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México 04510, D. F.
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In these notes k will denote a fixed algebraically closed field.

A will denote a finite-dimensional associative k-algebra with unity. An A-module

(if not otherwise stated) is a finitely generated left A-module. According to former

lectures in this volume, we may assume that A is a basic algebra and write A = kQ/I

where Q is a finite quiver and I is an admissible ideal of the path algebra kQ.

A fundamental problem in the representation theory of algebras is the classification

of all indecomposable A-modules (up to isomorphism). We say that A is of finite

representation type if there are only finitely many indecomposable A-modules up to

isomorphism. One of the first successes of modern representation theory was the

identification by Gabriel of the Dynkin diagrams as the underlying graphs of quivers

Q such that kQ is representation-finite. But representation-infinite algebras are com-

mon. Already in the 19th century, Kronecker completed work of Weierstrass to classify

all indecomposable ‘pencils’ by means of infinite families of pairwise non-isomorphic

normal forms, which in modern terminology corresponds to the classification of the

indecomposable modules over the Kronecker algebra. The first explicit recognition

that infinite representation type splits in two different classes arises in representa-

tions of groups: in 1954, Highman showed that the Klein group has infinitely many

representations in characteristic 2 and Hellen and Reiner classified them; in contrast,

Krugljak showed in 1963 that solving the classification problem of groups of type

(p, p) with p ≥ 3 implies the classification of the representations of any group of the

same characteristic, a task that was recognized as ‘wild’.
1
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The first task of these notes is to give precise meaning to the following concepts.

The algebra A is tame if for every number n, almost every indecomposable A-module

of dimension n is isomorphic to a module belonging to a finite number of 1-parameter

families of modules. Formally, an algebra A is tame if for every n ∈ N there is a finite

family of A− k[t]-bimodules M1, . . . , Mt(n) with the following properties:

(i) Mi is finitely generated free as a right k[t]-module;

(ii) almost every indecomposable left A-module X with dimkX = n is isomorphic

to a module of the form Mi ⊗k[t] Sλ for some λ ∈ k.

The algebra A is wild if the classification of the indecomposable A-modules implies

the classification of the indecomposable modules over the associative algebra k〈x, y〉
in two indeterminates. Donovan and Freislich were the first to state the tame-wild

dichotomy as a conjecture, later made precise and proved by Drozd. Namely,

Dichotomy Theorem of Drozd: Every finite dimensional k-algebra is either tame or

wild.

In Lecture 1 we shall present some important examples of algebras and discuss

their representation type: hereditary algebras, local algebras, group algebras. In

Lecture 2 we introduce some fundamental concepts and techniques which are useful

for the understanding of tame algebras. Given a basic algebra A = kQ/I, for each

vector v ∈ NQ0, we define a module variety modA(v) as a closed subset, relative to

the Zariski topology, of an affine space. The notion of tameness for A may be read

in different ways in the module varieties modA(v).

Although there is a no general procedure known to decide whether or not a given

algebra is tame, there are cases which are well understood. An algebra A = kQ/I

is said to be triangular if Q has no oriented cycles. For such an algebra the Tits

quadratic form qA : ZQ0 → Z is introduced by

qA(v) =
∑

i∈Q0

v(i)2 −
∑

(i→j)∈Q1

v(i)v(j) +
∑

i,j∈Q0

r(i, j)v(i)v(j)

where Q0 (resp. Q1) denotes the set of vertices (resp. arrows) of Q and r(i, j) is

the number of elements in R ∩ I(i, j) whenever R is a minimal set of generators of

I contained in
⋃

i,j∈Q0

I(i, j). This quadratic form was introduced by Tits and used
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systematically by Gabriel and Bernstein-Gelfand-Ponomariev in the study of the rep-

resentations of hereditary algebras A = kQ of finite representation type.

The main purpose of these lectures is to survey the use of the Tits form in repre-

sentation theory. Special emphasis is made in characterizing the representation type

via arithmetic properties of the Tits form. Basic results in this direction are shown

in Lecture 3. Let A be a triangular algebra, the following holds:

• if A is representation-finite, then qA is weakly positive (that is, qA(v) > 0 for

any vector 0 6= v ∈ NQ0).

• if A is tame, then qA is weakly non-negative (that is, qA(v) ≥ 0 for any v ∈ N(Q0).

Consideration of special cases where the converses of the above results hold, hence

providing combinatorial characterizations of the representation type, is the central

issue of Lecture 3 and 4. We say that an algebra B = kQ′/I ′ is a full subcategory

of A = kQ/I if Q′ is a path closed full subquiver of Q and I ′ = I ∩ kQ. First, it

is shown that an algebra A accepting a preprojective component in the Auslander-

Reiten quiver ΓA is representation-finite if and only if qA is weakly positive. Moreover,

this is equivalent to A not having convex subcategories which are critical (an algebra

B is critical if ΓB has a preprojective component, qB is not weakly positive but every

proper restriction of qB is weakly positive). An algebra B is hypercritical if ΓB has

a preprojective component, and the form qB is not weakly non-negative while every

proper restriction of qB is weakly non-negative. The critical and hypercritical algebras

have been classified.

A triangular algebra A is strongly simply connected if every convex subcategory

of A satisfies the separation condition. Many important examples of algebras satisfy

this property. Recently Brüstle-Skowroński and the author have shown that for a

strongly simply connnected algebra A the following are equivalent:

(a) A is tame;

(b) qA is weakly non-negative;

(c) A does not contain a full convex subcategory which is hypercritical.

The intention of these lectures is to serve as a source of motivation and information

on the main concepts, techniques and results on the topic. While we cannot provide

complete proofs of every result, we try to sketch some representative arguments whose

proofs are elementary enough not to require other sophisticated parts of the theory.
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Notation and conventions.

We fix our notation by recalling basic material on algebras, modules and represen-

tation theory which can be found on textbooks and in other lectures at this volume.

All algebras in this work are associative k-algebras with an identity. A finite dimen-

sional k-algebra is basic if A/radA is commutative, where rad A denotes the Jacobson

radical of A.

By modA we denote the category of finite dimensional (= finitely generated) left A-

modules. Each finite dimensional k-algebra A is Morita equivalent to a basic algebra

B, that is, there is an equivalence of categories modA
∼−→ modB.

A quiver Q is an oriented graph with set of vertices Q0 and set of arrows Q1. The

path algebra kQ has as k-basis the oriented paths in Q, including a trivial path es for

each vertex s ∈ Q0, with the product given by concatenation of the paths. A module

X ∈ modkQ is a representation of Q with a vector space X(s) = esX for each vertex

s ∈ Q0 and a linear map X(α) : X(s)→ X(t) for each arrow s
α−→ t in Q1.

For a finite dimensional k-algebra A we associate the quiver QA in the following

way: the set of vertices Q0 is the set of isoclasses of simple A-modules {1, . . . , n}. Let

Si be a simple A-module representing the i-th class. Then there are as many arrows

from i to j in Q as dimkExt1
A(Si, Sj). By a remark of Gabriel [17], in case A is basic,

there is a surjective morphism kQ ν−→−→ A such that the ideal ker ν is admissible, that

is, (radA)m ⊂ ker ν ⊂ (radA)2 for some m ≥ 2.

We shall identify A = kQ/I with a k-category whose objects are the vertices of Q

and whose morphism space A(s, t) is etAes. We say that B is a convex subcategory of

A if B = kQ′/I ′ for a path closed subquiver Q′ of Q and I ′ = I ∩ kQ′. In this view,

an A-module X is a k-linear functor X : A → modk. The dimension vector of X is

dimX = (dimkX(s))s∈Q0
∈ NQ0 and the support of X is supp X = {s ∈ Q0 : X(s) 6=

0}.
For an algebra A, we consider the standard duality D : modA → modAop defined

as D = Homk(−, k), where Aop is the opposite algebra of A. The Auslander-Reiten

translation τA = Dtr yields a functor τA : mod A → modA, where mod A (resp. modA)

is the category whose objects are A-modules and Hom A(X, Y ) (resp. HomA(X, Y ))

is the quotient of HomA(X, Y ) by those morphisms factoring through a projective

module (resp. an injective module), satisfying that Ext1
A(X, Y )

∼−→DHomA(Y, τAX).
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The inverse of τA is τ−
A = tr D. The Auslander-Reiten quiver ΓA of A has as vertices

the isoclasses of indecomposable A-modules and there are n arrows from the class [Y ]

of the indecomposable module Y to [X] if Y n, but not Y n+1, is a direct summand of

Z for an exact sequence

ξ : 0→ τAX → Z → X → 0

corresponding to a non-zero element in Ext1
A(X, τAX)

∼−→ DHomA(τAX, τAX), ξ 7→
1τAX , in case X is non-projective; or Z = rad X, in case X is projective.

By the Jordan-Hölder theorem, the Grothendieck group K0(A) of modA is the free

abelian group on the classes [S1], . . . , [Sn] of simple A-modules, yielding an identi-

fication K0(A) = Z. The class of any A-module M equals [M ] =
n
∑

i=1

[M : Si][Si],

where [M : Si] is the multiplicity of Si in the composition series of M (observe that

[Mi : Si] = dimkM(i) if i is the vertex of QA corresponding to Si). We shall assume

that A has finite global dimension (which happens, for example, if A is triangular).

Then the classes [P1], . . . , [Pn] of indecomposable projective covers Pi of Si, 1 ≤ i ≤ n,

form another basis of K0(A). Similarly, the classes [I1], . . . , [In] of indecomposable

injective envelopes Ij of Sj, 1 ≤ j ≤ n form a basis of K0(A). The homological form

〈−,−〉A on K0(A) is the bilinear form

〈[X], [Y ]〉A =
∞
∑

i=0

(−1)idimkExti
A(X, Y ).

Defining the n× n Cartan matrix CA = (cij) as cij = 〈[Pj], [Pi]〉, we get

〈v, w〉A = vC−t
A wt.

The quadratic form χA(v) = 〈v, v〉A is called the Euler form of A.

The Coxeter transformation ϕ
A

is an automorphism of K0(A), determined by

[Pj]ϕA
= −[Ij], for 1 ≤ j ≤ n.

Therefore ϕ
A

= −C−t
A CA and 〈v, wϕ

A
〉A = −〈w, v〉A for all v, w ∈ K0(A).

In the hereditary case A = kQ, for any indecomposable non-projective A-module

X, we have

[X]ϕ
A

= [τAX].

In general, the relation between τA and ϕ
A

is not so nice, but it will be central for

our paper. We recall here the following remarks from [17]:
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(a) If pdimAX ≤ 1 and HomA(X, A) = 0, then [τAX] = [X]ϕ
A
.

(b) If pdimAX ≤ 2 and idimAX ≤ 2 then for some injective A-module I we get

[τAX] = [X]ϕ
A

+ [I].

The role of the Coxeter transformation ϕA clarifies with the consideration of the

derived category Dd(modA) of the module category modA, a construction that we shall

not use in these lectures. Namely [X • ]ϕA = [τDb(A)X
• ] in the Grothendieck group

K0(D
b(modA)) ∼= K0(A), where τDb(A)X

• denotes the Auslander-Reiten translation

of the complex X • in Db(modA).
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Lecture 1. The tame-wild dichotomy.

§1. Examples.

Hereditary algebras.

Let ∆ be a quiver without oriented cycles and consider the associated hereditary

algebra A = k∆. We assume ∆ is connected.

Let ∆0 = {1, . . . , n} be the set of vertices of ∆ and

M∆ = (mij) the Cartan matrix of ∆,

mij =

{

2, if i = j

−# edges between i and j, if i 6= j

Consider V + = {v ∈ V : v(i) ≥ 0, ∀ i} the positive cone

Lemma. M−1
∆ (V +) ∩ ∂V + = {0}.

Proof. Assume that 0 6= y ∈M−1
∆ (V +) ∩ ∂V +.

By the connectivity of ∆ we find an edge i j such that y(i) > 0 and y(j) = 0.

Then

0 ≤M(y)(j) =
∑

k

mjky(k) = mjjy(j) + mjiy(i) +

+
∑

k 6=i,j

mjky(k) ≤ mjiy(i) < 0,

a contradiction. �

Proposition. The matrix M∆ satisfies one and only one of the properties:

(a) M−1
∆ (V +) ⊂ V +

(b) M−1
∆ (V +) = Ru for some u� 0. In this case M∆(u) = 0

(c) M−1(V +) ∩ V + = {0}

This can be illustrated for n = 2:
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Let q∆ : Zn → Z be the quadratic form q∆(v) = 1
2
vM∆vt. Then q∆ is the Tits

form associated to the hereditary algebra A = k∆. Corresponding to the cases

distinguished in the above Proposition, we have:

(Elliptic type): q∆ is positive definite if M−1
∆ (V +) ⊂ V +;

(Parabolic type): q∆ is non-negative with corank q∆ = 1 if M−1
∆ (V +) = Ru

for some u� 0;

(Hyperbolic type): q∆ is indefinite if M−1
∆ (V +) ∩ V + = {0}.

(details can be completed by the reader as an exercise).

In this way, we get three type of quivers. Classification:

(1) Let ∆ be of parabolic type, u� 0 be the minimal positive vector with q∆(u) =

0. Then the underlying graph |∆| is one of the following
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and the indicated vector is u.

These diagrams are called Euclidean diagrams.

(2) ∆ of elliptic type if and only if |∆| does not contain any subgraph of Euclidean

type. Hence |∆| is one of the following (called Dynkin diagrams).

(3) ∆ is of hyperbolic type. Then either there are vertices i and j of ∆ with

mij ≤ −3 or |∆| contains properly an Euclidean diagram. In the former case

q∆(ei + ej) = q∆(ei) + q∆(ej) + mij < 0;

in the latter case, if ∆′ is a full proper subquiver of ∆ such that |∆′| is Euclidean with

a vector u� 0 such that q∆′(u) = 0, then for any vertex i of ∆ \∆′ with i adjacent

to ∆′, we get

q∆(2u + ei) = 2q∆′(u) + 1 + 2
∑

u(j)6=0

mij < 0.

Local algebras.

(1) Observe that the algebra A = k[x]/(xn) admits only finitely many indecompos-

able modules, up to isomorphism. Then A is representation-finite.

Indeed, a module M ∈ modA is a nilpotent matrix, hence M is equivalent to

Jn1
⊕ · · · ⊕ Jns
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where Ji is the i× i matrix










0 0
1

. . .

. . .
. . .

0 1 0











with ni ≤ n. If M is indecomposable, M ∼= Js, for some s ≤ n.

(2) Consider the infinite-dimensional k-algebra k[x].

Let M ∈ modk[x], then M is a n × n matrix. Let χ(T ) = det (TIn −M) be the

characteristic polynomial of M . Then M is equivalent to

Jn1
(λ1)⊕ · · · ⊕ Jns(λs)

where χ(T ) = (T − λ1)
n1 . . . (T − λs)

ns is the decomposition of χ(T ) in linear factors

(since k = k̄) and Jni
(λi) is the ni × ni Jordan block

Jni
(λi) =











λi 0
1

. . .

. . .
. . .

0 1 λi











Consider the k[t]− k[t]-bimodule given by the n× n matrix

Jn(t) =











t 0
1

. . .

. . .
. . .

0 1 t











Let Sλ = k[t]/(t− λ) be a (one-dimensional) simple k[t]-module. Then

Jn(t)⊗k[t] Sλ = Jn(λ).

Therefore, the indecomposable k[t]-modules of dimension n are isomorphic to modules

in the image of the functor

Jn(t)⊗k[x] − : modk[t](1)→ modk[t].

(3) The free algebra k〈x, y〉 has a ‘problematic’ behaviour, as shown in the following.

Proposition. Let B be any finitely generated k-algebra, then there exists a fully faith-

ful functor F : modB → modk〈x,y〉.
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Proof. Let b1, . . . , bs be a system of generators of B. Define the k〈x, y〉−B-bimodule

M as MB = Bs+2 and the structure of left k〈x, y〉-module given by the (s+2)×(s+2)-

matrices

xM =













0 1 0
0

. . .

. . .
. . .
0 1

0 0













yM =



















0 0
1 0
b1 1

. . .
. . .
. . . 1 0

0 bs 1 0



















We set F = M⊗B : modB → modk〈x,y〉.

Exercise: check that F is full and faithful. �

This means that the representation theory of k〈x, y〉 is as complicated as the rep-

resentation theory of any other algebra.

We say that an algebra A is wild if there is a functor F : modk〈x,y〉 → modA which

preserves indecomposable modules and iso-classes. We shall say that the functor F

insets indecomposable modules.

Group algebras.

Proposition. Let p be a prime number ≥ 3. Assume k has characteristic p. The

group algebra A = k[Zp × Zp] is wild.

Proof. Let ϕ : k[u, v]→ A, x 7→ g − 1, y 7→ h − 1, where Zp × Zp = 〈g〉 × 〈h〉. Then

A ∼= k[u, v]/kerϕ = k[u, v]/(up, vp).

Moreover k[u, v]/(up, vp) →→ k[u, v]/(u, v)3 = k[u, v]/(u3, v3, uv2, vu2) =: B. It is

enough to show that B is wild.

Consider the B−k〈x, y〉-bimodule M defined as Mk〈x,y〉 = k〈x, y〉4 and the structure

as B-module defined by the matrices

uM =









0 0 0 0
0 0 0 0
1 0 0 0
0 x y 0









vM =









0 0 0 0
1 0 0 0
0 0 0 0
0 1 x 0









Exercise: check that BM is well defined and

M ⊗k〈x,y〉 − : modk〈x,y〉 → modB



12 JOSÉ A. DE LA PEÑA

insets indecomposable modules. �

§2. Hereditary algebras and representation type.

(1) The indecomposable modules over the quiver algebra A:

•
**
44 •

were classified by Weierstrass and Kronecker in the following families:

kn

2

6

6

4

| 0
In |

...
| 0

3

7

7

5

))

2

6

6

4

0 |
... | In

0 |

3

7

7

5

55 k
n+1 kn+1

2

6

6

4

In

− − −
0 · · · 0

3

7

7

5

((

2

6

6

4

0 · · · 0
− − −

In

3

7

7

5

66 kn

(preprojective representation) (preinjective representation)

Rn(λ) : kn

In

''

Jn(λ)

77 kn Rn(∞) : kn

Jn(0)

''

In

77 kn

(regular representations)

with λ ∈ k.

Let Mn be the A− k[t]-bimodule

k[t]n

In

))

Jn(t)

55
k[t]n

then Mn ⊗k[t] k[t]/(t− λ) ∼= Rn(λ).

The corresponding Tits form is qA(x, y) = x2 − 2xy + y2 = (x − y)2 which is of

parabolic type.

(2) Consider the hereditary algebra B associated to the quiver

• //
''

77 •

We claim that B is wild.
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Proof. Consider the B − k〈x, y〉-bimodule M given by

k〈x, y〉 [x,y]
//

[1,0]

''

[0,1]

77
k〈x, y〉2

Exercise: M ⊗k〈x,y〉 − : modk〈x,y〉 → modB insets indecomposable modules. �

The corresponding Tits form is qA(x, y) = x2 − 3xy + y2 = (x− y)2 − xy which is

indefinite.

(3) Let A = k∆ be a hereditary algebra. The general structure of the Auslander-

Reiten quiver ΓA is as follows:

There is a preprojective component P∆ (that is, P∆ has no oriented cycles and for

every X ∈ P∆ there is a translate τnX, for n ≥ 0, which is projective). There is

preinjective component I∆ (that is, I∆ has no oriented cycles and for every Y ∈ I∆

there is a translate τ−mY , m ≥ 0, which is injective). There is a set of regular

components R∆ (a component C is regular if for every X ∈ C, τnX ∈ C is defined

for all n ∈ Z). An indecomposable representation X of ∆ is said to be preprojective,

or regular, or preinjective, provided it belongs to P∆, or R∆, or I∆, respectively.

If ∆ is elliptic, then R∆ = ∅ and Γ∆ = P∆ = I∆ is a finite quiver.

If ∆ is parabolic, the P∆ and I∆ are two different infinite components of Γ∆ and

R∆ = (Tλ)λ∈P1(k) is a stable separating tubular family. Moreover, if Tλ = ZA∞/〈nλ〉,
then at most three nλ 6= 1. Assume nλ1

, . . . , nλr are those nλ 6= 1, the star
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is a Dynkin diagram such that |∆| is an extension of Tnλ1
, . . . , nλr .

After the work of Dlab-Ringel [10] we know that for the hereditary algebra A = k∆

with |∆| an Euclidean diagram and for any dimension vector v ∈ N∆0 , there exists

an A − k[t]-bimodule Mv such that almost any indecomposable A-module X with

dimX = v is isomorphic to Mv ⊗k[t] Sλ for some λ ∈ k. In particular, A is a tame

algebra.

If |∆| is hyperbolic, the components P∆ and I∆ are two different infinite components

of Γ∆ and every component C in R∆ is of the form ZA∞.

(4) The bilinear form 〈v, w〉A =
∑

i,j∈∆0

v(i)w(j)− ∑

i→j

v(i)w(j) satisfies

〈dimX,dimY 〉A = dimkHomA(X, Y )− dimkExt1
A(X, Y )

for any pair of modules X, Y ∈ modA. In particular,

qA(dim X) = dimkEndA(X)− dimkExt1
A(X, X)

coincides with the Euler form of A.

[Proof: Apply HomA(−, Y ) to the projective presentation of X.]

A module X with EndA(X) = k is called a brick. Observe that a brick is inde-

composable. Moreover, an indecomposable A-module X with Ext1
A(X, X) = 0 is a

brick.

Lemma. If X is indecomposable not a brick, then X has a submodule which is a

brick with self extensions.

Proof. By induction, it suffices to show that X has a proper submodule which is

indecomposable with self extensions.

Let f ∈ EndA(X) with E = Im f of minimal dimension > 0. Since X is in-

decomposable, then f is nilpotent and minimality implies that f 2 = 0. Hence

E ⊂ ker f =
⊕m

i=1 Ki with Ki indecomposable modules, i = 1, . . . , m. Assume

α : E → ker f−→−→Kj is not zero. Then α is mono (by minimality). We have

Ext1
A(E, Kj) 6= 0 since the pushout
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0 →
m
⊕

i=1

Ki → X → E → 0








y↓
|

|

↓

∥

∥

∥

∥

∥

0 → Kj → Z → E → 0

does not split. Finally, α induces a surjection Ext1
A(Kj, Kj) → Ext1

A(E, Kj), which

shows that Kj is the wanted submodule of X. �

Gabriel’s theorem for representation-finite hereditary algebras can now be proved.

Theorem [12, 13]. Let ∆ be a quiver without oriented cycles and A = k∆ the

corresponding path algebra. Then A is representation-finite if and only if |∆| is a

Dynkin diagram. The correspondence X 7→ dim X induces a bijection between the

isoclasses of indecomposable A-modules and the positive roots of qA.

Proof. Assume first that ∆ is of Dynkin type, in particular, qA is positive. Let X

be an indecomposable A-module. Then X is a brick, since otherwise there is a brick

Y ⊂ X with self extensions and

q(dimY ) = dimkEndA(Y )− dimkExt1
A(Y, Y ) < 0.

Therefore dim X is a positive root of qA.

An argument of Drozd (see Lecture 3, § 2) shows that qA admits only finitely many

positive roots. Then A is representation-finite.

Injectivity: Assume Y is another indecomposable with dim X = dimY . Then

1 = qA(dimX) = 〈dimX,dim Y 〉A = dimkHomA(X, Y )− dimkExt1
A(X, Y ),

in particular HomA(X, Y ) 6= 0. Symmetrically, HomA(Y, X) 6= 0. The description of

ΓA in (3) implies that X ' Y .

Surjectivity is shown in Lecture 3 in a more general context.

Finally, if ∆ is not of Dynkin type, then A = k∆ accepts infinitely many indecom-

posable modules as shown by the description of the preprojective component ΓA. �

(5) Let A = k∆ be a hereditary algebras and χ
A
(T ) the characteristic polynomial

of its Coxeter transformation. We collect the relevant information about χA(T ) in a

table:
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∆ of type Coxeter polynomial roots 6= 1 period (=p)

| An Vn+1 =
∏

2≤m|n+1

φm n + 1

|
| Dn, n ≥ 4 φ2

∏

n≤m|2n

φm exp(2iπmj/p) 2(n− 1)

Dynkin | E6 φ3φ12 m1,. . . ,mn integers 12

| E7 φ2φ18 1 ≤ mj ≤ p− 1 18

| E8 φ2φ10φ30 30

| Ãp,q (T − 1)2VpVq exp(2iπmj/p′)

Γ̃ : | D̃n (T − 1)2V 2
2 Vn−2 1≤mj≤p′ integers

affine | Ẽn, n=6, 7, 8 (T − 1)2V2V3Vn−3 p′ = period of Γ

Notation: Vn = (T n − 1)/(T − 1) and φm = Vm/
∏

φd
d|m,1<d<m

is the m-th

cyclotomic polynomial. Moreover, the period (Coxeter number) indicates
the minimal number n such that ϕn

A = id.

For A = k∆, let ρ(ϕA) (also denoted by ρ∆) be the spectral radius of ϕA, that

is, ρ(ϕA) = max {|λ| : λ a root of χA(t)}. If ∆ is of Dynkin or affine type, then

ρ(ϕA) = 1, as can be seen in the table above.

In case A is wild, it is known that 1 < ρ(ϕ
A
) is a simple root of the Coxeter

polynomial χ
A
(T ), [35]. Then by [33], there is a vector y+ ∈ K0(A) ⊗Z R with

positive coordinates such that y+ϕ
A

= ρ(ϕ
A
)y+. Since χ

A
(T ) is self reciprocal, there

is a vector y− ∈ K0(A)⊗Z R with positive coordinates such that y−ϕ
A

= ρ(ϕ
A
)−1y−.

The vectors y+, y− play an important role in the representation theory of A = k∆.

Namely (see [33]), for an indecomposable A-module X:

(a) X is a preprojective A-module if and only if 〈y−, [X]〉A < 0

(b) X is a preinjective A-module if and only if 〈[X], y+〉A < 0.

(c) X is regular if and only if 〈y−, [X]〉 > 0 and 〈[X], y+〉 > 0.
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(d) If X is preprojective or regular, then lim
n→∞

1
ρ(ϕA )n [τ−n

A X] = λ−
Xy−, for some

λ−
X >0.

(e) If X is preinjective or regular, then lim
n→∞

1
ρ(ϕA )n [τn

AX] = λ+
Xy+, for some λ+

X > 0.

§3. Tilted algebras. Let A = kQ/I be a basic finite dimensional k-algebra. A

module AT is called a tilting module if it satisfies:

(T1) Ext2
A(T,−) = 0

(T2) Ext1
A(T, T ) = 0

(T3) The number of non isomorphic indecomposable direct summands of AT is the

rank of the Grothendieck group K0(A).

Let B = EndA(T ). Then AT defines a torsion theory (F ,G) in modA and a torsion

theory (Y,X ) in modB as follows:

F = F(T ) = {AX : HomA(T, X) = 0}, G = G(T ) = {AX : Ext1
A(T, X) = 0}

Y = Y(T ) = {BN : TorB
1 (T, N) = 0}, X = X (T ) = {BN : T ⊗ BN = 0}

Then we have equivalences:

ΣT = HomA(T,−) : G → Y with inverse T⊗B−

and

Σ′
T = Ext1

A(T,−); F → X with inverse TorB
1 (T,−).

Given a tilting module AT with B = EndA(T ), there is a linear isomorphism

σT : K0(A)→ K0(B) given by (dimX)σT = dimΣT X − dim Σ′
T X.

In particular, the following formulae hold:

C−t
A = σT C−t

B σt
T , 〈x, y〉A = 〈xσT , yσT 〉B.

In particular χA(y) = χB(yσT ).

Moreover, if X ∈ G(T ), then χA(dimX) = χB(dimΣX) and if X ∈ F(T ), then

χA(dimX) = χB(dimΣ′X). Finally, also ΦAσT = σT ΦB.

In case A = k∆ is a hereditary algebra and AT is a tilting module, B = EndA(T )

is called a tilted algebra of type ∆. Observe that in this case gldim B ≤ 2 and the

Euler and the Tits form of B coincide.

Theorem. Let A = k∆ and B be a tilted algebra of type ∆. The following are

equivalent:
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(a) B is tame

(b) the Euler form χB(= qB) is weakly non negative.

The implication a) ⇒ b) is shown in greater generality in Lecture 3. For the

converse we need some preparation, namely a better knowledge of the structure of

ΓB.

Let A be a wild hereditary algebra. Let AT = T1⊕· · ·⊕Tm be a decomposition into

indecomposables of a tilting module T . Consider the tilted algebra B = EndA(T ).

The following description of mod B is given in [21].

Let (F(T ),G(T )), and (X (T ),Y(T )) be the torsion theories of modA and modB

respectively, corresponding to the tilting module T . Recall that (X (T ),Y(T )) splits.

Let I = {1 ≤ i ≤ n : Ext1
A(Ti, X) 6= 0 for infinitely many indecomposables X ∈

F(T )} and J = {1 ≤ i ≤ n : HomA(Ti, X) 6= 0 for infinitely many indecomposables

X ∈ G(T )} and define T∞ =
⊕

i∈I

Ti and ∞T =
⊕

j∈J

Tj. Then the end algebras are

defined as the rings of endomorphisms B∞ = EndA(T∞) and ∞B = EndA(∞T ). With

this notation we have:

Proposition.

(a) ∞B is a tilted algebra. There exists a convex subalgebra ∞A of A and a tilt-

ing module T̂ of ∞A without preinjective direct summands such that ∞B =

End∞A(T̂ ).

(b) There exists a functor ϕ : mod∞A → modA such that the restriction ϕG :

G(T̂ )→ G(T ) is fully faithful, exact, extension closed and cofinite.

The formulation corresponding to B∞ is dual. �

Proof of the Theorem: Assume B is wild. Since modB = X (T ) ∨ Y(T ) one of the

subcategories X (T ) or Y(T ) is not tame. Say Y(T ). Therefore G(T ) is not a tame

subcategory of modA. With the notation above, ϕ : G(T̂ )→ G(T ) is cofinite and ∞A

is wild.

Consider the finite dimensional algebra C = k〈x, y〉/(x2, y2, xy, yx) and a full exact

embedding ξ : modC → mod∞A. Let S be the unique simple C-module and consider

its image X = ξ(S). We have End∞A(X)
∼−→ k and dimkExt1

∞A(X, X) ≥ 2 in

particular X is regular in mod∞A and χ∞A(dimX) ≤ 0.
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Since T̂ does not have preinjective direct summands, there exists an N ∈ N such

that Y = τN
∞AX ∈ G(T̂ ). Therefore Z = HomA(T, ϕ(Y )) ∈ Y(T ) and

χB(dimZ) = χA(dim ϕ(Y )) = χ∞A(dimY ) = χ∞A(dimX) < 0. �
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Lecture 2. The geometric approach.

§1. Some elements of algebraic geometry.

We consider the affine space V = kn with the Zariski topology, that is, closed sets

are of the form

Z(p1, . . . , ps) = {v ∈ V : pi(v) = 0, for all i = 1, . . . , s},

where pi ∈ k[t1, . . . , tn] is a polynomial in n indeterminates. The following fundamen-

tal facts may be found in any book on algebraic geometry.

• S ⊂ k[t1, . . . , tn], then Z(S) is the zero set of S.

• Z(S) = Z(〈S〉) = Z(
√

〈S〉), where

〈S〉 = ideal of k[t1, . . . , tn] generated by S
√

I = (radical of I) = {p ∈ k[t1, . . . , tn] : pi ∈ I for some i ∈ N}

• Z

(

⋃

i∈I

Si

)

=
⋂

i∈I

Z(Si) and Z(S · S ′) = Z(S) ∪ Z(S ′)

• Hilbert’s basis theorem: ∃ p1, . . . , ps ∈ S with Z(S) = Z(p1, . . . , ps)

• Hilbert’s Nullstellensatz : {p ∈ k[t1, . . . , tn] : p ≡ 0 on Z(S)} =
√

〈S〉
We say that Z = Z(S) is an affine variety and k[Z] = k[t1, . . . , tn]/

√

〈S〉 is

its coordinate ring.

An affine variety Z = Z(p1, . . . , ps) is reducible if Z = Z1 ∪ Z2 with proper

closed subsets Zi ⊂ Z. Otherwise Z is irreducible.

• There is a finite decomposition of any affine variety Z =
s
⋃

i=1

Zi into irreducible

subsets Zi ⊂ Z. If the decomposition is irredundant, we say that Z1, . . . , Zs

are the irreducible components of Z.

• If Z is an irreducible variety, then the maximal length of a chain

∅ 6= Z0 ⊆/ Z1 ⊆/ · · · ⊆/ Zs = Z

is called the dimension of Z (=: dim Z).

If Z =
s
⋃

i=1

Zi is an irreducible decomposition

dim Z = max
i

dim Zi.
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A map µ : Y → Z between affine varieties is a morphism (a regular map),

if µ∗ : k[Z]→ k[Y ], p 7→ p ◦ µ is well-defined. In fact, µ∗ is a k-algebra homo-

morphism.

• Any morphism µ : Y → Z is continuous in the Zariski topology.

• A map µ : Y → Z is a morphism if and only if ∃µ1, . . . , µm ∈ k[t1, . . . , tn] such

that µ(y) = (µ1(y), . . . , µm(y)), ∀ y = (y1, . . . , yn) ∈ Y ⊂ kn.

Proposition. Let µ : Y → Z be a morphism between irreducible affine varieties and

assume µ is dominant (i.e. µ(Y ) = Z). Then for every z ∈ Z and every irreducible

component C of µ−1(Z) we have

dim C ≥ dim Y − dim Z

with equality on a dense open set of Z.

In particular, if C is an irreducible component of Z(p1, . . . , pt) ⊂ kn, we have

dim C ≥ n− t

A fundamental result is the following

Theorem (Chevalley) Let µ : Y → Z be a morphism between affine varieties. Then

the function

y 7→ dimyµ
−1(µ(y)) = max {dim C : y ∈ C irreducible component of µ−1(µ(y))}

is upper semicontinuous (that is, d : Y → N has {y ∈ Y : d(y) < n} open in Y , for

all n ∈ N).

As illustration consider µ : C3 → C2 with µ(x, y, z) = (x, xy). Then

µ−1(µ(x0, y0, z0)) = µ−1(x0, x0y0) =

{

(x0, y0, x) if x0 6= 0, dim = 1

(0, y, z) if x0 = 0, dim = 2

A general morphism µ : Y → Z is neither open nor closed, but µ(Y ) is a finite union

of locally closed subsets of Z. A finite union of locally closed subsets of a variety Z

is called a constructible subset.

Proposition. If µ : Y → Z is a morphism and Y ′ ⊂ Y a constructible subset, then

µ(Y ′) is also constructible.
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§2. The main example: module varieties.

Let A = kQ/I be a finite dimensional k-algebra and fix a finite set R ⊂ ⋃

x,y∈Q0

I(x, y)

of admissible generators of I. Let z ∈ NQ0 be a dimension vector.

The module variety modA(z) is the closed subset, with respect to the Zariski topol-

ogy, of the affine space kz =
∏

x→y

kz(y)z(x) defined by the polynomial equations given

by the entries of the matrices

mr =

t
∑

i=1

λimαi1 . . .mαisi
, where r =

t
∑

i=1

λiαi1 . . . αisi
∈ R

and for each arrow x
α−→ y, mα is the matrix of size z(y)× z(x).

mα = (Xαij)ij

where Xαij are pairwise different indeterminates. We shall identify points in the

variety modA(z) with representations X of A with vector dimension dim X = z.

Example: A = kQ/I where Q : •
α−→ •

β−→ • and I = 〈αβ〉
(

xα11 xα12

xα21 xα22

) (

xβ11 xβ12

xβ21 xβ22

)

=

(

xα11xβ11 + xα12xβ21 xα11xβ12 + xα12xβ22

xα21xβ11 + xα22xβ21 xα21xβ12 + xα22xβ22

)

modA(2, 2, 2) ⊂ k2×2 × k2×2 = k8 defined by 4 equations.

The group G(z) =
∏

i∈Q0

GLz(i)(k) acts on kz by conjugation, that is, for X ∈ kz,

g ∈ G(z) and x
α−→ y, then Xg(α) = gyX(α)g−1

x . By restriction of this action,

G(z) also acts on modA(z). Moreover, there is a bijection between the isoclasses of

A-modules X with dim X = z and the G(z)-orbits in modA(z).

Given X ∈ modA(z), we denote by G(z)X the G(z)-orbit of X. Then

dim G(z)X = dim G(z)− dim StabG(z)(X),

where the stabilizer StabG(z)(X) = {g ∈ G(z) : Xg = X} = AutA(X) is the group of

automorphisms of X. As AutA(X) is an open subset of the affine variety EndA(X),

then

dim StabG(x)(X) = dim AutA(X) = dim EndA(X).

Finally, we get

dim G(z)X = dim G(z)− dim EndA(X).
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Moreover, the orbit G(z)X is locally closed, that is G(z)X is open in the closure

G(z)X defined in modA(z). In particular, G(z)X\G(z)X is formed by the union of

orbits of dimension strictly smaller than G(z)X.

Let X, Y ∈ modA(z). If the orbit G(z)Y is contained in G(z)X, we say that Y is

a degeneration of X.

Proposition. Let X ∈ modA(z). We have the following.

(a) Let 0 −→ X ′ −→ X −→ X ′′ −→ 0 be an exact sequence. Then X ′ ⊕X ′′ is a

degeneration of X.

(b) Consider the semisimple module gr X = ⊕
i∈Q0

S
z(i)
i , obtained as direct sum of

the composition factors of X. Then gr X is a degeneration of X.

Proof of (a): We may assume that X ′ is a submodule of X and X ′′ = X/X ′. Then

for each arrow i
α−→ j, we have

X(α) =

(

X ′(α) fα

0 X ′′(α)

)

,

where fα : X ′′(i) −→ X ′(j). For each λ ∈ k, we may define the representation Xλ ∈
modA(z), with

Xλ(α) =

(

X ′(α) λfα

0 X ′′(α)

)

.

For λ 6= 0, we get Xλ ' X. Indeed,

gλ =

(

Iz′(i) 0
0 λIz′′(i)

)

i

∈ G(z)

satisfies that Xgλ

λ = X. Therefore

X ′ ⊕X ′′ = X0 ∈ G(z)X. �

Corollary. The orbit G(z)X is closed if and only if X is semisimple. �

Examples: (a) Let F = k〈T1, . . . , Tm〉 be the free algebra in m indeterminates. Let

M be a A− F -bimodule which is free as right F -module.

Then the functor M ⊗F − : modF −→ modA induces a family of regular maps

fn
M : modF (n)→ modA(nz) for some vector z ∈ NQ0 and every n ∈ N.

Indeed, for each vertex i ∈ Q0, fix a basis of the free right F -module M(i), set

z(i) = rkFM(i). Then for an arrow i
α−→ j in Q, M(α) : M(i) −→ M(j) is a
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z(j) × z(i)-matrix with entries in F . Now, an element λ = (λ1, . . . , λm) ∈ modF (n)

determines an F -module Nλ with Nλ(Ti) = λi, i = 1, . . . , m. Then

M ⊗F Nλ(α) : (kz(i))n −→ (kz(j))n

is the matrix M(α)(λ) = (M(α)st(λ1, . . . , λm))s,t. Therefore

fn
M(λ) = (M(α)st(λ1, . . . , λm))s,t

is the induced regular map.

(b) Let C be a finitely generated commutative k-algebra without nilpotent elements

and z ∈ NQ0. For any regular map g : mod C(1) −→ modA(z), there is a A − C-

bimodule M which is free as right C-module and rkC(M)(i) = z(i), for each i ∈ Q0,

such that g = f 1
M .

Indeed, from Hilbert’s theorem C = k[modC(1)] is the affine algebra of regular

functions on modC(1). We define M(i) = Cz(i), for i ∈ Q0; for i
α−→ j in Q, we put

M(α) the matrix corresponding to g(α) : modC(1) −→ kz(j)z(i). By (a), f 1
M = g.

(c) Consider the subset indA(z) of modA(z) indA(z) is a constructible subset of

modA(z). Indeed, the set of pairs.

{(X, f) : X ∈ modA(z), f ∈ EndA(X) with 0 6= f 6= 1X and f 2 = 1X}.

is a locally closed subset of modA(z) × kd2

, where d =
∑

i∈Q0

z(i). The projection π1 :

modA(z)× kd2 −→ modA(z) is a regular map with image

modA(z)\indA(z).

(d) Let z ∈ NQ0. Let C be an irreducible component of modA(z). A decomposition

z = w1 + · · ·+ ws with wi ∈ NQ0 determines a constructible subset

C(w1, . . . , ws) = {X ∈ C : X = X1 ⊕ · · · ⊕Xs with Xi ∈ indA(wi)}

in C. We say that (w1, . . . , ws) is a generic decomposition in C if C(w1, . . . , ws)

contains an open and dense subset of C.



QUADRATIC FORMS AND THE TYPE OF AN ALGEBRA 25

Proposition. Let C be an irreducible component of modA(z), then there exists a

unique generic decomposition (w1, . . . , ws) in C. Moreover, there exists an irreducible

component Ci of modA(wi) such that the generic decomposition in Ci is (wi) and the

following inequality holds:

dim G(z)− dim C ≥
s

∑

i=1

(dim G(wi)− dim Ci).

Proof. For each decomposition z = z1 + · · ·+ zt with zi ∈ NQ0 we get a regular map

ϕz1...zi
: G(z)× modA(z1)× · · · × modA(zt) −→ modA(z), (g, (Xi)i) 7−→ (⊕t

i=1Xi)
g.

Since indA(zi) = {Y ∈ modA(zi) : Y is indecomposable} is constructible in

modA(zi), then

indA(z1, . . . , zt) = ϕz1,...zt(G(z)× indA(z1)× · · · × indA(zt))

is constructible in modA(z). Moreover, modA(z) = ∪{indA(z1, . . . , zt) :
∑

zi = z}.
There is a decomposition z = w1 + · · · + ws such that C equals the closure of the

intersection indA(w1, . . . , ws) ∩ C. There is an open dense subset UC of C contained

in indA(w1, . . . , ws). Thus z = w1 + · · ·+ ws is generic in C. The unicity is clear. �

§3. The tangent space.

Suppose V ⊂ kn is defined by certain polynomials f(T1, . . . , Tn). For x ∈ V , define

dxf =
n

∑

i=1

∂f

∂Ti
(x)(Ti − xi)

the derivative of f at the point x. Then the tangent space of V at x is the linear

variety Tx(V ) in the kn defined by the vanishing of all dxf as f(T ) ranges over the

polynomials in the radical ideal I(V ) defining V .

There are more algebraic ways to define tangent spaces: let R = k[V ] be the affine

algebra associated with V and Mx be the maximal ideal of R vanishing at x. Since

R/Mx can be identified with k and Mx is a finitely generated R-module, then then

R/Mx-module Mx/M
2
x is a finite dimensional k-vector space. Then (Mx/M

2
x)∗ the

dual space over k may be identified with Tx(V ).
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Some facts and examples:

(a) Let x ∈ V and Cx be any irreducible component of X containing x. Then we

have dimkTx(V ) ≥ dim Cx. If equality holds, x is called a simple point of V . If all

points of V are simple, we say that V is smooth. An important fact:

• the simple points of V form an open dense subset of V .

(b) Consider the variety modA(z) as a topological space. The orbit G(z)X of a

point X ∈ modA(z) is a smooth space. Indeed, given two points x, y in the orbit,

there is an element g of the group G(z) such that y = gx. The regular map `g :

G(z)X −→ G(z)X given as right multiplication by g, induces a linear isomorphism

T`g : Tx(G(z)X) −→ Ty(G(z)X). Therefore x is a simple point of the orbit if and

only if so is y. Thus (a) implies that G(z)X is smooth.

The following is an important result:

Theorem [40]. Let X ∈ modA(z).

Consider TX(G(z)X) as a linear subspace of TX(modA(X)). Then there exists a

natural linear monomorphism

TX(modA(X))/TX(G(z)X) ↪→ Ext1
A(X, X).

(b) Assume that X satisfies Ext2
A(X, X) = 0. Then the linear morphism

TX(modA(X))/TX(G(z)X)
∼−→ Ext1

A(X, X).

is an isomorphism.

We will observe several consequences:

(a) For any X ∈ modA(z), let CX be an irreducible component of modA(z) con-

taining X. Then

dimk Ext1
A(X, X) ≥ dimkTX(modA(z))− dimkTX(G(z)X)

≥ dim CX − dim G(z)X

= dim CX − dim G(z) + dimk EndA(X).

Hence,

dimG(z)− dim CX ≥ dimk EndA(X)− dim Ext1
A(X, X)
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(b) The inclusion above is not always an isomorphism, as the following simple

example shows:

Let A = k[T ]/(T 2). Consider the simple module S ∈ modA(1). Then modA(1) =

G(1)S = {S} and TS (modA(1)) is trivial. On the other hand Ext1
A(S, S) has dimen-

sion 1.

Exercises: (1) Let X ∈ modA(z). Then G(z)X is open if and only if TX(modA(z)) =

TX(G(z)X).

(2) Let n ∈ N, the function

en : modA(z)→ N, x 7→ dimkExtn
A(X, X)

is upper semicontinuous.

(3) Up to isomorphism, there are only finitely many modules X with dimX = z

and satisfying Ext1
A(X, X) = 0.

§4. Tame algebras and varieties.

Proposition. The following conditions are equivalent:

(T0): A is tame.

(T1): For each z ∈ NQ0, there is a constructible subset C of modA(z) satisfying

dim C ≤ 1 and indA(z) ⊂ G(z)C.

(T2): For each z ∈ NQ0, if C is a constructible subset of indA(z) intersecting each

orbit of G(z) in at most one point, then dim C ≤ 1.

Proof. (T0) =⇒ (T1): Let z ∈ NQ0. Let M1, . . . , Ms be the A− k[t]-bimodules such

that Mi is a free finitely generated k[t]-module and any X ∈ indA(z) is isomorphic to

Mi⊗k[t]S for some i and some simple k[t]-module S. Therefore, the functor Mi⊗k[t](−)

induces a regular map fi : modk[t](1) −→ modA(z), i = 1, . . . , s.

The set

C =
s

⋃

i=1

(Im fi ∩ indA(z))

is a constructible subset of indA(z) with dim C ≤ 1 and G(z)C = indA(z).

(T2) =⇒ (T0): Assume that A is not tame. Then by the tame-wild dichotomy,

the algebra A is wild. That is, there exists a A − k〈u, v〉-bimodule M which is free
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finitely generated as right k〈u, v〉-module and such that the functor M ⊗k〈x,y〉 (−) :

modk〈u,v〉 −→ modA insets indecomposable modules.

Let z ∈ NQ0 , where z(x) is the rank of the free k〈u, v〉-module M(x). We get

an induced regular map fM : modk〈u,v〉(1) −→ modA(z). By definition, Im fM is a

constructible subset of indA(z) intersecting each orbit in at most one point. Moreover,

fM is injective and theferefore dim Im fM = 2. �

Corollary. An algebra can not both tame and wild. �

Proposition. Let A = kQ/I be a tame algebra. Then for every z ∈ NQ0,

dim modA(z) ≤ dim G(z)

Proof: By (1.4), it is enough to show that dim G(z)− dim C ≥ 0, for an irreducible

component C of modA(z)

Since A is tame, we may choose a A − k[t]-bimodule M which is free as right

k[T ]-module and the following map is dominant

ϕ : G(z)× Imf 1
M −→ C, (g, X) 7−→ Xg.

Let X ∈ Im ϕ be such that dim ϕ−1(X) = dim G(z)− dim C+ dim Im f 1
M and

(g, Y ) ∈ ϕ−1(X). Then the regular map

AutA(Y ) −→ ϕ−1(X), h 7−→ (hg, Y )

is injective. Therefore,

0 ≤ dim AutA(Y )− 1 ≤ dim G(z)− dim C �

Example: The converse of the above results are not true.

Let Am = k[α1, . . . , αm]/(αiαj : 1 ≤ i ≤ j ≤ m) with m ≥ 3. We will calculate

dim modAm(n).

We get

dim modAm(n) =

{

(

m+1
4

)

n2 if n even
(

m+1
4

)

(n2 − 1) if n odd.

If m = 3, then dim modA3
(n) ≤ n2, showing that the converse of the above

Proposition fails.
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Lecture 3. The Tits form of an algebra.

§1. Basic results.

Let A = kQ/I be a triangular algebra, that is, Q has no oriented cycles.

Choose R a minimal set of generators of I, such that R ⊂ ⋃

i,j∈Q0

I(i, j). We have:

• dimkExt1
A(Si, Sj) = # arrows from i to j

• r(i, j) = |R ∩ I(i, j)| is independent of the choice of R

• r(i, j) = dimkExt2
A(Si, Sj)

The Tits form of A is the quadratic form

qA : Z
Q0 → Z,

given by qA(v) =
∑

i∈Q0

v(i)2 − ∑

i→j

v(i)v(j) +
∑

i,j∈Q0

r(i, j)v(i)v(j).

Proposition. Assume A = kQ/I is triangular. Let z ∈ NQ0 . Then for any X ∈
modA(z).

qA(z) ≥ dimk EndA(X)− dimk Ext1
A(X, X).

Proof. Let X ∈ modA(z). The local dimension dimXmodA(z) is the maximal dimen-

sion of the irreducible components of modA(z) containing X. By Krull’s Hauptideal-

satz, we have

dimX modA(z) ≥
∑

(i−j)∈Q1

z(i)z(j)−
∑

ij∈Q0

r(i, j)z(i)z(j).

Therefore, we get the following inequalities,

qA(z) ≥ dim G(z)− dimX modA(z) ≥ dim G(z)− dim TX ≥
≥ dimk EndA(X)− dimk End1

A(X, X).� �

In 1975, Brenner observed certain connections between properties of qA and the

representation type of A. She wrote about her observations: “. . . is written in the

spirit of experimental science. It reports some regularities and suggests that there

should be a theory to explain them”.

Theorem. Let A = kQ/I be a triangular algebra.

[3]: If A is representation-finite, then qA is weakly positive

[28]: If A is tame, then qA is weakly non-negative
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Proof. In general, for v ∈ NQ0

dim modA(v) ≥
∑

i→j

v(i)v(j)−
∑

i,j∈Q0

r(i, j)v(i)v(j)

dim G(v) =
∑

i∈Q0

v(i)2

qA(v) ≥ dim G(v)− dim modA(v)

If A is tame, then qA(v) ≥ 0.

If A is representation-finite, modA(v) =
m
⋃

i=1

G(v)Xi where X1, . . . , Xm are rep-

resentatives of the isoclasses of A-modules of dim = v. Hence dim modA(v) =

dim G(v)Xj = dim G(v)− dim StabG(v)Xj ≤ dim G(v)− 1 and qA(v) ≥ 1. �

Consider the algebra A given by the quiver

with relations γαα′ = ββ ′ and αβ ′ = 0. The Tits form qA is

qA(x) =

4
∑

i=1

x2
1 − 2x1x2 − x2x3 − x2x4 − x3x4 + x1x3 − x1x4

=

(

x1 − x2 +
1

2
x3 +

1

2
x4

)2

.

and therefore (weakly) non-negative. We shall see later that A is wild.

§2. Modules on preprojective components.

Recall that a component P of the Auslander-Reiten quiver ΓA of A is called pre-

projective if it does not contain oriented cycles and for every X ∈ P there is a

translate τn
AX which is projective. If X ∈ P and Y is an indecomposable such that

HomA(Y, X) 6= 0, then Y ∈ P.

We give some examples of algebras with preprojective components:
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(a) Let A = k∆ be a hereditary algebra. Then ΓA has a preprojective component

P, and the indecomposable projective modules form a slice.

(b) Tree algebras have preprojective components (an algebra A = kQ/I is a tree

algebra if the underlying graph |Q| of Q has no cycles). This is a particular case of

the following situation.

(c) An indecomposable projective Pi is said to have separated radical whenever

the supports of any two non-isomorphic direct summands of rad Pi are contained

in different components of the subquiver Q(i) of Q obtained by deleting all vertices

in [→ i] = {j ∈ Q0 : {j ∈ Q0 : j  i}. If for every vertex i ∈ Q0, Pi has sepa-

rated radical, then A satisfies the separation condition. Note that tree algebras

satisfy the separation condition. If A satisfies the separation condition, then ΓA has

a preprojective component.

A representation-finite algebra A such that ΓA is a preprojective component is said

to be representation-directed.

Let Q′ be a subquiver of Q, we say that Q′ is convex in Q if Q′ is path closed in

Q (that is, whenever i0 → i1 → · · · → im is a path in Q with i0, im ∈ Q′ then ij ∈ Q′

for 1 ≤ j ≤ m− 1).

Lemma. Suppose that X is an indecomposable lying in a preprojective component P
of ΓA. Then supp X is convex in Q.

Proof. Supose that i1
α1−→ i2

α2−→ · · · αm−1−→ im is a path in Q such that X(i1) 6= 0 6=
X(im) but X(ij) = 0 for 2 ≤ j ≤ m − 1. Let I ′ be the ideal of kQ generated by all

paths of the form: εγ with ε, γ ∈ Q1 where either i1
γ−→ i2 and ε starts at i2 or γ
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ends at im−1 and im−1
ε−→ im. Let A′ = kQ/(I + I ′). Then X is a A′-module and

there is a chain of non-zero morphisms

X −→ I ′
im −→ Sm−1 −→M

im−2

im−1
−→ Sm−2 −→ · · · −→ Si2 −→ P ′

i1 −→ X

where M j
i denotes the indecomposable module ki → kj and I ′

im is the A′-module

associated with im. Since X ∈ P, this cycle should lie in P. A contradiction. �

Corollary. Let X be a preprojective A-module. Then qA(dimX) = 1.

Proof. We may assume that X is omnipresent in A. Then pdimAX ≤ 1: otherwise

there are non-zero maps as in the picture,

A contradiction. Similarly, gldim A ≤ 2. Hence qA(dim X) = dimkEndA(X) −
dimkExt1

A(X, X) = 1. �

The following basic fact is due to Drozd (in Lecture 1 we already used a particular

case of this result):

Lemma. A weakly positive quadratic form q : Zn −→ Z has only finitely many

positive roots.

Proof. Consider q as a function q : Rn −→ R. By continuity q(z) ≥ 0 in the positive

cone K = (Rn)+. By induction on n, it can be shown that q(z) > 0 for any 0 6= z ∈ K.

Let 0 < γ be the minimal value reached by q on {z ∈ K : ‖z‖ = 1} (a compact set).

Then a positive root z of q satisfies γ ≤ q
(

z
‖z‖

)

= 1
‖z‖2 , that is ‖z‖ ≤

√

1/γ. �

Theorem [3]. Let A = kQ/I be an algebra such that Q has no oriented cycles.

Assume that ΓA has a preprojective component. Then A is representation-finite if

and only if the Tits form qA is weakly positive. In that case, there is a bijection

X 7→ dimX between the isoclasses of indecomposable A-modules and the positive

roots of qA.
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Proof. Assume that qA is weakly positive. Let P be a preprojective component of ΓA.

Let X ∈ P then dimX is a root of qA. Moreover, the map X → dimX, for X ∈ P,

is injective. Indeed, let X, Y ∈ P be such that dim X = dim Y . We may assume

that X is omnipresent. Then, we get

1 = qA(dim X) = dimk HomA(X, Y )− dimk Ext1
A(X, Y ).

In particular, HomA(X, Y ) 6= 0. By symmetry, HomA(Y, X) 6= 0 and X = Y . It

follows that P is a finite component of ΓA and P = ΓA.

Finally, let z ∈ NQ0 be a root of qA. Then there is a module X ∈ modA(z) with

the orbit G(z)X of dimension dim G(z) − 1. Since dim G(z)X = dim G(z) −
dim EndA(X), we obtain that EndAX = k. �

We give some examples.

(a) The statement of (2.3) may be false if A has no preprojective component.

Consider the algebras Ai given by the quiver Q with relations Ii = 〈ρi〉:

ρ1 = (α3α2α1 − β2β1)

ρ2 = α3α2α1

Clearly, they have the same Tits form

q =

8
∑

i=1

x2
i − x1x2 − x2x3 − x3x4 − x1x5 − x4x5 − x5x6 − x6x7 − x7x8 + x1x4

=

(

x1 −
1

2
x2 +

1

2
x4 −

1

2
x5

)2

+
3

4

(

x2 − 2

3
x3 +

1

3
x4 −

1

3
x5

)2

+

+
2

3

(

x3 −
1

2
x4 −

1

4
x5

)2

+
1

2
(x4 −

1

2
x5)

2 +
1

2
(x5 − x6)

2 +
1

2
(x6 − x7)

2 +

+
1

2
(x7 − x8)

2 +
1

2
x2

8

which is positive.
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The algebra A1 satisfies the separation condition and Bongartz theorem applies.

The algebra A2 is not representation-finite: mod A2 contains the representations of

the Euclidean quiver

3← 2← 1→ 5 → 6→ 7→ 8
↓
4

§3. Critical forms and critical algebras.

We recall some important facts of linear algebra

(a) Let A = (aij) be an n × n-matrix. Let 1 ≤ i1 < i2 < · · · < is ≤ n and

1 ≤ j1 < j2 < · · · < js ≤ m. Form the s× s-matrix

A

(

i1 i2 . . . is
j1 j2 . . . js

)

=





ai1j1 ai1j2 . . . ai1js

...
aisa1

aisj2 . . . aisjs





The determinant det A

(

i1 . . . is
j1 . . . js

)

is called a minor of A.

If i1 = j1, . . . , is = js, then A

(

i1 . . . is
j1 . . . js

)

is called a principal submatrix and

det A

(

i1 . . . is
j1 . . . js

)

a principal minor.

If s = n − 1, {i1, . . . , is} = {1, . . . , î, . . . , n} and {j1, . . . , js} = {1, . . . , ĵ, . . . , n},
then A

(

i1 . . . is
j1 . . . js

)

is denoted by Ai,j.

(b) The matrix ad(A) whose (i, j) entry is (−1)i+j detA(i,j), is called the adjoint

matrix of A. It has the property that A ad(A) = (det A) En = ad(A)A.

(c) Let q be the quadratic form associated with a symmetrical real matrix A, that

is q(x) = 1
2
xAxt.

The form q is positive if and only if the determinants of the principal submatrices

A

(

1
1

)

, A

(

1 2
1 2

)

, . . . , A

(

12 . . . n
12 . . . n

)

= A are positive, or equivalently, if all principal

minors are positive.

The form q is non-negative if and only if all principal minors of A are non-negative

det A

(

i1 . . . is
j1 . . . js

)

≥ 0 for all 1 ≤ i1 < i2 < · · · < is ≤ n, x = 1, . . . , n.
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(d) Perron-Frobenious theorem: Let A = (aij) be a real matrix with aij ≥ 0.

Then for the spectral radius ρ = max {‖λ‖ : λ is an eigenvalue of A}, there is a

vector y with non-negative coordinates such that yA = ρy. Moreover, if aij > 0 for

every i, j, then 0 < ρ and the coordinates of y are positive.

We say that an integral quadratic form q(x1, . . . , xn) =
n
∑

i=1

x2
i +

∑

i<j

qijxixj is a unit

form.

Theorem [41]. Let q : Zn → Z be a unit form and let A be the associated symmetric

matrix. The following are equivalent:

(a) q is weakly positive.

(b) For each principal submatrix B of A either det B > 0 or ad (B) is not positive

(that is, it has an entry ≤ 0).

Proof. a)⇒ b): Let B be a principal submatrix of A. Suppose that ad (B) is positive.

Then there is a positive vector v and a number of ρ > 0 such that v ad(B) = ρv.

Then 0 < q(v) = vBvt = ρ−1 ad(B)Bvt = ρ−1(det B)vvt. Thus det B > 0.

b)⇒ a). Let A be a n×n-matrix satisfying (b). We show that q is weakly positive

by induction on n.

Since property (b) is inhereted to principal submatrices, we can assume that the

quadratic form q(i) associated with each principal submatrix A(i,i) is weakly positive.

Claim: q(i) is positive, 1 ≤ i ≤ n (exercise).

Assume that q is not weakly positive. Therefore, we get a vector 0� y ∈ N
n such

that q(y) ≤ 0.

In particular, every proper principal submatrix B of A has det B > 0. Since A is

not positive, det A ≤ 0. By hypothesis, ad (A) is not positive. Suppose that the j-th

row v of ad(A) has some non positive coordinate. Therefore, there exists a number

λ ≥ 0 such that 0 ≤ λy + v is not omnipresent. Therefore

0 < q(λy + v) = λ2q(y) + λvAyt + q(v) ≤ λ(det A)y(j) + (det A)v(j)

≤ (det A)(det A(j,j)) ≤ 0,

since by the claim q(j) is positive. �
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A unit form q : Zn → Z is critical if q is not weakly positive but all its restrictions

q(i) (i = 1, . . . , n) are weakly positive.

Corollary. If q is critical, then the set

Cq = {v ∈ Z
n : v(i) ≥ 0 and v(j) < 0 for some 1 ≤ i, j ≤ n and q(v) = 1}

is finite.

Theorem [25]. Let q be a critical form. Then there exists a Euclidean quiver ∆

and an invertible transformation qT of q such that q∆ = qT . In particular, q is non

negative and there is a vector 0� z ∈ Zn such that rad q = Zz.

Proof. Since n ≥ 3, then 0 < q(es ± et) = 2 ± ast. Choose q′ = qT an invertible

transformation of q such that the set Cq′ has minimal cardinality.

Therefore, q′ =
n

∑

i=1

x2
i +

∑

i6=j

a′
ijxixj is critical and −1 ≤ a′

ij ≤ 0 for every pair i, j

with i 6= j. Thus q′ = q∆ for some quiver ∆. Since q′ is critical, ∆ is Euclidean. Then

rad q′ = Zu with u� 0 and z = T−1(u). �

Let A = k[Q]/I be a k-algebra. We say that A is minimal representation-

infinite it it is representation-infinite but every quotient A/AeA is representation-

finite for any idempotent 0 6= e of A.

A minimal representation-infinite algebra A with preprojective component is called

critical. Observe that a preprojective component of a critical algebra contains all

the indecomposable projective modules (and therefore is unique).

Lemma. Let A be an algebra with a preprojective component containing all projective

modules. If e is an idempotent of A, then A/AeA has preprojective components such

that their union contains all indecomposable projective A/AeA-modules. �

Theorem [19]. Let A = kQ/I be an algebra with preprojective component. Assume

that Q has at least 3 vertices. Then the following are equivalent:

(a) A is critical;

(b) The Tits form qA is critical;

(c) A is tame concealed.
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Proof. Let P be a preprojective component of ΓA.

b) ⇒ c): Assume that qA is critical. Therefore, A is representation-infinite. A

preprojective component P of ΓA should contain all indecomposable projective mod-

ules. Moreover, this component P does not contain injective modules. Therefore, A

is tilted.

Assume that A = EndB(T ) where B = k∆ is an hereditary algebra and BT is a

tilting module. Therefore the Euler forms χA and χB are equivalent. Since gldimA ≤
2, then χA = qA. Therefore, ∆ is a tame quiver.

By a dual argument, A has a preinjective component with all indecomposable

injective modules. Hence A is tame concealed. �

Critical algebras were classified in a list of frames in [19]. With a different approach

the list was also obtained in [4]. In fact, we have the equivalent concept given by the

following result.

Theorem [4]. Let A = k[Q]/I be an algebra with preprojective component. Then A

is representation-finite if and only if there is no convex subalgebra A0 of A such that

A0 is critical. �

§4. Preprojective components of tame algebras.

Let A = kQ/I be a k-algebra and assume that Q has no oriented cycles.

Proposition. Let P be a preprojective component of ΓA. The following are equiva-

lent:

(a) The algebra AP = EndA(P ) is tame, where P =
⊕

Px∈P

Px.

(b) There exists a constanct c > 0 such that for every x ∈ Q0, s ∈ N, the inequality

dimkτ
−s
A Ps ≤ cs

is satisfied.

Proof. Consider the algebra AP . Since P is a preprojective component of AP , we may

assume that A = AP . Let τ be the Auslander-Reiten translation in P.

a) ⇒ b): Assume that A is tame. Then the Tits form qA is weakly non negative,

which implies the following:
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Let X ∈ P and i ∈ Q0. If X is not injective, then

|dimkτ
−1X(i)− dimkX(i)| ≤ 2.

Let m = max {dimkPx : x ∈ Q0}, then dimkτ
−sPx ≤ 2ns + m for every x ∈ Q0,

s ∈ N and n = number of vertices of Q.

b) ⇒ a): Assume that A is wild. Let A′ = A/AeA where e =
∑

Ix∈P

ex. Then there

is a preprojective component P ′ of ΓA′ (with translation τ ′) and a number r ≥ 0 such

that for every x ∈ Q0 and t ≥ r, the following is satisfied: if the module X = τ−tPx

exists, then X ∈ P ′ and τ ′−1X = τ−1X.

Therefore, we may assume that A = A′, that is, P is a preprojective component

containing all indecomposable projective modules and without injectives. Let S be a

slice in P. Then AT = ⊕S is an A-tilting module such that B = EndA(T ) is a wild

hereditary algebra, say B = k∆.

Let σT : K0(A) → K0(B) be the isomorphism of Grothendieck groups induced by

T . Thus φA = σT ϕBσ−1
T .

Let X ∈ P be such that there is an oriented path from some Z ∈ S to X. Then

dim τ−mX = (dimX)φ−m
A for m ≥ 0. Let Y = ΣX, where Σ = HomA(T,−). Then

Y is a preprojective B-module.

We claim that lim
m→∞

m
√

dimkτ−mX exists if and only if lim
m→∞

m
√

dimkτ
−m
B Y exists

and in that case they are equal. Indeed, let σT = (aij), σ−1
T = (bij) be n×n matrices.

Let a = max {|aij|, |bij| : 1 ≤ i, j ≤ n}. For a vector z ∈ NQ0 we write |z| =
n
∑

i=1

z(i).

We get

|(dimY )ϕ−m
B | = |(dimX)ϕ−m

A σT | ≤ na|(dim X)ϕ−m
A | and

|(dimX)ϕ−m
A | = |(dimY )ϕ−m

B σ−1
T | ≤ na|(dim Y )ϕ−m

B |.

This shows the claim.

On the other hand, lim
m→∞

m
√

dimkτ
−m
B Y exists and equals ρ > 1, where ρ is the

spectral radius of ϕB, that is ρ = max {‖λ‖ : λ is an eigenvalue of ϕB}. Therefore A

can not satisfy (b). �

The next Proposition completes the discussion on tilted algebras of tame type

iniciated in Lecture 1.
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Proposition. Let P be a preprojective component of ΓA containing all indecompos-

able projective A-modules and no injective module. Then the following are equivalent:

(a) A is tilted of Euclidean type

(b) A is tame

(c) The Tits form qA is non negative

(d) qA is weakly non negative

(e) ΓA has a tube.

Proof. a) ⇒ b): Clear.

a) ⇔ c): Since qA = χA, A is tilted of a tame hereditary algebra if and only if qA

is non negative.

c) ⇒ d): Clear.

b) ⇒ e): By Lecture 1, ΓA has a stable tube.

e) ⇒ a): Let S be a slice in P. Let T = ⊕S and B = EndA(T ) be a hereditary

algebra. Assume that A is wild. Let X ∈ ΓA \ P. As in the proof of the above

Proposition, lim
s→∞

s
√

dimkτ−sX = ρ > 1. This implies that X does not lie in a tube

in ΓA. If A is tame, then |S| is an euclidean diagram and A is a domestic cotubular

algebra. �
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Lecture 4. Structure of tame algebras and their categories of modules.

§1. Standard tubes in Auslander-Reiten quivers.

Let A be a finite dimensional k-algebra. We recall that two modules X1, X2 are

said to be orthogonal if HomA(X1, X2) = 0 = HomA(X2, X1).

Let E1, . . . , Es be a family of pairwise orthogonal bricks. Define ε(E1, . . . , Es) as the

full subcategory of modA whose objects X admit a filtration X = X0 ⊃ X1 ⊃ · · · ⊃
Xm = 0 for some m ∈ N, with Xi/Xi+1 isomorphic to some Ej, for any 1 ≤ i ≤ n.

Lemma. The category ε = ε(E1, . . . , Es) is an abelian category, with E1, . . . , Es being

the simple objects of E. �

An abelian category ε is said to be serial provided any object in E has finite lenght

and any indecomposable object in ε has a unique composition series.

Proposition. Let E1, . . . , Es be pairwise orthogonal bricks in some module category

mod A. Assume that (a) τEi
∼= Ei−1 for 1 ≤ i ≤ s with E0 = Es and (b)

Ext2
A(Ei, Ej) = 0 for all 1 ≤ i, j ≤ n. Then ε = ε(E1, . . . , Es) is serial, it is a

standard component of ΓA of the form ZA∞/(n). �

With the notation of the Proposition above: we denote by Ei[t] the unique module

in the serial category E which has socle Ei and lenght t.

A family T = (Tλ)λ∈L of the Auslander-Reiten quiver of an algebra A is a standard

stable tubular family if each Tλ is a standard component of the form ZA∞/(nλ) for

some nλ and for λ 6= µ the components Tλ and Tµ are orthogonal.

Corollary. Let T = (Tλ)λ∈L be a standard stable tubular family in the Auslander-

Reiten quiver of A. Then the additive closure add T of T in modA is an abelian

category which is serial and is closed under extensions in modA. �

A standard stable tubular family T = (Tλ)λ∈L is said to be separating if there are

full subcategories P and I of modA satisfying the following conditions:

(i) each indecomposable A-module belongs to one of P, T or I;
(ii) for modules X ∈ P, Y ∈ T and Z ∈ I we have HomA(Z, Y ) = 0 =

HomA(Z, X) and HomA(Y, X) = 0.
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(iii) each non zero morphism f ∈ HomA(X, Z) for indecomposable modules X ∈
P, Z ∈ I, factorizes through each component Tλ.

Example: Let A be the algebra given by the quiver with relations below

Then A is the one-point extension A0[E0] as follows

A0[E0] =

[

A0 E0

0 k

]

with the usual matrix operations and where E0 is considered as an A0 − k-bimodule.

Moreover radP0 = E0.

The algebra A0 is tame hereditary with an Auslander-Reiten quiver of the shape

where PA0
is a preprojective component, IA0

a preinjective component and TA0
is a

separating tubular family of tubular type (2, 3, 3). In TA0
= (Tλ)λ almost all tubes

are of rank one with a module on the mouth with dimension vector

The tubes of rank 2 and rank 3 have modules on the mouths with the unique

indecomposable A0-modules having the indicated dimension vectors:
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and where the Auslander-Reiten translation is given by τA0
Ei = Ei−1, τA0

Xi = Xi−1

and τA0
Zi = Zi−1 cyclically.

The structure of ΓA is given as follows:

where T0 =
∨

λ6=2

Tλ∨T2[E0] is the family of tubes TA0
with the exception of the tube of

rank 2 which appears now ‘inserted’ with the new projective at the extension vertex

0.

For each positive rational number δ = a
b
, (a, b), Tδ is a separating family of tubes of

tubular type (3, 3, 3) with all homogeneous tubes but 2 of rank 3. The homogeneous

tubes have modules on the mouths of vector dimension

az0 + bz∞

where z∞ is given by



QUADRATIC FORMS AND THE TYPE OF AN ALGEBRA 43

Observe that A∞ is tame concealed and A = [E∞]A∞ is a one-point coextension

where the module E∞ lies on a regular tube of ΓA∞. The algebra A is a typical tubular

algebra as defined by Ringel [34].

Proposition. Let T = (Tλ)λ be a standard separating tubular family for the module

category modA. Then

(a) For almost every λ, the tube Tλ is homogeneous.

(b) Let Tλ be a homogeneous tube of the family T . Let X be a module in the

mouth of Tλ and v = dim X. Then qA(v) = 0.

Proof of (b): Let X be a module in the mouth of a homogeneous tube Tλ in T . Let

B be the convex closure in A of ∪supp X with X ∈ Tλ. Since B is convex in A and

gldim B ≤ 2, then

qA(dim X) = qB(dim X) = dimk EndA(X)− dimk Ext1
A(X, X).

Since Tλ is standard and X ' τX, then Ext1
A(X, X) ∼= DHomA(X, τX) and we

get qA (dim X) = 0. �

Notation: Let T = (Tλ)λ be a standard separating stable tubular family in mod A.

Let r(λ) be the period (or rank) of the tube Tλ. Consider those r(λ1), . . . , r(λs) which

are strictly bigger than 1 (finite number by (1.4)). We define the star diagram Tr

of the family T as the diagram with a unique ramification point and s branches of

lengths r(λ1), . . . , r(λs).

Theorem [24, 34]. Let A = kQ/I be a k-algebra. Let n be the number of vertices of

Q. Let T = (Tλ)λ∈L be a standard separating stable sincere tubular family in mod A.

Let r(λ) be the rank of the tube Tλ. Then
∑

λ∈L

(r(λ)− 1) = n− 2.
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Moreover, A is a tame algebra if and only if the star diagram Tr is a Dynkin or

extended Dynkin diagram. �

§2. Tubes and isotropic roots of the Tits form.

We say that a property P is satisfied by almost every indecomposable in modA if

for each d ∈ N, the set of indecomposable A-modules of dimension d which do not

satisfy P form a finite set of isomorphism classes. The following is a central fact

about the structure of the Auslander-Reiten quiver ΓA of a tame algebra A.

Theorem [8]. Let A be a tame algebra. Then almost every indecomposable lies in a

homogeneous tube. In particular, almost every indecomposable X satisfies X ' τX.

Open problem: Is it true that an algebra is of tame type if and only if almost every

indecomposable module belongs to a homogeneous tube?

Proposition. Let A be an algebra such that almost every indecomposable lies in a

standard tube. Then A is tame.

Proof: Our hypothesis implies that almost every indecomposable X satisfies

dimkEndA(X) ≤ dimkX. We show that this condition implies the tameness of A.

Indeed, assume that A is wild and let M be a A−k〈u, v〉-bimodule which is finitely

generated free as right k〈u, v〉-module and the functor M⊗k〈u,v〉-insets indecompos-

ables. Consider the algebra B given by the quiver •t1 88 t2ff

t3

ZZ and with radical J

satisfying J2 = 0. Then there is a A−B-bimodule N such that NB is free and N⊗B− :

mod B −→ mod A is fully faithful. Therefore the composition F = M ⊗A (N ⊗B −)

is faithful and insets indecomposables. Moreover, dimkFX ≤ m dimkX for any X ∈
mod B if we set m = dimk(M ⊗A N).

Consider also the functor H : mod A −→mod B sending X to the space X ′ = X⊕X

with endomorphisms

X ′(t1) =

[

0 X(w)
0 0

]

, X ′(t2) =

[

0 X(v)
0 0

]

and X ′(t3) =

[

0 1X

0 0

]
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This functor insets indecomposables. For the simple A-modules X of dimension n,

we get indecomposable A-modules FH(X) with

dimkFH(X) ≤ m dimkH(X) = 2mn

and

dimk EndA(FH(X)) ≥ dimk EndB(H(X)) = n2 + dimk EndA(X) = n2 + 1. �

Let A = kQ/I be a triangular algebra. In case A is tame, we would like to find the

dimensions z ∈ NQ0 where indecomposable modules X with dim X = z and X in a

homogeneous tube exist. A partial result:

Proposition. Assume that A is tame and qA(z) = 0. Then there is a decomposition

z = w1 + · · ·+ ws with wi ∈ NQ0 and an open subset U of modA(z) satisfying:

(a) dim U = dim modA(z).

(b) Every X ∈ U has an indecomposable decomposition X = X1 ⊕ · · · ⊕Xs such

that dim Xi = wi and the module Xi lies in the mouth of a homogeneous tube.

Moreover, dimkHomA(Xi, Xj) = δij = Ext1
A(Xi, Xj) for 1 ≤ i, j ≤ s. �

§3. Hypercritical algebras.

Let q =
n
∑

i=1

x2
i +

∑

i6=j

aijxixj be a unit form. Let M be the symmetric matrix associ-

ated with q.

Proposition. The following are equivalent:

(a) q is weakly non-negative

(b) Every critical restriction qI of q with v the positive generator of rad qI , satisfies

v0M ≥ 0.

Proof. a)⇒ b): Assume that qI is critical and v0M has its j-th component negative.

Then 0 ≤ 2v0 + ej ∈ Zn and q(2v0 + ej) = 2v0Met
j + 1 < 0

b) ⇒ a): Assume that q satisfies (b) but not (a). By induction, we may suppose

that q(i) satisfies (a), 1 ≤ i ≤ n. Let 0� z be such that q(z) < 0. Let qI be a critical

restriction. Let v be the positive generator of rad qI. We can find a number a ≤ 0

such that 0 ≤ z + av0 and (z + av0)(j) = 0 for some 1 ≤ j ≤ n. Then

0 ≤ q(j)(z + av0) < av0Mzt ≤ 0,

a contradiction. �
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Corollary. The unit form q is weakly non negative if and only if 0 ≤ q(z) for every

z ∈ [0, 12]n. �

Following [38] a triangular algebra A = kQ/I is strongly simply connected if every

convex subcategory B of A satisfies the separation condition. By [27], the Tits form

qA of a strongly simply connected algebra A is weakly non-negative if and only if A

does not contain a full convex subcategory which is tilted of a hereditary algebra of

one of the tree types

where in the case ˜̃
Dn the number of vertices is n +2, with 4 ≤ n ≤ 8. The hereditary

algebras corresponding to this list are called hipercritical algebras.

Theorem [7]. Let A be a strongly simply connected algebra, then the following are

equivalent:

(a) A is tame

(b) qA is weakly non-negative

(c) A does not contain a full convex subcategory which is hypercritical. �

The proof of the Theorem depends on many partial results proved along many

years by several people. We give only a superficial idea of the used arguments.

Let A = kQ/I be a strongly simply connected algebra.

• A is of polynomial growth if there is a natural number m such that the number

of one-parameter families of indecomposable modules is bounded, in each dimension

d, by dm.
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• The representation theory of strongly simply connected algebras of polynomial

growth is well understood [39] and the structure of the Auslander-Reiten quiver is

described via coils and multicoils [1].

• A is (tame) of polynomial growth if and only if qA is weakly non-negative and A

does not contain a convex subcategory of a certain list of (the so called, pg-critical)

algebras [39].

Hence, in order to prove the Theorem, we may assume that:

(i) A contains a convex pg-critical algebra.

(ii) A accepts an indecomposable A-module X so that X(i) 6= 0 for every source

or sink i in Q.

• In [7], it is proved that A is constructed from (as a suitable pushout glueing of

blowups of) extensions of coil algebras and pg-critical algebras (thus A is said to be

a D-algebra).

• The category of A-modules is equivalent (up to finitely many indecomposable

objects) to the category of A∗-modules, where A∗ is canonically constructed.

• A∗ degenerates to a special biserial algebra.

• By [17], it is enough to show that special biserial algebras are tame (which is

well-known).
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[6] Th. Brüstle. Kit algebras. J. Algebra 240 (2001), 1–24.
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