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Introduction

The purpose of this paper to give an introduction to the theory of cluster categories
and cluster-tilted algebras, with some background on the theory of cluster algebras,
which motivated these topics. We will also discuss some of the interplay between
cluster algebras on one side and cluster categories/ cluster-tilted algebras on the
other, as well as feedback from the latter theory to cluster algebras.

The theory of cluster algebras was initiated by Fomin and Zelevinsky [FZ1], and
further developed by them in a series of papers, including [FZ2], some involving other
coauthors. This theory has in recent years had a large impact on the representation
theory of algebras. The first connection with quiver representations was given in
[MRZ]. Then the cluster categories were introduced in [BMRRT] in order to model
some of the ingredients in the definition of a cluster algebra. For this purpose a
tilting theory was developed in the cluster category. (See [CCS1] for the independent
construction of a category in the An case which turned out to be equivalent to the
cluster category [CCS2]). This further led to the theory of cluster-tilted algebras
initiated in [BMR1] and further developed in many papers by various authors.

The theory of cluster-tilted algebras (and cluster categories) is closely connected
with ordinary tilting theory. Much of the inspiration comes from usual tilting theory,
and features missing in tilting theory when trying to model clusters from the theory
of cluster algebras made it necessary to replace the module category modH for a
finite dimensional hereditary algebra H with a related category which is the cluster
category. On the other hand, the theory of cluster-tilted algebras provides a new
point of view on the old tilting theory.

The Bernstein-Gelfand-Ponomarev (BGP) reflection functors were an important
source of inspiration for the development of tilting theory, which provided a major
generalization of the work in [BGP]. The Fomin-Zelevinsky (FZ) mutation, which is
an essential ingredient in the definition of cluster algebras, gives a generalization of
these reflections in another direction.

We start with introducing cluster algebras in the first section. We illustrate the
essential concepts with an example, which will be used throughout the paper. We
give main results and conjectures about cluster algebras which are relevant for our
further discussion. In Section 2 we introduce and investigate cluster categories,
followed by cluster-tilted algebras in Section 3 . In Section 4 we discuss the interplay
between cluster algebras and cluster categories/cluster-tilted algebras, and we also
give applications to cluster algebras. The cluster categories are a special case of the
more general class of Hom-finite triangulated Calabi-Yau categories of dimension 2
(2-CY categories), and much of the theory generalizes to this setting. An important
case is the stable category modΛ, where Λ is the preprojective algebra of a Dynkin
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quiver. The closely related category modΛ has been studied extensively by Geiss-
Leclerc-Schröer, who extended results from cluster categories to this setting, and
gave applications to cluster algebras [GLS1][GLS2]. We treat this in Section 5 .

We suppose that the reader is familiar with the basic theory of quiver represen-
tations and almost split sequences (see [Rin1],[ARS],[ASS] and other papers in this
volume). We also presuppose some background from ordinary tilting theory (see
[Rin1],[ASS],[AHK]), but here we shall nevertheless recall relevant definitions and
results when they are needed. We generally do not give proofs, but sometimes we
include some indication of proofs in order to stress some ideas. Instead we give ex-
amples to illustrate the theory, and we try to give some motivation for the work.
We should also emphasize that the selection of the material reflects our personal
interests.

For each section we add some historical notes with references at the end, rather
than giving too many references as we go along. We also refer to the surveys
[BM][Rin2]. We assume throughout that we work over a field k which is algebraically
closed.

These notes are based on the series of lectures I gave in Trieste in January 2006.
I would like to thank I. Muchtadi Alumsayh and G. Bobinski for providing me with
a copy of their notes, and Aslak Bakke Buan for helpful comments.

1. Cluster algebras

In this section we introduce a special class of cluster algebras and illustrate the
underlying concepts through a concrete example. We also give a selection of main re-
sults and conjectures of Fomin-Zelevinsky which provide an appropriate background
for our further discussion.

1.1. FOMIN-ZELEVINSKY MUTATION. Let Q be a finite connected quiver
with vertices 1, 2, · · · , n. We say that Q is a cluster quiver if it has no loops · dd
and no 2-cycles ·

&&
·ff For each vertex i = 1, 2, · · · , n, we define a new quiver

µi(Q) obtained by mutating Q, and we call the process Fomin-Zelevinsky mutation,
or FZ-mutation for short.

The quiver µi(Q) is obtained from Q as follows.
(i) Reverse all arrows starting or ending at i.
(ii) If in Q we have n > 0 arrows from t to i and m > 0 arrows from i to s and r
arrows from t to s (interpreted as −r arrows from s to t if r < 0), then in the new
quiver µi(Q) we have nm− r arrows from s to t (interpreted as r− nm arrows from
s to t if nm− r < 0).

An important easily verified property of the mutation is the following.

Proposition 1.1. For a cluster quiver Q, we have µi(µi(Q)) = Q for each vertex i
of Q.

We illustrate with some examples.
(a) Let Q be the quiver
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For example there are now 2·2=4 arrows from vertex 2 to vertex 5, and considering
the paths between 3 and 5, we have 1 · 2− 3 = −1, so that there is one arrow from
5 to 3.
(b) Let Q be the quiver 1 → 2 → 3. Then Q′ = µ3(Q) is the quiver 1 → 2 ← 3
obtained by reversing the arrows involving 3. For in this case, since 3 is a sink in
the quiver, there is no path of length two with middle vertex 3. (The same thing
happens when we mutate at a vertex which is a source).

Hence we see that when we mutate at a sink or a source, the procedure coincides
with the BGP-reflections.

When we have a BGP reflection, like the above example, there is an equivalence be-
tween the subcategories of the categories of finite dimensional representations repQ
and repQ′ obtained by “removing” in each case the simple representation at the
vertex 3 [BGP].

1.2. DEFINITION OF CLUSTER ALGEBRAS. Let Q be a cluster quiver
with vertices 1, 2, · · · , n and let F = Q(x1, · · · , xn) be the function field in n inde-
terminates over Q. Consider the pair (x,Q), where x = {x1, · · · , xn}. The cluster
algebra C(x,Q) will be defined to be a subring F . The main ingredients involved in
the definition are the following concepts: cluster, cluster variable, seed, mutation of
seeds.

The pair (x,Q) consisting of a transcendence basis x for F over the rational num-
bers Q, together with a quiver with n vertices, is called a seed. For i = 1, · · · , n we
define a mutation µi taking the seed (x,Q) to a new seed (x′, Q′), where Q′ = µi(Q)
as discussed in 1.1, and x′ is obtained from x by replacing xi by a new element x′i in
F . Here x′i is defined by xix

′
i = m1 + m2, where m1 is a monomial in the variables

x1, · · · , xn, where the power of xj is the number of arrows from j to i, and m2 is the
monomial where the power of xj is the number of arrows from i to j. (If there is no
arrow from j to i, then m1 = 1, and if there is no arrow from i to j, then m2 = 1.)
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Note that while in the new seed the quiver Q′ only depends on the quiver Q, then
x′ depends on both x and Q. We have µ2

i (x,Q) = (x,Q).
We perform this operation for all i = 1, · · · , n, then perform it on the new seeds

etc. or we get back to one of the seeds already computed. The n-element subsets
x, x′, x′′, · · · occurring are by definition the clusters, the elements in the clusters are
the cluster variables, and the seeds are all pairs (x′, Q′) occurring. The corresponding
cluster algebra C(x,Q) which as an algebra only depends on Q, is the subring of F
generated by the cluster variables.

When we are given the cluster algebra only, the information on the clusters, cluster
variables and seeds may be lost, and also the rule for mutation of seeds. We want
to keep all this information in mind, in addition to the cluster algebra itself, which
is determined by this information.

We remark that the more general definition of cluster algebras includes the pos-
sibility of having the so-called coefficients, and also allows valued quivers. In the
language of [FZ1] the last generalization means to consider skew symmetrizable ma-
trixes rather than just skew symmetric ones. The correspondence between quivers
and matrices is illustrated by the following example: The quiver Q : 1 → 2 → 3 is

sent to
(

0 1 0
−1 0 1
0 −1 0

)

1.3. AN EXAMPLE. Let Q be the quiver 1→ 2→ 3 and x = {x1, x2, x3}, where
x1, x2, x3 are indeterminates, and F = Q(x1, x2, x3). We have µ1(x,Q) = (x′, Q′),
where Q′ = µ1(Q) is the quiver 1← 2→ 3 and x′ = {x′1, x2, x3}, where x1x

′
1 = 1+x2,

so that x′1 = 1+x2

x1
. Further µ2(x,Q) = (x′′, Q′′), where Q′′ = µ2(Q) is the quiver

1 552oo 3oo , and x′′ = {x1, x
′′
2, x3}, where x2x

′′
2 = x1 + x3, so that x′′2 = x1+x3

x2
.

Continuing , we have µ3(x,Q) = (x′′′, Q′′′) where Q′′′ is the quiver 1 → 2 ← 3 and
x′′′ = {x1, x2, x

′′′
3 }, where x2x

′′′
3 = x2 + 1, so that x′′′3 = x2+1

x3
.

Hence we have the diagram shown in Figure 1. In this diagram, Q1 = • // • // • ,
Q2 = • •oo // • , Q3 = • 33•oo •oo , Q4 = • // • •oo and y =
(1+x2)x1+(1+x2)x3

x1x2x3
. The clusters are: {x1, x2, x3}, {

1+x2

x1
, x2, x3}, { x1,

x1+x3

x2
, x3}, {x1, x2,

1+x2

x3
},

{1+x2

x1
, x1+(1+x2)x3

x1x2
, x3}, {

1+x2

x1
, x2,

1+x2

x3
}, {x1+(1+x2)x3

x1x2
, x1+x3

x2
, x3}, {x1,

x1+x3

x2
, (1+x2)x1+x3

x2x3
},

{x1,
(1+x2)x1+x3

x2x3
, 1+x2

x3
}, {1+x2

x1
, x1+(1+x2)x3

x1x2
, (1+x2)x1+(1+x2)x3

x1x2x3
}, {1+x2

x1
, (1+x2)x1+(1+x2)x3

x1x2x3
, 1+x2

x3
},

{x1+(1+x2)x3

x1x2
, x1+x3

x2
, (1+x2)x1+(1+x2)x3

x1x2x3
},

{ (1+x2)x1+(1+x2)x3

x1x2x3
, x1+x3

x2
, (1+x2)x1+x3

x2x3
}, { (1+x2)x1+(1+x2)x3

x1x2x3
, (1+x2)x1+x3

x2x3
, 1+x2

x3
}, and the clus-

ter variables are: x1, x2, x3,
1+x2

x1
, x1+x3

x2
, 1+x2

x3
, x1+(1+x2)x3

x1x2
, (1+x2)x1+x3

x2x3
, (1+x2)x1+(1+x2)x3

x1x2x3
.

If Q′ is a quiver mutation equivalent to Q, then the cluster algebras C(Q′) and
C(Q) are isomorphic.

1.4. SOME MAIN RESULTS. There is a large number of interesting results in
the theory of cluster algebras. Here we give some of the main theorems and open
problems which are of special interest for these notes.

(a) Finiteness conditions. The cluster algebra C(Q) = C(x,Q) is said to be of
finite type if there is only a finite number of cluster variables. This is equivalent to
saying that there is only a finite number of clusters, and also to the fact that there is
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Figure 1. Example.
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only a finite number of seeds. But as we shall see later, it is not equivalent to having
only a finite number of quivers. There is the following description of finite type.

Theorem 1.2. Let Q be a cluster quiver. Then the cluster algebra C(Q) is of finite
type if and only if Q is mutation equivalent to a Dynkin quiver.

Note that this result is similar to Gabriel’s classification theorem of the quivers of
finite representation type.

In Section 4 we consider the following problem problem posed by Seven:

For which quivers Q is the mutation class of Q finite?

(b) Laurent phenomenon. Observe that in the example in 1.3 we see that all
denominators of the cluster variables (when written in reduced form) are monomials.
Surprisingly enough, this is a special case of the following general result.

Theorem 1.3. Let C(Q) be a cluster algebra with initial seed (x,Q). Then for any
cluster variable in reduced form, the denominator is a monomial in x1, · · · , xn.

(c) The monomial in the denominators of cluster variables. Taking a closer
look at the monomials in the denominators in the example in 1.3, we see that in-
terpreting the factors xi as the simple modules Si corresponding to vertex i, the
denominators correspond to indecomposable modules via the composition factors.
This was already proved in [FZ2] for the case of a Dynkin quiver with no paths of
length greater than two. As we shall see later, there are more general results in this
direction, obtained as application of the theory of cluster categories and cluster-tilted
algebras.

(d) Positivity. Considering again our example, we see that in the numerator, all
monomials have positive coefficients. This has been conjectured to be true in general.

(e) Clusters and seeds. Another interesting problem is the following, proved for
finite type in [FZ2]
Problem: Is a seed (x′, Q′) expressed in terms of the initial seed (x,Q) uniquely
determined its cluster x′?

We shall see that this in the case when the quiver Q in the initial seed has no
oriented cycles.

(f) Clusters differing only at one cluster variable. When applying mutation
of seeds, the new cluster x′′ has exactly one cluster variable different from the old
cluster x′. If we again consider the example in 1.3, we see that if removing a cluster
variable from a cluster, there is a unique other cluster variable which can replace it
to give a new cluster. More generally, the following was shown in [FZ2].

Theorem 1.4. Let C(Q) be the cluster algebra associated with a Dynkin quiver Q.
Then there is a unique way to replace a cluster variable in a cluster by another cluster
variable to give a new cluster.

In general, there is the following open problem.
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Question: For any cluster algebra, is there a unique way of replacing any cluster
variable in a cluster by another cluster variable to give a new cluster?

We shall discuss this problem for acyclic cluster quivers, that is, quivers without
oriented cycles. We remark that in the Dynkin case it is known that the cluster
variables are in bijection with the almost positive roots, that is, the positive roots
together with the negative simple roots.

1.5. POSSIBLE MODELLING. The theory of cluster algebras has many nice
features, and it is an interesting problem to see if one can find good analogs of the
main ingredients involved in their definition, in some appropriate category.

We want the additive category C to have the following properties.
(i) To have an analog of clusters we want a special class of objects, all having the

same number n of nonisomorphic indecomposable summands.
(ii) To imitate the process of seed mutation, we would want that each indecompos-

able summand of an object in the class can be replaced by a (unique) nonisomorphic
indecomposable object such that we still get an object in our class.

(iii) To get a categorical interpretation of the definition of the new cluster variable
x′′i coming from x′i, we would want that when an indecomposable object M is re-
placed by an indecomposable object M ∗, then there are exact sequences or triangles
connecting M and M ∗, in both directions.

(iv) We would want an interpretation of the FZ-mutation.

The hope would be that this point of view should lead to an interesting theory in
itself, and at the same time, or instead, give a better understanding of the cluster
algebras.

Notes: The material in 1.1,1.2,1.4 is taken from [FZ1][FZ2][FZ3][BFZ]; see [BIRS]
for material related to 1.5.

2. Cluster categories

Associated with a given cluster algebra we want to find some category C having a
set of objects which we can view as analogs of clusters and which satisfy some or all
of the requirements listed in 1.5.

A cluster algebra is said to be acyclic if in the mutation class of the associated
cluster quivers there is some quiver Q with no oriented cycles. Then we have an
associated finite dimensional hereditary k-algebra kQ. So the category mod kQ of
finite dimensional kQ-modules might be a natural choice of category for modelling
acyclic cluster algebras.

2.1. TILTING MODULES OVER HEREDITARY ALGEBRAS. If we con-
sider C = mod kQ as the category we are looking for, then a natural choice of objects
would be the tilting kQ-modules. On one hand the reason is that they have n non-
isomorphic indecomposable summands, where n is the number of vertices in Q. On
the other hand there is a special tilting module associated with a BGP-reflection
of a quiver, and as we have seen, BGP-reflection is a special case of FZ-mutation.
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It will be instructive to first discuss this connection with tilting. Recall that for a
hereditary algebra H, an H-module T is tilting if Ext1

H(T, T ) = 0 and T has exactly
n nonisomorphic indecomposable summands up to isomorphism.

Example: Let Q be the quiver 1→ 2→ 3.
(a) We first do mutation at the vertex 3. Then µ3(Q) = Q′ : 1 → 2 ← 3. If

H = kQ, the H-module H is clearly a tilting H-module. Write H = P1 ⊕ P2 ⊕ P3,
where Pi is the indecomposable projective module associated with the vertex i, and
let Si denote the simple top of Pi. Let T = P1 ⊕ P2 ⊕ τ

−1S3, where τ denotes the
translation associated with almost split sequences, so that τ−1S3 = S2. We then
have the following AR-quiver.

P1

��?
??

??

P2

??�����

��?
??

??
S1
S2

��?
??

??
_ _ _ _ _

S3 = P3

::vvvvvvv
S2

??�����
_ _ _ _ _ S1

_ _ _ _ _

Note that EndH(T )op ' kQ′ = H ′, and EndH(H)op ' kQ. So we can pass from
kQ to kQ′, and hence from Q to Q′, by replacing the indecomposable summand P3

of the tilting module H by τ−1S3 to get another tilting H-module, and then taking
endomorphism algebras. Note that τ−1P3 is the only indecomposable H-module
which can replace P3 to give a new tilting module. Also HomH(T, ) : modH →
modH ′ induces the equivalence between subcategories as discussed in 1.1.

This example illustrates the module theoretical interpretation of the BGP-reflection
functors. Hence we also get a close connection between the AR-quivers, and the AR-
quiver for H ′ is the following

·

��;
;;

;;
S ′_ _ _ _

·

AA�����

��=
==

==
·

??�����

  A
AA

AA
_ _ _ _

·

@@�����
·_ _ _ _ _

(b) We now do FZ-mutation at vertex 2 in Q, and get µ2(Q) = Q′′ : 1
))

2oo 3oo .
Then it is natural to try to replace P2 in H = P1 ⊕ P2 ⊕ P3 to see if we get a
nonisomorphic tilting module, and if there is a unique one. This is indeed the
case, and the new tilting module is T = P1 ⊕ S1 ⊕ P3. But here we have maps
P3 → P1 → S1 with zero composition, so that EndH(T )op is given by the quiver with
relations 1

&&
2oo 3 , where an arrow 3→ 2 is missing compared to Q′.

So our procedure does not work from the point of view of getting a model for the
FZ-mutation, but it is quite close to working. What we would need is to have more
maps in our category than what we have in modH, in particular we would like to
have nonzero maps from S1 to P3 = S3.

(c) We also consider µ1(Q) = 1 ← 2 → 3 from the same point of view. Now
we would like to replace P1 in H = P1 ⊕ P2 ⊕ P3 with another indecomposable H-
module to obtain a tilting module. But here we encounter a problem at an earlier
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stage. This is actually not possible. The general explanation is that a projective
injective module has to be a direct summand of any tilting module. So here we get a
problem which indicates that the category modH is not large enough for being able
to replace P1.

In conclusion, as illustrated by this example, there are the following problems with
using the tilting modules over hereditary algebras as a model for clusters.

(1) There are not enough objects in order to replace any indecomposable summand
of a tilting module with a nonisomorphic indecomposable module to get a new tilting
module.

(2) The quiver of the endomorphism algebra of a tilting module is not the desired
one, the problem being that there are not enough maps.

Actually, the following is known for tilting H-modules.

Theorem 2.1. (a) If T is a tilting H-module, then each indecomposable summand
M can be replaced by at most one indecomposable H-module to get a new tilting
module.

(b) There is exactly one if and only if T/M is sincere, that is, each simple H-
module occurs as a composition factor.

Note that in our example P1 ⊕ P2 and P1 ⊕ P3 are sincere, whereas P2 ⊕ P3 is
not. We call an H-module T with Ext1

H(T , T ) = 0 and with n − 1 nonisomorphic
indecomposable summands an almost complete tilting H-module.

In the case when an almost complete tilting module T has two complements, that
is, there are two ways of completing it to a tilting module, they are connected as
follows:

Theorem 2.2. Let T be an almost complete tilting H-module and M and M ∗

nonisomorphic indecomposable modules such that T ⊕ M and T ⊕ M ∗ are tilting
modules. Then, by possibly exchanging M and M ∗, there is an exact sequence
0→ M∗ → B →M → 0 where f : B →M is a minimal right addT -approximation
and g : M∗ → B is a minimal left addT -approximation.

There is an important class of algebras associated with tilting modules over hered-
itary algebras. An algebra is said to be tilted if it is of the form EndH(T )op, where
T is a tilting module over a finite dimensional hereditary algebra H. These algebras
are general enough to appear a lot in a natural way in representation theory, and
they are close enough to hereditary algebras to inherit nice properties.

For an H-module T , denote by FacT the subcategory of modH whose objects
are factors of finite direct sums of copies of T . Recall also that a subcategory of
modH is a torsion class if it is closed under factors and extensions, and a torsionfree
class if it is closed under submodules and extensions. Then we have the following
relationship between hereditary algebras and tilted algebras.

Theorem 2.3. Let H be a hereditary finite dimensional algebra and T a tilting
H-module, and Λ = EndH(T )op.
(a) T = FacT is a torsion class in modH, with associated torsionfree class F =
{X; HomH(T,X) = 0}.
(b)There exists a torsion pair (X ,Y) in modΛ, where X is a torsion class and Y a
torsionfree class, such that
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(i) HomH(T, ) : modH → mod Λ induces an equivalence between T and Y
(ii) Ext1

H(T, ) : modH → modΛ induces an equivalence between F and X
(iii) each indecomposable object in modΛ is in X or Y.

An important homological property which can be proved for a tilted algebra Λ is
that Λ has global dimension at most 2.

2.2. DEFINITION AND EXAMPLES. The question is now how to modify the
category modH to take care of the shortcomings discussed in 2.1. In addition we
know from Section 1 that for cluster algebras given by Dynkin quivers, the cluster
variables are in one-one correspondence with the almost positive roots. Hence there
are n more cluster variables than the number of indecomposable modules for the
Dynkin quiver, where n is the number of vertices.

We now explain how to modify modH in view of of the above remarks.
Let Db(H) be the bounded derived category of the finite dimensional hereditary

k-algebra H = kQ, where Q is a finite quiver without oriented cycles. Then the inde-
composable objects are all isomorphic to stalk complexes. The translation τ , which
in this case gives an equivalence from the category modP H whose indecomposable
H-modules are not projective to the category modI H whose indecomposable H-
modules are not injective, induces an equivalence τ : Db(H) → Db(H). Then τ(C)
is the left hand term of the almost split triangle with right hand term C. Note that
under the embedding modH → D(H), almost split sequences go to almost split
triangles.

Let now F be the equivalence τ−1[1] from Db(H) to Db(H), where [1] is the shift
functor. Then we define the cluster category CH to be the orbit category Db(H)/F .
Here the objects are the F -orbits of objects in Db(H). In order to recall the defini-
tion of maps, we consider the fundamental domain of indecomposable objects given
by indH ∨ {Pi[1]; i = 1, · · · , n}, where P1, · · · , Pn are the nonisomorphic indecom-
posable projective H-modules. As is easy to see, any F -orbit of indecomposable
objects contains exactly one of the indecomposable objects listed. Let A, B be in-
decomposable objects in this fundamental domain, and denote by A and B also the
orbits in which they lie. Then by definition HomCH

(A,B) = ⊕i∈Z HomCH
(A, F iB)

,which in our case equals HomDb(H)(A,B) ⊕ HomDb(H)(A, FB). We illustrate with
the following.

Example: Let Q be the quiver 1 → 2 → 3, and let Si and Pi be the simple and
indecomposable projective H-modules corresponding to the vertex i, where H = kQ.
We then have the following AR-quiver for H, and for Db(H)

·

<
<

<
< P1

��=
==

==
·

��8
88

88
88

S2[1](=τ−1S3[1])
·

$$J
JJJJJJJ

·

9
9

9

CC�������
P2

@@������

��?
??

??
S1
S2

@@�
�

�

��?
??

??
·

::tttttttt

%%KKKKKKKKKKK ·

DD







·

DD						
P3

??�����
S2

??�����
S1

AA�
�

�

·

99sssssssssss
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Then we have

HomCH
(S1, S3) = HomDb(H)(S1, S3)⊕ HomDb(H)(S1, τ

−1S3[1]) = Ext1
H(S1, S2) ' k

.
Note that considering again Example (b) in 2.1, we see that EndCH

(P1⊕S1⊕S3)
op

has indeed quiver // //hh , due to the extra maps from S1 to S3.
Also the problem about complements in Example (c) in 2.1 can now be solved,

with an appropriate notion of “tilting” objects. We have that T = P1[1] ⊕ P2 ⊕ P3

is an object in CH with Ext1
CH

(T, T ) = 0.
We next give an example to show that for HomCH

(A,B) = HomDb(H)(A,B) ⊕
HomDb(H)(A, FB), where A and B are in the fundamental domain, there can be
nonzero maps in both summands.
Example Let Q be the quiver

3

2 1oo

@@�����

��=
==

==
// 4

5

and H = kQ the associated path algebra. Let M be the indecomposable module
(

1
2 3

)

. Then M lies in a tube of rank two, and we have τ
(

1
2 3

)

=
(

1
4 5

)

. For

computing HomCH
(M,M), we have HomH(M,M) 6= 0 and HomDb(H)(M, τ−1M [1]) =

Ext1
H(M, τ−1M) ' DHomH(τ−2M,M) ' DHomH(M,M) 6= 0.

The following properties of cluster categories will turn out to be important.

Theorem 2.4. (a) The cluster categories are triangulated categories, and the natural
functor from Db(H) to CH is triangulated.

(b) The cluster category CH has almost split triangles, and they are induced by
almost split triangles in Db(H).

Note that part (a) is highly nontrivial, and it is not true in general that nice orbit
categories of Db(Λ) for any finite dimensional algebra Λ are triangulated.

While any almost split triangle in CH is induced by an almost split triangle in
Db(H), it is not true that any triangle in CH comes from a triangle in Db(H). This
is for example not the case for the triangle induced by a map (f, g) : M →M in the
above example, where f and g are nonzero. This in one reason why it is difficult to
show that CH is triangulated.

There are orbit categories of Db(H) which were previouly known to be triangu-
lated, namely the stable categories modΛ for selfinjective algebras of finite type in
[Rie]. This gave an indication that the same thing might be true for cluster cate-
gories, but did not cover the examples of cluster categories. In addition the orbit
categories Db(H)/〈τ 2〉 were known to be triangulated [PX].



12 IDUN REITEN

2.3. CLUSTER-TILTING OBJECTS. We need to define the objects in CH

which should replace tilting H-modules. It would be desirable if the tilting modules
when viewed in CH would belong to this class.

It turns out to be natural to consider the condition Ext1
CH

(T, T ) = 0, that is, T
is exceptional, with T being maximal with this property. This was called cluster-
tilting object in CH , and the corresponding property for module categories has been
called maximal rigid in [GLS1]. The relationship to tilting modules is given by the
following.

Theorem 2.5. The cluster tilting objects in the cluster category CH are exactly those
coming from tilting modules over some hereditary algebra H ′ derived equivalent to
H.

Another concept related to cluster-tilting objects is that of Ext-configurations,
defined for some Db(H), or some orbit category like CH . The concept is motivated
by the Hom-configurations from [Rie], defined by a set of indecomposable objects
{Ci}i∈I where Hom(Ci, Cj) = 0 for Ci not isomorphic to Cj, and for any indecom-
posable X there is a nonzero map g : Cj → X for some Cj. Similarly we say that
{Ci}i∈I is an Ext-configuration if Ext1(Ci, Cj) = 0 for Ci 6' Cj, and for any in-
decomposable X there is some Ci such that Ext1(Ci, X) 6= 0. It turns out that
for cluster categories this concept coincides with cluster-tilting. Here the formula
D Ext1(A,B) ' Ext1(B,A) valid in cluster categories is important.

Proposition 2.6. An object T in the cluster-category CH is cluster-tilting if and
only if it is an Ext-configuration.

Proof. Clearly an Ext-configuration must be cluster-tilting. For the converse, assume
that T is cluster-tilting. By Theorem 2.3 we can assume that T is a tilting H-module.
If M is indecomposable exceptional in CH and Ext1

CH
(T,M) = 0, then T ⊕ M is

exceptional, and hence M is in addT . If M is an indecomposable object not in
addT , we can assume that M is an H-module since all P [1] with P indecomposable
projective are exceptional. Since Ext1

H(T,M) = 0 = Ext1
H(M,T ), then tilting theory

gives that M is in FacT ∩ SubT = addT . �

The notion of Ext-configuration is closely related to Iyama’s definition of maxi-
mal 1-orthogonal modules or subcategories, which he introduced in connection with
his generalizations of the theory of almost split sequences, originally in the abelian
case, where the notion was essential [I]. For a cluster category the triangulated
version of maximal 1-orthogonal objects [IY] is the same as objects which give Ext-
configurations, and hence concides with cluster-tilting objects.

We say that T is an almost complete cluster-tilting object if there is some indecom-
posable object M not in addT such that T ⊕M is a cluster-tilting object. Then M
is said to be a complement of T . There is a graph where the vertices are the (non-
isomorphic) cluster-tilting objects and there is an edge between two vertices if the
corresponding cluster-tilting objects have a common almost complete cluster-tilting
summand. This graph turns out to be connected.

It follows from 2.3 that all cluster-tilting objects in a given CH for H = kQ have
the same number of nonisomorphic indecomposable summands as the vertices in the
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quiver Q. Also we now get a better result on exchanging indecomposable summands
of cluster-tilting objects, more closely related to clusters.

Theorem 2.7. Let T be an almost complete cluster-tilting object in CH . Then T has
exactly two nonisomorphic complements in CH .

Note that if we start with an almost complete tilting H-module T which is not
sincere, there is only one complement in modH. But then some simple H-module S
is not a composition factor of T , so that HomH(P, T ) = 0 where P is the projective
cover of S. Hence we have Ext1

CH
(P [1], T ) = HomCH

(P, T ) = 0, and so P [1] is a
complement.

2.4. EXCHANGE PAIRS. Let T be an almost complete cluster-tilting object in
a cluster category CH , and let M and M∗ be the nonisomorphic complements for T .
We shall now investigate the relationship between M and M ∗.

We have the following connection.

Theorem 2.8. Let the notation be as above. Then we have the triangles M ∗ f
−→

B
g
−→ M → and M

s
−→ B′ t

−→ M∗ →, where g : B → M and t : B ′ → M∗ are
minimal right addT -approximations and f : M ∗ → B and s : M → B′ are minimal
left addT -approximations.

We illustrate with the following.

Example: Consider again CH for H = kQ, where Q : 1→ 2→ 3. Let T = P3 ⊕ P1.
Then the two complements are M = P2 and M∗ = S1. The triangles connecting M
and M∗ are:

S1 → S3 → P2 → and P2 → P1 → S1 →

where HomCH
(S1, S3) = Hom(S1, τ

−1S3[1]) = Hom(S1, S2[1]) ' k.

When M and M∗ are complements to a common almost complete cluster-tilting
object, we call (M,M ∗) an exchange pair. There is the following characterization
of such a pair.

Theorem 2.9. A pair of indecomposable objects (M,M ∗) in a cluster category CH

is an exchange pair if and only if Ext1
CH

(M,M∗) is one dimensional over
End(M)/ rad End(M) and over End(M ∗)/ radEnd(M∗).

2.5. ANALOGS. We have seen that in the cluster category CH we have identified
a collection of objects, which all have the same number of nonisomorphic indecom-
posable summands, the same way as all clusters have the same number of elements.
In both cases these numbers coincide with the number of vertices in the quiver.

We note a slight difference with respect to exchange. For cluster-tilting objects
there is a unique way of exchanging an indecomposable summand. For clusters there
is by definition at least one way of exchanging a cluster variable to get a new cluster,
but it is not clear that it is unique.

The analog of cluster variables is now clearly the indecomposable summands of
the cluster-tilting objects, which are the indecomposable exceptional objects.
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As analogs of the seeds (x′, Q′) we have tilting seeds (T,QT ), where T is a cluster-
tilting object and QT is the quiver of EndCH

(T )op. Note that also here there is a
slight difference, since a tilting seed is by definition determined by the cluster-tilting
object, while the corresponding result is not known in general in the context of cluster
algebras. Actually, these differences in behaviour also indicate some strength, and
can be used to prove new results on cluster algebras.

The exchange triangles M ∗ → B → M → and M → B′ → M∗ → are connected
with the exchange multiplication xix

∗
i = m1 + m2 in cluster algebras. Here the

monomials m1 and m2 correspond to the objects B and B ′.

We point out that for almost all results in this chapter we could instead deal with
hereditary abelian categories with finite dimensional homomorphism and extension
spaces and which have a tilting object. By [Ha2] it is known that the only additional
categories we the have to deal with are the categories coh X of coherent sheaves on
weighted projective lines [GL]

The only result which remains open in this setting is whether the cluster tilting
graph is connected.

Notes: The results from tilting theory are taken from [APR][BB][HR][HU1][HU2][RS][U].
It was proved in [Kel] that the cluster categories are triangulated. Otherwise the ma-
terial in this section is taken from [BMRRT][BMR2].

3. Cluster-tilted algebras

In the same way as the class of tilted algebras is defined as endomorphism algebras
of tilting modules over hereditary algebras, we consider endomorphism algebras of
cluster-tilting objects in cluster categories. These algebras have been called cluster-
tilted algebras. They have several interesting properties, ranging from homological
properties to description in terms of quivers with relations. In particular there are
nice relationships with the associated hereditary algebras.

3.1. THE QUIVERS OF THE CLUSTER-TILTED ALGEBRAS. We first
note that the hereditary algebraH is itself a cluster-tilted algebra since HomCH

(H,H) =
HomH(H,H) ⊕ HomDb(H)(H, τ

−1H[1], where the last term is clearly zero. The ba-
sis for information on the quivers of cluster-tilted algebras comes from comparing
the cluster-tilted algebras Γ = EndCH

(T )op and Γ′ = EndCH
(T ′)op, where T and T ′

are nonisomorphic cluster-tilting objects having a common almost complete cluster-
tilting object, that is, T and T ′ are neighbours in the cluster-tilting graph.

Theorem 3.1. With the above notation, let QT be the quiver of Γ = EndCH
(T )op and

QT ′ the quiver of Γ′ = EndCH
(T ′)op. Write T = T1⊕· · ·⊕Tn, where Ti are nonisomor-

phic indecomposable objects, and Tk is not a summand of T ′. Then µk(QT ) = QT ′ .

Using this, we get the following consequence, where we use that the cluster-tilting
graph is connected.
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Theorem 3.2. Let Q be a finite quiver without oriented cycles, and let CH be the
cluster category associated with H = kQ. Then the quivers of the cluster-tilted
algebras associated with CH are the quivers in the mutation class of Q.

Example. The quivers of the cluster-tilted algebras of type A3 are

· // · // · , · // · ·oo , · ·oo // · and
·

��=
==

==

·

@@�����
·oo

as is seen directly or by considering the example in 1.2.

The following result on cluster-tilted algebras, also of interest in itself, is useful
for proving Theorem 3.1.

Proposition 3.3. If Γ is a cluster-tilted algebra, then for any sum e of vertices in
the quiver, we have that Γ/ΓeΓ is also cluster-tilted.

We note that there is a difference as compared to tilted algebras, where the corre-
sponding result is not true in general. On the other hand the class of tilted algebras
is closed under taking endomorphism algebras of projective modules, while this is
not in general the case for cluster-tilted algebras.

The above result makes it possible to reduce the proof of Theorem 3.1 to the case
of cluster-tilted algebras with 3 simple modules. In this case there is a description of
the possible quivers in terms of Markov chains [BBH], and there is more information
on the algebras in [Ker2].

Theorem 3.2 establishes a nice connection between cluster-tilting theory and clus-
ter algebras. We shall see some applications in the next section.

3.2. RELATIONS. It is of course also of interest to describe the relations for a
cluster-tilted algebra once the quiver is given. The following may be true.

Conjecture 3.4. A cluster-tilted algebra is uniquely determined by its quiver.

The conjecture has been verified in the case of finite representation type. In this
case an explicit description is given of a set of minimal relations. Note that the
quiver Q has only single arrows. For each arrow α : i→ j in the quiver which lies on
a full cycle, that is, a cycle where there are no other arrows in Q between the vertices
of the cycle, take the sum of the paths from j to i, which together with α give a full
cycle. Then these relations determine the corresponding cluster-tilted algebra.

We give some examples to illustrate.

Example Let Q be the quiver

2

&&NNNNNNNNN

1

88ppppppppp
3

����
��

5

^^====

4oo

which is the quiver of a cluster-tilted algebra Γ of type D5. This can be seen by
finding a sequence of mutations from Q to a quiver of type D5. Then Γ is of finite
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type, and is hence determined by the relations given by all paths of length 4 being
zero.

Example Let Q be the quiver
1

α

����
��

� β

��=
==

==

2

γ ��=
==

==
3

δ����
��

�

4

ε

OO

Then Q is mutation equivalent to the quiver of type D4, and the corresponding
cluster-tilted algebra is hence of finite type. Hence the relations are γα + δβ = 0,
εγ = 0, εδ = 0, αε = 0, βε = 0.

Some of these results about the relations hold more generally, as given in the
following.

Proposition 3.5. Let Γ be a cluster-tilted algebra and S1, S2 simple Γ-modules.
Then we have dim Ext1(S1, S2) ≥ dim Ext2(S2, S1).

It is known that dim Ext2
Γ(S2, S1) gives the number of relations from the vertex

of S1 to the vertex of S2, in a minimal set of relations [Bo]. Hence we see that we
have relations from j to i in a minimal set only if there are arrows from i to j. But
there may not be such a relation for each arrow lying on a cycle, and if there is some
relation from j to i, it might go through a cycle.

Example The quiver

1
α1 //

α2
// 2

β����
��

�

3
γ

^^=====

is mutation equivalent to
· //

��=
==

==
·

·

@@�����

and is hence the quiver of a cluster-tilted algebra. A minimal set of relations is given
by α2γ = 0 = βα2 = γβ. Here we have dim Ext2(S2, S1) = 1 < 2 = dim Ext1(S1, S2).

3.3. RELATIONSHIP WITH HEREDITARY ALGEBRAS. There is a close
relationship between cluster-tilted algebras and the associated hereditary algebras,
as we shall now discuss.

For tilted algebras Λ there is a close relationship with the corresponding hereditary
algebras H, where two subcategories of modΛ, coming from a torsion pair, are also
equivalent to subcategories of modH belonging to a torsion pair. But here we may
have that H is of infinite type, while Λ is of finite type. Roughly speaking, in
the case of cluster-tilted algebras we have the “same number” of indecomposables.
Here we first enlarge the category modH by passing to CH and hence adding n
indecomposable objects, where n is the number of nonisomorphic simple H-modules.
Then we “remove” n other indecomposable objects from CH to obtain modΓ.
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When T is a tilting H-module and Λ = EndH(T )op, then, as we have pointed
out, the functor HomH(T, ) : modH → modΛ induces an equivalence between the
torsion class FacT in modH and the torsionfree class in modΛ, actually SubD(T ).
So this functor is far from being dense in general. But the situation is quite different
if we replace modH by the cluster category CH , and the tilted algebra Λ by the
cluster-tilted algebra Γ = EndCH

(T )op. Here the triangulated structure is important.
While for an H-module C there is usually no exact sequence T1 → T0 → C → 0 in
modH, with T0 and T1 in addT , we have the following crucial property for CH .

Lemma 3.6. Let H = kQ be a finite dimensional hereditary k-algebra, and CH the
associated cluster category. Then for any C in CH there is a triangle T1 → T0 →
C → T1[1] with T0, T1 in addT .

Proof. Let f : T0 → C be a right addT -approximation in CH , and complete to a
triangle X → T0 → C → X[1]. Apply G = Hom(T, ) to get the exact sequence

(T,X) → (T, T0)
(T,f)
−−−→ (T, C) → (T,X[1]) → (T, T0[1]) = 0. Since (T, f) is surjec-

tive, it follows that Ext1(T,X) = Hom(T,X[1]) = 0, so that X ∈ addT . �

Using this lemma one can show the following close relationship between CH and
the cluster-tilted algebra Γ = EndCH

(T )op.

Theorem 3.7. Let H be a finite dimensional hereditary k-algebra, T a cluster-tilting
object in the cluster category CH , and Γ = EndCH

(T )op the associated cluster-tilted
algebra. Then G = HomCH

(T, ) : CH → modΓ induces an equivalence of categories
G : HomCH

(T, ) : CH/ add τT → mod Γ.

Proof. We illustrate the use of Lemma 3.6 by showing that the functor G is dense.

So let C be in modΓ, and consider a (minimal) projective presentation (T, T1)
(T,f)
−−−→

(T, T0) → C → 0, where f : T1 → T0 is a map in addT . Complete to a triangle
T1 → T0 → X → T1[1], and apply HomCH

(T, ) to get the exact sequence (T, T1) →
(T, T0)→ (T,X)→ (T, T1[1]) = 0, so that C ∼= (T,X). This shows that G is dense.

Then we show that G is full. Let X and Y be in CH , and consider a map ϕ :
G(X) → G(Y ). We want to find a map f : X → Y such that G(f) = ϕ. By
Lemma 3.6 we have triangles T1 → T0 → X → T1[1] and T ′

1 → T ′
0 → Y → T ′

1[1] with
T1, T0, T

′
1, T

′
0 in addT . Then we have exact sequences (T, T1)→ (T, T0)→ (T,X)→

0 and (T, T ′
1)→ (T, T ′

0)→ (T, Y )→ 0, and it is easy to see that G is full.
Since G(τT ) = (T, τT ) = (T, T [1]) = 0, there is an induced functor

G : CH/ add τT → modΓ. The following short proof of G being faithful is due to
Keller. So let f : X → Y be a map in CH , and assume G(f) = 0 in modΓ. Consider
the diagram

T1 −−−→ T0 −−−→ X
i

−−−→ T1[1]




y

f

Y
where the triangle, with T1, T0 in addT , exists by Lemma 3.6. Since the compostion

T0 → X
f
→ Y is zero because G(f) = 0, there exists g : T1[1]→ Y such that gi = f .

So f factors through T1[1] = τT1. �
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This result has some similarity with the equivalences associated with the BGP
reflection functors, which induce equivalences between subcategories obtained by
leaving out only one indecomposable object, and where the AR-quivers are closely
related. And actually in this context of cluster-tilted algebras there is also a surpris-
ingly close connection between the AR-quivers for H and for Γ, via CH . This can be
used to rule out the possibility for a given algebra to be cluster-tilted.

Theorem 3.8. Let the notation be as before. Then the AR-quiver for Γ is obtained
by dropping the vertices corresponding to the objects τTi for the indecomposable sum-
mands Ti of the cluster-tilting object T .

This has the following direct consequence.

Corollary 3.9. Let T be a cluster-tilting object in the cluster category CH , and
Γ = EndCH

(T )op the corresponding cluster tilted algebra.
(a)Γ is selfinjective if and only if τ 2T ' T .
(b)The projective Γ-module P corresponding to an indecomposable summand Ti of

T , and the injective Γ-module I corresponding to τ 2Ti are related by P/radP ' soc I.

Proof. (a)Clearly the indecomposable projective Γ-modules correspond to the inde-
composable summands Ti of T , and the indecomposable injective ones to the τ 2Ti,
so the claim follows.

(b) We have HomΓ(P, I) ' HomCH
(Ti, τ

2Ti) and also HomΓ(Γ, D(Γ)) ' HomCH
(T, τ 2T ),

using Theorem 3.8 and HomCH
(T, τT ) = 0. Further HomCH

(Ti, τ
2Ti) = HomDb(H)(Ti, τ

2Ti)⊕

HomDb(H)(Ti, τTi[1]). We have Hom
D(H)(Ti, τTi[1]) = Ext1

Db(H)(Ti, τTi), and we

choose a nonzero element α in Ext1
Db(H)(Ti, τTi) corresponding to an almost split

triangle τTi → E → Ti. Then for a nonisomorphism f : Tj → Ti, the composi-
tion αf : Tj → τ 2Ti is zero. Hence for the corresponding map α : P → I, we have
Imα′ = soc I, which shows the claim. �

The above gives a way of constructing modΓ from modH, via CH . There is also
another way, going instead via the tilted algebra Λ = EndH(T )op, when T is a tilting
H-module.

Theorem 3.10. Let T be a tilting module over the hereditary algebra H, and Λ =
EndH(T )op.

(1) The cluster-tilted algebra Γ = EndCH
(T )op is isomorphic to the trivial exten-

sion algebra Λ n Ext2(DΛ,Λ).
(2) The quiver of Γ is obtained from the quiver with relations of Λ, by adding an

arrow from j to i for each relation in a minimal set of relations.

Example If we have the tilted algebra

·
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==
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��

�

·
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the associated cluster-tilted algebra has quiver

·

����
��

�

��=
==

==

·

��=
==

==
·

����
��

�

·

OO

The same rule applies when we start with a canonical algebra instead of a tilted
algebra.

Example Let Λ be a canonical algebra over k given by the quiver

· // ·

��9
99

99

·
**TTTTTTTTT

a

BB������
44jjjjjjjjj //

%%KKKKKKK
KKK

**TTTTTTTTT · // b

·

44jjjjjjjjj

·

99ssssssssss

where Λ = Endcoh X(T )op for a tilting object T in the associated category coh X of
coherent sheaves on a weighted projective line. Then we obtain the quiver for the
algebra EndCcoh X

(T )op by adding 5-2=3 arrows from b to a in the above quiver.

3.4. HOMOLOGICAL PROPERTIES. While the tilted algebras have global
dimension at most two, it turns out that the cluster-tilted algebras typically have in-
finite global dimension. But they have other homological similarities with hereditary
algebras.

Recall that a finite dimensional algebra Γ is Gorenstein of dimension at most one
if id ΛΛ ≤ 1 and id ΛΛ ≤ 1. (Using tilting theory, one knows that the last condition
can be dropped.) Clearly hereditary algebras satisfy this property, and we also have
the following.

Theorem 3.11. The cluster-tilted algebras are Gorenstein of dimension at most one.

We shall give another homological property of cluster-tilted algebras.
Recall that for a Gorenstein algebra Γ of dimension at most one the category

Sub Γ, which is the category CM Γ of Cohen-Macaulay modules in this case, is func-
torially finite [AS] and extension closed since Γ is a cotilting Γ-module. Hence Sub Γ
has almost split sequences [AS]. Sub Γ is also a Frobenius category, that is, Sub Γ
has enough projectives and enough injectives, and the projectives and injectives co-
incide. Hence the stable category SubΓ is a triangulated category [Ha1]. We have
the following necessary condition on cluster-tilted algebras.

Theorem 3.12. With the above notation, for a cluster-tilted algebra Γ, the stable
category SubΓ is 3-CY, that is DHom(A,B) ' Hom(B,A[3]) for A, B in SubΓ.

We note that there are algebras satisfying both the above homological conditions,
but which are not cluster-tilted.
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Example. Let Q be the quiver

1
α // 2

β
��

4

δ

OO

3γ
oo

and let Λ be the path algebra kQ modulo the relations given by all paths of length
7. This is a Nakayama algebra, which is selfinjective and hence Gorenstein. The
indecomposable projectives have length 7, and we have SubΛ = modΛ.

As we shall see in Section 5 , in order to show that modΛ is 3-CY, it is enough to
show that τ = Ω−2. We have τ(S1) = S2, and Ω−1(S1) = P3/S1 and Ω−1(P3/S1) =
S2, so τ(S1) ∼= Ω−2(S1). Calculating further, we then see that modΛ is 3-CY. But Λ
is not cluster-tilted since the relations in the unique cluster-tilted algebra with this
quiver are paths of length 3.

Notes. Most of the material in this section is taken from [BMR1], [BMR2], [BMR3].
Proposition 3.5 is taken from Assem-Brüstle-Schiffler and Reiten-Todorov (see [BMR3])
and [KR1], Theorem 3.10 is taken from [ABS], Theorem 3.11 from [KR1], Theo-
rem 3.12 from [KR1], while for selfinjective cluster tilted algebras it is due to Geiss-
Keller. See also [KZ].

4. Interplay and applications

In this section we give some illustration of how the theory of cluster categories
and cluster-tilted algebras has had some feedback on the theory of cluster algebras,
and we also give examples of nice interplay.

4.1. FINITE MUTATION CLASSES. Recall from Section 1 that there is a finite
number of cluster variables, equivalently a finite number of clusters, equivalently a
finite number of seeds, if and only if one of the seeds contains a Dynkin quiver.
However, there may be a finite number of quivers occurring even if none of the
quivers is Dynkin. Actually we have the following answer to a question of Seven.

Theorem 4.1. If the cluster quiver Q has no oriented cycles, then there is only a
finite number of quivers in the mutation class of Q if and only if Q is Dynkin or
extended Dynkin or has two vertices and is a generalized Kroncker quiver ·

//. // ·

An essential point to use is that the quivers occurring are exactly the quivers of
cluster-tilted algebras by Theorem 3.2. To investigate this we study tilting theory
for tame and wild hereditary algebras.

Examples: 1) · //// · is the only quiver in its mutation class.
2) The mutation class of · // 66· // · has in addition only · 6666·oo ·oo
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4.2. LISTS OF HAPPEL-VOSSIECK AND SEVEN. There is a famous Happel-
Vossieck list in representation theory, which consists of quivers with relations for the
minimal tilted algebras of infinite representation type, that is the tilted algebras Λ
which are of infinite type, but where Λ/ΛeΛ is of finite type for any vertex e in the
quiver [HV]. On the other hand there is the list of Seven of minimal infinite cluster
quivers, namely the quivers not mutation equivalent to a Dynkin quiver, but if one
vertex is removed, the quiver is mutation equivalent to a Dynkin quiver. As pointed
out in [S], there is a close connection between these lists, as the list of Seven is
obtained from the Happel-Vossieck list by inserting arrows in the opposite direction
whenever there is a dotted arrow indicating a minimal relation.

This is explained using that the list of Seven gives the quivers of the minimal
cluster-tilted algebras of infinite type, using Theorem 3.2. Then we also use how to
obtain the quiver of a cluster-tilted algebra from the quiver with relations for the
corresponding tilted algebra, as we have discussed in Theorem 3.2 For example one
passes from

· // ·

��

·oo

!!C
CC

C

�
�
� · //

��

·oo

!!C
CC

C

·
}}{{{

{ to ·
}}{{{

{

·oo // · ·oo // ·

OO

4.3. DENOMINATORS. We have seen that for acyclic cluster algebras there are
many similarities between the ingredients in the definition of a cluster algebra and
the cluster-tilting theory in the corresponding cluster category, for example we have
a cluster graph and a cluster-tilting graph, with seeds or tilting seeds at each vertex.

The next step is to try to define a map from cluster variables to indecomposable ex-
ceptional objects, which takes clusters to tilting objects and seeds to tilting seeds (or
in the other direction), which is 1-1 or surjective or both. When Q is a cluster quiver
without oriented cycles, we have the initial seed (x,Q), where x = {x1, · · · , xn}. The
natural initial tilting seed is (H,Q), where H = kQ = Pi ⊕ · · · ⊕ Pn, and the Pi are
the indecomposable projectives. We can start with defining ϕ(xi) = Pi. When we do
the exchange of cluster variables, we have a corresponding exchange of exceptional
objects, and it is natural to send the new cluster variable to the new exceptional
object, as illustrated in the following example, where Q is 1→ 2→ 3.

{{x1, x2, x3};Q}

vvmmmmmmmmmmmm

((QQQQQQQQQQQQQ

{{1+x2

x1
, x2, x3};Q

′} {{x1,
x1+x3

x2
, x3};Q

′′}

{P1 ⊕ P2 ⊕ P3;Q}

((RRRRRRRRRRRRR

uukkkkkkkkkkkkkk

{P1[1]⊕ P2 ⊕ P3;Q
′} {P1 ⊕ S2 ⊕ P3;Q

′′}

Here Q′ and Q′′ are as in 1.3. We define ϕ(xi) = Pi, ϕ(1+x2

x1
) = P1[1], ϕ(x1+x3

x2
) = S3

etc.
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Note that by the theory we have already discussed, we have the same corresponding
quiver on the bottom diagram, which by definition is the quiver of QT for the tilting
object T .

If we follow the same fixed path from the initial seed on both sides, the procedure
for defining ϕ is unique. But if we reach the same cluster variable via a different
path, then we might get a different indecomposable object. If there is a map from
cluster variables to indecomposable exceptional objects sending clusters to tilting
objects and seeds to tilting seeds, then it has to be given by ϕ, so the problem is to
prove that ϕ is well defined.

As we have discussed in Section 1 , for our example Q : 1 → 2 → 3, the de-
nominators of the cluster variables, when written in reduced form , are given by the
composition factors of an indecomposable exceptional module, which is known to be
uniquely determined by its composition factors (see [Ker1]). And for this example,
the map ϕ is well defined and is a bijection.

Note that if we know that the denominator of any cluster variable is given by
the composition factors of some indecomposable exceptional object, and that for
any choice of path from the initial seed the map ϕ takes the cluster variable to this
corresponding exceptional object, then the definition of ϕ would not depend on the
choice of paths. Actually, these two statements can be proved simultaneously.

Theorem 4.2. Let Q be a cluster quiver without oriented cycles.
(a)For each cluster variable f/g different from x1, · · · , xn, in reduced form, there is

a unique indecomposable exceptional H-module whose composition factors are given
by g.

(g)The map ϕ from cluster variables to indecomposable exceptional objects dis-
cussed above is well defined and surjective and takes clusters to tilting objects and
seeds to tilting seeds.

One of the problems dealing with cluster variables is to decide when a given expres-
sion f/g is in reduced form. There is a surprisingly elementary positivity condition
to deal with this problem.

We say that f = f(x1, · · · , xn) satisfies the positivity condition if f(ei) > 0 for
ei = (1, 1 · · · , 0, 1, · · · , 1), where 0 is in the i-th position, for i = 1, · · · , n. The
following result is crucial.

Lemma 4.3. If f satisfies the positivity condition and m is a monomial, then f/m
is in reduced form.

Proof. Assume f = f1xi. Then f(ei) = f1(ei) · 0 = 0, so that f does not satisfy the
positivity condition. Hence f/m is in reduced form. �

As a consequence of Theorem 4.2, we get the following , answering a conjecture
from Section 1 in the acyclic case.

Theorem 4.4. For an acyclic cluster algebra, a seed is determined by its cluster.

We illustrate some of these ideas on our standard example.

Example Let Q be the quiver 1 → 2 → 3 and H = kQ the corresponding path
algebra. We define a map ψ : indH → cluster variables for the cluster algebra
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C(Q), where the composition factors of X in indH determine the denominator in
ψ(X). We here use the AR-quiver, and it is natural to define a map in the opposite
direction from what we considered above. The map ψ is given by the following
pictures

I1[−1]
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66
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>>
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Note that Ij[−1] = Pj[1] in the cluster category CH and we send Ij[−1] to xj.
Then the cluster-tilting object T = I1[−1] ⊕ I2[−1] ⊕ I3[−1] is sent to the cluster
x = {x1, x2, x3}. Exchanging I2[−1] in T gives S3, and mutating x at vertex 3
amounts to replacing x3 by x

′

3 = 1+x3

x3
. So we define ψ(S3) = 1+x3

x3
. Denote ψ(M) =

xM = fM/mM , in reduced form, where mM is a monomial. We then get xP2 =
(x1 + 1+x2

x3
) · 1

x2
= 1+x2+x1x3

x1x3
and xP1 = (1 + xP2)1/x1 = 1+x2+x2x3+x1x3

x1x2x3
. We see that

the denominators for the xPi
correspond to the compostion factors of the Pi. Further

we have xS3 =
1+xP2

xS3
= (1 + fP2/mP2) ·mS3/fS3 =

mP2
+fP2

fS3
· 1

mP2
/mS3

. The monomial

in the denominator is mP2/mS3 = mS2 . We do however need that such an expression
is in reduced form, and here the positivity condition is important. We have that fp2

and fS3 satisfy the positivity condition, and it follows from this that
mP2

+fP2

fS3
also

satisfies the same condition, hence this is OK. Continuing this “knitting” procedure
we get a map ψ as indicated on the picture, where the denominators of the cluster
variables correspond to the composition factors of the H-module they come from.

We can use the same procedure for any H of finite type, and we get in this elemen-
tary way a one-one map from indecomposable objects in CH to cluster variables. To
show that it is a bijection one can for example use the fact mentioned in Section 1
that the numbers are the same.

In a similar way we define for any H = kQ a one-one map ψ from the indecom-
posable preprojective modules to cluster variables. This gives an alternative proof of
the fact that if Q is a connected quiver which is not Dynkin, then there in an infinite
number of cluster variables. Note however that the important Laurent phenomenon
is used in all considerations.

4.4. BIJECTION AND FURTHER APPLICATIONS. In this section we
mention some further improvements, as a consequence of using some more advanced
techniques, in particular a beautiful formula of Caldero-Chapoton involving Euler
characteristics, generalized by Caldero-Keller. This allows one to get a natural map
ψ from indecomposable exceptional objects to cluster variables. As a consequence
we have the following.

Theorem 4.5. The map ψ gives a bijection from indecomposable exceptional objects
to cluster variables, taking cluster tilting objects to clusters and tilting seeds to seeds.
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There are also further results on cluster variables, answering conjectures from
Section 1 .

Theorem 4.6. For any cluster variable f/m in reduced form for an acyclic cluster
algebra, all coefficients of f are positive.

Theorem 4.7. For an acyclic cluster algebra there is a unique way of replacing a
cluster variable in a cluster by another cluster variable.

There are additional results, so far only proved for finite representation type.

Theorem 4.8. For any acyclic cluster algebra of finite type, the image under ψ of
the exceptional objects in the cluster category give a Z-basis for the cluster algebra.

Notes: 4.1 is taken from [BR], 4.2 from [BRS]. For 4.3 and 4.4 see [BMR2], [BMRT]
(with appendix), [CC][CK1],[CK2][CR], unpublished work of Seven.

5. 2-Calabi Yau categories

Many of the results on cluster categories and cluster-tilted algebras have a natural
generalization to the more general class of Hom-finite triangulated 2-CY categories
over k, with an appropriate choice of special objects and associated algebras. In this
section we give a brief account of this development.

5.1. CONNECTION WITH ALMOST SPLIT SEQUENCES/TRIANGLES.
Recall that a Hom-finite triangulated k-category C is 2-CY if and only if
D Ext1

C(A,B) ∼= Ext1
C(B,A) for A and B in C. Since the symmetry property for

Ext1
C(, ) plays a crucial role in the investigation of cluster catgories, in particular the

fact that Ext1
C(A,B) = 0 if and only if Ext1

C(B,A) = 0, it is natural to look for
generalizations to 2-CY categories.

We clearly have that C is 2-CY if and only if DHomC(A,B) ' HomC(B,A[2]),
if and only if DExt1

C(A,B) ' Hom(B,A[1]). The last formula shows the close
connection with C having almost split triangles, and in fact C being 2-CY is equivalent
to C having almost split triangles with the corresponding translate τ being [1] (see
[RV]).

The original formulas from which existence of almost split sequences was deduced,
were valid for module categories or subcategories of module categories. In some cases
there is however a direct reformulation in closely associated triangulated categories.
For example, let Λ be a selfinjective finite dimensional algebra. Then the stable
category modΛ of the category modΛ of finitely generated (left) Λ-modules is known
to be triangulated with shift [1] = Ω−1, the first inverse syzygy [Ha1]. We have the
formulaDExt1

Λ(A,B) ∼= Hom(B, τA) in modΛ, on which the existence of almost split
sequences is based [AR1]. Let 0→ B → I → Ω−1B → 0 be an exact sequence, where
I is an injective envelope of B, and hence I is also projective. There is induced an
isomorphism Hom(A,Ω−1B) ∼= Ext1

Λ(A,B), and Hom(A,Ω−1B) ∼= Hom(A,B[1]) =
Ext1

modΛ(A,B). So the formula is at the same time a Serre duality formula in the
stable category modΛ. Hence we have the following, since we know that the formula
holds for modΛ.
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Proposition 5.1. Let Λ be a finite dimensional selfinjective algebra. Then the stable
category modΛ is 2-CY if and only if τ = Ω−1.

Also for a commutative complete local isolated Gorenstein singularity R we have
a similar result, for the same reason, since we have a corresponding formula for
the category CM(R) of maximal Cohen-Macaulay R-modules [A], and CM(R) is
triangulated since CM(R) is a Frobenius category, that is, has enough projectives
and injectives, and the projective and injective objects coincide [Ha1].

Proposition 5.2. With R as above, CM(R) is 2-CY if and only if τ = Ω−1.

Similarly we have that for a Frobenius subcategory C of modΛ, for a finite dimen-
sional algebra Λ, where C is extension closed and functorially finite, then C is d-CY
(that is DHomC(A,B) ' HomC(B,A[d]) if and only if τC = Ω−(d−1).

5.2. CHOICE OF CLUSTER-TILTING OBJECT. When generalizing from
cluster categories to 2-CY categories, one needs the appropriate notion of “tilting”
object. For cluster categories we had what we called cluster-tilting object T , which
satisfied Ext1

C(T, T ) = 0, where T is maximal with this property. This was equiva-
lent to what we called Ext-configurations, or to being maximal 1.orthogonal. The
property of Ext-configuration (equivalently, maximal 1-orthogonal) was essential in
some of the proofs, hence it is natural to choose this condition, which we call a
cluster-tilting object in the general case of 2-CY categories. It also turns out that
the two concepts do not coincide in general [BIKR].

In a 2-CY category it may happen that there is no cluster-tilting object, actually
even no nonzero object M with Ext1(M,M) = 0. Sometimes there is instead what
is called a cluster-tilting subcategory, which may have an infinite number of inde-
composable objects. Here one requires in addition that the category is functorially
finite, as done for maximal 1-orthogonal subcategories, but which was not required
for Ext-configurations (see [KR1], [BIRS]for such examples).

5.3. ANALOGOUS RESULTS. When comparing with section 3 basically all the
results still hold in the more general context of 2-CY categories. In order to deal
with cluster quivers, we want to assume that the algebras associated with the cluster-
tilting objects in 2-CY categories, called 2-CY tilted algebras, have no loops or 2-
cycles in their quivers. Note that there is no known analog of the description of
cluster-tilted algebras as trivial extensions of tilted algebras. Contrary to the case
of cluster categories, there may now be both loops and 2-cycles [BIKR].

5.4. PREPROJECTIVE ALGEBRAS OF DYNKIN QUIVERS. Important
examples of 2-CY categories are the stable module categories modΛ, where Λ is a
preprojective algebra of a Dynkin quiver over a field k. Recall that if for example Q
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is the quiver
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then the preprojective algebra Π(Q) is given by the quiver
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with the relations αα+ + α+α + ββ+ + β+β + γγ+ + γ+γ = 0.
For the case of Dynkin quivers, the preprojective algebras are known to be selfin-

jective, and we have the following.

Proposition 5.3. When Q is Dynkin, with associated preprojective algebra Λ =
Π(Q), then the stable category modΛ is 2-CY.

Proof. In view of Proposition 5.1, we only need to see that τ = Ω−1. This follows
from [AR,3.2,2.1]. We here give an outline of the proof, specialized to the case of
interest here. The proof is based on some facts about the category CM(R) of maximal
Cohen-Macaulay modules over two-dimensional simple hypersurface singularities R,
which are of finite Cohen-Macaulay type and correspond to Dynkin diagrams. We
have that τR is the identity, and Ω2 ∼= 1 on the stable category CM(R), and we
have the formula DExt1(A,B) ∼= Hom(B, τA) [A]. In addition, if M is the direct
sum of one copy of each indecomposable object in CM(R) up to isomorphism, then
Λ = End(M)op is isomorphic to Π(Q) where the underlying graph of Q is the Dynkin
diagram corresponding to R. We view the category modΓ as mod(CM(R)), the
category of finitely presented contravariant functors from CM(R) to mod k. Denote
by νC = D(( , C)∗) the Nakayama functor, where C is in CM(R). Then we have
τC = Ω2νC. Since Γ is selfinjective, we have D( , C) ∼= DExt1

R( ,Ω1C), which is
isomorphic to Hom(Ω1C, ) since τR = 1. Since (Y , )∗ = ( , Y ) for Y in CM(R),
where ( )∗ denotes HomR( , R), we have ν−1( , C) = (D( , C))∗ = ( ,Ω1

RC)

hence ν( , C) = ( ,Ω−1
R C), for C in CM(R). One can show that Ω−1

R : CM(R) →

CM(R) induces in a natural way a functor α from C to C, hence from C to C, which is
isomorphic to Ω−3

C . It follows that τC = Ω2
CνC is isomorphic to Ω−1

C from C to C. �

This case of preprojective algebras has been investigated extensively in a series of
papers by Geiss-Leclerc-Schrőer. They work in the category modΛ, rather that in
the 2-CY category modΛ, but the categories modΛ and modΛ are closely related,
and one can go back and forth between exact sequences and triangles.

As for cluster categories, also in this setting the concepts of Ext-configuration
maximal 1-orthogonal and the original definition of cluster-tilting object, here called
maximal rigid, coincide. And also one has that the associated 2-CY tilted algebras
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have no loops or 2-cycles in their quiver. Also in this case there are many interesting
connections with cluster algebras [GLS2], [GLS1].

5.5. FURTHER EXAMPLES. We have already indicated that examples of 2-
CY categories may be found amongst the stable categories CM(R), where R is a
complete local commutative noetherian isolated Gorenstein singularity. In view of
Proposition 5.1, all we have to check is that τ = Ω−1. But it is known from the work
of Auslander [A] that if d = dimR, then τ = Ω2−d, hence CM(R) is 2-CY if and only
if d = 3.

A concrete example is the following: Let S = k[[X, Y, Z]] and letG be the subgroup
〈(

ξ 0 0
0 ξ 0
0 0 ξ

)〉

of the special linear group SL(3, k) where ξ is a primitive third root of 1.

Then the invariant ring R = SG is a 3-dimensional ring with the desired properties,
so that CM(R) is 2-CY.

For 2-CY categories of the form CM(R) it may happen that there are loops and
2-cycles, and also that the maximal rigid objects are not cluster-tilting [BIKR].

There is a large class of 2-CY categories associated with preprojective algebras of
quivers which are not Dynkin [BIRS]. They contain both the cluster categories and
the stable categories modΛ where Λ is the preprojective algebra of a Dynkin quiver
as special cases. Also there are examples arising from taking stable categories of
appropriate subcategories of modΛ.

5.6. RECOGNIZING CLUSTER CATEGORIES. A natural question is whether
one can tell from a 2-CY tilted algebra which 2-CY category it came from. In par-
ticular, we can tell when it comes from a cluster category.

Theorem 5.4. Let Γ be a 2-CY tilted algebra whose quiver Q has no oriented cycles.
Then Γ comes from a cluster category CQ, and is hence cluster-tilted.

We illustrate with the example from 5.5. Here S turns out to be a cluster-tilting
object [I], and the quiver of End(S)op turns out to be •

//
////•. Hence CM(R) is

equivalent to C
k

„ //
////
«.

Notes. The generalization from cluster categories to 2-CY categories in 5.2 and 5.3
is taken from [KR1], and the recognition theorem in 5.6 is given in [KR2].
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[GLS2] Geiss C., Leclerc B., Schröer J. Semicanonical bases and preprojective algebras II: A mul-
tiplication formula, preprint arxiv:math.RT/0509483

[Ha1] Happel D. Triangulated categories in the representation theory of finite-dimensional algebras,
London Mathematical Society Lecture Note Series, 119. Cambridge University Press, Cam-
bridge, 1988. x+208 pp

[Ha2] Happel D. A characterization of hereditary categories with tilting object, Invent. Math. 144

(2001), no. 2, 381-398.
[HR] Happel D., Ringel C. M., Tilted algebras Trans. Amer. Math. Soc. 274 no. 2 (1982) 399-443.
[HU1] Happel D., Unger L., Almost complete tilting modules, Proc. Amer. Math. Soc. 107(3),

(1989) 603-610.
[HU2] Happel D., Unger L., On the set of tilting objects in hereditary categories
[HV] Happel D., Vossieck D., Minimal algebras of infinite representation type with preprojective

component, Manuscripta Math, 42 (1983), 221-243.
[Hu] Hubery A. Acyclic cluster algebras via Ringel-Hall algebras, manuscript
[I] Iyama O. Higher dimensional Auslander-Reiten theory on maximal orthogonal subcategories, to

appear in Adv. Math., arXiv.org:math/0407052
[IR] Iyama O., Reiten I. Fomin-Zelevinsky mutation and tilting modules over Calabi-Yau algebras,

preprint arxiv:math.RT/0605136
[IY] Iyama O., Yoshino Y. Mutations in triangulated categories and rigid Cohen-Macaulay modules,

preprint arxiv:math.RT/0607736
[Kel] Keller B. On triangulated orbit categories, Documenta Math. 10 (2005), 551–581 (2005)
[KR1] Keller B., Reiten I. Cluster-tilted algebras are Gorenstein and stably Calabi-Yau, in Adv.

Math., preprint arxiv:math.RT/0512471
[KR2] Keller B., Reiten I. Acyclic Calabi-Yau categories, preprint arxiv:math.RT/0610594
[Ker1] Kerner O., Representation of wild quivers, Proc. of the Workshop on Rep. theory of alg. and

related topics, UNAM, Maxico 1994 CMS Conf. Peoc. 19, 65-107(1996).
[Ker2] Kerner O., Wild cluster tilted algebras of rank 3, JPAA, to appear
[KZ] König S, Zhu B. From triangulated categories to abelian categories - cluster tilting in a general

framework, preprint arxiv:math.RT/0605100
[MRZ] Marsh, R., Reineke, M., Zelevinsky, A. Generalized associahedra via quiver representations,

Trans. Amer. Math. Soc. 355 (2003), no. 10, 4171–4186
[PX] Peng L., Xiao J.
[RV] Reiten I., Van den Bergh Noetherian hereditary abelian categories satisfying Serre duality, J.

Amer. Math. Soc. 15 (2002), no. 2, 295–366
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