Advanced School and Conference on Representation Theory and Related Topics

```
(9-27 January 2006)
```

Integral Quadratic Forms and the Representation Type of an Algebra
(Lecture 2)

José Antonio de la Peña

Universidad Nacional Autonoma de Mexico - UNAM

INTEGRAL QUADRATIC FORMS AND THE REPRESENTATION TYPE OF AN ALGEBRA

LECTURE 2

Dr. José Antonio de la Peña
Instituto de Matemáticas, UNAM
2. The geometric approach.

2.1. Some elements of algebraic geometry.

We consider the affine space $V=k^{n}$ with the Zariski topology, that is, closed sets are of the form

$$
Z\left(p_{1}, \ldots, p_{s}\right)=\left\{v \in V: p_{i}(v)=0\right\}
$$

where $p_{i} \in k\left[t_{1}, \ldots, t_{n}\right]$ is a polynomial in n indeterminates.

- $S \subset k\left[t_{1}, \ldots, t_{n}\right]$, then $Z(S)$ is the zero set of S.
- $Z(S)=Z(\langle S\rangle)=Z(\sqrt{\langle S\rangle})$, where
$\langle S\rangle=$ ideal of $k\left[t_{1}, \ldots, t_{n}\right]$ generated by S
$\sqrt{I}=($ radical of $I)=\left\{p \in k\left[t_{1}, \ldots, t_{n}\right]: p^{i} \in I\right.$ for some $\left.i \in \mathbb{N}\right\}$
- $Z\left(\bigcup_{i \in I} S_{i}\right)=\bigcap_{i \in I} Z\left(S_{i}\right)$ and $Z\left(S \cdot S^{\prime}\right)=Z(S) \cup Z\left(S^{\prime}\right)$
- Hilbert's basis theorem: $\exists p_{1}, \ldots, p_{s} \in S$ with $Z(S)=Z\left(p_{1}, \ldots, p_{s}\right)$
- Hilbert's Nullstellensatz: $\left\{p \in k\left[t_{1}, \ldots, t_{n}\right]: p \equiv 0\right.$ on $\left.Z(S)\right\}=\sqrt{\langle S\rangle}$

We say that $Z=Z(S)$ is an affine variety and $k[Z]=k\left[t_{1}, \ldots, t_{n}\right] / \sqrt{\langle S\rangle}$ is its coordinate ring.

An affine variety $Z=Z\left(p_{1}, \ldots, p_{s}\right)$ is reducible if $Z=Z_{1} \cup Z_{2}$ with proper closed subsets $Z_{i} \subset Z$. Otherwise Z is irreducible.

- There is a finite decomposition of any affine variety $Z=\bigcup_{i=1}^{s} Z_{i}$ into irreducible subsets $Z_{i} \subset Z$. If the decomposition is irredundant, we say that Z_{1}, \ldots, Z_{s} are the irreducible components of Z.
- If Z is an irreducible variety, then the maximal length of a chain

$$
\emptyset \neq Z_{0} \subsetneq Z_{1} \subsetneq \cdots \subsetneq Z_{s}=Z
$$

is called the dimension of $Z(=: \operatorname{dim} Z)$.
If $Z=\bigcup_{i=1}^{s} Z_{i}$ is an irreducible decomposition
$\operatorname{dim} Z=\max _{i} \operatorname{dim} Z_{i}$.

A map $\mu: Y \rightarrow Z$ between affine varieties is a morphism (a regular map), if $\mu^{*}: k[Z] \rightarrow k[Y], p \mapsto p \circ \mu$ is well-defined. In fact, μ^{*} is a k-algebra homomorphism.

- Any morphism $\mu: Y \rightarrow Z$ is continuous.
- A map $\mu: Y \rightarrow Z$ is a morphism if and only if $\exists \mu_{1}, \ldots, \mu_{m} \in k\left[t_{1}, \ldots, t_{n}\right]$ such that $\mu(y)=\left(\mu_{1}(y), \ldots, \mu_{m}(y)\right), \forall y=\left(y_{1}, \ldots, y_{n}\right) \in Y \subset k^{n}$.

Proposition. Let $\mu: Y \rightarrow \underline{Z}$ be a morphism between irreducible affine varieties and assume μ is dominant (i.e. $\overline{\mu(Y)}=Z$). Then for every $z \in Z$ and every irreducible component C of $\mu^{-1}(Z)$ we have

$$
\operatorname{dim} C \geq \operatorname{dim} Y-\operatorname{dim} Z
$$

with equality on a dense open set of Z.
In particular, if C is an irreducible component of $Z\left(p_{1}, \ldots, p_{t}\right) \subset k^{n}$, we have

$$
\operatorname{dim} C \geq n-t
$$

A fundamental result is the following
Theorem (Chevalley) Let $\mu: Y \rightarrow Z$ be a morphism between affine varities. Then the function
$y \mapsto \operatorname{dim}_{y} \mu^{-1}(\mu(y))=\max \left\{\operatorname{dim} C: y \in C\right.$ irreducible component of $\left.\mu^{-1}(\mu(y))\right\}$
is upper semicontinuous (that is, $d: Y \rightarrow \mathbb{N}$ has $\{y \in Y: d(y)<n\}$ open in Y, for all $n \in \mathbb{N}$).

A general morphism $\mu: Y \rightarrow Z$ is neither open nor closed, but $\mu(Y)$ is a finite union of locally closed subsets of Z.

A finite union of locally closed subsets of a variety Z is called a constructible subset. Proposition. If $\mu: Y \rightarrow Z$ is a morphism and $Y^{\prime} \subset Y$ a constructible subset, then $\mu\left(Y^{\prime}\right)$ is also constructible.

2.2. The main example: module varieties.

Let $A=k Q / I$ be a finite dimensional k-algebra and fix a finite set L of admissible generators of I. Let $z \in \mathbb{N}^{Q_{0}}$ be a dimension vector.

The module variety $\bmod _{A}(z)$ is the closed subset, with respect to the Zariski topology, of the affine space $k^{z}=\prod_{i \rightarrow j} k^{z(j) z(i)}$ defined by the polynomial equations given by the entries of the matrices

$$
m_{r}=\sum_{i=1}^{t} \lambda_{i} m_{\alpha i 1} \ldots m_{\alpha i s_{i}} \text {, where } r=\sum_{i=1}^{t} \lambda_{i} \alpha_{i 1} \ldots \alpha_{i s_{i}} \in L
$$

and for each arrow $x \xrightarrow{\alpha} y, m_{\alpha}$ is the matrix of size $z(y) \times z(x)$.

$$
m_{\alpha}=\left(X_{\alpha i j}\right)_{i j}
$$

where $x_{\alpha i j}$ are pairwise different indeterminates. We shall identify points in the variety $\bmod _{A}(z)$ with representations X of A with vector dimension $\operatorname{dim} \mathbf{X}=z$.
Example: $A=k Q / I$ where $Q: \bullet \xrightarrow{\alpha} \xrightarrow{\beta} \cdot$ and $I=\langle\alpha \beta\rangle$

$$
\left(\begin{array}{ll}
x_{\alpha 11} & x_{\alpha 12} \\
x_{\alpha 21} & x_{\alpha 22}
\end{array}\right)\left(\begin{array}{ll}
x_{\beta 11} & x_{\beta 12} \\
x_{\beta 21} & x_{\beta 22}
\end{array}\right)=\left(\begin{array}{ll}
x_{\alpha 11} x_{\beta 11}+x_{\alpha 12} x_{\beta 21} & x_{\alpha 11} x_{\beta 12}+x_{\alpha 12} x_{\beta 22} \\
x_{\alpha 21} x_{\beta 11}+x_{\alpha 22} x_{\beta 21} & x_{\alpha 21} x_{\beta 12}+x_{\alpha 22} x_{\beta 22}
\end{array}\right)
$$

$\bmod _{A}(2,2,2) \subset k^{2 \times 2} \times k^{2 \times 2}=k^{8}$ defined by 4 equations.

The group $G(z)=\prod_{i \in Q_{0}} G L_{z(i)}(k)$ acts on k^{z} by conjugation, that is, for $X \in k^{z}$, $g \in G(z)$ and $x \xrightarrow{\alpha} y$, then $X^{g}(\alpha)=g_{y} X(\alpha) g_{x}^{-1}$.

By restriction of this action, $G(z)$ also acts on $\bmod _{A}(z)$. Moreover, there is a bijection between the isoclasses of A-modules X with $\operatorname{dim} X=z$ and the $G(z)$-orbits in $\bmod _{A}(z)$.

Given $X \in \bmod _{A}(z)$, we denote by $G(z) X$ the $G(z)$-orbit of X. Then

$$
\operatorname{dim} G(z) X=\operatorname{dim} G(z)-\operatorname{dim} \operatorname{Stab}_{G(z)}(X)
$$

where the stabilizer $\operatorname{Stab}_{G(z)}(X)=\left\{g \in G(z): X^{g}=X\right\}=\operatorname{Aut}_{A}(X)$ is the group of automorphisms of X. As $\operatorname{Aut}_{A}(X)$ is an open subset of the affine variety $\operatorname{End}_{A}(X)$, then

$$
\operatorname{dim} \operatorname{Stab}_{G(x)}(X)=\operatorname{dim} \operatorname{Aut}_{A}(X)=\operatorname{dim} \operatorname{End}_{A}(X)
$$

Finally, we get

$$
\operatorname{dim} G(z) X=\operatorname{dim} G(z)-\operatorname{dim} \operatorname{End}_{A}(X)
$$

also that an orbit $G(z) X$ is locally closed, that is $G(z) X$ is open in the closure $G(z) X$ defined in $\bmod _{A}(z)$. In particular, $G(z) X \backslash G(z) X$ is formed by the union of orbits of dimension strictly smaller than $G(z) X$.

Let $X, Y \in \bmod _{A}(z)$. If the orbit $G(z) Y$ is contained in $\overline{G(z) X}$, we say that Y is a degeneration of X.
Proposition. Let $X \in \bmod _{A}(z)$. We have the following.
(a) Let $0 \longrightarrow X^{\prime} \longrightarrow X \longrightarrow X^{\prime \prime} \longrightarrow 0$ be an exact sequence. Then $X^{\prime} \oplus X^{\prime \prime}$ is a degeneration of X.
(b) Consider the semisimple module gr $X=\underset{i \in Q_{0}}{\oplus} S_{i}^{z(i)}$, obtained as direct sum of the composition factors of X. Then $\operatorname{gr} X$ is a degeneration of X.

Proof.
(a) We may assume that X^{\prime} is a submodule of X and $X^{\prime \prime}=X / X^{\prime}$. Then for each arrow $i \xrightarrow{\alpha} j$, we have

$$
X(\alpha)=\left(\begin{array}{cc}
X^{\prime}(\alpha) & f_{\alpha} \\
0 & X^{\prime \prime}(\alpha)
\end{array}\right)
$$

where $f_{\alpha}: X^{\prime \prime}(i) \longrightarrow X^{\prime}(j)$. For each $\lambda \in k$, we may define the representation $X_{\lambda} \in \bmod _{A}(z)$, with

$$
X_{\lambda}(\alpha)=\left(\begin{array}{cc}
X^{\prime}(\alpha) & \lambda f_{\alpha} \\
0 & X^{\prime \prime}(\alpha)
\end{array}\right) .
$$

For $\lambda \neq 0$, we get $X_{\lambda} \simeq X$. Indeed,

$$
g_{\lambda}=\left(\begin{array}{cc}
I_{z^{\prime}(i)} & 0 \\
0 & \lambda I_{z^{\prime \prime}(i)}
\end{array}\right)_{i} \in G(z)
$$

satisfies that $X_{\lambda}^{g \lambda}=X$. Therefore

$$
X^{\prime} \oplus X^{\prime \prime}=X_{0}=\in \overline{G(z) X}
$$

Corollary. The orbit $G(z) X$ is closed if and only if X is semisimple.

Examples:

(a) Let $F=k\left\langle T_{1}, \ldots, T_{m}\right\rangle$ be the free algebra in m indeterminates. Let M be a $A-F$-bimodule which is free as right F-module.

Then the functor $M \otimes_{F}-: \bmod _{F} \longrightarrow \bmod _{A}$ induces a family of regular $\operatorname{maps} f_{M}^{n}: \bmod _{F}(n) \rightarrow \bmod _{A}(n z)$ for some vector $z \in \mathbb{N}^{Q_{0}}$ and every $n \in \mathbb{N}$.

Indeed, for each vertex $i \in Q_{0}$, fix a basis of the free right F-module $M(i)$, set $z(i)=r k_{F} M(i)$. Then for an arrow $i \xrightarrow{\alpha} j$ in $Q, M(\alpha): M(i) \longrightarrow M(j)$ is a $z(j) \times z(i)$-matrix with entries in F. Now, an element $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in$ $\bmod _{F}(n)$ determines an F-module N_{λ} with $N_{\lambda}\left(T_{i}\right)=\lambda_{i}, i=1, \ldots, m$. Then

$$
M \otimes_{F} N_{\lambda}(\alpha):\left(k^{z(i)}\right)^{n} \longrightarrow\left(k^{z(j)}\right)^{n}
$$

is the matrix $M(\alpha)(\lambda)=\left(M(\alpha)_{s t}\left(\lambda_{1}, \ldots, \lambda_{m}\right)\right)_{s, t}$. Therefore

$$
f_{M}^{n}(\lambda)=\left(M(\alpha)_{s t}\left(\lambda_{1}, \ldots, \lambda_{m}\right)\right)_{s, t}
$$

is the induced regular map.
(b) Let C be a finitely generated commutative k-algebra without nilpotent elements and $z \in \mathbb{N}^{Q_{0}}$. For any regular map $g: \bmod { }_{C}(1) \longrightarrow \bmod _{A}(z)$, there is a $A-C$-bimodule M which is free as right C-module and $r k_{C}(M)(i)=z(i)$, for each $i \in Q_{0}$, such that $g=f_{M}^{1}$.

Indeed, from Hilbert's theorem $C=k\left[\bmod _{C}(1)\right]$ is the affine algebra of regular functions on $\bmod _{C}(1)$. We define $M(i)=C^{z(i)}$, for $i \in Q_{0}$; for $i \xrightarrow{\alpha} j$ in Q, we put $M(\alpha)$ the matrix corresponding to $g(\alpha): \bmod _{C}(1) \longrightarrow k^{z(j) z(i)}$. By (a), $f_{M}^{1}=g$.
(c) Consider the subset $\operatorname{ind}_{A}(z)$ of $\bmod _{A}(z) \operatorname{ind}_{A}(z)$ is a constructible subset of $\bmod _{A}(z)$. Indeed, the set of pairs.
$\left\{(X, f): X \in \bmod _{A}(z), f \in \operatorname{End}_{A}(X)\right.$ with $0 \neq f \neq 1_{X}$ and $\left.f^{2}=1_{X}\right\}$.
is a locally closed subset of $\bmod _{A}(z) \times k^{d^{2}}$, where $d=\sum_{i \in Q_{0}} z(i)$. The projection
$\pi_{1}: \bmod _{A}(z) \times k^{d^{2}} \longrightarrow \bmod _{A}(z)$ is a regular map with image

$$
\bmod _{A}(z) \backslash \operatorname{ind}_{A}(z)
$$

(d) Let $z \in \mathbb{N}^{Q_{0}}$. Let C be an irreducible component of $\bmod _{A}(z)$. A decomposition $z=w_{1}+\ldots+w_{s}$ with $w_{i} \in \mathbb{N}^{Q_{0}}$ determines a constructible subset

$$
C\left(w_{1}, \ldots, w_{s}\right)=\left\{X \in C: X=X_{1} \oplus \ldots \oplus X_{s} \text { with } X_{i} \in \operatorname{ind}_{A}\left(w_{i}\right)\right\}
$$

in C. We say that $\left(w_{1}, \ldots, w_{s}\right)$ is a generic decomposition in C if $C\left(w_{1}, \ldots, w_{s}\right)$ contains an open and dense subset of C.

Proposition. Let C be an irreducible component of $\bmod _{A}(z)$, then there exists a unique generic decomposition $\left(w_{1}, \ldots, w_{s}\right)$ in C. Moreover, there exists an irreducible component C_{i} of $\bmod _{A}\left(w_{i}\right)$ such that the generic decomposition in C_{i} is $\left(w_{i}\right)$ and the following inequality holds:

$$
\operatorname{dim} G(z)-\operatorname{dim} C \geq \sum_{i=1}^{s}\left(\operatorname{dim} G\left(w_{i}\right)-\operatorname{dim} C_{i}\right)
$$

Proof: For each decomposition $z=z_{1}+\ldots+z_{t}$ with $z_{i} \in \mathbf{N}^{Q_{0}}$ we get a regular map
$\varphi_{z_{1} \ldots z_{i}}: G(z) \times \bmod _{A}\left(z_{1}\right) \times \ldots \times \bmod _{A}\left(z_{t}\right) \longrightarrow \bmod _{A}(z),\left(g,\left(X_{i}\right)_{i}\right) \longmapsto\left(\oplus_{i=1}^{t} X_{i}\right)^{g}$.
Since $\operatorname{ind}_{A}\left(z_{i}\right)=\left\{Y \in \bmod _{A}\left(z_{i}\right): Y\right.$ is indecomposable $\}$ is constructible in $\bmod _{A}\left(z_{i}\right)$, then

$$
\operatorname{ind}_{A}\left(z_{1}, \ldots, z_{t}\right)=\varphi_{z_{1}, \ldots z_{t}}\left(G(z) \times \operatorname{ind}_{A}\left(z_{1}\right) \times \ldots \times \operatorname{ind}_{A}\left(z_{t}\right)\right)
$$

is constructible in $\bmod _{A}(z)$. Moreover, $\bmod _{A}(z)=\cup\left\{\operatorname{ind}_{A}\left(z_{1}, \ldots, z_{t}\right): \sum z_{i}=z\right\}$. There is a decomposition $z=w_{1}+\cdots+w_{s}$ such that C equals the closure of the intersection $\operatorname{ind}_{A}\left(w_{1}, \ldots, w_{s}\right) \cap C$. There is an open dense subset U_{C} of C contained in $\operatorname{ind}_{A}\left(w_{1}, \ldots, w_{s}\right)$. Thus $z=w_{1}+\ldots+w_{s}$ is generic in C. The unicity is clear.

2.3. The tangent space.

Suppose $V \subset k^{n}$ is defined by certain polynomials $f\left(T_{1}, \ldots, T_{n}\right)$. For $x \in V$, define

$$
d_{x} f=\sum_{i=1}^{n} \frac{\partial f}{\partial T_{i}}(x)\left(T_{i}-x_{i}\right)
$$

the derivative of f at the point x. Then the tangent space of V at x is the linear variety $T_{x}(V)$ in the k^{n} defined by the vanishing of all $d_{x} f$ as $f(T)$ ranges over the polynomials in the radical ideal $\mathcal{I}(V)$ defining V.

There are more algebraic ways to define tangent spaces: let $R=k[V]$ be the affine algebra associated with V and M_{x} be the maximal ideal of R vanishing at x. Since R / M_{x} can be identified with k and M_{x} is a finitely generated R-module, then then R / M_{x}-module M_{x} / M_{x}^{2} is a finite dimensional k-vector space.

Then $\left(M_{x} / M_{x}^{2}\right)^{*}$ the dual space over k may be identified with $T_{x}(V)$.

Some facts and examples:
(a) Let $x \in V$ and C_{x} be any irreducible component of X containing x. Then we have $\operatorname{dim}_{k} T_{x}(V) \geq \operatorname{dim} C_{x}$. If equality holds, x is called a simple point of V. If all points of V are simple, we say that V is smooth. An important fact:

- the simple points of V form an open dense subset of V.
(b) Consider the variety $\bmod _{A}(z)$ as a topological space. The orbit $G(z) X$ of a point $X \in \bmod _{A}(z)$ is a smooth space. Indeed, given two points x, y in the orbit, there is an element g of the group $G(z)$ such that $y=g x$. The regular $\operatorname{map} \ell_{g}: G(z) X \longrightarrow G(z) X$ given as right multiplication by g, induces a linear isomorphism $T \ell_{g}: T_{x}(G(z) X) \longrightarrow T_{y}(G(z) X)$. Therefore x is a simple point of the orbit if and only if so is y. Thus (a) implies that $G(z) X$ is smooth.
The following is an important result:

Theorem. (Voigt) Let $X \in \bmod _{A}(z)$.
Consider $T_{X}(G(z) X)$ as a linear subspace of $T_{X}\left(\bmod _{A}(X)\right)$. Then there exists a natural linear monomorphism

$$
T_{X}\left(\bmod _{A}(X)\right) / T_{X}(G(z) X) \hookrightarrow \operatorname{Ext}_{A}^{1}(X, X)
$$

(b) Assume that X satisfies $\operatorname{Ext}_{A}^{2}(X, X)=0$. Then the linear morphism

$$
T_{X}\left(\bmod _{A}(X)\right) / T_{X}(G(z) X) \xrightarrow{\sim} \operatorname{Ext}_{A}^{1}(X, X)
$$

is an isomorphism.
We will observe several consequences:
(a) For any $X \in \bmod _{A}(z)$, let C_{X} be an irreducible component of $\bmod _{A}(z)$ containing X. Then

$$
\begin{aligned}
\operatorname{dim}_{k} \operatorname{Ext}_{A}^{1}(X, X) & \geq \operatorname{dim}_{k} T_{X}\left(\bmod _{A}(z)\right)-\operatorname{dim}_{k} T_{X}(G(z) X) \\
& \geq \operatorname{dim} C_{X}-\operatorname{dim} G(z) X \\
& =\operatorname{dim} C_{X}-\operatorname{dim} G(z)+\operatorname{dim}_{k} \operatorname{End}_{A}(X)
\end{aligned}
$$

Hence,

$$
\operatorname{dim} G(z)-\operatorname{dim} C_{X} \geq \operatorname{dim}_{k} \operatorname{End}_{A}(X)-\operatorname{dim} \operatorname{Ext}_{A}^{1}(X, X)
$$

(b) The inclusion above is not always an isomorphism, as the following simple example shows:

Let $A=k[T] /\left(T^{2}\right)$. Consider the simple module $S \in \bmod _{A}(1)$. Then $\bmod _{A}(1)=G(1) S=\{S\}$ and $T_{S}\left(\bmod _{A}(1)\right)$ is trivial. On the other hand $\operatorname{Ext}_{A}^{1}(S, S)$ has dimension 1.
2.4. Exercises.
(1) Let $X \in \bmod _{A}(z)$. Then $G(z) X$ is open if and only if $T_{X}\left(\bmod _{A}(z)\right)=$ $T_{X}(G(z) X)$.
(2) Let $n \in \mathbb{N}$, the function

$$
e^{n}: \bmod _{A}(z) \rightarrow \mathbb{N}, \quad x \mapsto \operatorname{dim}_{k} \operatorname{Ext}_{A}^{n}(X, X)
$$

is upper semicontinuous.
(3) Up to isomorphism, there are only finitely many modules X with $\operatorname{dim} X=z$ and satisfying $\operatorname{Ext}_{A}^{1}(X, X)=0$.
3. Tame algebras and varieties.

Proposition. The following conditions are equivalent:
$\left(T_{0}\right): A$ is tame.
$\left(T_{1}\right):$ For each $z \in \mathbf{N}^{Q_{0}}$, there is a constructible subset C of $\bmod _{A}(z)$ satisfying dim $C \leq 1$ and $\operatorname{ind}_{A}(z) \subset G(z) C$.
$\left(T_{2}\right):$ For each $z \in \mathbf{N}^{Q_{0}}$, if C is a constructible subset of $\operatorname{ind}_{A}(z)$ intersecting each orbit of $G(z)$ in at most one point, then $\operatorname{dim} C \leq 1$.

Proof: $\left(T_{0}\right) \Longrightarrow\left(T_{1}\right)$: Let $z \in N^{Q_{0}}$. Let M_{1}, \ldots, M_{s} be the $A-k[t]$-bimodules such that M_{i} is a free finitely generated $k[t]-$ module and any $X \in \operatorname{ind}_{A}(z)$ is isomorphic to $M_{i} \otimes_{k[t]} S$ for some i and some simple $k[t]$-module S. Therefore, the functor $M_{i} \otimes_{k[t]}(-)$ induces a regular map $f_{i}: \bmod _{k[t]}(1) \longrightarrow \bmod _{A}(z), i=1, \ldots . s$.

The set

$$
C=\bigcup_{i=1}^{s}\left(\operatorname{Im} f_{i} \cap \operatorname{ind}_{A}(z)\right)
$$

is a constructible subset of $\operatorname{ind}_{A}(z)$ with $\operatorname{dim} C \leq 1$ and $G(z) C=\operatorname{ind}_{A}(z)$.
$\left(T_{2}\right) \Longrightarrow\left(T_{0}\right):$ Assume that A is not tame. Then by the tame-wild dichotomy, the algebra A is wild. That is, there exists a $A-k\langle u, v\rangle$-bimodule M which is free finitely generated as right $k\langle u, v\rangle$-module and such that the functor $M \otimes_{k\langle x, y\rangle}(-)$: $\bmod _{k\langle u, v\rangle} \longrightarrow \bmod _{A}$ insets indecomposable modules.

Let $z \in N^{Q_{0}}$, where $z(x)$ is the rank of the free $k\langle u, v\rangle$-module $M(x)$. We get an induced regular map $f_{M}: \bmod _{k\langle u, v\rangle}(1) \longrightarrow \bmod _{A}(z)$. By definition, $\operatorname{Im} f_{M}$ is a constructible subset of $\operatorname{ind}_{A}(z)$ intersecting each orbit in at most one point. Moreover, f_{M} is injective and theferefore $\operatorname{dim} \operatorname{Im} f_{M}=2$.

Corollary. An algebra can not both tame and wild.

Proposition. Let $A=k Q / I$ be a tame algebra. Then for every $z \in \mathbf{N}^{Q_{0}}$, $\operatorname{dim} \bmod _{A}(z) \leq \operatorname{dim} G(z)$
Proof: By (1.4), it is enough to show that $\operatorname{dim} G(z)-\operatorname{dim} C \geq 0$, for an irreducible component C of $\bmod _{A}(z)$

Since A is tame, we may choose a $A-k[t]$-bimodule M which is free as right $k[T]$-module and the following map is dominant

$$
\varphi: G(z) \times \operatorname{Im} f_{M}^{1} \longrightarrow C, \quad(g, X) \longmapsto X^{g}
$$

Let $X \in \operatorname{Im} \varphi$ be such that $\operatorname{dim} \varphi^{-1}(X)=\operatorname{dim} G(z)-\operatorname{dim} C+\operatorname{dim} \operatorname{Im} f_{M}^{1}$ and $(g, Y) \in \varphi^{-1}(X)$. Then the regular map

$$
\operatorname{Aut}_{A}(Y) \longrightarrow \varphi^{-1}(X), \quad h \longmapsto(h g, Y)
$$

is injective. Therefore,

$$
0 \leq \operatorname{dim} \operatorname{Aut}_{A}(Y)-1 \leq \operatorname{dim} G(z)-\operatorname{dim} C
$$

Example: Unfortunately, the converse of the above results are not true.
Let $A_{m}=k\left[\alpha_{1}, \ldots, \alpha_{m}\right] /\left(\alpha_{i} \alpha_{j}: 1 \leq i \leq j \leq m\right)$ with $m \geq 3$. We will calculate dim $\bmod _{A m}(n)$.

We get

$$
\operatorname{dim} \bmod _{A_{m}}(n)=\left\{\begin{array}{cl}
\left(\frac{m+1}{4}\right) n^{2} & \text { if } n \text { even } \\
\left(\frac{m+1}{4}\right)\left(n^{2}-1\right) & \text { if } n \text { odd }
\end{array}\right.
$$

If $m=3$, then $\operatorname{dim} \bmod _{A_{3}}(n) \leq n^{2}$, showing that the converse of the above Proposition fails.

