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Abstract. Several kinds of quotient triangulated categories arising naturally in
representations of algebras are studied; their relations with the stable categories
of Frobenius exact categories are investigated; the derived categories of Gorenstein
algebras are explicitly computed inside the stable categories of the graded module
categories of the corresponding trivial extension algebras; new descriptions of the
singularity categories of Gorenstein algebras are obtained.

1. Introduction

1.1. Throughout A is a finite-dimensional associative algebra with unit over a field k,
all (left) A-modules considered are unitary and finite-dimensional. Denote by A-mod the
category of such A-modules, and by Db(A) := Db(A-mod) the bounded derived category of

A-mod. Let Kb(A-inj) (resp., Kb(A-proj)) be the bounded homotopy category of injective
(resp., projective) A-modules, which are triangulated subcategories of Db(A), and both
are thick (= épaisse; see [V1]). Then one has the quotient triangulated categories

DI(A) := Db(A)/Kb(A-inj) and DP (A) := Db(A)/Kb(A-proj).

(They are also called the singularity categories, see e.g. [O1]; or the stable derived cate-
gories, see e.g. [Kr]). Since DI (A) = 0 (resp. DP (A) = 0) if and only if gl.dimA < ∞, it
follows that for an algebra A of infinite global dimension it is of interest to study DI (A)
and DP (A). A beautiful result in this direction has been obtained by Happel ([Hap2],
Theorem 4.6) for Gorenstein algebras, which generalizes an earlier result of Rickard for
self-injective algebras ([Ric2], Theorem 2.1).

In the same way, for an algebraic variety X one has the quotient triangulated category
DSg(X) := Db(coh(X))/perf(X), where Db(coh(X)) is the bounded derived category of
coherent sheaves on X, and perf(X) is its full subcategory of perfect complexes. Note that
DSg(X) = 0 if and only if X is smooth. Thus, for a singular variety X it is of interest
to study DSg(X). Similarly, DSg(X) for X being Gorenstein has been studied by Orlov
([O1], also in [O2] for the graded case). See also a recent work of Krause [Kr].

1.2. For a self-orthogonal A-module T (i.e., Exti
A(T, T ) = 0 for each i ≥ 1), let addT de-

note the full subcategory of A-mod whose objects are the direct summands of finite direct
sum of copies of T . Then Kb(addT ) is a triangulated subcategory of Db(A) (see [Hap1],
p.103, or 1.9 below). Since both Kb(addT ) and Db(A) are Krull-Schmidt categories (see
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[KV], or [BD]), i.e., each object can be uniquely decomposed into a direct sum of (finitely
many) indecomposables, it follows that Kb(addT ) is closed under direct summands, that

is, Kb(addT ) is thick in Db(A) (see [V2], or Proposition 1.3 in [Ric2]), and hence one has
the quotient triangulated category

DT (A) := Db(A)/Kb(addT ).

In the view of the tilting theory (see e.g. [APR], [BB], [HR1], [HR2], [B], [Rin1], [Hap1],
[AR1], [M]), DI (A) (resp., DP (A)) is just the special case of DT (A) when T = AD(AA), or
any generalized cotilting module (cf. 1.9 below) (resp., T = AA, or any generalized tilting
module). This encourages us to understand DI (A) and DP (A) in terms of generalized
cotilting and tilting modules, respectively, and DT (A) for self-orthogonal modules T , in
general. If (A, ATB , B) is a generalized (co)tilting triple, then by a theorem due to Happel
([Hap1], Theorem 2.10, p.109, for finite global dimension case), and due to Cline, Parshall,
and Scott ([CPS], Theorem 2.1, for general case. See also Rickard [Ric1], Theorem 6.4),
this permits us to understand the singularity category DP (B) in terms of AT .

1.3. On the other hand, Auslander and Reiten ([AR1]) have introduced several interesting
full subcategories of A-mod, and established fundamental relations between them. These
turn out to arise naturally and surprisingly in the investigation of DT (A). For a self-

orthogonal module T , by using ⊥T , T⊥, addT� ��� � ,

� ��� �

addT , XT , TX , addT� , âddT , introduced

in [AR1], and their stable categories modulo addT , and calculus on right fractions, we
obtain in Section 2 some full subcategories of DT (A) (Theorems 2.1 and 2.4). We also
obtain some dense functors to DT (A) (Theorems 2.12 and 2.13): the proof need a sufficient
condition for “K+,b(addT ) ' Db(A)” (Proposition 2.11), which seems to be of independent
interest. The proof of Proposition 2.11 needs using Theorem 2.1 in [CPS].

These “fully-faithful” and “dense” results measure how large DT (A), DI(A), and DP (A)
are. By combining these results, we can describe, in particular for Gorenstein algebras,
DI(A) = DT (A) = DP (A) in terms of any generalized cotilting or generalized tilting
module T (Theorem 2.16).

As consequences, for a Gorenstein algebra A, the class of generalized cotilting A-
modules coincides with the one of generalized tilting A-modules (Corollary 2.10). Also,
we have ⊥T ∩ T⊥ = addT for any generalized cotilting (= generalized tilting) module T
of an algebra of finite global dimension (Corollary 2.19), which is an analogue with one
of the properties of the characteristic modules of quasi-hereditary algebras established by
Ringel (see [Rin2], Corollary 4).

1.4. Denote by T (A) := A ⊕ D(A) the trivial extension of A, where D = Homk(−, k).
It is Z-graded with degA = 0 and degD(A) = 1. Denote by T (A)Z-mod the category of
finite-dimensional Z-graded T (A)-modules with morphisms of degree 0. This is a Frobe-
nius abelian category, and hence its stable category T (A)Z-mod modulo projectives is a
triangulated category. A theorem of Happel says that there exists a fully-faithful exact
functor F : Db(A) −→ T (A)Z-mod ([Hap1], p.88, plus p.64); and F is dense if and only
gl.dimA < ∞ ([Hap3]). There is a natural embedding i : A-mod ↪→ T (A)Z-mod such that
each A-module M is a graded T (A)-module concentrated at degree 0. Denote by N , MP ,
and MI the triangulated subcategories of T (A)Z-mod generated by A-mod, A-proj, and
A-inj, respectively. Then the first part of Happel’s theorem above reads as: there are
equivalences of triangulated categories

F : Db(A) ' N , F : Kb(A-inj) ' MI , and F : Kb(A-proj) ' MP .
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Since both T (A)Z-mod and N are Krull-Schmidt, it follows that N is closed under direct
summands, that is, N is thick in T (A)Z-mod; and so are MP and MI . Again one has the
quotient triangulated categories:

DF (A) := T (A)Z-mod/N , T (A)Z-mod/MI , and T (A)Z-mod/MP .

Now the second part of Happel’s theorem cited above reads as:

DF (A) = 0 if and only if gl.dim A < ∞.

Since DI(A) ' N/MI and DP (A) ' N/MP , it follows that one has the exact sequences
of triangulated categories (in the sense of [Rou], p.23):

0 −→ DP (A) −→ T (A)Z-mod/MP −→ DF (A) −→ 0,

and

0 −→ DI (A) −→ T (A)Z-mod/MI −→ DF (A) −→ 0.

It should be of interest to study the quotient triangulated categories

DF (A), T (A)Z-mod/MI , and T (A)Z-mod/MP ,

although this is not done in the present paper.

1.5. In Section 3 we describe all the triangulated subcategories of the stable category
of a Frobenius exact category (Theorem 3.3). With this description and the Z-graded
representations of T (A) ([Hap1]), we can describe explicitly the bounded derived category
of a Gorenstein algebra A inside T (A)Z-mod (Theorem 4.1). Also, by an interesting
formula in a Frobenius exact category, one can describe the perpendicular of a triangulated
subcategory of the stable category of a Frobenius exact category (Proposition 3.4).

1.6. In Section 5 we study the stable category a(T ) of the Frobenius exact category

a(T ) := XT ∩ TX , where T is a self-orthogonal module. By using an observation for dis-
tinguished triangles in the stable category of a Frobenius exact category (Lemma 3.2), the
calculus on right fractions, and an analogue of the Comparison-Theorem in homological
algebra, we can naturally embed a(T ) into DT (A) as a triangulated subcategory (Theorem

5.2); and under a modest condition identify a(T ) with Kac(T ) as triangulated categories

(Theorem 5.3), where Kac(T ) is the triangulated subcategory of the (unbounded) homo-
topy category K(A) of the acyclic complexes with components in addT . In particular,
we get another description of the singularity category DP (A) for a Gorenstein algebra
(Corollary 5.4). This relates Section 5 in [Kr] on stable derived categories.

1.7. Recall that by definition an algebra A is Gorenstein if proj.dim AD(AA) < ∞ and
inj.dim AA < ∞. Self-injective algebras and algebras of finite global dimensions are such
examples; also, the tensor product A⊗k B is Gorenstein if and only if so are both A and B
([AR2], Proposition 2.2). Note that A is Gorenstein if and only if Kb(A-proj) = Kb(A-inj)
inside Db(A) ([Hap2], Lemma 1.5). Thus, by Theorem 6.4 and Proposition 9.1 in [Ric1],
if algebras A and B are derived equivalent, then A is Gorenstein if and only if so is B.

1.8. For basic results on triangulated categories and derived categories we refer to [V1]
and [Har]. Following [BBD], the n-th shift of an object X in a triangulated category is
denoted by X[n]. By a functor we always mean a covariant additive functor. A functor
F : C −→ D of triangulated categories is said to be exact provided that there is a natural
isomorphism α : F ◦ [1] −→ [1]◦F, such that F preserves distinguished triangles. An exact
functor which is an equivalence of categories is said to be a triangle-equivalence. Note
that the inverse of a triangle-equivalence is again exact.

We refer to [V1] (also [Har] and [I]) for the construction of a quotient triangulated
category. We recall some parts needed. By a triangulated subcategory we always mean
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that it is a full subcategory; and by a multiplicative system of a triangulated category we
always mean that it is compatible with the triangulation.

Given a multiplicative system S of a triangulated category K, one has a quotient
triangulated category S−1K via localization, whose triangulation is natural in the sense
that it is induced by the one of K, and in which morphisms are given by right fractions
(if one uses left fractions as morphisms then one gets a quotient triangulated category
isomorphic to S−1K). Note that S−1K is the unique triangulated category such that
the localization functor Q : K −→ S−1K is an exact functor sending morphisms in S to
isomorphisms in S−1K, and that any exact functor K −→ C sending morphisms in S to
isomorphisms factors uniquely through Q.

If in addition S is saturated, then Q(f) is an isomorphism in S−1K implies that f ∈ S.

On the other hand, the class of saturated multiplicative systems of K, is in one-to-
one correspondence with the class of thick triangulated subcategories of K. It follows
that given a thick triangulated subcategory B, we obtain a quotient triangulated category
K/B := S−1K, where S the unique saturated multiplicative system determined by B.
Note that K/B is the unique triangulated category such that the localization functor
Q : K −→ K/B is an exact functor, with Q(B) = 0 if and only if B ∈ B, and that any
exact functor K −→ C sending objects in B to zero factor uniquely through Q.

We emphasize that given a triangulated subcategory B (not necessarily thick) of K, one
can obtain in the same way as above a unique multiplicative system (not necessarily satu-
rated), and then a quotient triangulated category K/B := S−1K, in which the localization
functor Q is an exact functor sending objects in B to zero in K/B, but Q(B) = 0 does not
imply B ∈ B (in fact, such a B is only a direct summand of an object in B). However, we
remark that a multiplicative system (not necessarily saturated) does not determine in the
natural way a triangulated subcategory, in general.

1.9. Let A be an abelian category, and B a full subcategory of A. Let Kb(B) be the full

subcategory of Kb(A) whose objects are complexes of objects in B, and ϕ : Kb(B) −→
Db(A) be the composition of the embedding Kb(B) ↪→ Kb(A) and the localization functor
Kb(A) −→ Db(A). If ϕ is fully-faithful, then Kb(B) is a triangulated subcategory of

Db(A), that is, Kb(B) is a full subcategory of Db(A), which is closed under the shifts
[1] and [−1], and if two terms in a distinguished triangle of Db(A) lie in Kb(B) then the
third term is also in Kb(B) (for this we need the assumption that the map f 7−→ f/IdB•

1

gives the isomorphism HomKb(B)(B
•
1 , B•

2 ) ∼= HomDb(A)(B
•
1 , B•

2 ) of abelian groups, for any

objects B•
1 and B•

2 in Kb(B)).

Apply the paragraph above to the full subcategory addT of A-mod, where T is a self-
orthogonal A-module. Then by Lemma 2.1 in [Hap1], p.103, we know that Kb(addT ) is
a triangulated subcategory of Db(A).

If T is a generalized tilting module, then Kb(addT ) = Kb(A-proj) in Db(A) (in fact,
for any projective module P and any T ′ ∈ addT , we have P ∈ Kb(addT ) and T ′ ∈
Kb(A-proj), in Db(A). Then the assertion follows from the fact that Kb(A-proj) and
Kb(addT ) are the triangulated subcategories of Db(A) generated by addA and by addT ,
respectively).
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2. Quotient category Db(A)/Kb(addT )

Throughout, T is a self-orthogonal A-module. We need eight kinds of full subcategories
of A-mod, introduced by Auslander and Reiten [AR1]. We emphasize that a subcategory
is closed under isomorphisms and finite direct sums. Following Ringel [Rin2], we do not
assume that a full subcategory is closed under direct summands.

2.1. Consider the following full subcategories of A-mod given by

T⊥ := {X | Exti
A(T, X) = 0, ∀ i ≥ 1},

� � � �

addT := {X | ∃ an exact sequence · · · −→ T−i −→ · · ·T 0 −→ X −→ 0, T−i ∈ addT, ∀ i},

TX := {X | ∃ an exact sequence · · · −→ T−i d−i

−→ T−(i−1) −→ · · ·
d−1

−→ T 0 d0

−→ X−→0,

T−i ∈ addT, Kerd−i ∈ T⊥, ∀ i ≥ 0},

and

âddT := {X | ∃ an exact sequence 0 −→ T−n −→ · · ·T 0 −→ X −→ 0, T−i ∈ addT, ∀ i }.

By definition and the dimension-shifting technique in homological algebra, we have
(note that T is self-orthogonal)

âddT ⊆ TX ⊆

� ��� �

addT ∩ T⊥.

Note that TX =

� ��� �

addT if and only if

� ��� �

addT ⊆ T⊥.

If T is exceptional (i.e., proj.dim T < ∞ and T is self-orthogonal. Compare [HU]),

then by the dimension-shifting technique we have

� ��� �

addT ⊆ T⊥, and hence TX =

� ��� �

addT .

If T is a generalized tilting module (i.e., T is exceptional, and there is an exact sequence

0 −→ AA −→ T 0 −→ T 1 −→ · · · −→ T n −→ 0 with each T i ∈ addT ), then

� ��� �

addT = T⊥,

and hence TX =

� � � �

addT = T⊥.
(In fact, by the theory of generalized tilting modules, X ∈ T⊥ can be generated by

T , see [M], Lemma 1.8; and then by using a classical argument in [HR2], p.408, one can

prove X ∈

� � � �

addT by induction.)

It is not hard to prove that if gl.dimA < ∞ then âddT = TX =

� ��� �

addT for any
self-orthogonal module T .

2.2. Dually, we have the full subcategories of A-mod given by

⊥T := {X | Exti
A(X, T ) = 0, ∀ i ≥ 1},

addT� � � � := {X | ∃ an exact sequence 0 −→ X −→ T 0 · · · −→ T i −→ · · · , T i ∈ addT, ∀ i},
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XT := {X | ∃ an exact sequence 0 −→ X −→ T 0 d0

−→ · · · −→ T i di

−→ T i+1 −→ · · · ,

T i ∈ addT, Imdi ∈ ⊥T, ∀ i ≥ 0 },

and

addT� := {X | ∃ an exact sequence 0 −→ X −→ T 0 · · · −→ T n −→ 0, T i ∈ addT, ∀ i}.

By definition and the dimension-shifting technique we have

addT� ⊆ XT ⊆ addT� ��� � ∩ ⊥T.

Note that XT = addT� ��� � if and only if addT� ��� � ⊆ ⊥T .

If T is co-exceptional (i.e., T is self-orthogonal with inj.dim T < ∞), then by the

dimension-shifting technique we have addT� ��� � ⊆
⊥T , and hence XT = addT� ��� � .

If T is a generalized cotilting module (i.e., T is co-exceptional, and there is an exact
sequence

0 −→ T−n −→ · · · −→ T−1 −→ T 0 −→ D(AA) −→ 0

with each T−i ∈ addT ), then addT� � � � = ⊥T , and hence XT = addT� ��� � = ⊥T (see Theorem

5.4(b) in [AR1]).
(In fact, for X ∈ ⊥T , since D(T )A is a generalized tilting right A-module, it follows

that D(X)A ∈ D(T )⊥ =

� ��� �

addD(T )A; and then X ∈ addT� ��� � .)

It is not hard to prove that if gl.dimA < ∞, then addT� = XT = addT� � � � for any

self-orthogonal module T .

2.3. Consider the natural functor XT ∩ T⊥ −→ Db(A)/Kb(addT ), which is the compo-

sition of the embeddings XT ∩ T⊥ ↪→ A-mod and A-mod ↪→ Db(A), and the localization
functor Db(A) −→ Db(A)/Kb(addT ). We have

Theorem 2.1. Let T be a self-orthogonal module, M ∈ XT and N ∈ T⊥. Then there is
a natural isomorphism of vector spaces

HomA(M, N)/T (M, N) ' HomDb(A)/Kb(addT )(M, N),

where T (M, N) is the subspace of A-maps from M to N which factor through addT .

In particular, the natural functor XT ∩ T⊥ −→ Db(A)/Kb(addT ) induces a fully-
faithful functor

XT ∩ T⊥ −→ Db(A)/Kb(addT ),

where XT ∩ T⊥ is the stable category of XT ∩ T⊥ modulo addT .

Proof. In what follows, a doubled arrow means the corresponding morphism belonging
to the saturated multiplicative system determined by the thick triangulated subcategory
Kb(addT ) of Db(A) (see [V1], or [Har]).

Morphisms in Db(A)/Kb(addT ) are denoted by right fractions. Let M
s

⇐= Z• a
−→ N

be such a morphism from M to N , where Z• ∈ Db(A). Such a morphism is denoted by
a/s. Note that the mapping cone Con(s) of s lies in Kb(addT ). We have a distinguished

triangle in Db(A)
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Z• s
=⇒ M −→ Con(s) −→ Z•[1].(2.1)

Consider the k-map G : HomA(M, N) −→ HomDb(A)/Kb(addT )(M, N), given by G(f) =

f/IdM . First, we prove that G is surjective.

By M ∈ XT we have an exact sequence

0 −→ M
ε

−→ T 0 d0

−→ T 1 d1

−→ · · · −→ T n dn

−→ · · ·

with Imdi ∈ ⊥T, ∀ i ≥ 0. Then M is isomorphic in Db(A) to the complex T • := 0 −→
T 0 −→ T 1 −→ · · · , and then isomorphic to the complex 0 −→ T 0 −→ T 1 −→ · · · −→
T l−1 −→ Kerdl −→ 0 for each l ≥ 1. The last complex induces a distinguished triangle in
Db(A)

σ<lT •[−1] −→ Kerdl[−l]
s′

=⇒ M
ε

−→ σ<lT •,(2.2)

where σ<lT • = 0 −→ T 0 −→ T 1 −→ · · · −→ T l−1 −→ 0, and the mapping cone of s′

lies in Kb(addT ). Since Kerdl ∈ ⊥T and Con(s) ∈ Kb(addT ), it follows that there exists
l0 � 0 such that

HomDb(A)(Kerdl[−l], Con(s)) = 0

for each l ≥ l0.

(In fact, let Con(s) be of the form 0 −→ W−t′ −→ · · · −→ W t −→ 0 with t′, t ≥ 0, and
each W i ∈ addT . Consider the distinguished triangle in Db(A)

σ<tCon(s)[−1] −→ W t[−t] −→ Con(s) −→ σ<tCon(s),

Take l0 to be t + 1, and apply the functor HomDb(A)(Kerdl[−l],−) to this distinguished

triangle. Then the assertion follows from Kerdl ∈ ⊥T and induction.)

Write E = Kerdl0 , and take l = l0 in (2.2). By applying HomDb(A)(E[−l0],−) to (2.1)

we get h : E[−l0] −→ Z• such that s′ = s ◦ h. Thus, by the definition of right fractions
we have a/s = (a ◦ h)/s′.

Apply HomDb(A)(−,N) to (2.2), we get an exact sequence

HomDb(A)(M, N) −→ HomDb(A)(E[−l0], N) −→ HomDb(A)(σ
<l0T •[−1], N).

We claim that HomDb(A)(σ
<l0T •[−1], N) = HomDb(A)(σ

<l0T •, N [1]) = 0.

(In fact, apply HomDb(A)(−, N [1]) to the following distinguished triangle in Db(A)

σ<l0−1T •[−1] −→ T l0−1[1 − l0] −→ σ<l0T • −→ σ<l0−1T •.

Then the assertion follows from induction and the assumption N ∈ T ⊥.)
Thus, there exists f : M −→ N such that f ◦ s′ = a ◦ h. Now, again by the definition

of right fractions we have a/s = (a ◦ h)/s′ = (f ◦ s′)/s′ = f/IdM . This shows that G is
surjective.

On the other hand, if f : M −→ N with G(f) = f/IdM = 0 in Db(A)/Kb(addT ),
then there exists s : Z• =⇒ M with Con(s) ∈ Kb(addT ) such that f ◦ s = 0. Use the
same notation as in (2.1) and (2.2). By the argument above we have s′ = s ◦ h, and
hence f ◦ s′ = 0. Therefore, by applying HomDb(A)(−, N) to (2.2) we see that there exists

f ′ : σ<l0T • −→ N such that f ′ ◦ ε = f .
Consider the following distinguished triangle in Db(A)

T 0[−1] −→ σ>0(σ<l0)T • −→ σ<l0T • π
−→ T 0,
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where σ>0(σ<l0)T • = 0 −→ T 1 −→ T 2 −→ · · · −→ T l0−1 −→ 0, and π is the natural
morphism. Again since N ∈ T⊥, it follows that HomDb(A)(σ

>0(σ<l0)T •, N) = 0. By

applying HomDb(A)(−, N) to the above triangle we obtain an exact sequence

HomDb(A)(T
0, N) −→ HomDb(A)(σ

<l0T •, N) −→ 0.

It follows that there exists g : T 0 −→ N such that g ◦ π = f ′. Hence f = g ◦ (π ◦ ε). Since

A-mod is a full subcategory of Db(A), it follows that f factors through T 0 in A-mod. This
proves that the kernel of G is T (M, N), which completes the proof. �

As pointed out in 2.2, if T is a generalized cotilting module then XT = ⊥T , and
Kb(addT ) = Kb(A-inj) in Db(A). It follows from Theorem 2.1 that

Corollary 2.2. Let T be a generalized cotilting module. Then for M ∈ ⊥T and N ∈ T⊥,
there is a natural isomorphism of vector spaces

HomA(M, N)/T (M, N) ' HomDI (A)(M, N).

In particular, the natural functor ⊥T ∩ T⊥ −→ Db(A)/Kb(addT ) induces a fully-
faithful functor

⊥T ∩ T⊥ −→ Db(A)/Kb(addT ) = DI (A).

By taking T = AD(AA) in Corollary 2.2 we get

Corollary 2.3. For M ∈ A-mod and N ∈ AD(AA)⊥, there is a natural isomorphism of
vector spaces

HomA(M, N)/I(M, N) ' HomDI (A)(M, N),

where I(M, N) is the subspace of A-maps from M to N which factor through injective
modules.

In particular, the natural functor AD(AA)⊥ −→ DI (A) induces a fully-faithful functor

AD(AA)⊥ −→ DI (A),

where AD(AA)⊥ is the stable category of AD(AA)⊥ modulo injective modules.

By the dual argument with left fractions, we have

Theorem 2.4. Let T be a self-orthogonal module, M ∈ ⊥T and N ∈ TX . Then there is
a natural isomorphism of vector spaces

HomA(M, N)/T (M, N) ' HomDb(A)/Kb(addT )(M, N).

In particular, the natural functor ⊥T ∩ TX −→ Db(A)/Kb(addT ) induces a fully-
faithful functor

⊥T ∩ TX −→ Db(A)/Kb(addT ).

where ⊥T ∩ TX is the the stable category of ⊥T ∩ TX modulo addT .

As pointed out in 2.1, if T is a generalized tilting module then TX = T⊥, and
Kb(addT ) = Kb(A-proj). It follows from Theorem 2.4 that



QUOTIENT TRIANGULATED CATEGORIES 9

Corollary 2.5. Let T be a generalized tilting module. Then for M ∈ ⊥T and N ∈ T⊥,
there is a natural isomorphism of vector spaces

HomA(M, N)/T (M, N) ' HomDP (A)(M, N).

In particular, the natural functor ⊥T∩T⊥ −→ Db(A)/Kb(addT ) induces a fully-faithful
functor

⊥T ∩ T⊥ −→ Db(A)/Kb(addT ) = DP (A).

By taking T = AA in Corollary 2.5 we get

Corollary 2.6. ([O2], Proposition 1.10) For M ∈ ⊥A and N ∈ A-mod, there is a
natural isomorphism of vector spaces

HomA(M, N)/P (M, N) ' HomDP (A)(M, N),

where P (M, N) is the subspace of A-maps from M to N which factor through projective
modules.

In particular, the natural functor ⊥A −→ DP (A) induces a fully-faithful functor

⊥A −→ Db(A)/Kb(addT ) = DP (A),

where ⊥A is the stable category of ⊥A modulo projective modules.

Corollary 2.7. The following are equivalent

(i) A is a self-injective algebra;

(ii) inj.dim AA < ∞ and ⊥A = AD(AA)⊥;

(iii) inj.dim AA < ∞ and AA ∈ AD(AA)⊥;

(ii)′ proj.dim AA < ∞ and ⊥A = AD(AA)⊥;

(iii)′ proj.dim AA < ∞ and AD(AA) ∈ ⊥A.

Proof. It suffices to prove the implication (iii) =⇒ (i). Since inj.dimAA < ∞, it follows

that AA is zero in DI(A); since AA ∈ AD(AA)⊥ and AD(AA)⊥ is a full subcategory of

DI(A) (Corollary 2.3), it follows that AA is zero in AD(AA)⊥, that is, AA is injective. �

2.4. The following corollary can also be proved directly.

Corollary 2.8. Let T be a self-orthogonal A-module. Then addT� ∩ T⊥ = addT , and

⊥T ∩ âddT = addT .

Proof. By duality we only prove the first equality. For X ∈ addT� ∩T⊥, there exists an

exact sequence 0 −→ X −→ T 0 −→ · · · −→ T n −→ 0 with each T i ∈ addT . Thus, X is
quasi-isomorphic to a bounded complex with components in addT , which implies X = 0
in Db(A)/Kb(addT ). It follows from Theorem 2.1 that X = 0 in the stable category

XT ∩ T⊥, that is, X ∈ addT . �

Lemma 2.9. Let T be a self-orthogonal A-module. Then

(i) T is a generalized cotilting module if and only if Kb(addT ) = Kb(A-inj) in Db(A).
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(ii) T is a generalized tilting module if and only if Kb(addT ) = Kb(A-proj) in Db(A).

Proof. By duality and 1.9 we only prove the sufficiency of (i). By T ∈ Kb(A-inj) in

Db(A), we infer that inj.dim T < ∞.
By AD(AA) ∈ Kb(addT ) in Db(A), we get a quasi-isomorphism ε : T • −→ AD(AA)

with T • ∈ Kb(addT ), where T • = 0 −→ T−s −→ · · · −→T−1 d−1

−→ T 0 d0

−→ T 1 −→ · · · −→
T s −→ 0. Then Hn(T •) = 0 for n 6= 0, and Kerd0/Imd−1 ' AD(AA). Then we have an
exact sequence

0 −→ T−s −→ · · · −→ T−2 −→ T−1 d−1

−→ Kerd0 −→ AD(AA) −→ 0.

It suffices to show Kerd0 ∈ addT .
First, note that T−1/Kerd−1 ∈ âddT and thus T−1/Kerd−1 ∈ T⊥. By seeing the exact

sequence 0 −→ T−1/Kerd−1 −→ Kerd0 −→ AD(AA) −→ 0 we infer that Kerd0 ∈ T⊥.

Secondly, since 0 −→ Kerd0 −→ T 0 d0

−→ T 1 −→ · · · −→ T s −→ 0 is exact, it follows that
Kerd0 ∈ addT� . Therefore by Corollary 2.8 we have Kerd0 ∈ addT� ∩ T⊥ = addT . �

The following corollary seems to be of independent interest.

Corollary 2.10. Let A be a Gorenstein algebra and T an A-module. Then T is a gener-
alized cotilting module if and only if T is a generalized tilting module.

Proof. By Lemma 2.9, T is a generalized cotilting module if and only if T is self-
orthogonal and Kb(addT ) = Kb(A-inj) = Kb(A-proj) in Db(A) (for the last equality, see
[Hap2], Lemma 1.5), if and only if T is a generalized tilting module. �

2.5. Let T be a self-orthogonal module. Consider the compositions of the following natural
functors

K+,b(addT ) ↪→ K+,b(A-mod) −→ D+(A), K−,b(addT ) ↪→ K−,b(A-mod) −→ D−(A),

where K+,b(addT ) (resp. K−,b(addT )) is the homotopy category of lower bounded (resp.
upper bounded) complexes of modules in addT , with only finitely many non-zero coho-
mologies; similar for K+,b(A-mod) and K−,b(A-mod); and D+(A) (resp. D−(A)) is the
lower bounded (resp. upper bounded) derived category of A-modules. Note that the
images of the composition functors lie in Db(A), and hence we get the natural functors

G+ : K+,b(addT ) −→ Db(A), and G− : K−,b(addT ) −→ Db(A).(2.3)

The following result seems to be well-known and of independent interest. We include
a proof by using a theorem due to Cline, Parshall, and Scott in [CPS] (however, if T =

AD(AA) (resp. T = AA), then (i) (resp. (ii)) below is well-known).

Proposition 2.11. (i) If T is a generalized cotilting A-module, then G+ induces an
equivalence K+,b(addT ) ' Db(A) as triangulated categories.

(ii) If T is a generalized tilting A-module, then G− induces an equivalence K−,b(addT ) '
Db(A) as triangulated categories.

Proof. By duality we only prove (ii). Let B = (EndA(T ))op. Then T is a right
B-module. Identify Db(A) with K−,b(B-proj). For any complex P • = (P n, dn) ∈
K−,b(B-proj), without loss of generality, we may assume that H i(P •) = 0 for i ≤ 0.
Set E := Imd0 and proj.dim.T = r < ∞. Then we have the exact sequence

· · · −→ P−n −→ · · · −→ P 0 −→ E −→ 0.
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Then for j ≥ 1 and s ≥ r we have

TorB
j (TB, Kerd−s) = TorB

j+1(TB , Kerd−(s−1)) = · · · = TorB
j+r(TB, Kerd−(s−r)) = 0.

This implies that the complex in K−(addT )

· · · −→ T ⊗B P−n −→ · · · −→ T ⊗B P−(r+2) −→ T ⊗B P−(r+1)

is acyclic. It follows that T ⊗B P • ∈ K−,b(addT ).
Now, by Theorem 2.1 in [CPS], the left derived functor L−,b(T ⊗B −) : Db(B) −→

Db(A) is a triangle-equivalence. While L−,b(T ⊗B −) acts on P • term by term (see e.g.
[Har], Theorem 5.1), it follows from the argument above

L
−,b(T ⊗B −)(P •) = T ⊗B P • ∈ K−,b(addT ),

and hence the assertion follows from Cline-Parshall-Scott’s theorem (Theorem 2.1 in
[CPS]). �

2.6. Let T be a self-orthogonal module. By Theorem 2.1, it is of interest to know when
the natural functor XT ∩ T⊥ −→ Db(A)/Kb(addT ) is dense. However, we only have

Theorem 2.12. Assume that inj.dim AA < ∞. Let T be a generalized cotilting A-module.
Then the natural functor

⊥T −→ Db(A)/Kb(addT ) = DI(A)

is dense.

Moreover, if in addition A is Gorenstein, then the natural functor

⊥T ∩ T⊥ −→ Db(A)/Kb(addT ) = DI (A)

is dense.

Proof. Identify Db(A) with K−,b(A-proj), the homotopy category of upper bounded
complexes of projective A-modules, with only finitely many non-zero cohomologies. Thus
any object in Db(A)/Kb(addT ) is assumed to be a upper bounded complex P • = (P n, dn)
of projective modules with Hn(P •) = 0 for n ≤ −l0, and P m = 0 for m ≥ 1. Write
E = Kerd−l0+1. Then P • is quasi-isomorphic to

0 −→ E ↪→ P−l0+1 d−l0+1

−→ P−l0+2 −→ · · · −→ P 0 −→ 0.

We claim that P • ' E[l0] in DI (A).

(In fact, we have the following distinguished triangle in Db(A)

E[l0 − 1] −→ σ>−l0P • −→ P • −→ E[l0]

where σ>−l0P • = 0 −→ P−l0+1 −→ · · · −→ P−1 −→ P 0 −→ 0. Since inj.dim AA < ∞,
it follows that Kb(A-proj) ⊆ Kb(A-inj) (see [Hap2], Lemma 1.5), and hence σ>−l0P • = 0
in DI (A). It follows the claim.)

Now by Proposition 2.11 there exists a lower bounded complex T • = (T n, ∂n) with
each T n ∈ addT and Hj(T •) = 0 for j ≥ t, such that E is isomorphic to G+(T •) in

Db(A), where the functor G+ is given in (2.3). Note that in Db(A) we have

G+(T •) = 0 −→ · · · −→ T−1 −→ T 0 −→ · · · −→ T t−1
� Ker∂t −→ 0.

Since two isomorphic complexes in Db(A) have the same cohomologies in each degree, it
follows that Hn(G+(T •)) = 0 for n 6= 0, and H0(G+(T •)) = E. Thus we have a short
exact sequence of A-modules

0 −→ Im∂−1 ↪→ Ker∂0 −→ E −→ 0,



12 X. W. CHEN, P. ZHANG

which induces a distinguished triangle in Db(A)

Im∂−1 −→ Ker∂0 −→ E −→ Im∂−1[1].

Note that Im∂−1 ∈ Kb(addT ) in Db(A) (in fact, the complex 0 −→ T−s −→ · · · −→
T−1 −→ 0 for some s is quasi-isomorphic to Im∂−1). Thus we get E ' Ker∂0 in
Db(A)/Kb(addT ) = DI (A).

Consider the following exact sequence of A-modules (note that one can take t ≥ l0)

0 −→ Ker∂0 −→ T 0 −→ · · · −→ T l0−1 −→ Ker∂l0 −→ 0,(2.4)

which induces a distinguished triangle in Db(A)

Ker∂l0 [−l0] −→ Ker∂0 −→ T ′• −→ Ker∂l0 [−l0 + 1]

where T ′• = 0 −→ T 0 −→ · · · −→ T l0−1 −→ 0. Again since T ′• ' 0 in Db(A)/Kb(addT ),
it follows that Ker∂0 ' Ker∂l0 [−l0], and then P • ' Ker∂l0 in Db(A)/Kb(addT ) = DI (A).
Since Ker∂l0 ∈ addT� ��� � = ⊥T , it follows the first statement.

If A is Gorenstein, then proj.dim T = r < ∞. We may assume that l0 ≥ r in the
argument above. Since the sequence (2.4) is exact and T is self-orthogonal, it follows that

Exti
A(T, Ker∂l0 ) ' Exti+1

A (T, Ker∂l0−1) ' · · · ' Exti+l0
A (T, Ker∂0) = 0, i ≥ 1,

which completes the proof. �

By the dual argument we have

Theorem 2.13. Assume that proj.dim D(AA) < ∞. Let T be a generalized tilting
module. Then the natural functor

T⊥ −→ Db(A)/Kb(addT ) = DP (A)

is dense.

Moreover, if in addition A is Gorenstein, then the natural functor

⊥T ∩ T⊥ −→ Db(A)/Kb(addT ) = DP (A)

is dense.

By taking T = AD(AA) in Theorem 2.12, and taking T = AA in Theorem 2.13, we get

Corollary 2.14. ([Hap2], Lemma 4.3) (i) Assume that inj.dim AA < ∞. Then the
natural functor A-mod −→ DI (A) is dense.

(ii) Assume that proj.dim D(AA) < ∞. Then the natural functor A-mod −→ DP (A)
is dense.

(iii) If A is Gorenstein, then both the natural functors

AD(AA)⊥ −→ DI (A) = DP (A) and ⊥A −→ DP (A) = DI(A)

are dense.

By combining Corollaries 2.3, 2.14(iii), and 2.6, we get
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Corollary 2.15. ([Hap 2], Theorem 4.6) Let A be Gorenstein. Then the natural functor
induces equivalences of categories

AD(AA)⊥ ' DI (A) = DP (A) ' ⊥A,

where AD(AA)⊥ is the stable category of {X ∈ A-mod | Exti
A(AD(AA), X) = 0, ∀ i ≥ 1}

modulo injective modules; and ⊥A is the stable category of {X ∈ A-mod | Exti
A(X, A) =

0, ∀ i ≥ 1} modulo projective modules.

By combining Theorems 2.1 and 2.12, Theorems 2.4 and 2.13, we get

Theorem 2.16. Let A be Gorenstein, and T be a generalized cotilting module (= a
generalized tilting module). Then the natural functors induce an equivalences of categories

⊥T ∩ T⊥ ' DI (A) = DP (A).

We point out that the equivalence in the theorem above is in fact a triangle-equivalence.
See Theorem 5.2.

2.7. We have more “dense” type results.

Theorem 2.17. Assume that inj.dim AA < ∞. Let T be a generalized tilting module.
Then the natural functor ⊥T ∩ T⊥ −→ DI (A) is dense.

In particular, the natural functor ⊥A −→ DI (A) is dense.

Proof. Set t := proj.dim T . Since T is a generalized tilting module and inj.dim AA < ∞,
it follows that

Kb(addT ) = Kb(A-proj) ⊆ Kb(A-inj),

and hence inj.dim T = s < ∞.

Identify Db(A) with K+,b(A-inj). For any object I• in DI(A), without loss of generality,
we may assume that

I• = 0 −→ I0 −→ · · · −→ I l−1 −→ I l dl

−→ · · · −→ I l+r−1 −→ I l+r dl+r

−→ · · ·

with Hn(I•) = 0 for n ≥ l. Set E := Kerdl+r and X := Kerdl. Then the complex

0 −→ I0 −→ · · · −→ I l−1 −→ I l dl

−→ · · · −→ I l+r−1 −→ E −→ 0 is quasi-isomorphic to
I•, and hence I• ' E[−(l + r)] in DI (A).

We take r ≥ s, t. By the exact sequence of A-modules

0 −→ X −→ I l −→ · · · −→ I l+r−1 −→ E −→ 0,

and proj.dim T = t < ∞ and r ≥ t, we infer that E ∈ T⊥.

By the generalized tilting theory we have T⊥ =

� � � �

addT = TX , and hence we have an
exact sequence of A-module

0 −→ W −→ T−(l+r−1) −→ · · · −→ T 0 −→ E −→ 0(2.5)

with each T i ∈ addT and W ∈ T⊥. Since Kb(addT ) ⊆ Kb(A-inj), it follows that the

complex 0 −→ T−(l+r−1) −→ · · · −→ T 0 −→ 0 is in Kb(A-inj), and hence E = W [l + r]
in DI(A). Since T is self-orthogonal with inj.dim T = s and r ≥ s, by (2.5) we infer that

W ∈ ⊥T . Thus X = W in DI(A) with I• = W ∈ ⊥T ∩ T⊥. �
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By the dual argument we have

Theorem 2.18. Assume that proj.dim D(AA) < ∞. Let T be a generalized cotilting

module. Then the natural functor ⊥T ∩ T⊥ −→ DP (A) is dense.

In particular, the natural functor AD(AA)⊥ −→ DP (A) is dense.

Corollary 2.19. The following are equivalent

(i) gl.dimA < ∞;

(ii) inj.dim AX < ∞ for any X ∈ A-mod;

(iii) DI (A) = 0;

(iv) inj.dim AA < ∞, and ⊥T ∩ T⊥ = addT for any generalized tilting module;

(ii)′ proj.dim AX < ∞ for any X ∈ A-mod;

(iii)′ DP (A) = 0;

(iv)′ proj.dim AD(AA) < ∞, and ⊥T ∩ T⊥ = addT for any generalized cotilting
module.

Proof. The equivalences of (i), (ii), and (iii) are well-known. The implication of (i) =⇒
(iv) follows from Theorem 2.16; and the implication of (iv) =⇒ (iii) follows from Theorem

2.17, since Kb(addT ) = Kb(A-proj) ⊆ Kb(A-inj). �

Let A be an algebra of finite global dimension. The corollary above implies that for
any generalized cotilting A-module T (= a generalized tilting A-module, by Corollart

2.10), one has ⊥T ∩ T⊥ = addT, which is an analogy with one of the properties of the
characteristic modules over quasi-hereditary algebras established by Ringel (see [Rin2],
Corollary 4).

3. Triangulated subcategories of a stable category

3.1. Let A be a Frobenius exact category, that is, A is a full subcategory of an abelian
category, which is closed under extensions and direct summands; and in which there
are enough (relatively) injective objects and (relatively) projective objects, such that the
injective objects coincide with the projective objects. For the reason requiring that A is
closed under direct summands see Lemma 3.1 below. Compare p.10 in [Hap1], Appendix
A in [K], or [Q]. Denote by A its stable category: the objects of A are exactly the ones of
A, and the morphism set HomA(X, Y ) is the quotient group HomA(X, Y )/I(X, Y ), where
I(X,Y ) is the subgroup of the morphisms from X to Y which factor through injective
objects. For a morphism u : X −→ Y in A, denote its image in A by u.

We need the following well-known fact. For convenience we include a proof.

Lemma 3.1. Let A be a Frobenius exact category. Then X ' Y in A if and only if
there are injective objects I and J such that X ⊕ J ' Y ⊕ I in A.

Proof. Let f : X −→ Y be an isomorphism in A. Then there exists g : Y −→ X such
that gf − IdX factors through an injective object I. Suppose a : X −→ I and b : I −→ Y
such that gf − IdX = ba. Consider

�
f
a � : X −→ Y ⊕ I and (g,−b) : Y ⊕ I −→ X. Then

(g,−b) ◦
�
f
a � = IdX , which implies that there exists J in A (here we need the assumption

that A is closed under direct summands) and h : X ⊕ J ' Y ⊕ I, such that
�
f
a � = h

�
1
0 � in

A. Thus
�
1
0 � : X −→ X ⊕ J is an isomorphism in A, then by an easy matrix calculation
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we have IdJ = 0, which implies that IdJ factors through an injective object, and hence J
is an injective object. �

3.2. Let A be a Frobenius exact category. Recall the triangulated structure in A (for
details see [Hap1], Chapter 1, Section 2). The shift functor [1] : A −→ A is defined such
that for each object X in A, there is an exact sequence in A

0 −→ X
iX−→ I(X)

πX−→ X[1] −→ 0,(3.1)

where I(X) is an injective object (note that by Lemma 3.1 if X ' Y in A then X[1] ' Y [1]

in A; and that as an object in A, X[1] does not depend on the choice of 0 −→ X
iX−→

I(X)
πX−→ X[1] −→ 0); and for any morphism u : X −→ Y in A, the standard triangle

X
u

−→ Y
v

−→ Cu
w

−→ X[1] in A is defined by the pushout diagram

0 X

u

iX
I(X)

u′

πX
X[1] 0

0 Y
v

Cu
w

X[1] 0;

and then the distinguished triangles in A are defined to be the triangles isomorphic to
the standard ones.

We need the following fact, which says that the distinguished triangles in A are given
by the short exact sequences in A in some sense. It is partially given in [Hap1], Lemma
2.7, p.22. For convenience we include a proof.

Lemma 3.2. Given a short exact sequence 0 −→ X
u

−→ Y
v

−→ Z −→ 0 in A, then the

induced triangle X
u

−→ Y
v

−→ Z
−w
−→ X[1] is a distinguished triangle in A, where w is an

A-map such that the following diagram is commutative

0 X
u

Y

σ

v
Z

w

0

0 X
iX

I(X)
πX

X[1] 0.

(3.2)

(Note that any two such maps w and w′ give the isomorphic triangles.)

Conversely, any distinguished triangle in A is given in this way. That is, given a

distinguished triangle X ′ u′

−→ Y ′ v′

−→ Z′ −w′

−→ X ′[1] in A, then there is a short exact

sequence 0 −→ X
u

−→ Y
v

−→ Z −→ 0 in A, such that the induced distinguished triangle

X
u

−→ Y
v

−→ Z
−w
−→ X[1] is isomorphic to the given one, where w is an A-map such that

(3.2) is commutative.

Proof. The pullback square

Y

σ

v
Z

w

I(X)
πX

X[1]

induces the second exact column in the following diagram, and then we have the following
diagram with exact rows and columns:



16 X. W. CHEN, P. ZHANG

0 0
�
�

�

�
�

�

0 −−−−−→ X
u

−−−−−→ Y
v

−−−−−→ Z −−−−−→ 0

iX

�
�

� (v
σ)

�
�

�

�
�
�

0 −−−−−→ I(X)
(01)

−−−−−→ Z ⊕ I(X)
(1 0)

−−−−−→ Z −−−−−→ 0

πX

�
�

� (−w πX )

�
�

�

X[1] X[1]
�
�

�

�
�

�

0 0.

This means that upper left square is a pushout, and then by definition the image in A of
the following triangle in A

X
u

−→ Y
(v

σ)
−→ Z ⊕ I(X)

(−w πX )
−→ X[1]

is a distinguished triangle in A, that is, X
u

−→ Y
v

−→ Z
−w
−→ X[1] is a distinguished

triangle in A.
Conversely, by definition a given distinguished triangle is isomorphic to a standard

triangle X
u

−→ Y
v

−→ Cu
w

−→ X[1] in A, then by construction we have the short exact
sequence in A:

0 −→ X
( u

iX
)

−→ Y ⊕ I(X)
(v −u′)
−→ Cu −→ 0(3.3)

and the commutative diagram

0 X
( u

iX
)

Y ⊕ I(X)

(01)

(v −u′)
Cu

−w

0

0 X
iX

I(X)
πX

X[1] 0.

This shows that the distinguished triangle induced by (3.3) is isomorphic to the standard
triangle. �

Theorem 3.3. Let A be a Frobenius exact category. Then the stablization gives a bijection
between the the class of the full subcategories B of A, where B contains all the injective
objects of A, such that if two terms in a short exact sequence in A lie in B, then the third
term also lies in B, and the class of triangulated subcategories of A.

Proof. If B is such a full subcategory of A, then by Lemmas 3.2 and 3.1 B is a triangu-
lated subcategory of A. Conversely, let D be a triangulated subcategory of A. Set

B := {X ∈ A | there exists Y ∈ D such that X ' Y in A}.

Then D = B. Since D contains zero object, it follows that B contains all the injective
objects of A; and by Lemma 3.1 B has the required property. If B and B′ are two such a
different full subcategories of A, then by Lemma 3.1 B are B′ also different in A. �
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3.3. Let C be a triangulated subcategory of a triangulated category D. Recall the right
perpendicular to C is a full subcategory of D given by (see e.g. [BK]; also [Rou], p.23)

C⊥
D := {M ∈ D | HomD(N, M) = 0, ∀ N ∈ C}.

Then C⊥ is also a triangulated subcategory of D. Note that for N ∈ C⊥
D and any object

M in D we have a natural isomorphism HomD(M, N) ' HomD/C(M, N) (one can proves
this routinely by calculus on right fractions). In particular, the natural functor induces a
fully-faithful functor C⊥

D −→ D/C. If in addition this fully-faithful functor is an equivalence
of categories, then C is called a Bousfield subcategory of D. Note that C is a Bousfield
subcategory if and only if the embedding functor C ↪→ D has a right adjoint, if and only
if for any object D in D there exists a distinguished triangle C −→ D −→ C⊥ −→ C[1]
with C ∈ C and C⊥ ∈ C⊥

D , if and only if the localization functor D −→ D/C has a right
adjoint. See [N], or 5.2 in [Rou], or 1.1 in [O2].

Proposition 3.4. Let A be a Frobenius exact category. Then

(i) For any objects X, Y in A and n ≥ 1 we have

HomA(X, Y [n]) = Extn
A(X, Y ),(3.4)

where Y [n] is the n-th shift of Y in A (cf. (3.1)).

(ii) Let B be a triangulated subcategory of A. Then we have

B⊥
A = {M ∈ A | Exti

A(N, M) = 0, ∀ N ∈ B, ∀ i ≥ 1}

= {M ∈ A | Ext1A(N, M) = 0, ∀ N ∈ B}.(3.5)

Proof. (i) By the definition of Extn
A and using the injective objects being also projective

objects in a Frobenius category, one can easily get the formula (3.4).
(ii) This follows from (3.4). �

One may write out the formula (3.4), in particular for the category of complexes of an
abelian category, and for the module category of a self-injective algebra.

4. Bounded derived categories of Gorenstein algebras

4.1. Keep the notation in 1.4 throughout this section, in particular for N and MP . Note
that T (A)Z-mod is a Krull-Schmidt, Frobenius abelian category (see [Hap1], I. 3.1, II.
2.2, II. 2.4), so we can freely apply results in Section 3. An object in T (A)Z-mod and
T (A)Z-mod is denoted by M = ⊕n∈ZMn with each Mn an A-module and D(A).Mn ⊆
Mn+1.

Theorem 4.1. Let A be a Gorenstein algebra. Then under Happel’s functor F : Db(A) −→
T (A)Z-mod we have

Db(A) ' N = {⊕n∈ZMn ∈ T (A)Z-mod | proj.dim AMn < ∞, ∀ n 6= 0}

and

Kb(A-proj) ' MP = {⊕n∈ZMn ∈ T (A)Z-mod | proj.dim AMn < ∞, ∀ n ∈ Z}.

Corollary 4.2. Let A be a self-injective algebra. Then we have

Db(A) ' N = {M = ⊕n∈ZMn | AMn is projecive, ∀ n 6= 0}
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and

Kb(A-proj) ' MP = {M = ⊕n∈ZMn | AMn is projective, ∀ n ∈ Z}.

4.2. Before proving Theorem 4.1 we need some preparations. For each n ∈ Z, given an
indecomposable projective A-module P , then the Z-graded T (A)-module

proj(P, n, n + 1) = ⊕i∈ZMi with Mi =

��� �� P, i = n;

D(A) ⊗A P, i = n + 1;

0, otherwise.

(4.1)

is an indecomposable projective Z-graded T (A)-module, and any indecomposable pro-
jective Z-graded T (A)-module is of this form; and given an indecomposable injective
A-module I, then the Z-graded T (A)-module

inj(I, n − 1, n) = ⊕i∈ZMi with Mi =

��� �� HomA(D(A), I), i = n − 1;

I, i = n;

0, otherwise.

(4.2)

is an indecomposable injective Z-graded T (A)-module; and any indecomposable injective
Z-graded T (A)-module is of this form. Note that

proj(P, n, n + 1) ' inj(D(A) ⊗A P, n, n + 1)

and

inj(I, n − 1, n) ' proj(HomA(D(A), I), n − 1, n).

Any homogeneous Z-graded T (A)-module M = Mn of degree n has the injective hull
inj(IA(Mn), n− 1, n), and the projective cover proj(PA(Mn), n, n+1), where IA(Mn) and
PA(Mn) are respectively the injective hull and the projective cover of Mn as an A-module
(see [Hap1], II. 4.1).

Lemma 4.3. Let A be a Gorenstein algebra. Then the full subcategories given by

{⊕n∈ZMn ∈ T (A)Z-mod | proj.dim AMn < ∞, ∀ n 6= 0}

and

{⊕n∈ZMn ∈ T (A)Z-mod | proj.dim AMn < ∞, ∀ n ∈ Z}

are triangulated subcategories of T (A)Z-mod.

Proof. Since the homogeneous components of any injective object in T (A)Z-mod are di-
rect sums of injective A-modules and projective A-modules, it follows from that A is Goren-
stein that the two subcategories above contain all the injective modules in T (A)Z-mod (we
need to use the fact: If A is Gorenstein, then for any A-module X, proj.dim X < ∞ if
and only if inj.dim X < ∞).

Given a short exact sequence 0 −→ M −→ N −→ L −→ 0 in T (A)Z-mod, then for
each n we have an exact sequence of A-modules

0 −→ Mn −→ Nn −→ Ln −→ 0.

Note that if any two terms of the short exact sequence above have finite projective dimen-
sions, then the other one also has finite projective dimension. Now the assertion follows
from Theorem 3.3. �
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4.3. Proof of Theorem 4.1: We only prove

N = {⊕n∈ZMn | proj.dim AMn < ∞, ∀ n 6= 0}.(4.3)

The another equality can be similarly proven. Since A is Gorenstein, it follows that

{⊕n∈ZMn | proj.dim AMn < ∞, ∀ n 6= 0} = {⊕n∈ZMn | inj.dim AMn < ∞, ∀ n 6= 0}.

By Lemma 4.3 the right hand side in (4.3) is a triangulated subcategory of T (A)Z-mod
containing all the A-modules, while by definition N is the triangulated subcategory of
T (A)Z-mod generated by A-mod. It follows that N ⊆ {M = ⊕n∈ZMn | proj.dim AMn <
∞, ∀ n 6= 0}.

For the other inclusion, first, consider all the objects of the form M = ⊕i≥0Mi in the
right hand side of (4.3). We claim that such an M lies in N . We prove this claim by
induction on l(M) := max{ i | Mi 6= 0}. Assume that N already contains all such objects
M with l(M) < n, n ≥ 1. Now, we use induction on m := inj.dim AMn to prove that
M = ⊕n

i=0Mi ∈ N , where inj.dim AMi < ∞, ∀ i 6= 0.

If m = 0, i.e., Mn (which is of degree n) is injective as an A-module, then consider the
exact sequences in TAZ-mod

0 −→ Mn −→ M −→ M/Mn −→ 0.(4.4)

and (see (4.2))

0 −→ Mn −→ inj(Mn, n − 1, n) −→ Mn[1] −→ 0.

By induction we have M/Mn, Mn[1] ∈ N , and hence Mn ∈ N . Now by Lemma 3.2 the
short exact sequence (4.4) induces a distinguished triangle in T (A)Z-mod

Mn −→ M −→ M/Mn −→ Mn[1](4.5)

with Mn, M/Mn ∈ N . Since N is a triangulated subcategory of T (A)Z-mod, it follows
that M ∈ N .

Assume that for n, d ≥ 1, N already contains all the objects M = ⊕n
i=0Mi in the right

hand side of (4.3) with inj.dim AMn < d. We will prove that N also contains such an
object M with inj.dim AMn = d. Take an exact sequence in T (A)Z-mod (see (4.2))

0 −→ Mn −→ inj(IA(Mn), n − 1, n) −→ Mn[1] −→ 0.

Since the n-th component IA(Mn)/Mn of Mn[1] has injective dimension less than d, it
follows from induction that Mn[1] ∈ N , and hence Mn ∈ N . Also M/Mn ∈ N since
l(M/Mn) < n. Thus M ∈ N by (4.5). This proves the claim.

Dually, any object of the form M = ⊕i≤0Mi in the right hand side of (4.3) lies in N .

In general, for M = ⊕n∈ZMn in the right hand side of (4.3), set M≥0 := ⊕n≥0Mn.
Then it is a submodule of M . By the argument above we have M≥0 ∈ N and M/M≥0 ∈ N .

Consider the short exact sequence in T (A)Z-mod

0 −→ M≥0 −→ M −→ M/M≥0 −→ 0

which induces a distinguished triangle in T (A)Z-mod by Lemma 3.2. Again since N is a
triangulated subcategory, it follows that M ∈ N . This completes the proof. �
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5. Stable category a(T )

Throughout this section, A is an arbitrary finite-dimensional k-algebra, although almost
everything holds for an arbitrary ring.

5.1. Let T be a self-orthogonal A-module. Consider the full subcategory of A-mod given
by a(T ) := XT ∩ TX . By Proposition 5.1 in [AR1] we know that a(T ) is closed under
extensions and direct summands. By the definition we immediately have

Lemma 5.1. The full subcategory of A-mod given by a(T ) is a Frobenius exact category,
where addT is exactly the full subcategory of all the (relatively) projective and injective
objects.

It follows that the stable category of a(T ) modulo addT , denoted by a(T ), is a trian-

gulated category. If A is Gorenstein and T is a generalized cotilting module (= a gen-
eralized tilting module, see Corollary 2.10), then a(T ) is exactly the singularity category

DP (A) = DI(A) (cf. 2.1, 2.2, and Theorem 2.16).

5.2. For a short exact sequence 0 −→ X
u

−→ Y
v

−→ Z −→ 0 in a(T ), take an exact
sequence

0 −→ X
iX−→ T (X)

πX−→ S(X) −→ 0(5.1)

with T (X) ∈ addT and S(X) ∈ a(T ). Note that S(X) is the translation of X in a(T ), and

that X
u

−→ Y
v

−→ Z
−w
−→ S(X) is a distinguished triangle in a(T ), where w is an A-map

such that the following diagram is commutative

0 X
u

Y

ρ

v
Z

w

0

0 X
iX

T (X)
πX

S(X) 0;

(5.2)

and any distinguished triangle in a(T ) is given in this way (see Lemma 3.2).

On the other hand, a short exact sequence 0 −→ X
u

−→ Y
v

−→ Z −→ 0 in a(T ) induces

a distinguished triangle in Db(A)

X
u

−→ Y
v

−→ Z
w′

−→ X[1].(5.3)

Denote by Con(u) the complex 0 −→ X
u

−→ Y −→ 0 in Db(A), where Y is at the 0-
th position. Then we have natural morphisms of complexes pX : Con(u) −→ X[1] and
v′ : Con(u) −→ Z. Note that v′ is induced by v, and is a quasi-isomorphism, and that

w′ = pX/v′ ∈ HomDb(A)(Z, X[1])(5.4)

as a right fraction.

Denote by Con(iX) the complex 0 −→ X
iX−→ T (X) −→ 0 in Db(A), where T (X) is at

the 0-th position. Then we have natural morphism of complexes p′
X : Con(iX) −→ X[1]

and π′
X : Con(iX) −→ S(X). Note that π′

X is induced by πX , and is a quasi-isomorphism.
Write βX := −p′

X/π′
X ∈ HomDb(A)(S(X), X[1]). We claim that w′ = −βXw in Db(A),

and hence by (5.3), X
u

−→ Y
v

−→ Z
−βX w
−→ X[1] is a distinguished triangle in Db(A), and

hence it is a distinguished triangle in the quotient triangulated category Db(A)/Kb(addT ).
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In fact, by (5.4) the claim is equivalent to pX = −βX(wv′) in Db(A). Denote by ρ′ the
chain map Con(u) −→ Con(iX) induced by ρ. Then by the multiplication rule of right
fractions we have

−βX(wv′) = (p′
X/π′

X )(wv′) = p′
Xρ′ = pX ,

where the second equality follows from the multiplication rule of right fractions and wv =
πXρ in (5.2), and that the last equality follows from the definition.

Note that for each X ∈ a(T ), βX is an isomorphism in the quotient triangulated
category Db(A)/Kb(addT ). This can be seen as follows. By the distinguished triangle

X
iX−→ T (X) −→ Con(iX)

p′

X−→ X[1]

in Db(A) we have the distinguished triangle in Db(A)/Kb(addT )

X
iX−→ T (X) −→ Con(iX)

p′

X−→ X[1].

But in Db(A)/Kb(addT ) we have T (X) = 0, it follows that pX is an isomorphism in
Db(A)/Kb(addT ), so is βX in Db(A)/Kb(addT ).

Now, denote by G the natural fully-faithful functor a(T ) −→ Db(A)/Kb(addT ) (cf.

Theorem 2.1). Then the discussion above shows that β : G ◦ [1] −→ [1] ◦ G is a natural
isomorphism, where the first [1] = S is the shift of a(T ), and the second [1] is the shift of

Db(A)/Kb(addT ). We conclude the following.

Theorem 5.2. Let T be a self-orthogonal module. Then the natural embedding a(T ) −→

Db(A)/Kb(addT ) is an exact functor.

5.3. Denote by Kac(T ) be the full subcategory of the (unbounded) homotopy category
K(A) consisting of acyclic complexes with components in addT (see also [Kr], Section 5).
It is a triangulated subcategory. We have

Theorem 5.3. Let T be a self-orthogonal module such that

� ��� �

addT ⊆ T⊥ and addT� ��� � ⊆
⊥T .

Then there is an equivalence of triangulated categories Kac(T ) ' a(T ).

Together with Theorems 2.16 and 5.2 we have the following result, which gives an
another description of the singularity category of a Gorenstein algebra. A similar result
on separated noetherian schemes has been given in [Kr], Theorem 1.1(3).

Corollary 5.4. Let A be Gorenstein, and T be a generalized cotilting module (= a
generalized tilting module). Then we have an equivalence of triangulated categories

Kac(T ) ' DI (A) = DP (A).

To prove Theorem 5.3, we make some preparations.

5.4. Let T be self-orthogonal. Let X ∈ TX with an exact sequence

· · · −→ T−i d
−i
T−→ T−(i−1) −→ · · ·

d
−1
T−→ T 0 d0

T−→ X −→ 0,



22 X. W. CHEN, P. ZHANG

where each T−i ∈ addT and Kerd−i ∈ T⊥, i ≥ 0. Let Y ∈ A-mod with a complex

· · · −→ T ′−i
d−i

T ′

−→ T ′−(i−1) −→ · · ·
d−1

T ′

−→ T ′0 d0
T ′

−→ Y −→ 0,

where each T ′−i ∈ addT . Denote them by T • d0
T−→ X and T ′•

d0
T ′

−→ Y , respectively.
The proof of the following fact is similar with the one of the Comparison-Theorem in
homological algebra.

Lemma 5.5. With the notation of X, Y, T •, T ′• as above, and any morphism f : Y −→ X,
there exists a unique morphism f• : T ′• −→ T • in K(A) such that fd0

T ′ = d0
T f0.

5.5. Dually, let X ∈ XT with an exact sequence

0 −→ X
εX−→ T 0 d0

T−→ T 1 −→ · · · −→ T i di
T−→ T i+1 −→ · · · ,

where each T i ∈ addT and Imdi ∈ ⊥T , i ≥ 0. Let Y ∈ A-mod with a complex

0 −→ Y
εY−→ T ′0 d0

T ′

−→ T ′1 −→ · · · −→ T ′i di
T ′

−→ T ′i+1 −→ · · · ,

where each T ′i ∈ addT . Denote them by εX : X −→ T • and εY : Y −→ T ′•, respectively.

Lemma 5.6. With the notation of X, Y, T •, T ′• as above, and any morphism f : X −→ Y ,
there exists a unique morphism f• : T • −→ T ′• in K(A) such that εY f = f0εX .

5.6. We need the following fact (see p.446 in [Ric1], or p.45 in [KZ]).

Lemma 5.7. Let F : C −→ D be a full and exact functor of triangulated categories. Then
F is faithful if and only if it is faithful on objects, that is, if F (X) ' 0 then X ' 0.

5.7. Proof of Theorem 5.3. Since

� ��� �

addT ⊆ T⊥ and addT� � � � ⊆ ⊥T , it follows that

TX =

� ��� �

addT and XT = addT� ��� � . Thus, for any object T • in Kac(T ) we have Cokerdi
T ∈

� � � �

addT ∩ addT� ��� � = a(T ), for each i ∈ Z.

Define a functor F : Kac(T ) −→ a(T ) as follows: for any object T • in Kac(T ), define

F (T •) := Cokerd−1
T ; for any morphism f• : T • −→ T ′• in Kac(T ), define F (f•) to be the

image in a(T ) of the unique morphism f̄0 : Cokerd−1
T −→ Cokerd−1

T ′ induced by f0. Note

that F is well-defined, dense, and full by Lemmas 5.5 and 5.6.

Note that F is faithful on objects. In fact, if F (T •) ' 0, then we have Cokerd−1
T ∈

addT . Since Cokerdi
T ∈

� ��� �

addT ∩ addT� � � � ⊆ T⊥ ∩ ⊥T for each i, it follows that the exact

sequence 0 −→ Cokerd−2
T −→ T 0 −→ Cokerd−1

T −→ 0 splits, and hence Cokerd−2
T ∈ addT .

Repeating this process, we have the split exact sequence 0 −→ Cokerd−i−2
T −→ T−i −→

Cokerd−i−1
T −→ 0, and Cokerd−i−2

T ∈ addT , for each i ≥ 0. Similarly, the exact sequence

0 −→ Cokerdi−2
T −→ T i −→ Cokerdi−1

T −→ 0 splits and Cokerdi−1
T ∈ addT for each i ≥ 1.

This implies that the identity IdT• is homotopic to zero, that is, T • is zero in Kac(T ).

In order to prove that F is an exact functor, we first need to establish a natural
isomorphism F ◦ [1] −→ [1] ◦F , where the first [1] is the usual shift of complexes, and the
second [1] is the shift functor of the stable category a(T ). In fact, for each T • ∈ Kac(T ),

we have a commutative diagram of short exact sequences in A-mod
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0 F (T •)
iT•

T 1
πT•

γT•

F (T •[1])

αT•

0

0 F (T •)
iF (T•)

T (F (T •))
πF (T•)

F (T •)[1] 0

where iT• is the natural embedding, πT• is the canonical map, and the exact sequence of
the second row is the one defining F (T •)[1], with T (F (T •)) ∈ addT (see (5.1), where we
write F (T •)[1] for S(F (T •))). Note that αT• is unique in the stable category a(T ), and

that it is easy to verify that α : F ◦ [1] −→ [1] ◦ F is a natural isomorphism (by using the
same argument as in the proof of Lemma 2.2 in [Hap1], p.12). We will show that (F, α)
is an exact functor.

Recall a distinguished triangle in Kac(T ) is given by

T • f•

−→ T ′• (01)
−→ Con(f•)

(1 0)
−→ T •[1],

where the mapping cone Con(f•) of f• is defined by Con(f•)n = T n+1 ⊕ T ′n with differ-

entials � −dn+1
T 0

−fn+1 dn
T ′ � . Denote by θ : F (T ′•) −→ F (Con(f•)) and η : F (Con(f•)) −→

F (T •[1]) the morphisms in A-mod induced by
�
0
1 � and (1 0), respectively. Clearly we have

ηθ = 0. Observe that the following sequence in A-mod

0 −→ F (T •)
(

¯
f0

−iT•
)

−→ F (T ′•) ⊕ T 1 (θ π)
−→ F (Con(f•)) −→ 0,

is exact, where iT• is as above and π is the natural map from T 1 to F (Con(f•)) =

(T 1⊕T ′0)/Im � −d0
T 0

−f0 d−1
T ′ � . This can be seen by directly verifying that (θ π) is surjective,

(θ π)
�

f̄0

−iT• � = 0, and Ker(θ π) ⊆ Im
�

f̄0

−iT• � . By definition we have ηπ = πT• , and hence

the following diagram of short exact sequences in A-mod commutes

0 F (T •)
(

¯
f0

−iT•
)
F (T ′•) ⊕ T 1

(0,−γT•)

(θ π)
F (Con(f•))

−(αT•η)

0

0 F (T •)
iF (T•)

T (F (T •))
πF (T•)

F (T •)[1] 0.

It follows from Lemma 3.2 that F (T •)
F (f•)
−→ F (T ′•)

θ
−→ F (Con(f•))

αT•η

−→ F (T •)[1] is a
distinguished triangle in a(T ). This proves that F : Kac(T ) −→ a(T ) is an exact functor.

Now the theorem follows from Lemma 5.7. �
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