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In these notes k will denote a fixed algebraically closed field.

A will denote a finite-dimensional associative k-algebra with unity. An A-module
(if not otherwise stated) is a finitely generated left A-module. According to former
lectures in this volume, we may assume that A is a basic algebra and write A = kQ /I
where () is a finite quiver and [ is an admissible ideal of the path algebra kQ).

A fundamental problem in the representation theory of algebras is the classification
of all indecomposable A-modules (up to isomorphism). We say that A is of finite
representation type if there are only finitely many indecomposable A-modules up to
isomorphism. One of the first successes of modern representation theory was the
identification by Gabriel of the Dynkin diagrams as the underlying graphs of quivers
@ such that kQ is representation-finite. But representation-infinite algebras are com-
mon. Already in the 19" century, Kronecker completed work of Weierstrass to classify
all indecomposable ‘pencils’ by means of infinite families of pairwise non-isomorphic
normal forms, which in modern terminology corresponds to the classification of the
indecomposable modules over the Kronecker algebra. The first explicit recognition
that infinite representation type splits in two different classes arises in representa-
tions of groups: in 1954, Highman showed that the Klein group has infinitely many
representations in characteristic 2 and Hellen and Reiner classified them; in contrast,
Krugljak showed in 1963 that solving the classification problem of groups of type
(p,p) with p > 3 implies the classification of the representations of any group of the

same characteristic, a task that was recognized as ‘wild’.
1
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The first task of these notes is to give precise meaning to the following concepts.
The algebra A is tame if for every number n, almost every indecomposable A-module
of dimension n is isomorphic to a module belonging to a finite number of 1-parameter
families of modules. Formally, an algebra A is tame if for every n € N there is a finite

family of A — k[t]-bimodules M, ..., My with the following properties:
(i) M; is finitely generated free as a right k[t]-module;

(ii) almost every indecomposable left A-module X with dim;X = n is isomorphic

to a module of the form M; @y Sy for some \ € k.

The algebra A is wild if the classification of the indecomposable A-modules implies
the classification of the indecomposable modules over the associative algebra k(z, y)
in two indeterminates. Donovan and Freislich were the first to state the tame-wild

dichotomy as a conjecture, later made precise and proved by Drozd. Namely,

Dichotomy Theorem of Drozd: Every finite dimensional k-algebra is either tame or
wild.

In Lecture 1 we shall present some important examples of algebras and discuss
their representation type: hereditary algebras, local algebras, group algebras. In
Lecture 2 we introduce some fundamental concepts and techniques which are useful
for the understanding of tame algebras. Given a basic algebra A = kQ/I, for each
vector v € N we define a module variety mod4(v) as a closed subset, relative to
the Zariski topology, of an affine space. The notion of tameness for A may be read
in different ways in the module varieties mod 4 (v).

Although there is a no general procedure known to decide whether or not a given
algebra is tame, there are cases which are well understood. An algebra A = kQ/I
is said to be triangular if () has no oriented cycles. For such an algebra the Tits
quadratic form qu: 7Z°° — 7 is introduced by

ga(v) =Y v = D w(i@)+ Y e ju(ie()
i€Qo (i—Jj)e@ 1,J€Q0
where Qo (resp. ;) denotes the set of vertices (resp. arrows) of @ and r(i,j) is
the number of elements in R N (4, j) whenever R is a minimal set of generators of

I contained in |J I(4,7). This quadratic form was introduced by Tits and used
i?jeQO
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systematically by Gabriel and Bernstein-Gelfand-Ponomariev in the study of the rep-
resentations of hereditary algebras A = k@ of finite representation type.

The main purpose of these lectures is to survey the use of the Tits form in repre-
sentation theory. Special emphasis is made in characterizing the representation type
via arithmetic properties of the Tits form. Basic results in this direction are shown
in Lecture 3. Let A be a triangular algebra, the following holds:

o if A is representation-finite, then g4 is weakly positive (that is, ga(v) > 0 for
any vector 0 # v € N@),

o if Aistame, then g, is weakly non-negative (that is, ¢4 (v) > 0 for any v € N(@o),

Consideration of special cases where the converses of the above results hold, hence
providing combinatorial characterizations of the representation type, is the central
issue of Lecture 3 and 4. We say that an algebra B = kQ'/I' is a full subcategory
of A =kQ/I if ' is a path closed full subquiver of @ and I’ = I N kQ. First, it
is shown that an algebra A accepting a preprojective component in the Auslander-
Reiten quiver I 4 is representation-finite if and only if ¢4 is weakly positive. Moreover,
this is equivalent to A not having convex subcategories which are critical (an algebra
B is critical if ['g has a preprojective component, ¢p is not weakly positive but every
proper restriction of gp is weakly positive). An algebra B is hypercritical if I'p has
a preprojective component, and the form ¢p is not weakly non-negative while every
proper restriction of ¢p is weakly non-negative. The critical and hypercritical algebras
have been classified.

A triangular algebra A is strongly simply connected if every convex subcategory
of A satisfies the separation condition. Many important examples of algebras satisfy
this property. Recently Briistle-Skowronski and the author have shown that for a
strongly simply connnected algebra A the following are equivalent:

(a) A is tame;
(b) ga is weakly non-negative;
(¢) A does not contain a full convex subcategory which is hypercritical.

The intention of these lectures is to serve as a source of motivation and information
on the main concepts, techniques and results on the topic. While we cannot provide
complete proofs of every result, we try to sketch some representative arguments whose

proofs are elementary enough not to require other sophisticated parts of the theory.
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Notation and conventions.

We fix our notation by recalling basic material on algebras, modules and represen-
tation theory which can be found on textbooks and in other lectures at this volume.
All algebras in this work are associative k-algebras with an identity. A finite dimen-
sional k-algebra is basic if A/rad A is commutative, where rad A denotes the Jacobson
radical of A.

By mod4 we denote the category of finite dimensional (= finitely generated) left A-
modules. Each finite dimensional k-algebra A is Morita equivalent to a basic algebra
B, that is, there is an equivalence of categories mod, — modg.

A quiver () is an oriented graph with set of vertices )y and set of arrows ;. The
path algebra k(@) has as k-basis the oriented paths in @, including a trivial path e, for
each vertex s € )y, with the product given by concatenation of the paths. A module
X € modyg is a representation of () with a vector space X (s) = e, X for each vertex
s € Qp and a linear map X (a): X(s) — X(t) for each arrow s —— ¢ in Q.

For a finite dimensional k-algebra A we associate the quiver )4 in the following
way: the set of vertices Qg is the set of isoclasses of simple A-modules {1,...,n}. Let
S; be a simple A-module representing the i-th class. Then there are as many arrows
from i to j in Q as dim,Ext}(S;, S;). By a remark of Gabriel [17], in case A is basic,
there is a surjective morphism k() —> A such that the ideal ker v is admissible, that
is, (rad A)™ C ker v C (rad A)? for some m > 2.

We shall identify A = kQ/I with a k-category whose objects are the vertices of @
and whose morphism space A(s, t) is e, Aes. We say that B is a convex subcategory of
Aif B =kQ'/I' for a path closed subquiver ' of @ and I’ = I N kQ’. In this view,
an A-module X is a k-linear functor X : A — mod;. The dimension vector of X is
dim X = (dim; X (s))seq, € N9 and the support of X is supp X = {s € Qo: X(s) #
0}.

For an algebra A, we consider the standard duality D: mody — mod ger defined
as D = Homg(—, k), where A is the opposite algebra of A. The Auslander-Reiten
translation T4 = Dtr yields a functor 7, : mod 4 — mod,, where mod 4 (resp. mod,)
is the category whose objects are A-modules and Hom 4(X,Y) (resp. Homx(X,Y))
is the quotient of Hom4(X,Y") by those morphisms factoring through a projective
module (resp. an injective module), satisfying that Ext! (X, Y) —~ DHom4 (Y, 74X).
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The inverse of 74 is 7, = tr D. The Auslander-Reiten quiver I' 4 of A has as vertices
the isoclasses of indecomposable A-modules and there are n arrows from the class [Y]
of the indecomposable module Y to [X] if Y, but not Y"*! is a direct summand of

Z for an exact sequence
Q0> X —>272—-X—0

corresponding to a non-zero element in Ext!, (X, 74X) — DHomu (74X, 74X), € —
1;,x, in case X is non-projective; or Z =rad X, in case X is projective.
By the Jordan-Hoélder theorem, the Grothendieck group Ky(A) of modA is the free

abelian group on the classes [S1],...,[S,] of simple A-modules, yielding an identi-

fication K¢(A) = Z. The class of any A-module M equals [M] = > [M : S;][Si],
i=1
where [M : S;] is the multiplicity of S; in the composition series of M (observe that

[M; : S;] = dim; M (7) if i is the vertex of Q4 corresponding to S;). We shall assume
that A has finite global dimension (which happens, for example, if A is triangular).
Then the classes [Py],. .., [P,] of indecomposable projective covers P; of S;, 1 < i < n,
form another basis of Ky(A). Similarly, the classes [I1],...,[[,] of indecomposable
injective envelopes [; of Sj, 1 < j < n form a basis of K((A). The homological form
(—,—)a on Ky(A) is the bilinear form

(X], Y] = 3o (—1)dimyBxtiy (X, V).

1=0

Defining the n x n Cartan matriz Ca = (c;;) as ¢;; = ([P;], [Pi]), we get
(v, w) 4 = vC W'
The quadratic form y4(v) = (v,v) 4 is called the Euler form of A.
The Cozeter transformation ¢, is an automorphism of Ky(A), determined by
Plo, =[],  forl<j<n.

Therefore ¢, = —C;'Cs and (v, wp, )4 = —(w,v) 4 for all v,w € Ky(A).
In the hereditary case A = kQ), for any indecomposable non-projective A-module
X, we have
[(X]p, = [raX].
In general, the relation between 74 and ¢, is not so nice, but it will be central for

our paper. We recall here the following remarks from [17]:
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(a) If pdims X <1 and Homa (X, A) = 0, then [74X]| = [X]p,.
(b) If pdims X < 2 and idim4 X < 2 then for some injective A-module I we get
[TaX] = [X]p, + [I].

The role of the Coxeter transformation ¢4 clarifies with the consideration of the
derived category D%(mod4) of the module category mod 4, a construction that we shall
not use in these lectures. Namely [X ® Joa = [Tpr4)X * ] in the Grothendieck group
Ko(D"(mody)) = Ko(A), where 7po4)X * denotes the Auslander-Reiten translation
of the complex X * in D’(mod,).
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Lecture 1. The tame-wild dichotomy.

8§1. Examples.

Hereditary algebras.

Let A be a quiver without oriented cycles and consider the associated hereditary
algebra A = kA. We assume A is connected.
Let Ay = {1,...,n} be the set of vertices of A and

Ma = (my;) the Cartan matriz of A,

2, ifi=j
my; = . . e .
! —+# edges between ¢ and j, ifi # j

Consider V* = {v € V: v(i) > 0, Vi} the positive cone

Lemma. M'(V*Y)nov+ = {0}.

Proof. Assume that 0 #y € M (V) nov.
By the connectivity of A we find an edge 7

j such that y(i) > 0 and y(5) = 0.

Then
0<My)G) = > muy(k) =myy(j) + myy(i) +
k
+ > my(k) < myiy(i) <0,
ki,j
a contradiction. O

Proposition. The matriz Ma satisfies one and only one of the properties:

(a) My'(VH) c v
(b) MAY(VF) = Ru for some u > 0. In this case Ma(u) =0
(c) M= (V) NV* = {0}

This can be illustrated for n = 2:
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M MRV Ve

v

v
v

Let ga: Z™ — 7Z be the quadratic form ga(v) = %’UMA’Ut. Then ga is the Tits
form associated to the hereditary algebra A = kA. Corresponding to the cases
distinguished in the above Proposition, we have:

(Elliptic type): qa is positive definite if M'(VF) C VT,
(Parabolic type):  qa is non-negative with corank ga = 1if M *(V*) = Ru
for some u > 0;
(Hyperbolic type): qa is indefinite if M'(VT) N V+ = {0}.
(details can be completed by the reader as an ezxercise).

In this way, we get three type of quivers. Classification:

(1) Let A be of parabolic type, u >> 0 be the minimal positive vector with ga(u) =
0. Then the underlying graph |A| is one of the following

1l——9* 1 1 1
A, 1 \1 D,,: \2 /
° ° ° 1/ 1/ \

Eg: 1—2—3—2—1 E.: 1—2—3—4—3—2—1

: :
|
1
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Eg: 1—2—3—4—5—6—4—2

and the indicated vector is u.
These diagrams are called Euclidean diagrams.

(2) A of elliptic type if and only if |A| does not contain any subgraph of Euclidean
type. Hence |A| is one of the following (called Dynkin diagrams).

ES: .

(3) A is of hyperbolic type. Then either there are vertices i and j of A with

m;; < —3 or |A| contains properly an Euclidean diagram. In the former case
qa(ei +e;) = qaler) +qale;) +m;j < 0;
in the latter case, if A" is a full proper subquiver of A such that |A’| is Euclidean with
a vector u > 0 such that gas(u) = 0, then for any vertex i of A\ A’ with i adjacent
to A/, we get
ga(2u + €;) = 2qar(u) + 1+ 2 Z m;j < 0.
u(4)7#0

Local algebras.

(1) Observe that the algebra A = k[z]/(z™) admits only finitely many indecompos-
able modules, up to isomorphism. Then A is representation-finite.

Indeed, a module M € mod, is a nilpotent matrix, hence M is equivalent to

Jnl@"'@l]ns
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where J; is the 7 x i matrix
0
o0
O 10
with n; < n. If M is indecomposable, M = J,, for some s < n.
(2) Consider the infinite-dimensional k-algebra k[x].

Let M € modg, then M is a n x n matrix. Let x(7) = det (T, — M) be the

characteristic polynomial of M. Then M is equivalent to
Jnl()‘l) DD Jns ()‘5)

where x(T') = (T'— X\)™ ... (T — X)" is the decomposition of x(7') in linear factors
(since k = k) and J,,,(\;) is the n; x n; Jordan block

Vo0

1

0 1

Consider the k[t] — k[t]-bimodule given by the n x n matrix

C0
0.

Let Sy = k[t]/(t — A) be a (one-dimensional) simple k[t]-module. Then

Jn (1) ®k[] Sh = Jn(A).

Jn@) -

Therefore, the indecomposable k[t]-modules of dimension n are isomorphic to modules

in the image of the functor
Jn(t) Qklz] —* modk[ﬂ(l) — mOdk[t}.
(3) The free algebra k(z, y) has a ‘problematic’ behaviour, as shown in the following.

Proposition. Let B be any finitely generated k-algebra, then there exists a fully faith-

ful functor F': modp — mody ).



QUADRATIC FORMS AND THE TYPE OF AN ALGEBRA 11

Proof. Let by, ..., bs be a system of generators of B. Define the k(z,y) — B-bimodule
M as Mp = B2 and the structure of left k(z, y)-module given by the (s+2) x (s+2)-

matrices — -

0
v 0 10 0

by 1
O 0 1 0
0
0 U
We set ' = M®p: modp — mody g ).
Exercise: check that F' is full and faithful. O

This means that the representation theory of k(z,y) is as complicated as the rep-
resentation theory of any other algebra.

We say that an algebra A is wild if there is a functor F': mody,,) — mod, which
preserves indecomposable modules and iso-classes. We shall say that the functor F

insets indecomposable modules.

Group algebras.

Proposition. Let p be a prime number > 3. Assume k has characteristic p. The

group algebra A = k[Z, X Z,| is wild.

Proof. Let ¢: k[u,v] = A, v — g —1, y — h — 1, where Z, x Z, = (g) x (h). Then
A = kfu,v]/ker ¢ = k[u,v]/(uP, vP).

Moreover k[u,v]/(uf,vP) —» klu,v]/(u,v)? = klu,v]/(u? v® uwv? vu?) = B. Tt is
enough to show that B is wild.

Consider the B—k(z, y)-bimodule M defined as My, ., = k(z,y)* and the structure

as B-module defined by the matrices

UM: UM:

O = OO
8 O OO
< O OO
oo OO
OO = O
_ o O O
8 O OO
oo OO

Ezercise: check that gM is well defined and

M Ok(a,y) —: modk<x,y> — modpg
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insets indecomposable modules.

82. Hereditary algebras and representation type.

(1) The indecomposable modules over the quiver algebra A:

—a
L] L]
—_—

were classified by Weierstrass and Kronecker in the following families:

|0 I,
| 0 _0 O_
™ N

k,n kn+1 kn+1 k,n

S~ 7 ~ 7
0 | o --.- 07
[; | [n] 00
0 | i I, |

(preprojective representation) (preinjective representation)

/\ /\
R,(N): k» k" R, (c0): k" k"
\_// \_/
Jn(N) I,

(regular representations)
with A € k.

Let M, be the A — k[t]-bimodule

k[t]" k[t]"
~NLL 7
In(t)
then M, ®yp k[t]/(t — X) = R, (N).
The corresponding Tits form is qa(z,y) = 2? — 22y + y* = (z — y)? which is of
parabolic type.

(2) Consider the hereditary algebra B associated to the quiver

We claim that B is wild.
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Proof. Consider the B — k(x, y)-bimodule M given by

N
k<$,y> ﬂ) k<$,y>2

Ezxercise: M Qppyy —: mody .,y — modp insets indecomposable modules. O

The corresponding Tits form is ga(z,y) = 2* — 3zy + y? = (v — y)? — zy which is
indefinite.
(3) Let A = kA be a hereditary algebra. The general structure of the Auslander-

Reiten quiver I'4 is as follows:

- R, T,

There is a preprojective component Pa (that is, Pa has no oriented cycles and for
every X € Pp there is a translate 7" X, for n > 0, which is projective). There is
preinjective component Ia (that is, Za has no oriented cycles and for every Y € Zx
there is a translate 7Y, m > 0, which is injective). There is a set of regular
components Ra (a component C' is regular if for every X € C, 7" X € C is defined
for all n € Z). An indecomposable representation X of A is said to be preprojective,
or reqular, or preinjective, provided it belongs to Pa, or Ra, or Za, respectively.

If A is elliptic, then Ra = () and 'y = Pa = Za is a finite quiver.

If A is parabolic, the Pa and Za are two different infinite components of 'y and
Ra = (Th)repi (k) is a stable separating tubular family. Moreover, if T\ = ZA,/(ny),

then at most three ny # 1. Assume ny,,...,n,, are those ny # 1, the star
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is a Dynkin diagram such that |A| is an extension of Ty seees i,

After the work of Dlab-Ringel [10] we know that for the hereditary algebra A = kA
with |A| an Euclidean diagram and for any dimension vector v € N20 there exists
an A — k[t]-bimodule M, such that almost any indecomposable A-module X with
dim X = v is isomorphic to M, ®y; Sy for some A € k. In particular, A is a tame
algebra.

If |Al is hyperbolic, the components Pa and Z are two different infinite components
of I'a and every component C' in R is of the form ZA .

(4) The bilinear form (v,w)s = > v(@)w(j) — > v(i)w(j) satisfies

i,j€Ng i—j
(dim X, dim Y) 4 = dim;Hom4 (X, Y) — dim;Ext!, (X, Y)
for any pair of modules X,Y € mod,. In particular,
qa(dim X) = dim;End 4(X) — dim, Ext} (X, X)
coincides with the Euler form of A.
[Proof: Apply Hom,(—,Y") to the projective presentation of X]

A module X with End,(X) = k is called a brick. Observe that a brick is inde-
composable. Moreover, an indecomposable A-module X with Ext) (X, X) = 0is a
brick.

Lemma. If X s indecomposable not a brick, then X has a submodule which is a

brick with self extensions.

Proof. By induction, it suffices to show that X has a proper submodule which is
indecomposable with self extensions.

Let f € Endu(X) with £ = Im f of minimal dimension > 0. Since X is in-
decomposable, then f is nilpotent and minimality implies that f? = 0. Hence
E C ker f = @", K; with K, indecomposable modules, ¢ = 1,...,m. Assume
a: E — ker f—>K; is not zero. Then « is mono (by minimality). We have
Ext)(E, K;) # 0 since the pushout
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m

0 - K, - X —- E — 0

=1
\
l ‘
/
0 — K; - 7 — F —

does not split. Finally, a induces a surjection Ext}(Kj, K;) — Ext!,(E, K;), which
shows that K is the wanted submodule of X. Il

Gabriel’s theorem for representation-finite hereditary algebras can now be proved.

Theorem [12, 13]. Let A be a quiver without oriented cycles and A = kA the
corresponding path algebra. Then A is representation-finite if and only if |A| is a
Dynkin diagram. The correspondence X +— dim X induces a bijection between the

isoclasses of indecomposable A-modules and the positive roots of q.

Proof. Assume first that A is of Dynkin type, in particular, g4 is positive. Let X
be an indecomposable A-module. Then X is a brick, since otherwise there is a brick

Y C X with self extensions and
q(dimY) = dimyEnd4 (V) — dimExt}, (Y, Y) < 0.

Therefore dim X is a positive root of g4.
An argument of Drozd (see Lecture 3, § 2) shows that ¢4 admits only finitely many
positive roots. Then A is representation-finite.

Injectivity: Assume Y is another indecomposable with dim X = dimY. Then
1 = ga(dim X) = (dim X,dim Y) 4 = dim;Hom (X, Y) — dim;Ext},(X,Y),

in particular Hom(X,Y") # 0. Symmetrically, Hom4 (Y, X) # 0. The description of
I'4 in (3) implies that X ~ Y.

Surjectivity is shown in Lecture 3 in a more general context.

Finally, if A is not of Dynkin type, then A = kA accepts infinitely many indecom-

posable modules as shown by the description of the preprojective component I 4. [

(5) Let A = kA be a hereditary algebras and x,(7T') the characteristic polynomial
of its Coxeter transformation. We collect the relevant information about x4(7) in a
table:
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A of type Coxeter polynomial roots # 1 period (=p)
\ Ay Viei= Il om n+1
2<m|n+1
|
D,, n>4 o2 11 om exp(2i7rmj/p) 2(n—1)
| n<m|2n
Dynkin | Eg P3012 ma,. .., My integers 12
| E7 2018 1<m;<p-1 18
| Eg P2P10930 30
‘ AJu,q (T —1)*V,V, exp(24mm /)
I: | D, (T — 1)2VEV,—s | 1<m,;<p’ integers
affine | E,, n=6,7,8 (T —1)2V4V3V,,_3 | p’ = period of T

Notation: V,, = (T" — 1)/(T — 1) and ¢, = Vi,/ [lda is the m-th
dlm,1<d<m

cyclotomic polynomial. Moreover, the period (Coxeter number) indicates
the minimal number n such that ¢’} = id.

For A = kA, let p(¢a) (also denoted by pa) be the spectral radius of ¢4, that
is, p(pa) = max{|A|: A a root of ya(t)}. If A is of Dynkin or affine type, then
p(pa) =1, as can be seen in the table above.

In case A is wild, it is known that 1 < p(p,) is a simple root of the Coxeter
polynomial x, (7'), [35]. Then by [33], there is a vector y* € Ky(A4) ®z R with
positive coordinates such that y*¢, = p(p,)y™. Since x, (T is self reciprocal, there
is a vector y~ € Ko(A) ®z R with positive coordinates such that y~¢, = p(w,) "'y~
The vectors y™,y~ play an important role in the representation theory of A = kA.

Namely (see [33]), for an indecomposable A-module X:
(a) X is a preprojective A-module if and only if (y~, [X])a <0
(b) X is a preinjective A-module if and only if ([X],y*)a < 0.
(¢) X is regular if and only if (y—, [X]) > 0 and ([X],y") > 0.
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(d) If X is preprojective or regular, then Y}l_r}go W[TX”X] = Ay, for some
Ay >0.

(e) If X is preinjective or regular, then lim ( 2)

§3. Tilted algebras. Let A = kQ/I be a basic finite dimensional k-algebra. A
module 47 is called a tilting module if it satisfies:

(T1) Ext%(T,—) =0

(T2) Ext (T, T) =0

(T3) The number of non isomorphic indecomposable direct summands of 47" is the
rank of the Grothendieck group Ky(A).

Let B = End(T"). Then 4T defines a torsion theory (F,G) in mod, and a torsion
theory (), X') in modp as follows:

S[ThX] = ALy, for some A% > 0.

F=F(T)={4X: Homy(T,X) =0}, G=¢G(T)={4X:Exty(T, X) =0}
Y=Y(T)={gN: Tor?(T)N) =0}, X=X(T)={gN:T® gN =0}
Then we have equivalences:
Y =Homu(T,—): G — Y with inverse T®p-
and
¥ = BExtY (T, —); F — X with inverse Tor? (T, —).

Given a tilting module 47" with B = End4(7T), there is a linear isomorphism
or: Ko(A) — Ko(B) given by (dim X )or = dim ¥7X — dim ¥/ X.

In particular, the following formulae hold:

O,Zt == UTcgto—é“a <.T, y)A = <$UT7 yUT>B-

In particular x4(y) = xs(yor).

Moreover, if X € G(T), then xa(dim X) = yp(dimXX) and if X € F(T'), then
xa(dim X) = xp(dim ¥'X). Finally, also ® 401 = 07Pp.

In case A = kA is a hereditary algebra and 47 is a tilting module, B = End 4 (7))
is called a tilted algebra of type A. Observe that in this case gldim B < 2 and the

Euler and the Tits form of B coincide.

Theorem. Let A = kA and B be a tilted algebra of type A. The following are

equivalent:
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(a) B is tame

(b) the Euler form xg(= qp) is weakly non negative.

The implication a) = b) is shown in greater generality in Lecture 3. For the
converse we need some preparation, namely a better knowledge of the structure of
I's.

Let A be a wild hereditary algebra. Let 4T =T, ®---®T,, be a decomposition into
indecomposables of a tilting module 7. Consider the tilted algebra B = End4(7T).
The following description of mod B is given in [21].

Let (F(T),G(T)), and (X(T'),Y(T)) be the torsion theories of mod, and modp
respectively, corresponding to the tilting module T'. Recall that (X' (T"), Y(T')) splits.

Let [ = {1 <i < n: Exty(T;, X) # 0 for infinitely many indecomposables X €
F(T)} and J = {1 <i < n: Homy(7;, X) # 0 for infinitely many indecomposables
X € G(T')} and define T, = @ T; and T = @ T;. Then the end algebras are
defined as the rings of endomorgilisms By = Endie(JT ) and B = Enda(oT). With

this notation we have:

Proposition.

(a) B is a tilted algebra. There exists a convexr subalgebra A of A and a tilt-
ing module T of oA without preinjective direct summands such that B =
End_ (7).

(b) There exists a functor ¢: mod s — mody such that the restriction pg:

G(T) — G(T) is fully faithful, exact, extension closed and cofinite.

The formulation corresponding to B, is dual. O

Proof of the Theorem: Assume B is wild. Since modg = X (T') V Y(T') one of the
subcategories X (T') or Y(T') is not tame. Say Y(T'). Therefore G(T) is not a tame
subcategory of mod A. With the notation above, ¢: G(T) — G(T') is cofinite and oA
is wild.

Consider the finite dimensional algebra C = k{x,y)/(2?, y?, vy, yz) and a full exact
embedding £: mode — mod_ 4. Let S be the unique simple C-module and consider
its image X = £(S). We have End_4(X) — k and dim;Ext! ,(X,X) > 2 in

particular X is regular in mod__4 and x_ 4(dim X) < 0.
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Since T’ does not have preinjective direct summands, there exists an N € N such
that Y = 7V, X € G(T). Therefore Z = Homu(T, p(Y)) € Y(T) and

x(dim Z) = ya(dim p(Y)) = x_a(dimY") = x_ 4(dim X) < 0. O
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Lecture 2. The geometric approach.

81. Some elements of algebraic geometry.

We consider the affine space V' = k™ with the Zariski topology, that is, closed sets

are of the form
Z(p1,...,ps) ={veV:ip(v)=0, foralli=1,... s},

where p; € k[t1,...,t,] is a polynomial in n indeterminates. The following fundamen-
tal facts may be found in any book on algebraic geometry.
o« S CkK[ty,...,t,], then Z(95) is the zero set of S.
« Z(5) = Z2({(5)) = Z(/(5)), where
(S) = ideal of k[ty,...,t,] generated by S
VI = (radical of I) = {p € k[ty, ..., t,]: p’ € I for some i € N}

Z (U SZ-) =N Z(S;) and Z(S-S")=Z(S)U Z(S")
. Hilbzei{t’s basisziflheorem: Ap1,...,ps € S with Z(S) = Z(p1,...,ps)
« Hilbert’s Nullstellensatz: {p € k[t1,...,t,]: p=0on Z(S)} = 1/(S)

We say that Z = Z(S) is an affine variety and k[Z] = k[t, . .. ,tn]/\/@ is

its coordinate ring.
An affine variety Z = Z(p1,...,ps) is reducible if Z = Z; U Z, with proper
closed subsets Z; C Z. Otherwise Z is irreducible.
o There is a finite decomposition of any affine variety Z = LSJ Z; into irreducible

=1
subsets Z; C Z. If the decomposition is irredundant, we say that Zi,..., Z
are the irreducible components of Z.

o If Z is an irreducible variety, then the maximal length of a chain
0#£20C 211G CZ=2

is called the dimension of Z (=: dim Z).

S
If Z = J Z; is an irreducible decomposition
i=1

dim Z = max dim Z;.
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A map pu: Y — Z between affine varieties is a morphism (a regular map),
if u*: k[Z] — k[Y], p— pop is well-defined. In fact, u* is a k-algebra homo-

morphism.

e Any morphism p: Y — Z is continuous in the Zariski topology.

e Amapp:Y — Zisamorphism if and only if 3 uq, ..., py, € kftq, ..., t,] such
that u(y) = (L1 (y), - m (), Yy = (Y1, yn) €Y C K"

Proposition. Let p:' Y — Z be a morphism between irreducible affine varieties and

assume i is dominant (i.e. w(Y) = Z). Then for every z € Z and every irreducible

component C of u=Y(Z) we have
dimC > dimY —dimZ
with equality on a dense open set of Z.
In particular, if C is an irreducible component of Z(p1,...,p:) C k™, we have
dimC >n—t
A fundamental result is the following

Theorem (Chevalley) Let u: Y — Z be a morphism between affine varieties. Then

the function
y — dimyp ™ (u(y)) = max {dim C: y € C irreducible component of =" (1(y))}

is upper semicontinuous (that is, d: Y — N has {y € Y: d(y) < n} open in'Y, for
alln € N).

As illustration consider p: C* — C? with pu(x,y,2) = (z,zy). Then

(x0>y0>x) if Zo 7& 0, dim =1

1 _ ,,—1 —
(1o, Yo, 20)) = 1~ (20, Zoo) {(o,y,z) if 7o = 0, dim =2

A general morphism p: Y — Z is neither open nor closed, but p(Y) is a finite union
of locally closed subsets of Z. A finite union of locally closed subsets of a variety Z

is called a constructible subset.

Proposition. If y: Y — Z is a morphism and Y' CY a constructible subset, then

w(Y") is also constructible.
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82. The main example: module varieties.

Let A = kQ/I be a finite dimensional k-algebra and fix a finiteset R C | I(z,y)
x7y€QO
of admissible generators of I. Let z € N?° be a dimension vector.

The module variety mod 4(z) is the closed subset, with respect to the Zariski topol-

ogy, of the affine space k* = [] k*®*®) defined by the polynomial equations given
Tr—Y
by the entries of the matrices

t t
m, = E AiMait - - - Mais;, Where r = g i1 ...y, € R
i=1

i=1

and for each arrow  —— y, m, is the matrix of size z(y) x z(z).
Mo = (Xaij)ij
where X,;; are pairwise different indeterminates. We shall identify points in the

variety mod 4(z) with representations X of A with vector dimension dim X = z.

Example: A = kQ/I where Q: « —— Py and I = (af)

Tall Tal2 T Tpiz) _ [ Tan1®pn t Ta12%p21 Ta11Zp12 + Ta12%622
Ta2l Ta22 Tpo1 T2 Ta21T811 T Ta22TB21  Ta21T312 T Ta22T 322
mody(2,2,2) C k?*? x k?*2 = k® defined by 4 equations.
The group G(z) = [[ GL.u (k) acts on k* by conjugation, that is, for X € k7,

i€Qo
g € G(z) and * = y, then X9(a) = g,X(a)g;'. By restriction of this action,

G(z) also acts on mod4(z). Moreover, there is a bijection between the isoclasses of
A-modules X with dim X = z and the G(2)-orbits in mod4(2).
Given X € moda(z), we denote by G(z)X the G(z)-orbit of X. Then

dim G(2)X = dim G(z) — dim Stabg.)(X),

where the stabilizer Stabg(.)(X) = {g € G(2) : X9 = X} = Auty(X) is the group of
automorphisms of X. As Aut,(X) is an open subset of the affine variety End4(X),
then
dim Stabg(z)(X) = dim Aut4(X) = dim End4(X).
Finally, we get
dim G(2)X = dim G(z) — dim End,(X).
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Moreover, the orbit G(z)X is locally closed, that is G(z)X is open in the closure
G(2)X defined in mod4(z). In particular, G(2)X\G(z)X is formed by the union of
orbits of dimension strictly smaller than G(z)X.

Let X,Y € moda(z). If the orbit G(2)Y is contained in G(z)X, we say that Y is

a degeneration of X.

Proposition. Let X € moda(z). We have the following.

(a) Let 0 — X' — X — X" — 0 be an ezxact sequence. Then X' & X" is a

degeneration of X.

® ¢z)
1€Qo SZ
the composition factors of X. Then gr X is a degeneration of X .

(b) Consider the semisimple module gr X = , obtained as direct sum of

Proof of (a): We may assume that X’ is a submodule of X and X” = X/X’. Then

. « .
for each arrow ¢ — j, we have

x= (57 i)

where f, : X”(i) — X'(j). For each A € k, we may define the representation X, €

o= (57 0f)-

mod(z), with

For A # 0, we get X, ~ X. Indeed,

g = (Iz(')(i) AIS/(Z-))Z- € G(z)
satisfies that X{* = X. Therefore
X' @ X" =X, €GR)X. U
Corollary. The orbit G(z)X is closed if and only if X is semisimple. O

Examples: (a) Let F' = k(T1,...,T,,) be the free algebra in m indeterminates. Let
M be a A — F-bimodule which is free as right F-module.

Then the functor M ®r — : modr — mod, induces a family of regular maps
fr: modp(n) — moda(nz) for some vector z € N and every n € N.

Indeed, for each vertex i € @, fix a basis of the free right F-module M(i), set
2(i) = rkpM(i). Then for an arrow i — j in Q, M(a) : M(i) — M(j) is a
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2(j) x z(i)-matrix with entries in F'. Now, an element A = (A1,...,\;,) € modg(n)
determines an F-module Ny with Ny(7;) = A;,;i =1,...,m. Then

M ®p Ny(a) : (KO — (k20"
is the matrix M(a)(A) = (M(a)s (A1, .-, Am))ss- Therefore

Jar(A) = (M(a)st(Ar, -5 Am)) s
is the induced regular map.

(b) Let C be a finitely generated commutative k-algebra without nilpotent elements
and z € N9 For any regular map ¢ : mod ¢(1) — mod(z), there is a A — C-
bimodule M which is free as right C-module and rkc(M)(i) = z(i), for each i € Qo,
such that g = f},.

Indeed, from Hilbert’s theorem C' = k[mod¢(1)] is the affine algebra of regular
functions on mode(1). We define M (i) = C*®, for i € Qo; for i —— j in @, we put
M (c) the matrix corresponding to g(a) : modg (1) — k*0)*0) By (a), fi, = g.

(c) Consider the subset inda(z) of moda(z) inda(z) is a constructible subset of

mod4(z). Indeed, the set of pairs.
{(X,f): X € mod(z), f € Ends(X) with 0 # f # 1x and f* = 1x}.
is a locally closed subset of mod4(z) x k%°, where d = Z z(i). The projection my :
mod4(z) x k¥ — mod4(z) is a regular map with imaéeer
mod4(z)\inda(2).
(d) Let z € N@. Let C be an irreducible component of mod(z). A decomposition
2 =w; + -+ ws with w; € N9 determines a constructible subset

Clwy,...,ws) ={XeC: X=X,®---® X, with X; € inda(w;)}

in C. We say that (wy,...,w;) is a generic decomposition in C' if C(wy,..., w;)

contains an open and dense subset of C'.
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Proposition. Let C' be an irreducible component of moda(z), then there exists a
unique generic decomposition (wy, ..., ws) in C. Moreover, there exists an irreducible
component C; of moda(w;) such that the generic decomposition in C; is (w;) and the

following inequality holds:

dim G(z) — dim C > Z(dim G(w;) — dim C}).

i=1

Proof. For each decomposition z = z; + - - - + z with z; € N9 we get a regular map
Ooyozy t G(2) X moda(z1) X -+ x mody(z) — moda(z), (g, (X;)i) — (Bl X;).

Since ind4(z;) = {Y € moda(z) : Y is indecomposable} is constructible in

mody(z;), then
inda(z1,...,2t) = @z, (G(2) x inda(2z1) X -+ x inda(z))

is constructible in mod4(z). Moreover, moda(z) = U{inda(z1,...,2) : D2 = z}.
There is a decomposition z = w; + - -+ 4+ w, such that C equals the closure of the
intersection ind 4 (wy, ..., ws) N C. There is an open dense subset Uq of C' contained

in inda(ws, ..., ws). Thus z = w; + - - - + wy is generic in C. The unicity is clear. O

83. The tangent space.

Suppose V' C k™ is defined by certain polynomials f(74,...,T,). For z € V| define

"0
0 = g T )

the derivative of f at the point . Then the tangent space of V at x is the linear
variety T (V) in the k™ defined by the vanishing of all d,f as f(T') ranges over the
polynomials in the radical ideal Z(V') defining V.

There are more algebraic ways to define tangent spaces: let R = k[V] be the affine
algebra associated with V' and M, be the maximal ideal of R vanishing at x. Since
R/M, can be identified with k and M, is a finitely generated R-module, then then
R/M,-module M,/M? is a finite dimensional k-vector space. Then (M,/M?*)* the
dual space over k may be identified with 7, (V).
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Some facts and examples:

(a) Let z € V and C, be any irreducible component of X containing x. Then we
have dim; 7T, (V) > dim C,. If equality holds, x is called a simple point of V. If all
points of V' are simple, we say that V' is smooth. An important fact:

o the simple points of V' form an open dense subset of V.

(b) Consider the variety moda(z) as a topological space. The orbit G(z)X of a
point X € mod,(z) is a smooth space. Indeed, given two points z,y in the orbit,
there is an element g of the group G(z) such that y = gz. The regular map ¢, :
G(2)X — G(z)X given as right multiplication by g, induces a linear isomorphism
T, : T,(G(2)X) — T,(G(2)X). Therefore x is a simple point of the orbit if and
only if so is y. Thus (a) implies that G(z)X is smooth.

The following is an important result:

Theorem [40]. Let X € mody(z).
Consider Tx(G(2)X) as a linear subspace of Tx(moda(X)). Then there exists a

natural linear monomorphism
Tx(moda(X))/Tx(G(2)X) — Exty(X, X).
(b) Assume that X satisfies Ext% (X, X) = 0. Then the linear morphism
Tx(mod o(X))/ T (G(2)X) = Ext} (X, X).
s an isomorphism.

We will observe several consequences:

(a) For any X € mody(z), let Cx be an irreducible component of mod(z) con-
taining X. Then

dimy Exth (X, X) > dimgTx(mod(2)) — dimTx (G(2)X)
dim Cy — dim G(2)X
= dim Cx — dim G(z) + dimy Ends(X).

Vv

Hence,

dimG(z) — dim Cx > dimy End4(X) — dim Ext} (X, X)



QUADRATIC FORMS AND THE TYPE OF AN ALGEBRA 27

(b) The inclusion above is not always an isomorphism, as the following simple
example shows:

Let A = k[T]/(T?). Consider the simple module S € mod4(1). Then mod(1) =
G(1)S = {S} and T (mod (1)) is trivial. On the other hand Ext} (S, S) has dimen-

sion 1.
Ezercises: (1) Let X € mod4(z). Then G(z)X is open if and only if T'x (mod(z)) =
Tx(G(2)X).
(2) Let n € N, the function
e":mody(z) — N, x — dim,Ext’} (X, X)
is upper semicontinuous.

(3) Up to isomorphism, there are only finitely many modules X with dimX = z
and satisfying Ext} (X, X) = 0.

84. Tame algebras and varieties.

Proposition. The following conditions are equivalent:
(Ty): A is tame.
(Ty): For each z € N9 there is a constructible subset C' of mod4(z) satisfying
dim C' <1 and inds(z) C G(2)C.
(T3): For each z € N9 if C is a constructible subset of inda(z) intersecting each
orbit of G(z) in at most one point, then dim C < 1.

Proof. (To) = (Ty): Let z € N9. Let M, ..., M, be the A — k[t]-bimodules such
that M, is a free finitely generated k[t]-module and any X € ind4(z) is isomorphic to
M; @y S for some i and some simple k[t]-module S. Therefore, the functor M; @y (—)
induces a regular map f; : modgy (1) — modu(z),i =1,...,s.

The set .

C = Jm f; N inda(z))
i=1

is a constructible subset of ind4(z) with dim C' <1 and G(z)C = inda(z).

(Ty) = (Ty): Assume that A is not tame. Then by the tame-wild dichotomy,
the algebra A is wild. That is, there exists a A — k(u, v)-bimodule M which is free
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finitely generated as right k(u,v)-module and such that the functor M ®j.,y (—) :
modg ;) — mody, insets indecomposable modules.

Let z € N9 where z(z) is the rank of the free k{u,v)-module M(x). We get
an induced regular map fy; : mody, (1) — mod(z). By definition, Im fy/ is a
constructible subset of ind 4(2) intersecting each orbit in at most one point. Moreover,

far is injective and theferefore dim Im fy; = 2. O
Corollary. An algebra can not both tame and wild. 0

Proposition. Let A = kQ/I be a tame algebra. Then for every z € N9,
dim mod4(z) < dim G(z)

Proof: By (1.4), it is enough to show that dim G(z)— dim C' > 0, for an irreducible
component C' of mod4(z)
Since A is tame, we may choose a A — k[t]-bimodule M which is free as right
k[T]-module and the following map is dominant
p:G(z) xImfy, — O, (g, X) — X
Let X € Im ¢ be such that dim ¢~ !(X) = dim G(z)— dim C+ dim Im f}, and
(9,Y) € ¢ 1(X). Then the regular map
Auta(Y) — o 1(X), hr— (hg,Y)
is injective. Therefore,
0 < dim Autxs(Y) — 1 < dim G(2) — dim C O
Example: The converse of the above results are not true.
Let A, = kloa, ..., ap)/(ua; 0 1 < < j < m) with m > 3. We will calculate

dim mod ,,(n).

We get

; | ()_{ (T+1)n2 if n even
1m mody,,(n) = (m__H) (n2—1) if n odd.

If m = 3, then dim mods,(n) < n? showing that the converse of the above

Proposition fails.
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Lecture 3. The Tits form of an algebra.

81. Basic results.

Let A =kQ/I be a triangular algebra, that is, () has no oriented cycles.
Choose R a minimal set of generators of I, such that R C |J I(¢,7). We have:

,J€Q0
o dimzExt}(S;, S;) = # arrows from i to j
e 17(i,7) =|RNI(i,7)| is independent of the choice of R
. T’(Z,]) = dlmkEXti(SZ, SJ)

The Tits form of A is the quadratic form

qa: 2% — Z,
given by qa(v) = EZQ v(i)? — ;U(Z)’U(j) + ;@ (i, 7)v(i)v()).

Proposition. Assume A = kQ/I is triangular. Let = € N9°. Then for any X €
moda(z).
qa(2) > dimg Endy(X) — dim, Ext! (X, X).

Proof. Let X € mod(z). The local dimension dimxmod,(z) is the maximal dimen-
sion of the irreducible components of mod 4(z) containing X. By Krull’s Hauptideal-
satz, we have
dimy moda(z) > > 2(D)z(j) — > r(i,5)z()2()).
(i—§)€Q1 ij€Qo
Therefore, we get the following inequalities,
ga(z) > dim G(z) — dimy mody(z) > dim G(z) — dim Tx >

> dimy, Endy(X) — dirh} End} (X, X). O

In 1975, Brenner observed certain connections between properties of g4 and the

“ ..1s written in the

representation type of A. She wrote about her observations:
spirit of experimental science. It reports some regularities and suggests that there

should be a theory to explain them”.

Theorem. Let A =kQ/I be a triangular algebra.
[3]: If A is representation-finite, then qa is weakly positive
[28]: If A is tame, then q, is weakly non-negative
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Proof. In general, for v € N@o
dimmoda(v) > > w(i)v(j) — Y r(i,j)v(i)v(j)
i—j 1,7€Q0

dimG(v) = Zv(i)2

i€Qo
ga(v) > dim G(v) — dimmod 4 (v)
If A is tame, then g4(v) > 0.
If A is representation-finite, mod(v) = G G(v)X; where Xi,...,X,, are rep-
resentatives of the isoclasses of A-modules i):fl dim = v. Hence dimmoda(v) =

dim G(v)X; = dim G(v) — dim Stabg,) X; < dim G(v) — 1 and ga(v) > 1. O

Consider the algebra A given by the quiver

3
N
o
/\2—>4
~—_ “~7 B

B,

1

with relations yao' = 66" and o’ = 0. The Tits form ¢4 is
4

qa(z) = Z x% — 2T1T9 — ToTg — ToTy — T3T4 + T1T3 — T1T4
i=1
1 1 \?
= $1—x2+§I3+§ZE4 .

and therefore (weakly) non-negative. We shall see later that A is wild.

82. Modules on preprojective components.

Recall that a component P of the Auslander-Reiten quiver I'4 of A is called pre-
projective if it does not contain oriented cycles and for every X € P there is a
translate 7t X which is projective. If X € P and Y is an indecomposable such that
Hom, (Y, X) # 0, then Y € P.

We give some examples of algebras with preprojective components:
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(a) Let A = kA be a hereditary algebra. Then I"4 has a preprojective component

P, and the indecomposable projective modules form a slice.

(b) Tree algebras have preprojective components (an algebra A = kQ/I is a tree
algebra if the underlying graph |@Q| of @ has no cycles). This is a particular case of

the following situation.

(¢) An indecomposable projective P; is said to have separated radical whenever
the supports of any two non-isomorphic direct summands of rad P; are contained
in different components of the subquiver Q¥ of @ obtained by deleting all vertices
in[—i ={j€Q:{j€ Qo:j~ i} Ifforevery vertex i € QQy, P; has sepa-
rated radical, then A satisfies the separation condition. Note that tree algebras
satisfy the separation condition. If A satisfies the separation condition, then I' 4 has

a preprojective component.

A representation-finite algebra A such that I' 4 is a preprojective component is said

to be representation-directed.

Let @' be a subquiver of (), we say that )’ is convex in @ if @’ is path closed in
@ (that is, whenever ig — i; — -+ — 4, is a path in @ with iy, i, € Q' then i; € Q'
for1<j<m-—1).

Lemma. Suppose that X is an indecomposable lying in a preprojective component P

of T'x. Then supp X is convex in Q).

Proof. Supose that i; — iy — ... o), is a path in @ such that X(iy) #0 #
X (i) but X(;) = 0 for 2 < 5 <m — 1. Let I’ be the ideal of k@) generated by all

paths of the form: ey with €,v € ()1 where either i, 5 iy and € starts at iy or 0
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ends at i,,_; and 4,1 —> . Let A’ = kQ/(I +I'). Then X is a A’-module and

there is a chain of non-zero morphisms

Tm—
X—)Ii,m—> el —— M —— S, g —— e — i2—>PZ./1—>X

Tm—1
where M/ denotes the indecomposable module k; — k; and I/ is the A-module

associated with i,,. Since X € P, this cycle should lie in P. A contradiction. 0
Corollary. Let X be a preprojective A-module. Then q4(dim X) = 1.

Proof. We may assume that X is omnipresent in A. Then pdim X < 1: otherwise

there are non-zero maps as in the picture,

A contradiction. Similarly, gldim A < 2. Hence ga(dim X) = dimzEnd4(X) —
dim; Ext}y (X, X) = 1. O

The following basic fact is due to Drozd (in Lecture 1 we already used a particular

case of this result):

Lemma. A weakly positive quadratic form q : Z" — 7 has only finitely many

positive roots.

Proof. Consider ¢ as a function ¢ : R — R. By continuity ¢(z) > 0 in the positive
cone K = (R")*. By induction on n, it can be shown that ¢(z) > 0 for any 0 # z € K.
Let 0 < 7 be the minimal value reached by ¢ on {z € K : ||z|| = 1} (a compact set).
Then a positive root z of ¢ satisfies v < ¢ ( z ) L, that is [|z]| < /1/7. O

1) = 1=’

Theorem [3]. Let A = kQ/I be an algebra such that Q has no oriented cycles.
Assume that T'y has a preprojective component. Then A is representation-finite if
and only if the Tits form qa is weakly positive. In that case, there is a bijection
X +— dim X between the isoclasses of indecomposable A-modules and the positive

roots of qa.
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Proof. Assume that g4 is weakly positive. Let P be a preprojective component of I' 4.
Let X € P then dimX is a root of ¢g4. Moreover, the map X — dimX, for X € P,
is injective. Indeed, let X,Y € P be such that dim X = dim Y. We may assume

that X is omnipresent. Then, we get
1 =ga(dim X) = dimy Hom4(X,Y) — dimy Exth(X, Y).

In particular, Hom4(X,Y) # 0. By symmetry, Hom4 (Y, X) # 0 and X =Y. It
follows that P is a finite component of I'y and P =1"4.

Finally, let z € N9 be a root of g4. Then there is a module X € mod4(z) with
the orbit G(2)X of dimension dim G(z) — 1. Since dim G(2)X = dim G(z) —
dim End4(X), we obtain that End, X = k. O

We give some examples.
(a) The statement of (2.3) may be false if A has no preprojective component.

Consider the algebras A; given by the quiver @) with relations I; = (p;):

%1

227N\
Q: % 5—>6—>7—>8
3M4ﬁ2

P = (%azal—ﬁzﬁl)
P2 = G300y

Clearly, they have the same Tits form
8

q = Z T} — @1y — Taly — TyTy — T1T5 — T4T5 — T5T — TeL7 — TTg + T1T4
3 1 1 1 \? 3/, 2 1 1 \?
= <m1 - §m2 + 5364 - §x5> + 1 (m — gmg + §m4 - §x5> +
+ 2 <x3 - Zaa- %:5)2 5w a4 5 (o5 — 70)° + (o6 — w0)* +
+ %(m —xg)% + %x%

which is positive.
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The algebra A; satisfies the separation condition and Bongartz theorem applies.
The algebra A, is not representation-finite: mod A, contains the representations of
the Euclidean quiver

3«—2+«~1— 5 —-6—7—38

l
4

83. Critical forms and critical algebras.

We recall some important facts of linear algebra
(a) Let A = (a;;) be an n x n-matrix. Let 1 < 43 < iy < -+ < iy < n and
1 <1 <ja<---<js <m. Form the s x s-matrix

i ; Qivjr Qivgay -+ Qiggs
Al°Y 2 0 s = :
Ju o J2 - Js

(7 CLZ'Sj2 aisjs

The determinant det A (;1 o zs) is called a minor of A.
1.--]s

If i1 = j1,...,is = js, then A Cl . ;s) is called a principal submatrix and
1---]s

det A (;1 h zs) a principal minor.
1.--0s

Ifs =n—11{i,....is} = {1,...,4,...,n} and {ji,...,js} = {1,...,7,...,n},

then A (21 o '2‘5) is denoted by A%™/.

Ji---Js

(b) The matrix ad(A) whose (i, j) entry is (—1)""7 det A7) is called the adjoint
matrix of A. It has the property that A ad(A) = (det A) E,, = ad(A)A.

(c) Let ¢ be the quadratic form associated with a symmetrical real matrix A, that
is q(z) = sz Az’
The form ¢ is positive if and only if the determinants of the principal submatrices

A G) VA G 3) LA GS Z) = A are positive, or equivalently, if all principal

minors are positive.

The form ¢ is non-negative if and only if all principal minors of A are non-negative

detA(;l'";.S) > 0forall 1 <ij <iy<--<io<ma=1 ... n
1-.--Js
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(d) Perron-Frobenious theorem: Let A = (a;;) be a real matrix with a;; > 0.
Then for the spectral radius p = max {||A|| : A is an eigenvalue of A}, there is a
vector y with non-negative coordinates such that yA = py. Moreover, if a;; > 0 for
every i, j, then 0 < p and the coordinates of y are positive.

We say that an integral quadratic form q(z1,...,z,) = >, 2? + 3 gjzx; is a unit

i=1 i<j
form.
Theorem [41]. Let q : Z" — Z be a unit form and let A be the associated symmetric

matriz. The following are equivalent:

(a) q is weakly positive.
(b) For each principal submatriz B of A either det B > 0 or ad (B) is not positive
(that is, it has an entry < 0).

Proof. a) = b): Let B be a principal submatrix of A. Suppose that ad (B) is positive.
Then there is a positive vector v and a number of p > 0 such that v ad(B) = pv.
Then 0 < g(v) = vBv' = p~! ad(B)Bv' = p~(det B)vvt. Thus det B > 0.

b) = a). Let A be a n x n-matrix satisfying (b). We show that ¢ is weakly positive
by induction on n.

Since property (b) is inhereted to principal submatrices, we can assume that the

quadratic form ¢ associated with each principal submatrix A®9 is weakly positive.

Claim: ¢ is positive, 1 <14 < n (exercise).

Assume that ¢ is not weakly positive. Therefore, we get a vector 0 < y € N™ such
that ¢(y) < 0.

In particular, every proper principal submatrix B of A has det B > 0. Since A is
not positive, det A < 0. By hypothesis, ad (A) is not positive. Suppose that the j-th
row v of ad(A) has some non positive coordinate. Therefore, there exists a number

A > 0 such that 0 < Ay + v is not omnipresent. Therefore
0<qhy+v) = Nqly)+ Ay + q(v) < Mdet A)y(j) + (det A)v(j)
< (det A)(det AU <0,

since by the claim ¢V is positive. O
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A unit form q: Z™ — Z is critical if ¢ is not weakly positive but all its restrictions

¢ (i=1,...,n) are weakly positive.
Corollary. If q is critical, then the set
Co={veZ":v(i)>0andv(j) <0 forsomel <i,j <nandq(v)=1}
18 finite.
Theorem [25|. Let q be a critical form. Then there exists a Fuclidean quiver A

and an invertible transformation qT of q such that gn = qT. In particular, q is non

negative and there is a vector 0 < z € Z™ such that rad q = Zz.

Proof. Since n > 3, then 0 < ¢(es £ ¢;) = 2 4+ agy. Choose ¢ = ¢T an invertible

transformation of ¢ such that the set C'y has minimal cardinality.

n
Therefore, ¢’ = fo + Za;jxixj is critical and —1 < aj; < 0 for every pair i, j

i=1 i#j
with i # j. Thus ¢’ = ga for some quiver A. Since ¢’ is critical, A is Euclidean. Then
radq’ = Zu with u > 0 and z = T '(u). O

Let A = Ek[Q]/I be a k-algebra. We say that A is minimal representation-
infinite it it is representation-infinite but every quotient A/AeA is representation-
finite for any idempotent 0 # e of A.

A minimal representation-infinite algebra A with preprojective component is called
critical. Observe that a preprojective component of a critical algebra contains all

the indecomposable projective modules (and therefore is unique).

Lemma. Let A be an algebra with a preprojective component containing all projective
modules. If e is an idempotent of A, then AJ/AeA has preprojective components such

that their union contains all indecomposable projective A/AeA-modules. O

Theorem [19]. Let A = kQ/I be an algebra with preprojective component. Assume
that Q) has at least 3 vertices. Then the following are equivalent:

(a) A is critical;

(b) The Tits form qa is critical;

(¢) A is tame concealed.
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Proof. Let P be a preprojective component of I"4.

b) = c¢): Assume that ga is critical. Therefore, A is representation-infinite. A
preprojective component P of I" 4 should contain all indecomposable projective mod-
ules. Moreover, this component P does not contain injective modules. Therefore, A
is tilted.

Assume that A = Endg(7T) where B = kA is an hereditary algebra and g7 is a
tilting module. Therefore the Euler forms x4 and yp are equivalent. Since gldim A <
2, then x4 = qa. Therefore, A is a tame quiver.

By a dual argument, A has a preinjective component with all indecomposable

injective modules. Hence A is tame concealed. OJ

Critical algebras were classified in a list of frames in [19]. With a different approach
the list was also obtained in [4]. In fact, we have the equivalent concept given by the

following result.

Theorem [4]. Let A = k[Q]/I be an algebra with preprojective component. Then A
is representation-finite if and only if there is no convex subalgebra Ay of A such that

Ay is critical. O

84. Preprojective components of tame algebras.
Let A =EkQ/I be a k-algebra and assume that () has no oriented cycles.

Proposition. Let P be a preprojective component of I' y. The following are equiva-

lent:

(a) The algebra Ap = Enda(P) is tame, where P = @ P,.
P,€P
(b) There exists a constanct ¢ > 0 such that for every x € Qq, s € N, the inequality

dimy7,°Ps < cs

is satisfied.

Proof. Consider the algebra Ap. Since P is a preprojective component of Ap, we may
assume that A = Ap. Let 7 be the Auslander-Reiten translation in P.
a) = b): Assume that A is tame. Then the Tits form ¢4 is weakly non negative,

which implies the following:
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Let X € P and ¢ € Q. If X is not injective, then
|dim7 ' X (i) — dimp X (i) < 2.

Let m = max {dimyP,: x € Qp}, then dimy7 *P, < 2ns + m for every = € Qo,
s € N and n = number of vertices of Q).

b) = a): Assume that A is wild. Let A’ = A/AeA where e = > e,. Then there
I.eP
is a preprojective component P’ of I' 4 (with translation 7’) and a number r > 0 such

that for every z € Qg and t > r, the following is satisfied: if the module X = 77'P,
exists, then X € P’ and 7' X =771 X.

Therefore, we may assume that A = A’, that is, P is a preprojective component
containing all indecomposable projective modules and without injectives. Let S be a
slice in P. Then 4T = @S is an A-tilting module such that B = End4(7") is a wild
hereditary algebra, say B = kA.

Let or: Ko(A) — Ko(B) be the isomorphism of Grothendieck groups induced by
T. Thus ¢4 = O'TQOBUEI.

Let X € P be such that there is an oriented path from some Z € § to X. Then
dim7 "X = (dim X)¢,™ for m > 0. Let Y = XX, where ¥ = Hom4 (7, —). Then
Y is a preprojective B-module.

We claim that lim {/dim,7 "X exists if and only if lim R/dimg ;™Y exists

m—00
1

and in that case they are equal. Indeed, let o7 = (a;5), o7 = (b;j) be n x n matrices.
n
Let a = max {|al, |bi;|: 1 <4,7 < n}. For a vector z € N9 we write |z| = > 2(i).

=1
We get
[(dimY)e"| = [(dim X)¢,"or| < na|(dim X)p,™| and
(dim X)p"| = |(dimY)py 07! < nal(dimY)p™].

This shows the claim.
On the other hand, lim %/dim;75;™Y exists and equals p > 1, where p is the

m—00

spectral radius of ¢p, that is p = max {||A||: A is an eigenvalue of pp}. Therefore A

can not satisfy (b). O

The next Proposition completes the discussion on tilted algebras of tame type

iniciated in Lecture 1.
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Proposition. Let P be a preprojective component of I' 4 containing all indecompos-

able projective A-modules and no injective module. Then the following are equivalent:

(a) A is tilted of Euclidean type
(b) A is tame

(c
(

d) qa is weakly non negative

)
) The Tits form qa is non negative
)
(e) T'a has a tube.

Proof. a) = b): Clear.

a) < c): Since g4 = xa, A is tilted of a tame hereditary algebra if and only if g4
is non negative.

¢) = d): Clear.

b) = e): By Lecture 1, I'4 has a stable tube.

e) = a): Let S be a slice in P. Let T'= &S and B = End4(7T) be a hereditary
algebra. Assume that A is wild. Let X € I'y \ P. As in the proof of the above
Proposition, lim +/dim,75X = p > 1. This implies that X does not lie in a tube
inl'y. If A iss?ziome, then |S| is an euclidean diagram and A is a domestic cotubular

algebra. 0
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Lecture 4. Structure of tame algebras and their categories of modules.

81. Standard tubes in Auslander-Reiten quivers.

Let A be a finite dimensional k-algebra. We recall that two modules X, X5 are
said to be orthogonal if Hom 4 (X1, X3) = 0 = Hom 4 (X3, X7).

Let Ey,. .., E, be a family of pairwise orthogonal bricks. Define e(Ej, ..., E;) as the
full subcategory of mod s whose objects X admit a filtration X = Xg D X; D --- D
X, = 0 for some m € N, with X;/X;;; isomorphic to some Ej;, for any 1 <i <mn.

Lemma. The categorye = e(Ey, ..., Es) is an abelian category, with Ey, ..., Es being
the simple objects of E. O

An abelian category ¢ is said to be serial provided any object in E has finite lenght

and any indecomposable object in £ has a unique composition series.

Proposition. Let Ey, ..., Es be pairwise orthogonal bricks in some module category
mod A. Assume that (a) TE; = E;y for 1 < ¢ < s with Ey = Es; and (b)
Ext}(E;, E;) = 0 for all1 < i,j < n. Then ¢ = (E4,...,Es) is serial, it is a
standard component of T 4 of the form ZA,./(n). O

With the notation of the Proposition above: we denote by E;[t] the unique module
in the serial category F which has socle E; and lenght .

A family 7 = (7)) er of the Auslander-Reiten quiver of an algebra A is a standard
stable tubular family if each T is a standard component of the form ZA.,/(n,) for

some ny and for A # p the components T and 7}, are orthogonal.

Corollary. Let 7 = (Th\)xer be a standard stable tubular family in the Auslander-
Reiten quiver of A. Then the additive closure add T of T in mody is an abelian

category which is serial and is closed under extensions in mod 4. 0

A standard stable tubular family 7 = (T))er is said to be separating if there are
full subcategories P and Z of mod 4 satisfying the following conditions:
(i) each indecomposable A-module belongs to one of P,7 or Z;
(ii) for modules X € P, Y € T and Z € T we have Homu(Z,Y) = 0 =
Hom4(Z, X)) and Hom, (Y, X) = 0.
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(iii) each non zero morphism f € Homyu (X, Z) for indecomposable modules X €

P, Z € I, factorizes through each component T).

Example: Let A be the algebra given by the quiver with relations below

w

N !
A= ( T Ay T dim E: 1
.<\‘T-*>. s> 1 1 1
Ve
PR [ L

Then A is the one-point extension Ao[Ep] as follows

_ |40 Eo
AO [EO] - |: 0 k :|
with the usual matrix operations and where Ej is considered as an Ay — k-bimodule.
Moreover rad Py = Ej.

The algebra Ay is tame hereditary with an Auslander-Reiten quiver of the shape

: ,P140 e o o b/ e o o IAO >

where Py, is a preprojective component, Z4, a preinjective component and 7y, is a
separating tubular family of tubular type (2,3,3). In 74, = (7)), almost all tubes

are of rank one with a module on the mouth with dimension vector

The tubes of rank 2 and rank 3 have modules on the mouths with the unique

indecomposable Ag-modules having the indicated dimension vectors:
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0 1
. 1 . 1
E: B
1 1 1 1 2 1
1 1 0 0
0 0 1
1 . 1
e X 0 X,
1 1 0 1 1 1 0 1 1
0 0 1 0 0 1
0 0 1
1 . 0 1
7z, 7 Z,
0 1 1 1 1 1 1 1 0
0 0 0 1 1 0

and where the Auslander-Reiten translation is given by 74,E; = E;_1, 74,X; = Xi1
and 74,Z; = Z;_; cyclically.

The structure of I'4 is given as follows:

0 L] L] L] L] L] L] L] L] L] L] L] L] IOO
£ -7~ -~ -~
7, T, T

where 7y = \/ T\ VT3[Ep] is the family of tubes 74, with the exception of the tube of
AH£2
rank 2 which appears now ‘inserted’ with the new projective at the extension vertex

0.
For each positive rational number § = 7, (a,b), 7s is a separating family of tubes of
tubular type (3, 3,3) with all homogeneous tubes but 2 of rank 3. The homogeneous

tubes have modules on the mouths of vector dimension
azy + bzso

where z,, is given by
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. 1 1
Ay Ttle 1 10201 dmpe,: 0 1 0
ce—(—>e 111 0 0 0

Observe that A, is tame concealed and A = [Fy] A is a one-point coextension
where the module F, lies on a regular tube of I'y__. The algebra A is a typical tubular
algebra as defined by Ringel [34].

Proposition. Let 7 = (T))x be a standard separating tubular family for the module

category mod . Then

(a) For almost every A, the tube Ty is homogeneous.
(b) Let T\ be a homogeneous tube of the family T. Let X be a module in the
mouth of T\ and v =dim X. Then ga(v) = 0.

Proof of (b): Let X be a module in the mouth of a homogeneous tube Ty in 7. Let
B be the convex closure in A of Usupp X with X € T). Since B is convex in A and
gldim B < 2, then

qa(dim X) = ¢p(dim X) = dim;, End,(X) — dim, Ext} (X, X).

Since T) is standard and X ~ 7X, then Ext} (X, X) & DHomy(X,7X) and we
get ¢4 (dim X) = 0. O
Notation: Let T = (T)), be a standard separating stable tubular family in mod A.
Let r(\) be the period (or rank) of the tube T). Consider those r(A;),...,r(\s) which
are strictly bigger than 1 (finite number by (1.4)). We define the star diagram T,

of the family 7 as the diagram with a unique ramification point and s branches of
lengths (A1), ..., 7(Xs).

Theorem [24, 34]. Let A= kQ/I be a k-algebra. Let n be the number of vertices of
Q. Let T = (T)\)aer be a standard separating stable sincere tubular family in mod A.
Let r(\) be the rank of the tube Ty. Then

dr(N)-1)=n-2

AEL
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Moreover, A is a tame algebra if and only if the star diagram T, is a Dynkin or

extended Dynkin diagram. O

82. Tubes and isotropic roots of the Tits form.

We say that a property P is satisfied by almost every indecomposable in mod 4 if
for each d € N, the set of indecomposable A-modules of dimension d which do not
satisfy P form a finite set of isomorphism classes. The following is a central fact

about the structure of the Auslander-Reiten quiver I'4 of a tame algebra A.

Theorem [8]. Let A be a tame algebra. Then almost every indecomposable lies in a

homogeneous tube. In particular, almost every indecomposable X satisfies X ~ 1.X.

Open problem: Is it true that an algebra is of tame type if and only if almost every

indecomposable module belongs to a homogeneous tube?

Proposition. Let A be an algebra such that almost every indecomposable lies in a

standard tube. Then A is tame.

Proof: Our hypothesis implies that almost every indecomposable X satisfies
dimiEnd 4(X) < dim; X. We show that this condition implies the tameness of A.
Indeed, assume that A is wild and let M be a A— k{u, v)-bimodule which is finitely
generated free as right k(u,v)-module and the functor M®y,-insets indecompos-
ables. Consider the algebra B given by the quiver # C . :) t> and with radical J
i3
satisfying J? = 0. Then there is a A— B-bimodule N such that N is free and N®p— :
mod B — mod A is fully faithful. Therefore the composition F'= M ®4 (N ®p —)
is faithful and insets indecomposables. Moreover, dim;F'X < m dim; X for any X €
mod B if we set m = dimy (M @4 N).
Consider also the functor H : mod A — mod B sending X to the space X' = X®X

with endomorphisms

Xty {8 Xéw)}’X/(tQ): [8 Xg“)} and  X'(t3) = {8 1(?]
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This functor insets indecomposables. For the simple A-modules X of dimension n,

we get indecomposable A-modules F'H(X) with

dim FH(X) < mdimgH (X) = 2mn
and

dimy, Endy(FH(X)) > dimy, Endg(H (X)) = n*+ dimg Endg(X) =n?+1. O

Let A = kQ/I be a triangular algebra. In case A is tame, we would like to find the
dimensions z € N where indecomposable modules X with dim X = z and X in a

homogeneous tube exist. A partial result:

Proposition. Assume that A is tame and qa(z) = 0. Then there is a decomposition
2z =w + -+ w, with w; € N9 and an open subset U of mod 4 (z) satisfying:

(a) dim U = dim mod(z).

(b) Every X € U has an indecomposable decomposition X = X; @ --- @ X, such

that dim X; = w; and the module X; lies in the mouth of a homogeneous tube.
Moreover, dimHomu (X;, X;) = 0;; = Ext!(X;, X;) for 1 <i,j <s. O

83. Hypercritical algebras.

n
Let ¢ =Y 22+ > a;x;x; be a unit form. Let M be the symmetric matrix associ-
i=1 i#j
ated with q.

Proposition. The following are equivalent:

(a) q is weakly non-negative

(b) Every critical restriction ¢! of ¢ with v the positive generator of rad ¢, satisfies

vOM > 0.
Proof. a) = b): Assume that ¢! is critical and v M has its j-th component negative.
Then 0 < 20° +¢; € Z" and q(20° + ¢;) = 20°Me! +1 <0
b) = a): Assume that ¢ satisfies (b) but not (a). By induction, we may suppose

that ¢(*) satisfies (a), 1 <4 <n. Let 0 < z be such that ¢(z) < 0. Let ¢’ be a critical
restriction. Let v be the positive generator of rad ¢’. We can find a number a < 0
such that 0 < z + av® and (2 + av®)(j) = 0 for some 1 < j < n. Then

0< q(j)(z +av’) < av’ M2 <0,

a contradiction. O
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Corollary. The unit form q is weakly non negative if and only if 0 < q(z) for every
z € 10,12]™. O

Following [38] a triangular algebra A = kQ/I is strongly simply connected if every
convex subcategory B of A satisfies the separation condition. By [27], the Tits form
ga of a strongly simply connected algebra A is weakly non-negative if and only if A
does not contain a full convex subcategory which is tilted of a hereditary algebra of

one of the tree types

. .\./. = ..\. eee 0/. R i
L o, B . SO S
E7:0—‘_’_‘_’_._._. ]Eg._.—o—o—o—o—o—o—o

where in the case ]f))n the number of vertices is n 4+ 2, with 4 < n < 8. The hereditary

algebras corresponding to this list are called hipercritical algebras.

Theorem [7]. Let A be a strongly simply connected algebra, then the following are

equivalent:

(a) A is tame
(b) qa is weakly non-negative

(¢) A does not contain a full convex subcategory which is hypercritical. 0

The proof of the Theorem depends on many partial results proved along many
years by several people. We give only a superficial idea of the used arguments.

Let A =kQ/I be a strongly simply connected algebra.

o A is of polynomial growth if there is a natural number m such that the number
of one-parameter families of indecomposable modules is bounded, in each dimension

d, by d™.
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o The representation theory of strongly simply connected algebras of polynomial
growth is well understood [39] and the structure of the Auslander-Reiten quiver is
described via coils and multicoils [1].

o Ais (tame) of polynomial growth if and only if ¢4 is weakly non-negative and A
does not contain a convex subcategory of a certain list of (the so called, pg-critical)
algebras [39].

Hence, in order to prove the Theorem, we may assume that:

(i) A contains a convex pg-critical algebra.

(ii) A accepts an indecomposable A-module X so that X (i) # 0 for every source
or sink ¢ in Q.

« In [7], it is proved that A is constructed from (as a suitable pushout glueing of
blowups of) extensions of coil algebras and pg-critical algebras (thus A is said to be
a D-algebra).

o The category of A-modules is equivalent (up to finitely many indecomposable
objects) to the category of A*-modules, where A* is canonically constructed.

o A" degenerates to a special biserial algebra.

« By [17], it is enough to show that special biserial algebras are tame (which is

well-known).
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