

The Abdus Salam International Centre for Theoretical Physics

() International Ato Energy Agency

SMR1735/5

Advanced School and Conference on Representation Theory and Related Topics

(9 - 27 January 2006)

Integral Quadratic Forms and the Representation Type of an Algebra

(Lecture 2)

José Antonio de la Peña Universidad Nacional Autonoma de Mexico - UNAM Instituto de Matemáticas Mexico City D.F., Mexico

INTEGRAL QUADRATIC FORMS AND THE REPRESENTATION TYPE OF AN ALGEBRA

LECTURE 2

Dr. José Antonio de la Peña Instituto de Matemáticas, UNAM

2. The geometric approach.

2.1. Some elements of algebraic geometry.

We consider the affine space $V = k^n$ with the Zariski topology, that is, closed sets are of the form

$$Z(p_1,\ldots,p_s) = \{v \in V \colon p_i(v) = 0\}$$

where $p_i \in k[t_1, \ldots, t_n]$ is a polynomial in *n* indeterminates.

• $S \subset k[t_1, \ldots, t_n]$, then Z(S) is the zero set of S.

•
$$Z(S) = Z(\langle S \rangle) = Z(\sqrt{\langle S \rangle})$$
, where

- $\langle S \rangle$ = ideal of $k[t_1, \ldots, t_n]$ generated by S
- $\sqrt{I} = (\text{radical of } I) = \{ p \in k[t_1, \dots, t_n] \colon p^i \in I \text{ for some } i \in \mathbb{N} \}$
- $Z\left(\bigcup_{i\in I}S_i\right) = \bigcap_{i\in I}Z(S_i) \text{ and } Z(S \cdot S') = Z(S) \cup Z(S')$
- Hilbert's basis theorem: $\exists p_1, \ldots, p_s \in S$ with $Z(S) = Z(p_1, \ldots, p_s)$
- Hilbert's Nullstellensatz: $\{p \in k[t_1, \ldots, t_n] : p \equiv 0 \text{ on } Z(S)\} = \sqrt{\langle S \rangle}$ We say that Z = Z(S) is an affine variety and $k[Z] = k[t_1, \ldots, t_n]/\sqrt{\langle S \rangle}$ is its coordinate ring.

An affine variety $Z = Z(p_1, \ldots, p_s)$ is *reducible* if $Z = Z_1 \cup Z_2$ with proper closed subsets $Z_i \subset Z$. Otherwise Z is *irreducible*.

- There is a finite decomposition of any affine variety $Z = \bigcup_{i=1}^{n} Z_i$ into irreducible subsets $Z_i \subset Z$. If the decomposition is irredundant, we say that Z_1, \ldots, Z_s are the *irreducible components* of Z.
- If Z is an irreducible variety, then the maximal length of a chain

 $\emptyset \neq Z_0 \subsetneq Z_1 \subsetneq \cdots \subsetneq Z_s = Z$

is called the *dimension* of Z (=: dim Z).

If $Z = \bigcup_{i=1}^{n} Z_i$ is an irreducible decomposition

 $\dim Z = \max_i \dim Z_i.$

A map $\mu: Y \to Z$ between affine varieties is a morphism (a regular map), if $\mu^*: k[Z] \to k[Y], p \mapsto p \circ \mu$ is well-defined. In fact, μ^* is a k-algebra homomorphism.

- Any morphism $\mu: Y \to Z$ is continuous.
- A map $\mu: Y \to Z$ is a morphism if and only if $\exists \mu_1, \ldots, \mu_m \in k[t_1, \ldots, t_n]$ such that $\mu(y) = (\mu_1(y), \ldots, \mu_m(y)), \forall y = (y_1, \ldots, y_n) \in Y \subset k^n$.

Proposition. Let $\mu: Y \to Z$ be a morphism between irreducible affine varieties and assume μ is dominant (i.e. $\overline{\mu(Y)} = Z$). Then for every $z \in Z$ and every irreducible component C of $\mu^{-1}(Z)$ we have

 $\dim C \ge \dim Y - \dim Z$

with equality on a dense open set of Z.

In particular, if C is an irreducible component of $Z(p_1, \ldots, p_t) \subset k^n$, we have

 $\dim C \ge n-t$

A fundamental result is the following

Theorem (Chevalley) Let $\mu: Y \to Z$ be a morphism between affine varities. Then the function

 $y \mapsto \dim_{y} \mu^{-1}(\mu(y)) = \max \{\dim C \colon y \in C \text{ irreducible component of } \mu^{-1}(\mu(y))\}$ is upper semicontinuous (that is, $d \colon Y \to \mathbb{N}$ has $\{y \in Y \colon d(y) < n\}$ open in Y, for all $n \in \mathbb{N}$).

A general morphism $\mu: Y \to Z$ is neither open nor closed, but $\mu(Y)$ is a finite union of locally closed subsets of Z.

A finite union of locally closed subsets of a variety Z is called a *constructible* subset.

Proposition. If $\mu: Y \to Z$ is a morphism and $Y' \subset Y$ a constructible subset, then $\mu(Y')$ is also constructible.

2.2. The main example: module varieties.

Let A = kQ/I be a finite dimensional k-algebra and fix a finite set L of admissible generators of I. Let $z \in \mathbb{N}^{Q_0}$ be a dimension vector.

The module variety $\operatorname{mod}_A(z)$ is the closed subset, with respect to the Zariski topology, of the affine space $k^z = \prod k^{z(j)z(i)}$ defined by the polynomial equations given by

the entries of the matrices

$$m_r = \sum_{i=1}^t \lambda_i m_{\alpha i 1} \dots m_{\alpha i s_i}, \text{ where } r = \sum_{i=1}^t \lambda_i \alpha_{i 1} \dots \alpha_{i s_i} \in L$$

and for each arrow $x \xrightarrow{\alpha} y$, m_{α} is the matrix of size $z(y) \times z(x)$.

$$m_{\alpha} = (X_{\alpha ij})_{ij}$$

where $x_{\alpha i i}$ are pairwise different indeterminates. We shall identify points in the variety $\operatorname{mod}_A(z)$ with representations X of A with vector dimension $\operatorname{dim} \mathbf{X} = z$.

Example:
$$A = kQ/I$$
 where $Q: \bullet \xrightarrow{\alpha} \bullet \xrightarrow{\beta} \bullet$ and $I = \langle \alpha \beta \rangle$
 $\begin{pmatrix} x_{\alpha 11} & x_{\alpha 12} \\ x_{\alpha 21} & x_{\alpha 22} \end{pmatrix} \begin{pmatrix} x_{\beta 11} & x_{\beta 12} \\ x_{\beta 21} & x_{\beta 22} \end{pmatrix} = \begin{pmatrix} x_{\alpha 11}x_{\beta 11} + x_{\alpha 12}x_{\beta 21} & x_{\alpha 11}x_{\beta 12} + x_{\alpha 12}x_{\beta 22} \\ x_{\alpha 21}x_{\beta 11} + x_{\alpha 22}x_{\beta 21} & x_{\alpha 21}x_{\beta 12} + x_{\alpha 22}x_{\beta 22} \end{pmatrix}$
mod $_{A}(2, 2, 2) \subset k^{2 \times 2} \times k^{2 \times 2} = k^{8}$ defined by 4 equations

The group $G(z) = \prod_{i \in Q_0} GL_{z(i)}(k)$ acts on k^z by conjugation, that is, for $X \in k^z$, $g \in G(z)$ and $x \xrightarrow{\alpha} y$, then $X^g(\alpha) = g_y X(\alpha) g_x^{-1}$.

By restriction of this action, G(z) also acts on $\text{mod}_A(z)$. Moreover, there is a bijection between the isoclasses of A-modules X with $\dim X = z$ and the G(z)-orbits in $\text{mod}_A(z)$.

Given $X \in \text{mod}_A(z)$, we denote by G(z)X the G(z)-orbit of X. Then

 $\dim G(z)X = \dim G(z) - \dim \operatorname{Stab}_{G(z)}(X),$

where the stabilizer $\operatorname{Stab}_{G(z)}(X) = \{g \in G(z) : X^g = X\} = \operatorname{Aut}_A(X)$ is the group of automorphisms of X. As $\operatorname{Aut}_A(X)$ is an open subset of the affine variety $\operatorname{End}_A(X)$, then

 $\dim \operatorname{Stab}_{G(x)}(X) = \dim \operatorname{Aut}_A(X) = \dim \operatorname{End}_A(X).$

Finally, we get

 $\dim G(z)X = \dim G(z) - \dim \operatorname{End}_A(X).$

also that an orbit G(z)X is *locally closed*, that is G(z)X is open in the closure G(z)Xdefined in $\text{mod}_A(z)$. In particular, $G(z)X \setminus G(z)X$ is formed by the union of orbits of dimension strictly smaller than G(z)X.

Let $X, Y \in \text{mod}_A(z)$. If the orbit G(z)Y is contained in $\overline{G(z)X}$, we say that Y is a *degeneration* of X.

Proposition. Let $X \in \text{mod}_A(z)$. We have the following.

- (a) Let $0 \longrightarrow X' \longrightarrow X \longrightarrow X'' \longrightarrow 0$ be an exact sequence. Then $X' \oplus X''$ is a degeneration of X.
- (b) Consider the semisimple module $gr X = \bigoplus_{i \in Q_0} S_i^{z(i)}$, obtained as direct sum of the composition factors of X. Then gr X is a degeneration of X.

Proof.

(a) We may assume that X' is a submodule of X and X'' = X/X'. Then for each arrow $i \xrightarrow{\alpha} j$, we have

$$X(\alpha) = \begin{pmatrix} X'(\alpha) & f_{\alpha} \\ 0 & X''(\alpha) \end{pmatrix},$$

where $f_{\alpha}: X''(i) \longrightarrow X'(j)$. For each $\lambda \in k$, we may define the representation $X_{\lambda} \in \text{mod}_A(z)$, with

$$X_{\lambda}(lpha) = egin{pmatrix} X'(lpha) & \lambda f_{lpha} \ 0 & X''(lpha) \end{pmatrix}.$$

For $\lambda \neq 0$, we get $X_{\lambda} \simeq X$. Indeed,

$$g_{\lambda} = \begin{pmatrix} I_{z'(i)} & 0\\ 0 & \lambda I_{z''(i)} \end{pmatrix}_{i} \in G(z)$$

satisfies that $X_{\lambda}^{g\lambda} = X$. Therefore

$$X' \oplus X'' = X_0 = \in \overline{G(z)X}$$

Corollary. The orbit G(z)X is closed if and only if X is semisimple.

Examples:

(a) Let $F = k\langle T_1, ..., T_m \rangle$ be the free algebra in *m* indeterminates. Let *M* be a A - F-bimodule which is free as right *F*-module.

Then the functor $M \otimes_F - : \operatorname{mod}_F \longrightarrow \operatorname{mod}_A$ induces a family of regular maps $f_M^n : \operatorname{mod}_F(n) \longrightarrow \operatorname{mod}_A(nz)$ for some vector $z \in \mathbb{N}^{Q_0}$ and every $n \in \mathbb{N}$.

Indeed, for each vertex $i \in Q_0$, fix a basis of the free right F-module M(i), set $z(i) = rk_F M(i)$. Then for an arrow $i \xrightarrow{\alpha} j$ in $Q, M(\alpha) : M(i) \longrightarrow M(j)$ is a $z(j) \times z(i)$ -matrix with entries in F. Now, an element $\lambda = (\lambda_1, ..., \lambda_m) \in$ $\operatorname{mod}_F(n)$ determines an F-module N_λ with $N_\lambda(T_i) = \lambda_i, i = 1, ..., m$. Then

$$M \otimes_F N_{\lambda}(\alpha) : (k^{z(i)})^n \longrightarrow (k^{z(j)})^n$$

is the matrix $M(\alpha)(\lambda) = (M(\alpha)_{st}(\lambda_1, ..., \lambda_m))_{s,t}$. Therefore

$$f_M^n(\lambda) = (M(\alpha)_{st}(\lambda_1, ..., \lambda_m))_{s,t}$$

is the induced regular map.

(b) Let C be a finitely generated commutative k-algebra without nilpotent elements and $z \in \mathbb{N}^{Q_0}$. For any regular map $g : \mod_C(1) \longrightarrow \mod_A(z)$, there is a A - C-bimodule M which is free as right C-module and $rk_C(M)(i) = z(i)$, for each $i \in Q_0$, such that $g = f_M^1$.

Indeed, from Hilbert's theorem $C = k[\text{mod}_C(1)]$ is the affine algebra of regular functions on $\text{mod}_C(1)$. We define $M(i) = C^{z(i)}$, for $i \in Q_0$; for $i \xrightarrow{\alpha} j$ in Q, we put $M(\alpha)$ the matrix corresponding to $g(\alpha) : \text{mod}_C(1) \longrightarrow k^{z(j)z(i)}$. By (a), $f_M^1 = g$.

- (c) Consider the subset ind_A(z) of mod_A(z) ind_A(z) is a constructible subset of mod_A(z). Indeed, the set of pairs.
 {(X, f) : X ∈ mod_A(z), f ∈ End_A(X) with 0 ≠ f ≠ 1_X and f² = 1_X}. is a locally closed subset of mod_A(z) × k^{d²}, where d = ∑_{i∈Q₀} z(i). The projection π₁ : mod_A(z) × k^{d²} → mod_A(z) is a regular map with image mod_A(z)\ind_A(z).
- (d) Let $z \in \mathbb{N}^{Q_0}$. Let C be an irreducible component of $\text{mod}_A(z)$. A decomposition $z = w_1 + \ldots + w_s$ with $w_i \in \mathbb{N}^{Q_0}$ determines a constructible subset

 $C(w_1, \dots, w_s) = \{ X \in C : X = X_1 \oplus \dots \oplus X_s \text{ with } X_i \in \text{ ind}_A(w_i) \}$

in C. We say that (w_1, \ldots, w_s) is a generic decomposition in C if $C(w_1, \ldots, w_s)$ contains an open and dense subset of C.

Proposition. Let C be an irreducible component of $\text{mod}_A(z)$, then there exists a unique generic decomposition (w_1, \ldots, w_s) in C. Moreover, there exists an irreducible component C_i of $\text{mod}_A(w_i)$ such that the generic decomposition in C_i is (w_i) and the following inequality holds:

$$\dim G(z) - \dim C \ge \sum_{i=1}^{s} (\dim G(w_i) - \dim C_i).$$

Proof: For each decomposition $z = z_1 + ... + z_t$ with $z_i \in \mathbb{N}^{Q_0}$ we get a regular map

 $\varphi_{z_1...z_i}: G(z) \times \operatorname{mod}_A(z_1) \times ... \times \operatorname{mod}_A(z_t) \longrightarrow \operatorname{mod}_A(z), (g, (X_i)_i) \longmapsto (\bigoplus_{i=1}^t X_i)^g.$

Since $\operatorname{ind}_A(z_i) = \{Y \in \operatorname{mod}_A(z_i) : Y \text{ is indecomposable}\}\$ is constructible in $\operatorname{mod}_A(z_i)$, then

$$\operatorname{ind}_A(z_1, ..., z_t) = \varphi_{z_1, ..., z_t}(G(z) \times \operatorname{ind}_A(z_1) \times ... \times \operatorname{ind}_A(z_t))$$

is constructible in $\operatorname{mod}_A(z)$. Moreover, $\operatorname{mod}_A(z) = \bigcup \{ \operatorname{ind}_A(z_1, ..., z_t) : \sum z_i = z \}$. There is a decomposition $z = w_1 + \cdots + w_s$ such that C equals the closure of the intersection $\operatorname{ind}_A(w_1, \ldots, w_s) \cap C$. There is an open dense subset U_C of C contained in $\operatorname{ind}_A(w_1, \ldots, w_s)$. Thus $z = w_1 + \ldots + w_s$ is generic in C. The unicity is clear. \Box

2.3. The tangent space.

Suppose $V \subset k^n$ is defined by certain polynomials $f(T_1, ..., T_n)$. For $x \in V$, define

$$d_x f = \sum_{i=1}^n \frac{\partial f}{\partial T_i}(x)(T_i - x_i)$$

the derivative of f at the point x. Then the tangent space of V at x is the linear variety $T_x(V)$ in the k^n defined by the vanishing of all $d_x f$ as f(T) ranges over the polynomials in the radical ideal $\mathcal{I}(V)$ defining V.

There are more algebraic ways to define tangent spaces: let R = k[V] be the affine algebra associated with V and M_x be the maximal ideal of R vanishing at x. Since R/M_x can be identified with k and M_x is a finitely generated R-module, then then R/M_x -module M_x/M_x^2 is a finite dimensional k-vector space.

Then $(M_x/M_x^2)^*$ the dual space over k may be identified with $T_x(V)$.

Some facts and examples:

- (a) Let $x \in V$ and C_x be any irreducible component of X containing x. Then we have $\dim_k T_x(V) \geq \dim C_x$. If equality holds, x is called a *simple point of V*. If all points of V are simple, we say that V is *smooth*. An important fact:
 - the simple points of V form an open dense subset of V.
- (b) Consider the variety $\operatorname{mod}_A(z)$ as a topological space. The orbit G(z)X of a point $X \in \operatorname{mod}_A(z)$ is a smooth space. Indeed, given two points x, y in the orbit, there is an element g of the group G(z) such that y = gx. The regular $\operatorname{map} \ell_g : G(z)X \longrightarrow G(z)X$ given as right multiplication by g, induces a linear isomorphism $T\ell_g : T_x(G(z)X) \longrightarrow T_y(G(z)X)$. Therefore x is a simple point of the orbit if and only if so is y. Thus (a) implies that G(z)X is smooth.

The following is an important result:

Theorem. (Voigt) Let $X \in \text{mod}_A(z)$.

Consider $T_X(G(z)X)$ as a linear subspace of $T_X(\text{mod}_A(X))$. Then there exists a natural linear monomorphism

 $T_X(\operatorname{mod}_A(X))/T_X(G(z)X) \hookrightarrow \operatorname{Ext}^1_A(X,X).$

(b) Assume that X satisfies $\text{Ext}_A^2(X, X) = 0$. Then the linear morphism

 $T_X(\operatorname{mod}_A(X))/T_X(G(z)X) \xrightarrow{\sim} \operatorname{Ext}^1_A(X,X).$

is an isomorphism.

We will observe several consequences:

(a) For any $X \in \text{mod}_A(z)$, let C_X be an irreducible component of $\text{mod}_A(z)$ containing X. Then

$$\dim_k \operatorname{Ext}^1_A(X, X) \geq \dim_k T_X(\operatorname{mod}_A(z)) - \dim_k T_X(G(z)X)$$

$$\geq \dim C_X - \dim G(z)X$$

$$= \dim C_X - \dim G(z) + \dim_k \operatorname{End}_A(X)$$

Hence,

 $\dim G(z) - \dim C_X \ge \dim_k \operatorname{End}_A(X) - \dim \operatorname{Ext}_A^1(X, X)$

(b) The inclusion above is not always an isomorphism, as the following simple example shows:

Let $A = k[T]/(T^2)$. Consider the simple module $S \in \text{mod}_A(1)$. Then $\text{mod}_A(1) = G(1)S = \{S\}$ and $T_S \pmod(M(1))$ is trivial. On the other hand $\text{Ext}^1_A(S,S)$ has dimension 1.

2.4. Exercises.

- (1) Let $X \in \text{mod}_A(z)$. Then G(z)X is open if and only if $T_X(\text{mod}_A(z)) = T_X(G(z)X)$.
- (2) Let $n \in \mathbb{N}$, the function

$$e^n \colon \operatorname{mod}_A(z) \to \mathbb{N}, \qquad x \mapsto \dim_k \operatorname{Ext}^n_A(X, X)$$

is upper semicontinuous.

(3) Up to isomorphism, there are only finitely many modules X with $\dim X = z$ and satisfying $\operatorname{Ext}_{A}^{1}(X, X) = 0$.

3. Tame algebras and varieties.

Proposition. The following conditions are equivalent:

 (T_0) : A is tame.

- (T_1) : For each $z \in \mathbf{N}^{Q_0}$, there is a constructible subset C of $\operatorname{mod}_A(z)$ satisfying dim $C \leq 1$ and $\operatorname{ind}_A(z) \subset G(z)C$.
- (T_2) : For each $z \in \mathbf{N}^{Q_0}$, if C is a constructible subset of $\operatorname{ind}_A(z)$ intersecting each orbit of G(z) in at most one point, then dim $C \leq 1$.

Proof: $(T_0) \Longrightarrow (T_1)$: Let $z \in N^{Q_0}$. Let $M_1, ..., M_s$ be the A - k[t]-bimodules such that M_i is a free finitely generated k[t]-module and any $X \in \text{ind}_A(z)$ is isomorphic to $M_i \otimes_{k[t]} S$ for some i and some simple k[t]-module S. Therefore, the functor $M_i \otimes_{k[t]} (-)$ induces a regular map $f_i : \text{mod}_{k[t]}(1) \longrightarrow \text{mod}_A(z), i = 1, ..., s$.

The set

$$C = \bigcup_{i=1}^{s} (\operatorname{Im} f_i \cap \operatorname{ind}_A(z))$$

is a constructible subset of $\operatorname{ind}_A(z)$ with dim $C \leq 1$ and $G(z)C = \operatorname{ind}_A(z)$.

 $(T_2) \Longrightarrow (T_0)$: Assume that A is not tame. Then by the tame-wild dichotomy, the algebra A is wild. That is, there exists a $A - k\langle u, v \rangle$ -bimodule M which is free finitely generated as right $k\langle u, v \rangle$ -module and such that the functor $M \otimes_{k\langle x, y \rangle} (-)$: $\operatorname{mod}_{k\langle u, v \rangle} \longrightarrow \operatorname{mod}_A$ insets indecomposable modules.

Let $z \in N^{Q_0}$, where z(x) is the rank of the free $k\langle u, v \rangle$ -module M(x). We get an induced regular map $f_M : \operatorname{mod}_{k\langle u,v\rangle}(1) \longrightarrow \operatorname{mod}_A(z)$. By definition, Im f_M is a constructible subset of $\operatorname{ind}_A(z)$ intersecting each orbit in at most one point. Moreover, f_M is injective and therefore dim Im $f_M = 2$.

Corollary. An algebra can not both tame and wild.

Proposition. Let A = kQ/I be a tame algebra. Then for every $z \in \mathbb{N}^{Q_0}$,

 $\dim \operatorname{mod}_A(z) \leq \dim G(z)$

Proof: By (1.4), it is enough to show that dim $G(z) - \dim C \ge 0$, for an irreducible component C of $\operatorname{mod}_A(z)$

Since A is tame, we may choose a A - k[t]-bimodule M which is free as right k[T]-module and the following map is dominant

$$\varphi: G(z) \times \operatorname{Im} f^1_M \longrightarrow C, \qquad (g, X) \longmapsto X^g.$$

Let $X \in \text{Im } \varphi$ be such that dim $\varphi^{-1}(X) = \dim G(z) - \dim C + \dim \text{Im } f_M^1$ and $(g, Y) \in \varphi^{-1}(X)$. Then the regular map

$$\operatorname{Aut}_A(Y) \longrightarrow \varphi^{-1}(X), \quad h \longmapsto (hg, Y)$$

is injective. Therefore,

$$0 \leq \dim \operatorname{Aut}_A(Y) - 1 \leq \dim G(z) - \dim C$$

Example: Unfortunately, the converse of the above results are not true.

Let $A_m = k[\alpha_1, ..., \alpha_m]/(\alpha_i \alpha_j : 1 \le i \le j \le m)$ with $m \ge 3$. We will calculate dim $\operatorname{mod}_{Am}(n)$.

We get

dim
$$\operatorname{mod}_{A_m}(n) = \begin{cases} \left(\frac{m+1}{4}\right)n^2 & \text{if } n \text{ even} \\ \left(\frac{m+1}{4}\right)\left(n^2-1\right) & \text{if } n \text{ odd.} \end{cases}$$

If m = 3, then dim $\text{mod}_{A_3}(n) \leq n^2$, showing that the converse of the above Proposition fails.

