrix of τ2 in the basis e2 is
[

−1 −1
1 0

]

. (18)

Theorem 2.1 The operad Dias is an anticyclic operad with τ2 as above. The

matrix of τn in the basis en is













−1 −1 . . . −1
1 0 . . . 0

0
. . .

. . . 0

0
. . . 1 0













. (19)

Let us give an example of computation for τ3:

τ3(e
3
2) = τ3(e

2
2 ◦2 e2

1) = −τ2(e
2
1) ◦1 τ2(e

2
2) = (e2

2 − e2
1) ◦1 (−e2

1) = e3
3 − e3

1. (20)

The reader can check that using e3
2 = e2

1◦1e2
2 instead leads to the same value.

Therefore we have defined an action of the cyclic group Z/(n + 1)Z on the
Abelian group Z

n for each n ≥ 1.
Let us now define a similar action in a completely different way.

3 Algebras and Auslander-Reiten translation

Let us consider an algebra Λ of finite dimension over a field k. Let Mod Λ be its
category of finite-dimensional modules. This is an Abelian category. We further
assume that Λ has finite global dimension. Let also D Mod Λ be the bounded
derived category of Mod Λ. This is a triangulated category.

Then the theory of Auslander and Reiten provides the existence of a functor
τ from D Mod Λ to D Mod Λ which is a self-equivalence. This is the Auslander-
Reiten translation.

This functor τ descends on the Grothendieck group K0(Mod Λ) = K0(D Mod Λ)
and defines a bijective linear map, still denoted by τ , on the Grothendieck group.
This map is sometimes called the Coxeter transformation.

This theory has some nice applications to path algebras of quivers. Choose
any Dynkin diagram of finite type, in the usual list (An)n≥1, (Dn)n≥4, E6, E7, E8.
Picking any orientation of this Dynkin diagram defines a quiver Q. Let Mod kQ
be the Abelian category of representations of Q.
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Then, by classical results of Gabriel and Gelfand & Ponomarev, one knows
that Mod kQ has a finite number of isomorphism classes of indecomposable
modules, in bijection with positive roots of the associated root system. Fur-
thermore, the action of τ on the Grothendieck group is exactly the action of a
Coxeter element in the corresponding Weyl group. Hence τ has finite order h,
the Coxeter number.

Let us look at the case of the equioriented diagram of type An:

n → n − 1 → · · · → 2 → 1. (21)

We denote by Mod An the category of modules on this quiver and by Si the
simple module on the vertex i. The action of τ in the basis {S1, S2, . . . , Sn} of
K0(Mod An) has the following matrix













−1 1 0 0

−1 0
. . .

. . .
...

...
. . . 1

−1 0 0 0













. (22)

This is clearly the transposed matrix of the map τn that was defined purely
in terms of operads before.

Now, it is possible to dualize the anticyclic operad Dias into an anticyclic
cooperad Dias∗. Then the cyclic group actions become exactly the same. This
should be the proper setting.

The next step would now be to define functors

∆i : ModAn+m−1 −→ Mod An ⊗ Mod Am (23)

satisfying axioms dual to those of the maps ◦i and appropriate compatibility
conditions with the Auslander-Reiten translations, dual to the axioms of an
anticyclic operad.

Using the presentation of the category Mod An given by the Auslander-
Reiten quiver and the mesh relations, one can describe a candidate functor as
the direct sum of the three following functors.

[1, i − 1] ⊗ [n]

''PPPPPPPPPPPP

[1, i − 1] ⊗ [1, n]

66mmmmmmmmmmmmm

((QQQQQQQQQQQQQ

. . . [i − 1] ⊗ [n]

[1] ⊗ [1, n]

66nnnnnnnnnnnn

. . . [i − 1] ⊗ [1, n]

77nnnnnnnnnnnn

.

(24)
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Figure 1: How to take the direct sum

[1, m] ⊗ [1, n]

((PPPPPPPPPPPP

[1, i] ⊗ [1, n]

77nnnnnnnnnnnn

''PPPPPPPPPPPP

. . . [i, m] ⊗ [1, n]

''OOOOOOOOOOO

[1, i] ⊗ [1]

77ppppppppppp

''NNNNNNNNNNN

. . . [i] ⊗ [1, n]

66nnnnnnnnnnnn

((PPPPPPPPPPPP

. . . [i, m] ⊗ [n]

[i] ⊗ [1]

77nnnnnnnnnnnn

. . . [i] ⊗ [n]

77ooooooooooo

.

(25)

[i + 1, m] ⊗ [1]

((RRRRRRRRRRRRR

[i + 1] ⊗ [1]

66nnnnnnnnnnnn

((PPPPPPPPPPPP

. . . [i + 1, m] ⊗ [1, n]

((QQQQQQQQQQQQ

[i + 1] ⊗ [1, n]

66lllllllllllll

. . . [m] ⊗ [1, n]

.

(26)
The direct sum is taking according to Figure 1.

4 Second example

Let us now introduce the second example of a relationship between operads and
quivers. This example is more complicated than the first, but also maybe more
interesting. We will introduce another operad and another family of algebras.
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4.1 Binary trees

A planar binary tree is a graph drawn in the plane, which is connected and
simply connected, has vertices of valence 1 or 3 only, together with the data of
a distinguished vertex of valence 1 called the root. The other vertices of valence
1 are called the leaves. The root is drawn at the bottom.

Let Yn be the set of planar binary trees with n + 1 leaves.

Y1 = {Y} Y2 = { , } Y3 = { } (27)

The cardinality of Yn is the Catalan number cn = 1

n+1

(

2n

n

)

.
Then there exists an operad Dend such that Dend(n) = ZYn. We will not

describe the composition maps ◦i here. The unit 1 is the unique element of Y1.
This operad is generated by the two trees and in Y2. The relations are

as follows:

◦2 = ◦1 + ◦1 , (28)

◦2 = ◦1 , (29)

◦2 + ◦2 = ◦1 . (30)

Theorem 4.1 There exists a unique structure of anticyclic operad on Dend
such that

τ( ) = and τ( ) = −( + ). (31)

Let us display the matrix of τ3 in the basis Y3 of Dend(3):













−1 0 1 1 −1
−1 0 1 0 0
0 −1 0 1 0
−1 0 0 0 0
0 −1 0 0 0













. (32)

In general, the map τn seems quite complicated. The multiplicities of the
roots of unity as eigenvalues of τn are not known.

4.2 Tamari posets

Let us introduce a partial order ≤ on Yn, called the Tamari order or Tamari
lattice.

The order relation ≤ is defined as the transitive closure of some covering
relations. A tree S is covered by a tree T if they differ only in some neighborhood
of an edge by the replacement of the configuration in S by the configuration

in T .
Then one can consider the incidence algebra of this poset, or equivalently

look at the Hasse diagram of this poset as a quiver, and add the relations that
all paths with same beginning and end are equal. One gets a finite dimensional
algebra Λn for each n ≥ 1, which has finite global dimension.

By the Auslander-Reiten theory, there is a Coxeter transformation τ acting
on the Grothendieck group of Λn. This Grothendieck group has a basis coming
from simple modules, which are labelled by Yn. Hence one can identify K0(Λn)
with Dend(n).
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Theorem 4.2 On the Abelian group Dend(n), one has the relation

τn = (−1)nθ2. (33)

The expected explanation of all this should be the existence of appropriate
functors

◦i : Mod Λn ⊗ Mod Λm −→ Mod Λn+m−1, (34)

satisfying, together with the Auslander-Reiten translation, some version of the
axioms of an anticyclic operad.
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Figure 2: The Tamari lattice T4
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