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Introduction

Many mathematical structures can be deformed:

• Manifolds with possibly an extra (e.g. Poisson) structure
• Abelian or triangulated categories
• Lie algebras and their universal enveloping algebras
• Finite dimensional (associative) algebras and modules

In may cases this provides interesting insights into the deformed objects.
The last case of our list is possibly the easiest and will be studied in these notes.
In section 1 we present the basic definitions of deformation theory for the case of

associative algebras. In section 2 we present the Hochschild Complex together with
the Gerstenhaber bracket as the natural context for the Maurer-Cartan equation.
This leads to abstract deformation theory associated to a dg-Lie algebra. We follow
here Keller’s exposition [11, section 2]. In section 3 we discuss briefly the deformation
theory of modules in the same spirit. In section 4 we prepare the ground for the
discussion of some geometric applications of deformation theory of algebras in the
last two chapters. More specifically, we present in 5 a version of Voigt’s lemma
for algebras and show that the vanishing of the third Hochschild cohomology of an
algebra implies that the corresponding point in the scheme of algebras is smooth.
In section 6 we present analogous results for modules and discuss the decomposition
theory of the scheme of module structures from [3]. Finally, we collect for convenience
in an appendix the for us relevant definitions from the functorial point of view for
schemes.

1. Deformations of algebras

1.1. Notation. Let k be a field, and A finite dimensional associative (unitary)
k-algebra with underlying vector space V = kn and multiplication given by α ∈
Hom(V ⊗ V, V ). If g ∈ GLn(k) then αg := g−1α(g ⊗ g) is also an associative multi-
plication on V . Clearly, all associative algebra structures on V which are isomorphic
to α are precisely of this form.

Let R a local commutative k-algebra with maximal ideal m and counit pR : R→ k.
Thus we have a canonical decomposition R = k · 1⊕m as a k-vector space.

Important examples to keep in mind are the ring of formal power series k[[t]] and
the truncated polynomial rings k[t]/(tn). We denote by k[ε] := k[t]/(t2) the algebra
of dual numbers.
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As a shorthand we write VR := V ⊗ R. All “undecorated” tensor products and
Hom-spaces are over k.

1.2. Definition. A R-deformation of α is given by a R-linear map

αR ∈ HomR(VR ⊗R VR, VR)

that reduces modulo R to α and which is associative, i.e.

αR(11VR
⊗R αR) = αR(αR ⊗R 11VR

).

In case R = k[[t]] we speak of a formal deformation and in case R = k[ε] of an
infinitesimal deformation.

We say that an infinitesimal deformation αk[ε] of α is integrable if there exists a
formal deformation αk[[t]] of α which reduces via the projection pt,ε : k[[t]] → k[ε] to
αk[ε].

1.3. Remarks. By linearity a R-deformation of α is uniquely determined by its k-
linear component αm : V ⊗ V → V ⊗ m, and by some abuse of notation we may
write αR = α + αm. The associativity of αR my then be expressed by the following
equation of maps V ⊗ V → V ⊗m for αR

(1.1) α(αm⊗ 11V − 11V ⊗αm)+αm(α⊗ 11V − 11V ⊗α)+αm(αm⊗ 11V − 11V ⊗αm) = 0.

Let us write MC(α, R) for the set of solutions of this equation.
For example in case R = k[ε] we have αk[ε] = α+εα1 for some α1 ∈ Homk(V ⊗V, V ),

and we get for α1 the (linear) condition

α1 ∈ Z2(α) := {ζ ∈ Hom(V ⊗V, V ) | ζ(11V ⊗α−α⊗ 11V )+α(11V ⊗ ζ− ζ⊗ 11V ) = 0}
since ε2 = 0. So, MC(α, k[ε]) ∼= Z2(α) is a vector space.

In case R = k[[t]] we have m = (t) and

αm = α1 · t + α2 · t2 + · · ·+ αi · ti + · · ·
for a sequence of k-linear maps α1, α2, α3, . . . ∈ Hom(V ⊗ V, V ). The above equa-
tion (1.1) means then explicitly that

(An) α(11V ⊗αn−αn⊗11V )+
∑

i+j=n

αi(11V ⊗αj−αj⊗11V )+αn(11V ⊗α−α⊗11V ) = 0

holds for all n ∈ N>0. In particular, for n = 1 we get again α1 ∈ Z2(α).

1.4. Equivalence of deformations. A R-linear automorphism g of VR reduces
modulo m to 11 = 11V if and only if g = 11 + gm for some gm : V → V ⊗ m (with the
same abuse of notation as above). In fact, the endomorphism of this type form a
subgroup En(R) of GLn(R). For example, the elements of En(k[[t]]) are precisely of
the form

11 + g1 · t + g2 · t2 + · · ·
for any sequence of k-linear endomorphisms g1, g2, . . . of V .

We say that two R-deformations αR and α′R of α are equivalent if there exists
gR ∈ En(R) such that

α′R = αg
R := g−1αR(g ⊗R g).

A R-deformation αR of α is trivial if it is equivalent to α (seen as a R-deformation).
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Note, that we may define a action of the group En(R) on MC(α, R) via

αg
m := (α + αm)g − α.

Now we can define the set of orbits

Defo(α, R) := MC(α, R)/ En(R),

thus the elements of Defo(α, R) are the equivalence classes of R-deformations of α.
One of the main goals of deformation theory is to describe the equivalence classes

of deformations for a given object.

1.4.1. Exercise. Let α + εα1 and α + εα′1 be two infinitesimal deformations of α.
Show:

(a) α + εα1 and α + εα′1 are equivalent if and only if

α′1 = α1 + α(g1 ⊗ 11V )− g1α + α(11V ⊗ g1)

for some g1 ∈ Hom(V, V ).
(b) In this case, α + εα1 is integrable if and only if α + εα′1 is integrable.

2. Hochschild Complex

We will see that the Hochschild complex of an algebra together with its structure
of a differential graded ( = dg-) Lie algebra controls the deformation theory of this
algebra.

2.1. For a k-vector space V we set V ⊗0 = k and V ⊗n = V ⊗ · · · ⊗ V (n factors,
n ≥ 1), and

V n−1 = Cn = Homk(V
⊗n, V ) n ∈ N

the (Hochschild) n-cochains. We define a bilinear map ◦ : V m × V n → V m+n by

(α, β) 7→ α ◦ β :=
m∑

i=0

(−1)niα(11⊗i
V ⊗ β ⊗ 11

⊗(m−i)
V )

We consider now the graded vector space V ∗ = ⊕i≥−1V
i, and write |α| := i for an

homogeneous element α ∈ V i. The map ◦ induces a graded “multiplication” on V ∗

which is not associative, however we have:

2.1.1. Lemma. For α, β, γ ∈ V ∗ homogeneous elements holds

α ◦ (β ◦ γ)− (α ◦ β) ◦ γ = (−1)|β||γ|(α ◦ (γ ◦ β)− (α ◦ γ) ◦ β).

For a proof see [9, §6].

2.1.2. Definition. A graded vector space W ∗ = ⊕i∈ZW i together with a bilinear
map [-, -] : W ∗×W ∗ → W ∗ is a graded Lie-algebra if [W i, W j] ⊂ W i+j for all i, j ∈ Z
and moreover

[α, β] = −(−1)|α||β|[β, α] (antisymmetry)

[α, [β, γ]] = [[α, β], γ] + (−1)|α||β|[β, [α, γ]] (Jacobi Identity)
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for homogeneous elements α, β, γ ∈ W ∗. A derivation of degree 1 for a graded Lie
algebra (W ∗, [-, -]) is a graded linear map d : W ∗ → W ∗ of degree 1 such that

d([β, γ]) = [d(β), γ] + (−1)|β|[β, d(γ)]

for homogeneous elements β, γ ∈ V ∗. If moreover d2 = 0, we call (W ∗, [-, -], d) a
differential graded (= dg-) Lie algebra.

One verifies easily with Lemma 2.1.1:

2.1.3. Corollary. V ∗ becomes with [α, β] := α ◦ β − (−1)|α||β|β ◦α for homogeneous
α, β ∈ V ∗ a graded Lie algebra.

2.1.4. For α ∈ V 1 = Homk(V
⊗2, V ), define a graded derivation dα of degree 1 for

(V ∗, [-, -]), by

dα(β) := [α, β]

= α(β ⊗ 11V )−
|β|∑
j=0

(−1)jβ(11
⊗(|β|−j)
V ⊗ α⊗ 11⊗j

V ) + (−1)|β|α(11V ⊗ β).

2.1.5. Exercise. Show that d2
α = 0 if α ∈ Hom(V ⊗ V, V ) is associative. The

converse is true if char k 6= 2.

2.1.6. Our considerations have shown that (V ∗, [-, -], dα) is a dg-Lie algebra, in case
α ∈ Homk(V ⊗ V, V ) is associative, and (V∗, dα) is the usual Hochschild complex
(shifted by one degree) obtained by the bar-resolution for an associative algebra A
with multiplication α. Thus we may set

Zi(α) := {ζ ∈ Ci | dα(ζ) = 0} cycles

Bi(α) := dα(Ci−1) boundaries

H i(α) := Zi/Bi Hochschild cohomology

and [-, -] descends to give H∗(α) = ⊕i∈NH i(α) the structure of a graded Lie algebra
(with the grading shifted by one, so that [H i(α), Hj(α)] ⊂ H i+j−1(α)).

2.2. Infinitesimal deformations. We conclude from Exercise 1.4.1(a) and 2.1.6:
The equivalence classes of infinitesimal deformations of α are naturally identified
with H2(α).

Similarly, Exercise 1.4.1(b) means that for α1 ∈ Z2(α) the integrability of the
infinitesimal deformation α + α1ε depends only on the class of α1 in H2(α). In
particular, if H2(α) = 0 each infinitesimal deformation of α is integrable.

2.3. Lemma. If H2(α) = 0 then each formal deformation of α is trivial.

Proof. Let αt = α + α1 · t + α2 · t2 + · · · be a formal deformation with α1 = α2 =
· · · = αn−1 = 0 and αn 6= 0. Then αn ∈ Z2(α) = B2(α), thus there exists gn ∈
C1 = Homk(V, V ) such that αn = dα(gn) and with g = 11 + gn · tn we get αg

t =
α0 + α′n+1 · tn+1 + · · · . �
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2.4. Obstructions. With the setup from 2.1 we may rewrite the equations (An)
from 1.3 (which express the associativity of a formal deformation αt = α + α1 · t +
α2 · t2 + · · · of α) as

(A′
n) dα(αn) +

n−1∑
i=1

αi ◦ αn−i = 0

for all n ∈ N>0.

2.4.1. Lemma. Suppose α0, α1, . . . , αn−1 satisfy (A′
i) for i = 0, 1, . . . , n− 1, then

dα(
n−1∑
i=1

αi ◦ αn−i) = 0.

Proof.

dα(
∑

i+j=n

αi ◦ αj) =
∑

i+j=n

(αi ◦ dα(αj)− dα(αi) ◦ αj)

= −
∑

i+j+k=n

(αi ◦ (αj ◦ αk)− (αi ◦ αj) ◦ αk)

= −
∑

i+j+k=n
1≤i,j<k

αi ◦ (αj ◦ αk + αk ◦ αj)− ((αi ◦ αj) ◦ αk + (αi ◦ αk) ◦ αj)

= 0.

We leave it as an exercise to show that the first equality holds despite the fact that
dα is not a derivation for the (non associative) multiplication ◦. The second equation
holds then by hypothesis. For the third equation use the fact that β◦(γ◦γ) = (β◦γ)◦γ
if |γ| = 1 and note that |αi| = 1 for all i. The last equality holds by Lemma 2.1.1. �

2.4.2. Corollary. If H3(α) = 0, each infinitesimal deformation of α is integrable.

2.5. Deformation functor. We call a commutative local k-algebra with maximal
ideal m and counit pR : R→ k a test algebra if m is nilpotent. Recall that R = k1R⊕m
as a vector space. Important examples of test algebras are the algebras k[t]/(tn) for
n ∈ N.

With the definition of Defo(α, R) from 1.4 it is not hard to see that we obtain in
fact a functor

Defo(α,−) : Test Algebras → Sets .

If αt is a formal deformation of α, we obtain for all n ∈ N via the reduction
k[[t]] → k[t]/(tn) a k[t]/(tn)-deformation of α. It is not hard to see that we ob-
tain in this way a bijective map from the set of formal deformations of α to the set
lim←−{k[t]/(tn)-deformations}, which descends even to equivalence classes of deforma-
tions. Thus for the understanding of formal deformations it is sufficient to study the
functor Defo(α,−) on the category of test algebras.
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2.6. Maurer-Cartan equation. Let L(α) := (V∗, [-, -], dα) be the differential graded
Lie algebra with (V ∗, dα) the Hochschild complex (shifted by one degree), together
with the Gerstenhaber bracket [-, -] defined in 2.1.3. For a test algebra R we consider
αR = α+αm for some αm ∈ Homk(k

n⊗kn, kn⊗m) = V1⊗m thus we may interpret αR

as an element of HomR(Rn ⊗R Rn, Rn) which reduces modulo m to α. The associa-
tivity of αR may thus be expressed in Lα⊗m (where [β⊗m, γ⊗n] := [β, γ]⊗(m ·n))
by the Maurer-Cartan equation

dα(αm) +
1

2
[αm, αm] = 0

(if char(k) 6= 2). To see this, recall that αm is an element of degree 1 and thus
[αm, αm] = 2αm ◦ αm, and dα(αm) = [α, αm], then compare with equation (1.1).

2.7. Abstract deformation theory. For the rest of this section let k be a field of
characteristic 0. We consider a differential graded Lie algebra L = (L∗, [-, -], d) and
let

MC(L) := {β ∈ L1 | d(β) +
1

2
[β, β] = 0}

the solutions of the Maurer-Cartan equation. If L1 is finite dimensional, MC(L) can
be seen as an intersection of quadrics. With the notation from 1.3 we have then
MC(α, R) = MC(L(α)⊗m).

In any case, we define for β ∈ MC(L) formally the tangent space

Tβ,MC(L) := {X ∈ L1 | d(X) + [β, X] = 0}
which in case L1 finite dimensional is actually the scheme-theoretic tangent space of
MC(L) at β (exercise!).

For β ∈ L1 define a linear endomorphism dβ of degree 1 of L∗ by dβ(γ) = d(γ) +
[β, γ].

2.7.1. Lemma. For β ∈ MC(L) we have

(a) Tβ,MC(L) = {X ∈ L1 | dβ(X) = 0}
(b) d2

β = 0
(c) For any Y ∈ L0 we obtain by β 7→ dβ(Y ) a vector field in MC(L).
(d) The map L0 → Lie(Aff(L1)), Y 7→ (β 7→ dβ(Y )) is a Lie anti-homomorphism.

Proof. (a) is immediate from the definition, (b) is a straightforward, (c) follows from
(a) and (b). For (d) note first that for Y ∈ L0 the map β 7→ dβ(Y ) = d(Y ) + [Y, β]
is an affine transformation. ... �

If L0 is nilpotent and ad(Y ) |L1 is nilpotent for all Y in L0 then the map from
Lemma 2.7.1 (d) integrates to a group anti-homomorphism

exp(L0)→ Aff(L1)

This means that we obtain a right action of the group exp(L0) on L1 via affine
automorphisms. This action leaves MC(L) invariant by 2.7.1 (c), and we obtain a
well-defined orbit set MC(L)/ exp(L0).

For an arbitrary dg-Lie algebra L and a test algebra R, trivially L ⊗ m satisfies
the above nilpotency hypotheses, and we may define

(2.1) MC(L, R) := MC(L⊗m)/ exp(L0 ⊗m)



DEFORMATION THEORY OF FINITE DIMENSIONAL MODULES AND ALGEBRAS 7

This is motivated by the observation that for α ∈ Algn(α) there is a functorial
bijection

Defo(α, R)→ MC(L(α), R).

2.8. Further Remarks. A morphism of dg-Lie algebras is a linear map of degree
0 which commutes with the respective brackets and differentials. In particular, if
f : L → L′ is a homomorphism of dg-Lie algebras, it induces a homomorphism
between the corresponding cohomology groups H i(f) : H i(L)→ H i(L′) for all i ∈ Z.
Such a homomorphism is called a quasi-isomorphism if H i(f) is an isomorphism for
all i ∈ Z. One has the following deep result:

2.8.1. Theorem. Let f : L→ L′ be a quasi-isomorphism of dg-Lie algebras, and R
a test algebra. Then f induces a bijection MC(L, R)→ MC(L′, R).

2.8.2. Corollary. Let α ∈ Algn(k), then each formal deformation of α is equivalent
to a formal deformation which has 1α as a unit.

Proof. It is sufficient to proof the claim for any test algebra R. Now, let V i
1 (α) be the

subspace of V i(α) consisting of all cochains which vanish if one of their arguments
is 1α. It turns out that the inclusion of V1(α) into V (α) is a quasi-isomorphism of
dg-Lie algebras. So our claim follows from the theorem. �

3. Deformations of finite-dimensional modules

Deformation theory of modules is quite similar to the deformation theory of alge-
bras, but somehow simpler.

3.1. Notation. We keep the notations from 1.1 and consider an unitary left A-
module with underlying vector space W = kd and multiplication given by µ ∈
Hom(V ⊗W, W ). Thus µ has to fulfill

(i) µ(11V ⊗ µ) = µ(α⊗ 11W ),
(ii) µ(1α ⊗ 11W ) = 11W .

Note that under (i) condition (ii) is equivalent to

(ii’) rank µ(1α ⊗ 11W ) ≥ d.

For g ∈ GLd(k) we find that µg := g−1µ(11V ⊗ g) defines also a A-module structure
on W . In fact, all structures isomorphic to µ are precisely of this form.

3.2. Definition. A R-deformation of µ is an element µR ∈ HomR(VR ⊗R WR, WR)
which reduces modulo R to µ and fulfills µR(11VR

⊗R µR) = µR(α ⊗R 11WR
). Two

R-deformations µR and µ′R are equivalent if µ′R = µg
R for some g ∈ Ed(R) (see 1.4).

The concepts of formal, infinitesimal and integrable deformation carry over in the
obvious way from the algebra case.

3.3. Remarks. As in the algebra case, a R-deformation µR of µ is determined by
its k-linear component µm : V ⊗W → W ⊗m and the condition from the definition
translates into

(3.1) µ(11V ⊗ µm)− µm(α⊗ 11W ) + µm(11V ⊗ µ) + µm(11V ⊗ µm) = 0.

For example, an infinitesimal deformation µ + εµ1 of µ is given by

µ1 ∈ Z1(µ) := {ζ ∈ Hom(V ⊗W, W ) | µ(11V ⊗ ζ)− ζ(α⊗ 11W ) + ζ(11V ⊗ µ) = 0}
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since ε2 = 0.
Similarly, or a family µ1, µ2, . . . ∈ Homk(V ⊗W, W ) we see that

µt = µ + µ1 · t + µ2 · t2 + · · ·
is a formal deformation of µ ∈ modd

A(k) if and only if for all n = 1, 2, 3, . . . holds

(Mn) µ(11V ⊗ µn)− µn(α⊗ 11W ) + µn(11V ⊗ µ) +
∑

i+j=n

µi(11v ⊗ µj) = 0.

3.4. Formal deformation theory. We want to exhibit how the deformation the-
ory of a module is controlled by a dg-Lie algebra.

3.4.1. Definition. Set Ci := Homk(V
⊗i⊗W, W ), and equip the graded vector space

C• := ⊕i∈NCi with an associative graded multiplication ∗ by

f ∗ g := f(11
⊗|f |
V ⊗ g) ∈ C |f |+|g|

for homogeneous elements f and g. Moreover we have a differential dµ (of degree
one) with

dµ(f) = µ(11V ⊗ f) +

|f |∑
i=1

(−1)if(11
⊗(i−1)
V ⊗ α⊗ 11

⊗(|f |−i)
V ⊗ 11W )− (−1)|f |f(11

⊗|f |
V ⊗ µ)

It is not hard to verify with the defining properties of µ and α that (C•, ∗, dµ) is a
dg-algebra, i.e. d2

µ = 0 and

dµ(f ∗ g) = dµ(f) ∗ g + (−1)|f |f ∗ dµ(g).

Thus we may introduce on C• also a (graded) Lie-bracket by defining

[f, g] := f ∗ g − (−1)|f ||g|g ∗ f

for homogeneous elements f and g. It is clear that in this way C(µ) := (C•, [-, -], dµ]
becomes a dg-Lie algebra. Finally set

Zi(µ) := Ci ∩Ker dµ

Bi(µ) := dµ(Ci−1)

H i(µ) := Zi(µ)/Bi(µ).

3.4.2. Remark. Note that (C•, ∗, dµ) =
∞
EndA(µ), the dg-endomorphism ring of µ

in the category of A∞-modules over A. In particular, H i(µ) = Exti
A(µ, µ) for i ∈ N.

We leave it as an exercise to verify that Z1(µ) = Tmodd
A,µ.

3.4.3. Maurer-Cartan equation. With our definitions from 3.4.1 we my rewrite the
equations (Mn) in 3.3 as

(M ′
n) dµ(µn) +

∑
i+j=n

µi ∗ µj = 0.

More generally, µ + µm is a R-deformation of µ (see 3.3) if and only if µm fulfills the
Maurer-Cartan equation

dµ(µm) +
1

2
[µm, µm] = 0

in C(µ)⊗m (provided char k 6= 2), this is just equation (3.1).
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We leave it as an exercise to show that if m is nilpotent and char(k) = 0 even
MC(C(µ), R) (equation (2.1)) corresponds bijectively to the equivalence classes of
R-deformations of µ.

3.5. Infinitesimal deformations. We find similar results as for algebras: The
space Ext1

A(µ, µ) classifies naturally the equivalence classes of infinitesimal deforma-
tions of µ. As a consequence, if Ext1

A(µ, µ) = 0 each formal deformation is trivial,
and each infinitesimal deformation is integrable. We leave the details as an exercise.
Note that as in the case of algebras, for these results the Lie-structure on the complex
(C•, dµ) is not needed.

3.6. Obstructions. Let us note that the “obstruction” to extend a k[t]/(tn+1)-
deformation of an A-module µ to a k[t]/(tn+1)-deformation is an element of the
space Ext2

A(µ, µ). This follows from the following:

3.6.1. Lemma. Let µt = µ + µ1 · t + · · · + µn · tn be a k[t]/(tn+1) deformation of
µ ∈ modd

A(k). Then ∑
i+j=n+1

µi ∗ µj ∈ Z1(µ).

Proof. We calculate

dµ(
∑

i+j=n+1

µi ∗ µj) =
∑

i+j=n+1

dµ(µi) ∗ µj − µi ∗ dµ(µj)

hyp.
=
∑

i + j + k(µi ∗ µj) ∗ µk − µi ∗ (µj ∗ µk)

= 0,

since (C•, ∗, dµ) is an (associative) dg-algebra. �

3.6.2. Corollary. If Ext2(µ, µ) = 0 each infinitesimal deformation of µ is integrable.

4. Varieties and Schemes

In this section k will be an algebraically closed field.

4.1. Notions from algebraic geometry.

• An(k) := kn the affine space of dimension n, with Zariski topology. So closed
subsets are defined by the vanishing of polynomials. For example the standard
parabola in A2(k) is the closed subset V(x2

1−x2).

• X ⊂ An(k) is locally closed if it is the intersection of an open subset with
a closed subset. Equivalently, X is open in its (Zariski) closure. Note that
A2 \ {(t, 0) | t ∈ k∗} is not locally closed.
• For X ⊂ An(k) locally closed, we say that a continuous function f : X →

k = A1 is regular if for each x ∈ X there exists an open neighborhood U and
g, h ∈ k[x1, . . . , xn] such that the restriction of f(u) = g(u)/h(u) for all u ∈ U
(in particular h(u) 6= 0 for all u ∈ U). We write O(X) for the commutative
k-algebra of regular functions on X.
• A quasi-affine variety is a locally closed subset X ⊂ An(k) together with the

datum of O(U) for all open subsets U ⊂ X.
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• A morphism of varieties is a continuous map f : X → Y such that the the
composition

f−1(U)
f |U−−→ U

g−→ k

is a regular function on f−1(U) for all open subsets U ⊂ Y and all g ∈ O(U).
Note, that bijective morphisms are not always isomorphisms of varieties.
• An affine variety is a variety which is isomorphic to a closed subset of some

An(k).
• A variety X is irreducible if X = X1 ∪X2 for closed subsets X1, X2 implies

X1 = X or X2 = X. The irreducible components of a variety are its maximal
(closed) irreducible subsets. Each variety is the union of its (essentially)
unique irreducible components. For example, the affine variety V (x1·x2) ⊂ A2

has the two components V (x1) and V (x2).

4.2. Remarks on schemes. Schemes are a natural generalization of varieties. A
scheme may be identified with its “functor of points”

{commutative k-algebras} → Sets.

Affine schemes correspond to representable functors, i.e. to functors of the form
Homk−alg(R,−) for some commutative k-algebra R. Thus, the category of affine
schemes is anti-equivalent to the category of commutative k-algebras.

Affine algebraic schemes correspond in this way to finitely generated commuta-
tive k-algebras, while reduced affine schemes correspond to commutative k-algebras
without nilpotent elements.

Any algebraic scheme X gives rise to a (not necessarily affine) variety X(k). In
this way, algebraic reduced schemes correspond bijectively to varieties. In particular,
an affine variety V corresponds to the affine scheme Homk−alg(O(V ),−).

4.3. Examples.

• An(S) = Sn is an affine reduced scheme, it is represented by k[x1, . . . , xn].
• GLd(S) := {M ∈ Matn×n(S) | M invertible }. This is an algebraic reduced

affine scheme. It is represented by k[t,Xij |1≤i,j≤d]/(t · det((Xij))− 1).
• Assd(S) := {associativeS − algebra structures on Sd}. This is an affine alge-

braic scheme represented by

k[Xk
ij |1≤i,j,k≤d]/(

d∑
s=1

(Xs
ijX

t
sk −X t

isX
s
jk) |1≤i,j,k,t≤d).

This is not reduced, and it seems to be quite difficult to describe the coor-
dinate ring of the corresponding reduced scheme. It is here more natural to
work with the non-reduced structures.
• For r, n ∈ N+ define the Grassmann scheme by

Gr,n(S) := {direct summands X ofSr+n | rank X = r}.

This is in fact a scheme [5, I §1, 3.13], which is reduced but it is not affine.
Note that G1,n is Pn, the projective n-space.



DEFORMATION THEORY OF FINITE DIMENSIONAL MODULES AND ALGEBRAS 11

4.4. Some deformation lemmata. We present here some results which are useful
in the context of deformation theory, as we shall see.

4.4.1. Lemma. Let f : X → Y be a morphism between schemes over k and assume
that Y is of algebraic and quasi-projective over k. If for every x ∈ X(k) the restriction

fk[[t]] : (X(pk[[t]]))
−1(x)→ Y (pk[[t]])

−1(f(x))

is surjective, then f(X(k)) is open in Y (k).

This result from [3, Lemma 7.1] is similar to the valuative criteria for separateness
and properness of a morphism (where pk[[t]] has to be replaced by the inclusion ι : R→
K of a discrete valuation ring R into its field of fractions K, and the corresponding
restriction of fR has to be injective resp. bijective). Sloppily one might state the
condition as “each deformation of f(x) comes from a deformation of x.” The next
result is Lemma 7.2 from [3].

4.4.2. Lemma. Let X be a scheme over k and U an open subscheme of X. If
x ∈ U(k) and xt ∈ X(k[[t]]) such that X(pk[[t]])(xt) = x, then xt ∈ U(k[[t]]).

The proof in [8, §1.6] can be easily adapted to show the following:

4.4.3. Lemma. Let X be an algebraic scheme over k and suppose that x ∈ X(k)
has an open neighborhood U such that for all y ∈ U(x) the following conditions hold:

(i) For each y′ ∈ TU,y we have (U(pt,ε))
−1(y′) 6= ∅ where pt,ε : k[[t]] → k[ε] is the

canonical projection.
(ii) dim TU,y = dim TU,x.

Then x is a regular point of X.

5. The scheme of algebra structures

We consider the k-functor Algn of associative unitary algebra structures on a n-
dimensional space. Thus it is defined by

Algn(S) := {α ∈ Assn(S) | α has a 1}.

This is in fact an open, affine subscheme of Assn. We show here however the following
weaker result following [2, §1].

5.1. Proposition. (a) Algn(k) is an open subset of Assn(k).
(b) e : Algn(k)→ kn, α 7→ 1α is a morphism.
(c) Algn(k) is an affine variety.

Proof. (a) For a ∈ kn and α ∈ Assn(k) we define endomorphisms of kn by la,α(v) =
α(a ⊗ v) and ra,α(v) = α(v ⊗ a). It is not hard to see that α admits an unit 1α if
and only if for some a ∈ kn la,α and ra,α are invertible, and in this case 1α = l−1

a,α(a).
Now, define for a ∈ kn open (affine) subsets of Ass(k) by

Da = {α ∈ Assn(k) | det(la,α) det(ra,α) 6= 0},

then Algn(k) = ∪a∈knDa(k).
(b) Since 1α is unique (if it exists), we can define e locally on Da as α 7→ l−1

a,α(a).
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(c) The map α 7→ (α, e(α)) defines an isomorphism from Algn(k) to the affine
variety

{(α, v) ∈ Assn(k)× kn | v = 1α}
�

GLn acts on Algn via αg = g−1α(g⊗ g), thus GLn-orbits correspond bijectively to
isoclasses of n-dimensional unitary k-algebras.

Algn(k) is connected. In fact, the orbit of the unique n-dimensional local algebra
with maximal ideal m such that m2 = 0, belongs to each irreducible component.

5.1.1. Remark. The scheme of algebra structures was already studied in [6]. There,
Alg4 is described in detail, it has 5 components of dimension 16, 14, 13(2), 10. For
example, the automorphism group of the semi-simple algebra k × k × k × k is the
symmetric group S4, so the corresponding GL4-orbit in Alg4 has dimension 16.

Alg5 has 10 components of dimensions 25, 23, 22(2), 21(3), 19, 17, 13. This was
worked out in [12]. In this case, each irreducible component contains a (scheme-
theoretically) open GL5-orbit. In fact, it is not difficult to verify that for each of the
generic algebras A found by Mazzola one has H2(A) = 0.

The calculations in [4] show that for n ≥ 6 the scheme Algn is not generically
reduced.

5.2. Connection with Deformation theory. Let R be a local commutative k-
algebra with maximal ideal m and pR : R → R/m = k the canonical projection.
Then the R-deformation of α ∈ Algd(k) are just the elements of (Algd(pR))−1(α) ⊂
Algd(R). Similarly we have the group E(R) = (GLn(pR))−1(11n) ⊂ GLn(R), com-
pare 1.4. Thus the equivalence classes of R-deformations are just the E(R)-orbits
on (Algd(pR))−1(α).

5.3. Infinitesimal deformations. In this case R = k[ε] := k[t]/(t2). Thus the
set Z2(α) of infinitesimal deformations of α (see 1.3 and 2.1) is identified with the
tangential space TAlgn,α. This is in general not true for the tangential space of the
variety of algebra structures.

Next, we may consider the orbit map

ω : GLn → GLn ·α, g 7→ gα(g−1 ⊗ g−1).

We leave it as an exercise to identify the image of the differential dω,11 with dα(C1),
where dα is the differential of the Hochschild complex defined in 2. The kernel of dω11

may be identified with the scheme theoretical tangential space of the stabilizer of α
(i.e. the automorphism group of the corresponding algebra). So an easy dimension
count shows that dω,11 is onto if and only if the stabilizer of α is reduced. Thus we
obtain the following version of Voigt’s lemma:

5.3.1. Lemma. For α ∈ Algn(k) one has a natural surjective linear map

H2(α)→ TAlgn,α/TGLn ·α,α.

This map is an isomorphism if and only if the stabilizer of α is reduced.

If char k = 0 each affine group scheme is reduced by Cartier’s theorem [5, II §6.1.1].
However, the automorphism group of k[x]/(x2) is not reduced if char(k) = 2. So, at
least for fields of characteristic 0 the equivalence classes of infinitesimal deformations
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of an finite-dimensional algebra can be identified with the tangential space of the
scheme of algebra structures at this algebra modulo the tangential space along the
orbit of this algebra.

5.3.2. Lemma. Let α ∈ Algn(k). If H3(α) = 0 then α is a smooth point of Algn.

This follows essentially from 4.4.3 together with 2.4.2, taking into account that the
dimensions of Hochschild cohomology groups are upper semi-continuous functions on
Algn(k). See [8, §1.6] for more details.

5.4. Formal deformations. Discuss relation with curves through α.

6. The scheme of module structures

6.1. Basic construction. Let A be a finitely generated (unitary) k-algebra, say
A = k〈a1, . . . , an〉/J . For d ∈ N we define modd

A, the scheme of d-dimensional
(unitary) A-modules by

modd
A(S) := (m(1), . . . m(n)) ∈ Matd×d(S)n | f(m(1), . . . ,m(n)) = 0 for all f ∈ J},

in other words, modd
A(S) consists of the k-algebra homomorphisms A→ Matd×d(S).

This is an affine scheme, represented by R = P/I, where

P := k[X
(k)
i,j | 1≤k≤n

1≤i,j≤d
].

In order to describe I, we set

X(l) :=

 X
(l)
1,1 · · · X

(l)
1,d

...
...

X
(l)
d,1 · · · X

(l)
d,d


and I is the ideal of P which is generated by the (d× d) entries of f(X(1), . . . , X(n)),
where f runs over the elements of J . Note that I is finitely generated even if J is
not since P is noetherian.

In general, modd
A is not reduced, and in general it would be hopeless to describe

the coordinate ring of its reduced structure.
GLd acts on modd

A by conjugation: If m = (m1, . . . ,mn) ∈ modd
A(S) and g ∈

GLd(S) then mg := (g−1m1g, . . . g−1mng). Thus the GLd(k)-orbits on modd
A(k)

correspond bijectively to the isoclasses of d-dimensional A-modules.

6.2. Examples. Let A = k[x1, x2]/(x1x2). Then

modd
A(S) := {(M1, M2) ∈ Mat2

d×d |M1M2 = 0 = M2M1}.

For an arbitrary (finitely generated) commutative k-algebra A it is easy to see that

mod1
A(−) := Homk-alg(A,−).
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6.3. Basic properties. In general, modd
A is not connected, and the connected com-

ponents are possibly not irreducible. For example, if A is finite dimensional, then

modd
A :=

∐
S∈S(d)

mod
[S]
A

where S(d) is a set of representatives for the isoclasses of d-dimensional semisimple

S-modules, and mod
[S]
A (k) are the the d-dimensional A-modules which have the same

simple composition factors as S. In this case the orbit of [S] belongs to all irreducible

components of mod
[S]
A .

On the other hand, modd
A is smooth for all d ∈ N if and only if A is hereditary

(and in this case each connected component is also irreducible). See [1] for more
details and a good account of related material.

6.4. Differentials and infinitesimal deformations. In this paragraph we as-
sume that the underlying vector space V of A is finite dimensional, and write
W := kd. We start with the following remarks which we leave as exercises.

(a) With the definitions from 3.4.1, the functions

z(i) : modd
A(k)→ N0,µ 7→ dim Zi(µ)

e(i) : modd
A(k)→ N0,µ 7→ dim H i(µ)

are upper semicontinuous. In particular, if e(i+1)(µ) = 0 there exists an open
neighborhood U of µ and c ∈ N0 such that e(i+1)(µ′) = 0 and z(i)(µ′) = c for
all µ′ ∈ U .

(b) The restriction d0
µ : Homk(W, W ) → Homk(V ⊗W, W ) of dµ identifies natu-

rally to the differential dωµ,11 of the orbit map

ωµ : GLd → Homk(V ⊗W, W ), g 7→ g · µ(11⊗ g−1).

Similarly we have a natural isomorphism Z1(µ) ∼= TmodA,µ.
(c) The restriction dω,11 : TGLd,11 → TGLd ·µ,µ is always surjective, since the stabilizer

AutA(µ) is an open subscheme of the linear space EndA(µ).

From the above remarks (b) and (c) we obtain as in 5.3:

6.4.1. Lemma (Voigt). For µ ∈ modd
A(k) we have TmodA,µ/TGLd ·µ,µ

∼= Ext1
A(µ, µ).

Note, that the above isomorphism holds in general only for the scheme-theoretic
tangential space, for the tangent space to the (reduced) variety one obtains only an
inclusion.

Finally, the identifications from (b) together with (a) show that the hypothesis
of 4.4.3 are fulfilled, and we obtain:

6.4.2. Corollary. If Ext2
A(µ, µ) = 0 for some µ ∈ modd

A(k), then this is a smooth
point of modd

A.
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6.5. Decomposition theory. Inspired by the work of Kac and Schofield on repre-
sentations of quivers, de la Peña and finally Crawley-Boevey and Schröer developed
a theory of “indecomposable” irreducible components and of “decomposition” of
irreducible components into indecomposable components for mod d

A. Elementary
deformation theory plays central part in the proof of this important results. We will
sketch this here.

Let d = d1 + · · · + dt and Ci ⊂ moddi
A (k) subsets which are GLdi

(k)-stable. We
consider all d-dimensional modules which are of the form m = m1 ⊕ · · · ⊕mt with
mi ∈ Ci. Thus we may think of m(i) having (up to simultaneous conjugation) the
shape  m

(i)
1 0

. . .

0 m
(i)
t

 .

We write C1 ⊕ · · · ⊕ Ct for the corresponding GLd-stable subset of modA
d (k), and

C1 ⊕ · · · ⊕ Ct for its Zariski closure.
The following basic result is almost folklore, see for example [3] for a proof.

Theorem 1. If C ⊂ modd
A is an irreducible component of modd

A, then we have
C = C1 ⊕ · · · ⊕ Ct for some irreducible components Ci of mod di

A such that Ci(k)
contains an open dense subset of indecomposable modules. Moreover, the Ci are
unique up to reordering.

Thus we have a kind of Krull-Schmidt theorem for irreducible components. How-
ever, direct sums of irreducible components are not always irreducible components.
This is solved by the following result:

Theorem 2 (Crawley-Boevey, Schröer). If Ci is an irreducible component of moddi
A

for 1 ≤ i ≤ t and d = d1 + · · · + dt, then C1 ⊕ · · · ⊕ Ct is an irreducible component
of modd

A if and only if ext1
A(Ci, Cj) = 0 for all i 6= j.

Here, ext1
A(C1, C2) := min{dim Ext1

A(m1, m2) | (m1, m2) ∈ C1 × C2}. Since
the map C1 × C2 → N, (m1, m2) 7→ dim Ext1

A(m1, m2) is upper semi-continuous,
ext1

A(C1, C2) can be considered as the “general” dimension of extensions between
modules from C1 an C2.

6.6. On the proof of Theorem 2.

6.6.1. Lemma. Suppose Ext1
A(m2, m1) = 0 and let m ∈ modd

A(k) such that

m(i) =

(
m

(i)
1 d(i)

0 m
(i)
2

)
for i = 1, 2, . . . , n.

Then each formal deformation of m is equivalent to a deformation mt such that

m
(i)
t =

(
m̃

(i)
1 d̃(i)

0 m̃
(i)
2

)
for 1 ≤ i ≤ n.

Let d = d1 + d2. For a subset

S ⊂ modd1
A (k)×modd2

A (k)
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define

E(S) := {m ∈ modA
d (k) | ∃ s.e.s. 0→ m2 → m→ m1 → 0 with (m1, m2) ∈ S}

Now, if ext1
A(C1, C2) 6= 0 it is not hard to see that E(C1 × C2) contains properly

C1 ⊕ C2. This shows the “only if” part of Theorem 2. The other direction follows
basically from the following result which is interesting on its own.

6.6.2. Proposition. Let S ⊂ modd1
A (k) × modd2

A (k) be GLd1(k) × GLd2(k)-stable.
Then the following holds:

(i) If S is a closed subset, then E(S) is a closed subset of modd
A(k).

(ii) If S is irreducible, locally closed and dim Ext1
A(m1, m2) = c for all (m1, m2) ∈

S (and some c ∈ N), then E(S) is irreducible.
(iii) If S is open and Ext1(m2, m1) = 0 for all (m1, m2) ∈ S then E(S) is open.

Part (iii) follows from the following consideration: Let Z be the closed subscheme
of modd

A, such that the elements m = (m(1), . . . ,m(n)) of Z(R) are all of upper
triangular form with respect to the decomposition d = d1 + d2. Then we have a
natural map ∆: Z → modd1

A ×modd2
A which sends an element of Z to the pair of its

diagonal blocks. We may consider S as an open subscheme of modd1
A ×modd2

A , thus
∆−1(S) is an open subscheme of Z. On the other hand, we have a morphism

f : GLd×∆−1(S)→ modd
A

obtained from the inclusion of ∆−1(S) into modd
A, followed by the conjugation action

with GLd. Clearly E(S) is the image of f . Let m = f(g, b) ∈ E(S)(k) and mt a formal

deformation of m. Then m′
t = mg−1

t is a formal deformation of b ∈ ∆−1(S)(k) ⊂
modd

A(k). By the lemma below, m′
t is equivalent to a formal deformation m′′

t ∈
Z(k[[t]]). In particular, m′′

t = (m′
t)

gt for some gt ∈ Ed(k[[t]]). Since ∆−1(S) is open
in Z we get even m′′

t ∈ (∆−1(S))(k[[t]]), Lemma 4.4.2, so mt = f(gg−1
t , m′′

t ). This
implies by Lemma 4.4.1 that E(S) is open in modd

A.

7. Appendix: Schemes

For the convenience of the reader we present here some definitions for the “func-
torial point of view” of schemes as far as it is used in this text. Our exposition is
based Part I, Section 1,2 and 5 of [10], though a few things become easier since our
base k is a field (even algebraically closed). The original reference for this kind of
material is a part of [5].

7.1. Basic Definitions. For an affine scheme Homk-alg(R,−) and an ideal I ⊂ R
one defines the following subfunctors:

VI(A) := {x ∈ Homk-alg(R,A) | x(I) = 0}
DI(A) := {x ∈ Homk-alg(R,A) | A · x(I) = A}

The subfunctors of the form DI are called open subfunctors, the functors of the form
VI are called closed subfunctors of Homk-alg(R, -).

We have for example VI(-) ∼= Homk-alg(R/I, -) and DI = D√
I . For f ∈ R we get

D(f)(-) = Homk-alg(Rf , -), where Rf denotes the localization of R with respect to the
multiplicative system {1, f, f 2, . . .}.
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Note that

Homk-alg(R,K) = DI(K)
·
∪ VI(K)

if K is a field, otherwise this equality is false in general. Moreover, for ideals I, J of
R we have DI = DJ if and only if DI(k) = DJ(k) since k is algebraically closed.

For the rest of this section a functor

{commutative k-algebras} → Sets

will be called a k-functor.
Natural transformations are the morphisms between k-functors. A subfunctor Y

of an arbitrary k-functor is open, if for every morphism φ : X ′ → X with X ′ affine
φ−1(Y ) is an open subfunctor of X ′. A family (Yi)i∈I of open subfunctors of X is
called an open covering if ∪i∈IYi(K) = X(K) whenever K is a field.

X is called local, if for every k-functor Y with an open covering (Yi)i∈I the natural
map

Mor(Y,X)→
∏
i∈I

Mor(Yi, X), f 7→ (f |Yi
)i∈I

induces a bijection between the morphisms from Y to X and families of morphisms
(fi)i∈I ∈

∏
i∈I Mor(Yi, X) such that fi |Yj∩Yi

= fj |Yi∩Yj
∈ Mor(Yi ∩ Yj, X) for all

i, j ∈ I. In other words, X is local if morphisms to X can be defined locally.
Now, a scheme is a local k-functor which admits an open covering by affine schemes.

In particular, affine schemes are schemes in this sense. A scheme is algebraic over k if
it admits a finite open covering by affine schemes whose coordinate rings are finitely
presented k-algebras. Since we work over a field k it the notion of algebraic schemes
and (the otherwise weaker) notion of finite type schemes are equivalent.

Note, that for each scheme X the set of morphisms Mor(X, A1) is naturally a
ring. In fact, f ∈ Mor(X, A1) is given by a family of maps fS : X(S) → A1(S).
Since A1(S) = S is ring we can define addition and multiplication in Mor(X, A1)
component wise. We may equip X(k) with the Zarisky topology by defining the
open subsets as U(k) for U an open subfunctor of X, and obtain on X(k) a sheaf of
rings OX by taking OX(U)((k)) = Mor(U, A1) for each each open subfunctor U ⊂ X.
In particular, we may define for each x ∈ X(k) the local ring OX,x in the usual way.
We say the x is regular if OX,x is regular.

For a scheme X and µ ∈ X(k) we define the tangential space

TX,µ := X(pk[ε])
−1(µ) ⊂ X(k[ε])

where k[ε] = k[t]/(t2) are the dual numbers and p : k[ε]→ k the canonical projection.
This is indeed a finite dimensional vector space if X is algebraic. Recall, that in this
case we have dimk TX,x ≥ dimKrullOX,x and x is regular iff equality holds.

If f : X → Y is a morphism of schemes, µ ∈ X(k) and ν = fk(x) ∈ Y (k) we obtain
a linear map

df,µ : TX,x → TY,ν , τ 7→ fk[ε](τ),

the differential of f at x. It is a useful exercise to translate these concepts for
(reduced affine schemes) into the usual language of varieties.
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7.2. Group schemes. By definition, a group scheme is a functor

G : {commutative k-algebras→ {groups}
which is a scheme if considered as a k-functor. It is elementary to see that the
category of affine group schemes is anti-equivalent to the category of commutative
Hopf-algebras. All group schemes considered in these notes will be affine. A typical
examples is GLn it is defined by

GLn(S) = {M ∈ Matn×n(S) | det(M) ∈ S×}
and is represented by the commutative ring

A := k[(Xi,j)1≤i,j≤n, d]/(det(X) · det(d)− 1)

where X is the n× n matrix with entries Xi,j. The comultiplication is given by

Xi,j 7→
n∑

k=1

Xi,k ⊗Xk,j, d 7→ d⊗ d

while the antipode is determined by

Xi,j 7→ det(X̃j,i) · d, d 7→ det X.

The action of a group scheme G on a scheme X is given by a morphism of schemes
σ : G × X → X such that σS : G(S) ⊗ X(S) → X(S) is a group action for each
commutative k-algebra S.

7.3. Orbits. In this situation, the G-orbit G · x of x ∈ X(k) is defined by

(G · x)(S) := {y ∈ X(S) | there exists a fppf-algebra S
φ−→ T and g ∈ G(T )

such that X(φ)(y) = g · x},

where fppf means “faithfully flat finitely presented” (for its initials in French). This
is in fact a scheme since k is a field, and it has the usual universal property of an
orbit in the category of schemes. Moreover, G · x is reduced if G and the stabilizer
of x are reduced.
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