
CHOW-LEFSCHETZ MOTIVES

BRUNO KAHN

Abstract. We develop Milne’s theory of Lefschetz motives for
general adequate equivalence relations and over a not necessarily
algebraically closed base field. The corresponding categories turn
out to enjoy all properties predicted by standard and less standard
conjectures, in a stronger way: algebraic and numerical equiva-
lences agree in this context. We also compute the Tannakian group
associated to a Weil cohomology in a different and more conceptual
way than Milne’s case-by-case approach.

To the memory of Jacob Murre, one of the kindest human beings I
have known.
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Introduction

In two fundamental papers [25, 26], Milne put together various “Lef-
schetz groups” which had been attached to abelian varieties in the lit-
erature, showing that they assemble to form a Tannakian group associ-
ated to a category LMot(k) of “Lefschetz motives” over an algebraically
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closed field k.1 This rigid ⊗-category has remarkable properties: ho-
mological and numerical equivalences agree for any Weil cohomology,
and the fixed points of the Lefschetz group of A on the cohomology
of an abelian k-variety A consist of the subring generated by divisor
classes. One can specialise Lefschetz motives of CM abelian varieties
from characteristic 0 to characteristic p, which allowed Milne to prove
his famous theorem: the Hodge conjecture for CM abelian varieties over
C implies the Tate conjecture for abelian varieties over finite fields [25,
Th. 7.1]. André used Milne’s method in [3] to prove an unconditional
result: all Tate cycles over an abelian variety in positive characteris-
tic are “motivated” in his sense. Three questions arise from Milne’s
construction:

(1) Does LMot(k) make sense for other adequate equivalence rela-
tions than homological and numerical equivalences? This ques-
tion is raised in [26, p. 671].

(2) Can one define LMot(k) when k is not algebraically closed?2

(3) Can one give a direct proof of Milne’s computation of the Tan-
nakian group of his category in terms of Lefschetz groups, which
follows in [26, §3] from a case-by-case analysis?

The aim of this paper is to answer these questions in the affirmative.
The first two questions amount to asking whether sums of intersec-

tion products of divisor classes on abelian varieties are preserved under
direct images by projections of the form A × B → B, where A,B
are abelian varieties. For k algebraically closed and for homological
equivalence, Milne proves this in [26, Cor. 5.5] as a consequence of his
computation of Lefschetz groups. Here, we prove it in general. Namely,
for an abelian variety A over a field k, let CH∗(A) denote the Chow
ring of A, with rational coefficients, and let L∗(A) be the subring of
CH∗(A) generated by CH1(A).

Theorem 1. Let f : A → B be a homomorphism of abelian varieties.
Then f∗L

∗(A) ⊆ L∗(B).

The proof of Theorem 1 is completely different from the one of [26],
and relies on Beauville’s computations in [6], which ultimately depend

1To avoid confusions with the Lefschetz motive and Lefschetz decompositions,
and also to honour Milne’s invention, it might be better to change the name “Lef-
schetz motives” to “Milne motives”. We shall refrain from it here, but hope this
suggestion will be taken up by other mathematicians.

2In [25, Introduction], it is announced that LMot(k) is constructed over any
field k, but [25, 1.4] refers to [26, 5.5] which assumes k algebraically closed (the k
of [25] is the Ω of [26]).
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on the Fourier transform on abelian varieties. More precisely, it is a con-
sequence of the following result. Let P∗(A) be the subring of CH∗(A),
for the Pontrjagin product, generated by CH0(A)(k) and CH

(0)
1 (A),

where CH0(A)(k) is the subgroup of CH0(A) generated by the 0-cycles
[a] for a ∈ A(k) and CH

(0)
1 (A) is Beauville’s eigenspace of weight 0 in

CH1(A) ([7], see Notation below).

Theorem 2. L∗(A) = P∗(A).

As Beauville pointed out, the version of this theorem for numerical
equivalence was proven previously by Schoen [32, Prop. 1.4], using a
different method. See also Polishchuk [30, Th. 2.1].

Using Theorem 1, we associate in Definition 4.4 a rigid ⊗-category of
Lefschetz motives LMot∼(k) to any adequate equivalence relation ∼
on algebraic cycles. These categories turn out to have rather wonderful
properties:

Theorem 3. a) Let alg (resp. num) denote algebraic (resp. numerical)
equivalence. Then the projection

LMotalg(k) → LMotnum(k)

is an isomorphism of semi-simple abelian categories. In particular, the
analogue of Voevodsky’s smash-nilpotence conjecture [35] holds, and so
does a fortiori the analogue of the standard conjectures D and C.
b) The Künneth decompositions given by a) provide LMotnum(k) with
a canonical weight grading (Definition 5.8). After changing the com-
mutativity constraint as usual, LMotnum(k) becomes Tannakian and
any Weil cohomology yields a fibre functor.

This theorem is in stark contrast with the case of usual motives,
where algebraic and homological equivalences do not agree, by a fa-
mous theorem of Griffiths [14]. A more recent and relevant example,
due to Schoen, is the cube of the Fermat elliptic curve E in character-
istic 0 [33, (0.2) and (14.1)]. As a consequence, dimQ Coker(L∗(E3) →
CH∗(E3)) = +∞; this is remarkable, since this map becomes an iso-
morphism modulo numerical equivalence by [15] (see also [20]).

In case ∼ is rational equivalence, we simply write LMot(k) for
LMot∼(k). Then:

Theorem 4. The analogue of Beauville’s conjectures [7] and of Murre’s
conjectures [28] holds in LMot(k), which is a Kimura-O’Sullivan cat-
egory.3 The projection LMot(k) → LMotnum(k) has a canonical sym-
metric monoidal section.

3Recall that a Q-linear ⊗-category A is Kimura-O’Sullivan if any object A ∈ A
may be written as a direct sum A+ ⊕ A− where A+ (resp. A−) is killed by some
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As can be expected, the proof of last statement uses O’Sullivan’s
lifting theorem [29].

Finally, let us discuss Question 3 above. Let ks be a separable closure
of k; we write ι : LMotnum(k) → LMotnum(ks) for the “extension of
scalars” functor (see discussion following Definition 4.4 in §4). Let
ω : LMotnum(ks) → VecK be a symmetric monoidal, Q-linear functor,
where VecK is the category of finite-dimensional vector spaces over a
field K of characteristic 0: by Theorem 3, we may choose ω coming from
a Weil cohomology. (Here we changed the commutativity constraint as
in Theorem 3 b).) For any abelian k-variety A, define U(A) to be the
algebraic K-group whose K-points are given by

(0.1) U(A)(K) = {(φ, λ) ∈ C(A)∗ ×K∗ | φρA(φ) = λ1ω1(A)}

where C(A) is the centraliser of End0(A) ⊗Q K in EndK ω1(A) and
ρA is the involution of C(A) induced by some polarisation u of A (it
does not depend on the choice of u, see Lemma 5.5). Here, ω1(A) =
ω(Lh1

num(A)), see Corollary 4.1. Let νA : U(A) → Gm be the character
given by (φ, λ) 7→ λ, and SU(A) = Ker νA.

Theorem 5 ([25, Prop. 1.8] when k is algebraically closed).
a) Let G (resp. Gs) be the affine K-group representing Aut⊗(ωι)

(resp. Aut⊗(ω)). Then there is an exact sequence

1 → Gs → G → Γ → 1

where Γ = Gal(ks/k), and an exact sequence

1 →
∏
A∈S

SU(A) → Gs
ν−→ Gm → 1

where S is the set of isogeny classes of simple abelian ks-varieties,
and ν is induced by the νA’s. (The corresponding groups SU(A) were
computed in [26, Table 2 p. 655].)

b) Let A be an abelian k-variety, ⟨A⟩ the Tannakian subcategory of
LMotnum(k) generated by the Lefschetz motive Lhnum(A) of A, and
GA = Aut⊗(H⟨A⟩). Let E/k be the smallest Galois extension such that
End0(AE) = End0(Ak̄). Then there is an exact sequence

1 → U(AE) → GA → Gal(E/k) → 1

Example 1. Let A be an elliptic curve. If A has no complex multipli-
cation, then E = k and U(A) = GL2. If A has complex multiplication
by F in characteristic 0, then U(AE) = RF/QGm and E = kF . If A

exterior (resp. symmetric) power: this is conjecturally the case for the category of
Chow motives over any field, and is known for motives of abelian varieties.
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is ordinary in charactertistic p, then E = k, while if it is supersingu-
lar, then E = kF0 if k0 is the field of constants of E and F0 is the
smallest (at most quadratic) extension of k0 such that End0(AE0) is a
quaternion algebra.

It may be possible to generalise the present theory of Lefschetz mo-
tives to the case of abelian schemes over a base, in the style of Deninger-
Murre [12]: this seems likely in view of their results and those of Kün-
nemann [24] as well as Polishchuk [30], and may have an interest in
view of Ancona’s work [1]. I haven’t attempted it, however, and leave
this problem to the interested reader.

This paper was conceived in 2019, but straightening out the compu-
tation of the Tannakian group took two more years, especially in the
non-algebraically closed case: this is done in Section 5 which is cer-
tainly the most technical of this paper and occupies almost half of it.
I had actually planned to give a computation of Deligne’s fundamental
group [11, §8], but decided to give up for now in order not to hold this
work forever.

The reader may consult [21] for 1) an interpretation of the two-step
process of §4 as a “stackification” and 2) a simpler and more conceptual
replacement of the profinite construction in §5.4.

1. Notation

Let A be an abelian variety of dimension g over a field k. All Chow
groups are tensored with Q. If x ∈ CH0(A)0, we write

log∗(1− x) = −
g∑

n=1

x∗n

n

where ∗ denotes the Pontrjagin product. We set for p ≥ 0

γp(x) =
xp

p!
, γp

∗(x) =
x∗p

p!
.

Instead of Beauville’s notation CHp
s (A) [7], we shall use CHp

(s)(A) in
order to avoid confusion between p and s, as we also use the notation

CH(s)
q (A) = CHg−q

(s) (A).

Recall that

CHp
(s)(A) = {x ∈ CHp(A) | [k]∗x = k2p−sx ∀ k ∈ Z}

where [k] is multiplication by k on A.
For any a ∈ A(k) and any x ∈ CH1(A), we write

φa(x) = a∗x− x
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where a∗ means “pull-back by a”, and

L(d, a1, . . . , ap, q) = γq(d)φa1(d) . . . φap(d), p, q ≥ 0, ai ∈ A(k)

for d an ample symmetric class in CH1(A). (Recall that an element
x ∈ CH∗(A) is symmetric (resp. antisymmetric) if σ∗x = x (resp.
σ∗x = −x), where σ = [−1].)

If ∼ is an adequate equivalence relation on algebraic cycles, we write
A∗

∼(A) for algebraic cycles on A modulo ∼, and similarly L∗
∼(A) (so

A∗
∼(A) = CH∗(A) and L∗

∼(A) = L∗(A) if ∼ is rational equivalence).
We write Mot∼(k) = Mot∼ for the category of pure motives modulo
∼ [34], and simply Mot(k) = Mot if ∼ is rational equivalence. We
shall need the following formula:

(1.1) CHp
(s)(A) = Mot(Lp, h2p−s(A))

where L is the Lefschetz motive and hi(A) is the direct summand of
the motive h(A) of A defined by the canonical i-th Chow-Künneth
projector of Deninger-Murre [12, Th. 3.1]: (1.1) is clear since [k] acts
on hi(A) by ki (loc. cit.).

2. Technical lemmas

Lemma 2.1. L∗(A) is generated by the L(d, a1, . . . , ap, q) (as a Q-
vector space).

Proof. Any element of CH1(A) is a sum of a symmetric and an anti-
symmetric class. Thus L∗(A) is Q-linearly generated by products of
the form

d1 . . . drx1 . . . xs

with the di symmetric and the xi antisymmetric. Since any symmetric
class is a difference of two ample symmetric classes, we may restrict to
those products where all di are ample. But we may write d1 . . . dr as
a linear combination of elements of the form γr(

∑
I di) where I runs

through the subsets of {1, . . . , r}. Since
∑

I di is ample for any such I,
we see that L∗(A) is Q-linearly generated by products of the form

γr(d)x1 . . . xs

for d symmetric ample and the xi antisymmetric. Recall that the an-
tisymmetric classes constitute Pic0(A)⊗Q = A∗(k)⊗Q.

Given such a d, the map a 7→ φa(d) defines an isogeny A → A∗,
hence an isomorphism A(k) ⊗Q

∼−→ A∗(k) ⊗Q. Therefore the φa(d)
generate Pic0(A)⊗Q, whence the conclusion. □

Lemma 2.2. CH
(0)
1 (A) is generated by the cd = γg−1(d), where d runs

through the ample symmetric divisor classes on A.
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Proof. Since d ∈ CH1
(0)(A), cd ∈ CH

(0)
1 (A). On the other hand, we

have an isomorphism of Chow motives

h2(A)⊗ Lg−2 ∼−→ h2g−2(A)

([24], [34, Th. 5.2 (iii)]), whence an isomorphism (see (1.1))

CH1
(0)(A) = Mot(L, h2(A))

∼−→ Mot(Lg−1, h2(A)⊗ Lg−2)
∼−→ Mot(Lg−1, h2g−2(A)) = CHg−1

(0) (A)

given by cup-product with γg−2(d). Therefore CHg−1
(0) (A) is generated

by elements of the form γg−2(d)·d′, where d′ is another ample symmetric
divisor class. But γg−2(d) ·d′ may be written as a Q-linear combination
of elements of the form γg−1(d + ad′) for a an integer ≥ 0, which
concludes the proof. □

Lemma 2.3. a) Let f : A → B be a homomorphism of abelian k-
varieties. Then we have

f∗x ∗ f∗y = f∗(x ∗ y)

for any x, y ∈ CH∗(A).
b) Let A be an abelian k-variety, and let l/k be a finite extension. Write
Al for A⊗k l and p : Al → A for the projection. Then we have

x ∗ p∗y = p∗(p
∗x ∗ y)

for any (x, y) ∈ CH∗(A)×CH∗(Al) (projection formula for the Pontr-
jagin product).

Proof. a) We use the following fact: if X, Y are k-varieties, write × :

CH∗(X)× CH∗(Y ) → CH∗(X ×k Y ) for the cross-product. Let X
u−→

X ′, Y v−→ Y ′ be two proper morphisms of k-varieties. Then we have

(u× u)∗(a× b) = u∗a× v∗b

for any (a, b) ∈ CH∗(X)× CH∗(Y ). For u = v = f , this gives

f∗x∗f∗y = µA
∗ (f∗x×f∗x) = µA

∗ (f×f)∗(x×y) = f∗µ
B
∗ (x×y) = f∗(x∗y)

where µA and µB are the multiplication maps of A and B.
b) Let µ be the multiplication map of A, and let π : Spec l → Spec k

be the projection. Then the multiplication map µl of Al is µ × 1Spec l
modulo the identification α : Al ×l Al

∼−→ A ×k A ×k Spec l, while
p = 1A×π. Write p̃ for the projection (1A×kA×π)◦α : Al×lAl → A×kA.
Then

p̃∗(p
∗x×l y) = x× p∗y
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hence

x ∗ p∗y = µ∗p̃∗(p
∗x×l y) = p∗µ

l
∗(p

∗x×l y) = p∗(p∗x ∗ y)
as desired. □

Lemma 2.4. Let A be an abelian k-variety. Write Lp
(s)(A) = Lp(A) ∩

CHp
(s)(A). Then the homomorphism

ρ : Lp
(0)(A) → Lp

num(A)

induced by Lp(A) → Lp
num(A) is bijective for any p ≥ 0.

Proof. Since CH1
(0)(A) = L1

(0)(A) generates L∗
(0)(A) multiplicatively

and since CH1
(0)(A) → A1

num(A) is surjective, ρ is surjective. On
the other hand, O’Sullivan [29, Th. 6.1.1] has constructed a ring-
theoretic section of the homomorphism CH∗(A) → A∗

num(A) which
sends A1

num(A) into CH1
(0)(A), hence restricts to a ring-theoretic sec-

tion σ of ρ. But CH1
(0)(A) → A1

num(A) is even an isomorphism, hence
σ is surjective. □

3. Proofs of Theorems 1 and 2

Proof of Theorem 2. It suffices to show:
(A) CH0(A)(k) ⊂ L∗(A) and CH

(0)
1 (A) ⊂ L∗(A).

(B) L∗(A) is stable under ∗.
(C) L∗(A) ⊆ P∗(A).
For this, we use the computations of Beauville in [6], namely:

(3.1) γp(d) = νdγ
g−p
∗ (cd), 0 ≤ p ≤ g

with νd = h0(d) [6, p 249, Cor. 2], and

(3.2) L(d, a1, . . . , ap, q) = (−1)pγp+q(d) ∗ log∗[a1] ∗ · · · ∗ log∗[ap]
[6, p. 250, Prop. 6].

(These computations are made over k = C, but they are valid over
any base field.) Putting (3.1) and (3.2) together, we get

(3.3) L(d, a1, . . . , ap, q) = (−1)pνdγ
g−p−q
∗ (cd) ∗ log∗[a1] ∗ · · · ∗ log∗[ap].

In (A), for the first statement it suffices to show that [a] ∈ L∗(A) for
any a ∈ A(k). By (3.1) for p = g, we have γg(d) = νd[0], hence

γg(a∗d) = νd[a].

The second statement of (A) follows immediately from Lemma 2.2.
In view of Lemma 2.1, (B) follows immediately from (3.3). Similarly,

for (C) it suffices by Lemma 2.1 to show that all L(d, a1, . . . , ap, q)
belong to P∗(A), which follows again from (3.3). □
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Proof of Theorem 1. In view of Theorem 2, it suffices to show that
f∗P∗(A) ⊆ P∗(B). Clearly, f∗CH0(A)(k) ⊆ CH0(B)(k) and f∗CH

(0)
1 (A)

⊆ CH
(0)
1 (B) by [7, Prop. 2 c)]. We conclude with Lemma 2.3 a). □

4. Categories of Lefschetz motives; proofs of Theorems
3 and 4

4.1. A crude category. As a consequence of Theorem 1, we have:

Corollary 4.1. For any adequate equivalence relation ∼ on algebraic
cycles, there exists a pseudo-abelian rigid Q-linear ⊗-category LMot∼(k)0,
provided with two faithful symmetric monoidal functors

(4.1) Ab(k)op
Lh∼−−→ LMot∼(k)0 → Mot∼(k)

where Ab(k) is the category of abelian k-varieties and k-morphisms,
such that, for any A,B ∈ Ab(k),

LMot∼(k)0(Lh(A), Lh(B)) = LdimA
∼ (B × A)

where L∗
∼(A) is the image of L∗(A) in CH∗

∼(A). The Chow-Künneth
decomposition of Deninger-Murre and the Lefschetz isomorphisms of
Künnemann [24] hold in LMot∼(k)0 (notation: Lhi

∼(A)). In particu-
lar, we have Lhi(A) = Si(Lh1(A)) for any abelian variety A and any
i ≥ 0, as well as a canonical isomorphism

(4.2) Lh1(A∗)∨ ≃ Lh1(A)⊗ L−1

defined by the Poincaré bundle class PA ∈ CH1(A∗ × A), where A∗ is
the dual abelian variety to A and ()∨ denotes duality in LMot∼(k)0.
Moreover, if f ∈ Hom0(A,B), we have Lh1(f)∨ = Lh1(f ∗) modulo
(4.2), where f ∗ is the dual homomorphism to f .

Remark 4.2. Here Si denotes the ith symmetric power for the sym-
metric monoidal structure where we don’t modify the commutativity
constraint; it is transformed into an exterior power by any fibre functor.

Proof. By Theorem 1, composition of correspondences respects the sub-
groups L∗

∼(B × A) ⊆ CH∗
∼(B × A). Therefore, there exists a Q-linear

additive category LCorr∼(k)0 whose objects are of the form
∐

i∈I Ai,
with I finite and Ai an abelian k-variety, and morphisms are

LCorr∼(k)0(
∐
i∈I

Ai,
∐
j∈J

Bj) =
∏

(i,j)∈I×J

LdimBj
∼ (Ai ×Bj).

The existence of the functor Lh∼ : Ab(k)op → LCorr∼(k)0 amounts
to saying that the transpose of the class [γf ] of the graph γf a morphism
f : A → B belongs to LdimB

∼ (B × A). Note that this condition is
preserved under direct products of morphisms.
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When f is a homomorphism, this follows from Theorem 1 since [γf ] =
(γf )∗([A]). (See [25, 1.3] or [26, Th. 5.10] for a different proof.) In
general, f is the composition of a homomorphism and a translation, so
it remains to handle the latter case. But if a ∈ A(k), the translation
defined by a may be written as a composition

A× Spec k
1A×a−−−→ A× A

µ−→ A

where we identify a with the corresponding morphism Spec k → A and
µ is as usual the multiplication of A. Since µ is a homomorphism and
the graph [a] of a belongs to L∗(A) (Theorem 2), we are done.

As usual, we define LMoteff∼ (k)0 as the Karoubian envelope of LCorr∼(k)0.
As observed in [26, p. 672], the Chow-Künneth projectors of A belong
to L∗(A × A) as well as the Lefschetz isomorphisms of [24] and their
inverses, which justifies the second claim already in LMoteff∼ (k)0. Note
in particular that L ∈ LMoteff∼ (k)0 by using an elliptic curve (which
makes it unnecessary to involve projective spaces in its definition as in
[25]), so that we can define LMot∼(k)0 by ⊗-inverting L. Its rigidity
is checked on additive generators Lh∼(A) in the usual way, using the
diagonal of A × A to define unit and counit, and (4.2) is also checked
as usual. □

We shall need the following lemma for the proof of Theorem 5.

Lemma 4.3. Let A ∈ Ab(k) and n1, . . . , nr be natural integers. Then
the composition

Lhn1(A)⊗ · · · ⊗ Lhnr(A) ↪→ Lh(A)⊗ · · · ⊗ Lh(A) ≃ Lh(Ar)

Lh(∆)−−−→ Lh(A) →→ Lhn1+···+nr(A)

equals the natural morphism obtained from the isomorphisms Lhni(A) ≃
Sni(Lh1(A)) of Corollary 4.1. Here ∆ is the diagonal embedding A ↪→
Ar.

Proof. This is clear, since the morphism
⊕

r Lh
1(A) ≃ Lh1(Ar)

Lh1(∆)−−−−→
Lh1(A) is the sum map. □

4.2. The correct construction. When k is not separably closed, the
category LMot∼(k)0 is not large enough: it is “without Artin motives”
(all abelian k-varieties are geometrically connected) and, perhaps more
importantly, it doesn’t cover enough abelian varieties and does not
satisfy “descent”. As a related issue, let l/k be a finite extension. There
is a transfer map tl/k : CH∗(Al) → CH∗(A), but clearly tl/k(L

∗(Al)) ̸⊂
L∗(A) since tl/kCH0(A)(l) ̸⊂ CH0(A)(k) if l ̸= k. As a consequence,
the extension of scalars functor LMot∼(k)0 → LMot∼(l)0 does not
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have a (left or right) adjoint if l ̸= k. For these reasons, we enlarge
LMot∼(k)0 as follows.

Definition 4.4. Write Abs(k) for the category of abelian schemes
over étale k-schemes. Let ∼ be an adequate equivalence relation. The
category LCorr∼(k) has
objects: those of Abs(k).
morphisms: Let A,B be two such abelian schemes. Write A⊗k ks =∐

i Ai and B ⊗k ks =
∐

j Bj, where ks is a separable closure of
k and Ai, Bj are abelian ks-varieties. Then

(4.3) LCorr∼(k)(A,B) =

(⊕
i,j

LdimAi
∼ (Bj ×ks Ai)

)Γ

where Γ = Gal(ks/k).
composition of morphisms: induced by that in LCorr∼(ks)0 = LCorr∼(ks).
It has a tensor structure given by the product (over k).
We write LMot∼(k) for the rigid pseudo-abelian ⊗-category obtained
out of LCorr∼(k) by the usual Grothendieck procedure. If ∼ is rational
equivalence, we simply write LCorr(k) and LMot(k).

Let E/k be a separable extension. If A is an object of LCorr∼(k),
then AE ⊗E ks = Aks , whence a canonical ⊗-functor LMot∼(k) →
LMot∼(E) sending Lh(A) to Lh(AE). In particular, there is a canon-
ical ⊗-action of Γ on LMot∼(ks)

4 such that σMks = Mks for any
M ∈ LMot∼(k) and σ ∈ Γ; from Definition 4.4, we have

(4.4) LMot∼(k)(M,N)
∼−→ LMot∼(ks)(Mks , Nks)

Γ

for any M,N ∈ LMot∼(k).
Note that LMot∼(k)0 enjoys the same functoriality in k, but the

analogue of (4.4) is false.

Lemma 4.5. Let E/k be a finite separable extension. Then the ex-
tension of scalars functor iE : LMot∼(k) → LMot∼(E) has a (non
monoidal) right adjoint λE, sending a motive Lh∼(A) to Lh∼(A(k))
where A(k) ∈ Abs(k) is the naïve restriction of scalars of A ∈ Abs(E).
If E/k is Galois, one has a natural isomorphism

(4.5) iEλEM
∼−→
⊕
g∈G

g∗M

for any M ∈ LMot∼(E), where G = Gal(E/k).

4For A
p−→ Spec ks ∈ Ab(ks) and σ ∈ Γ, define σ∗A by σ ◦ p.
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Proof. It suffices to prove that the given recipe for λE defines a right
adjoint to the functor LCorr∼(k) → LCorr∼(E); this corresponds to
a natural isomorphism

LCorr∼(E)(AE, B) ≃ LCorr∼(k)(A,B(k))

for B ∈ Abs(k), which follows from (4.3). If E/k is Galois, the counit
morphism iEλE → Id applied to g∗M for all g ∈ G yields a morphism
(4.5): it is an isomorphism if M = Lh(A) ⊗ Ln for A ∈ Abs(E) and
n ∈ Z by the isomorphism A(k)⊗kE ≃

∐
g∈G g∗A, hence in general. □

4.3. Proof of Theorem 3. Apply Lemma 2.4 over ks and take Galois
invariants. It follows that, for A,B ∈ LCorr(k), the homomorphism

LCorr(k)(A,B) → LCorrnum(k)(A,B)

restricts to an isomorphism on LCorr0(k)(A,B), where LCorri(k)(A,B)
⊆ LCorr(k)(A,B) is the subspace of Beauville weight i (with respect
to A×B). Since this subspace obviously vanishes for i ̸= 0 modulo alge-
braic equivalence, LCorralg k) → LCorrnum(k) is an equivalence, and
this extends canonically to LMot. The semi-simplicity claim is proven
as in [16] (or [5]), by using a Weil cohomology. The other claims of a)
hold because algebraically trivial cycles are smash-nilpotent [35, 36],
hence homologically trivial. Note that, here, this merely follows from
the fact that Lh1(A) is odd-dimensional in the sense of Kimura [23] for
any abelian variety A (reduce to the case of a cycle in L1

1(A)). b) is
then immediate, by using the weight theory of pure Hodge structures in
characteristic 0 and of l-adic representations in positive characteristic.

4.4. Proof of Theorem 4. The last statement follows from Lemma
2.4, which also shows that the image of the section LMotnum(k) →
LMot(k) is the subcategory LMot0(k) with the same objects, and
such that

(4.6) LMot0(k)(Lh(A), Lh(B)) = LdimA
0 (B × A).

(This category was used just previously.)
For an abelian variety A, Beauville’s conjectures in [7] predict that
(i) CHp

(0)(A) ↪→ Ap
num(A);

(ii) CHp
(s)(A) = 0 for all s < 0.

For the subgroups Lp
(s)(A), (i) is true by Lemma 2.4, and (ii) follows

from Lemma 2.1 since L(d, a1, . . . , ap, q) ∈ Lp+q
(p) (A) for any (p, q). We

record this as

(iii) Lp
(0)(A) ↪→ Lp

num(A);
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(iv) Lp
(s)(A) = 0 for all s < 0.

The existence of the Deninger-Murre Chow-Künneth projectors (Cor-
ollary 4.1) is the analogue of [28, I, Conj. (A)]. Reasoning as in [28,
I, 2.5.4], the corresponding analogue to Murre’s filtration then verifies
F νLj(A) =

⊕
s≥ν L

j
s(A) for 0 ≤ ν ≤ j and F j+1Lj(A) = 0. Since

Ker(Lg(A× A) → Lg
num(A× A)) is a nilideal by [23], any other choice

of Chow-Künneth projectors is conjugate to the canonical one under
a self-correspondence 1 + n with n ∼num 0, as in [16, Lemma 5.4].
By (iii) and (iv) applied to A × A, we have n ∈ Lg

(>0)(A × A), hence
nLj

(s)(A) ⊆
⊕

t>s L
j
(t)(A). This implies that the filtration F νL∗(A) does

not depend on the choice of a Chow-Künneth decomposition, which is
the analogue of Murre’s Conjecture (C). Finally, we get the analogue
of Murre’s conjecture (B) (resp. (D)) from (iv) (resp. (iii)).

5. Proof of Theorem 5

5.1. Centralisers in Tannakian categories. Let A be a Tannakian
category, with Q = EndA(1) a field of characteristic 0, and let ω :
A → VecK be a fibre functor, where K is an extension of Q. We
write H = Aut⊗ ω for the corresponding Tannakian group (an affine
K-group).

Lemma 5.1. One has the isomorphism

A(N,N ′)⊗Q K
∼−→ HomK(ω(N), ω(N ′))H

for any N,N ′ ∈ A.

Proof. Recall [31, III.1] (see also [4, 5.3.1]) that one can define a K-
linear Tannakian category AK and a Q-linear ⊗-functor (−)K : A →
AK such that A(A,B) ⊗Q K → AK(AK , BK) is an isomorphism for
any A,B ∈ A and that ω extends canonically to a fibre functor on AK .
This reduces us to the case where Q = K. The claim then follows from
Tannakian theory, since A gets identified with RepK(H). □

If A is a K-algebra and X is a subset of A, we write CA(X) for its
centraliser.

Lemma 5.2. Let A,B be two K-algebras, and let X ⊂ A, Y ⊂ B.
Then CA⊗KB(X ⊗ Y ) = CA(X)⊗K CB(Y ).

Proof. One inclusion is obvious. Let us show the other. Without loss
of generality, we may assume that 1A ∈ X and 1B ∈ Y .

Let c ∈ CA⊗KB(X ⊗ Y ). Choose a K-basis (ai) of A, and write

c =
∑
i

ai ⊗ bi, bi ∈ B.
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Writing c(1X⊗y) = (1X⊗y)c for any y ∈ Y , we find that bi ∈ CB(Y )
for any i. From the bi’s, extract now a maximal K-free system βj and
rewrite c in the form

c =
∑
j

αj ⊗ βj.

By the same reasoning with x ⊗ 1Y for any x ∈ X, we find that
αj ∈ CA(X) for all j. □

For M ∈ A, write Cω(M) = C(M) for the centraliser of ω(EndA(M))
(or ω(EndA(M))⊗Q K) in Endω(M).

Proposition 5.3. For an integer r > 0, write rM for
⊕r

i=1M . The
objects C(M) have the following properties:

(i) C(M)
∼−→ C(rM) for the diagonal homomorphism Endω(M)

↪→ Endω(rM).
(ii) If A(M,N) = A(N,M) = 0, C(M)×C(N)

∼−→ C(M ⊕N) for
the inclusion Endω(M)× Endω(N) ↪→ Endω(M ⊕N).

(iii) C(M ⊗N) ⊂ C(M)⊗K C(N) for the isomorphism Endω(M ⊗
N)

∼−→ Endω(M)⊗K Endω(N).
(iv) If L ∈ A is invertible, C(M) ≃ C(M ⊗ L).
(v) C(M∨) ≃ C(M)op, where M∨ is the dual of M .
(vi) If M is semi-simple, C(M) is semi-simple and EndA(M) is the

centraliser of C(M). In particular, the centres of C(M) and
EndA(M) coincide.

Proof. (i) and (ii) are matrix exercices. (iii) follows from the obvious
homomorphism

(5.1) EndA(M)⊗Q EndA(N) → EndA(M ⊗N)

and Lemma 5.2. (iv) follows from (iii) by taking N = L, then N = L−1.
(v) follows from the compatible isomorphisms End(M∨) ≃ End(M)op

and Endω(M∨) ≃ Endω(M)op. Finally, (vi) follows from the double
centraliser theorem [8, §14, no 5, th. 5 a)]. □

Let L ∈ A be an invertible object. In the sequel, we assume that M
is “weakly polarisable with respect to L”: this means that there exists
an isomorphism

(5.2) u : M
∼−→ L⊗M∨,

where M∨ is the dual of M . Then u gives rise to a Rosati anti-
automorphism

ρM,L,u : Endω(M) → (Endω(M))op; f 7→ ω(u)−1(1ω(L) ⊗ f∨)ω(u)

which respects ω(EndA(M)), hence also C(M).
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Note that we don’t require any symmetry property of u: it is not
needed. Indeed:

Lemma 5.4. The restriction of ρM,L,u to C(M) does not depend on
the choice of u, and is an involution. We write it simply ρM,L (or ρM ,
if L is clear from the context).

Proof. Let u′ : M
∼−→ L ⊗ M∨ be another weak polarisation. Then

u = (1L ⊗ v∨)u′ for some v ∈ Aut(M), so the first claim is obvious.
For the second one, we compute, for f ∈ Endω(M):

ρ2(f) = ω(u)−1(1ω(L) ⊗ ρ(f)∨)ω(u)

= ω(u)−1(1ω(L) ⊗ (ω(u)−1(1ω(L) ⊗ f∨)ω(u))∨)ω(u)

= ω(u)−1(1ω(L) ⊗ (ω(u)∨(1ω(L∨) ⊗ f)(ω(u)−1)∨)ω(u)

= ω(u−1u∨)fω((u−1)∨u)

with an obvious abuse of notation for u−1u∨. If f ∈ C(M), this equals
f . □

Write ⟨M⟩ ⊂ A for the (full) sub-Tannakian category generated by
M (i.e. the smallest full subcategory of A which contains M and is
closed under subquotients, extensions, tensor products and duals), and
HM for Aut⊗(ω|⟨M⟩). It is a closed algebraic subgroup of GLω(M) and
a quotient of H, by [10, Prop. 2.21 (a)].

Lemma 5.5. We have L ∈ ⟨M⟩.

Proof. Indeed, 1 is a direct summand of M⊗M∨ since the composition

1
η−→ M∨ ⊗M

σ−→ M ⊗M∨ ε−→ 1

is multiplication by χ(M) = dimω(M) ̸= 0, hence L is a direct sum-
mand of M ⊗M . □

Lemma 5.6. Let

U(M) = {(φ, λ) ∈ C(M)∗ ×K∗ | φρM(φ) = λ1ω(M)}.

Then U(M) is a subgroup of C(M)∗ ×K∗, and the homomorphism

HM(K) → C(M)∗ ×K∗ : g 7→ (gM , gL)

lands into U(M).
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Proof. The first statement is obvious since ρ is an anti-automorphism.
For the second one, let g ∈ HM(K). We compute:

gMρ(gM) = gMω(u)−1(1ω(L) ⊗ g∨M)ω(u)

= ω(u)−1gL⊗M∨(1ω(L) ⊗ g∨M)ω(u)

= ω(u)−1gL ⊗ gM∨(1ω(L) ⊗ g∨M)ω(u)

= ω(u)−1gL ⊗ gM∨g∨Mω(u)

= ω(u)−1gL ⊗ 1M∨ω(u) = gL1ω(M)

since Endω(L) = K. □

We get the conclusion of Lemma 5.6, with the same proof, after
extending scalars from K to any commutative K-algebra. This defines
two closed immersions of algebraic K-groups

HM ⊆ U(M) ⊂ C(M)∗ ×Gm

(recall that L ∈ ⟨M⟩ by Lemma 5.5).

Proposition 5.7. The isomorphisms of Proposition 5.3 (i) and (ii)
induce respective isomorphisms

U(M)
∼−→ U(rM), r > 0

U(M)×Gm U(N)
∼−→ U(M ⊕N) if A(M,N) = A(N,M) = 0

where the fibre product is with respect to the second projections (cf. [26,
Def. 4.6]). Here, we use the isomorphisms (5.2) for rM and M ⊕ N
obtained by direct sums from those of M and N .

Proof. Each case is a trivial verification. □

5.2. Weight gradings.

Definition 5.8. A weight grading on an additive ⊗-category C is a
family of endofunctors wn : C → C, for n ∈ Z, provided with a natural
isomorphism

⊕
n∈Z wn

∼−→ IdA and such that
(1) A(wi(C), wj(D)) = 0 if i ̸= j, for any C,D ∈ C;
(2) If C is of weight i and D is of weight j, then C⊗D is of weight

i+ j.
(An object C ∈ C is of weight i if wj(C) = 0 for j ̸= i. We then write
i =: w(C).)

Lemma 5.9. a) Let C have a weight grading. If C ∈ C is dualisable
and of weight i, then its dual C∨ has weight −i.
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b) Assume that A has a weight grading for which w(M) = 1. Then
w(L) = 2 and

ω(M⊗a ⊗ (M∨)⊗b ⊗ L⊗c)H = 0

if a− b+ 2c ̸= 0 (here, a, b ≥ 0 and c ∈ Z). If a− b+ 2c = 0, then

M⊗a ⊗ (M∨)⊗b ⊗ L⊗c ≃ M⊗a+c ⊗ (M∨)⊗a+c.

Proof. a) Writing C∨ =
⊕

wj(C
∨), (1) and (2) imply that the unit

morphism 1
η−→ C ⊗C∨ factors through C ⊗w−i(C

∨), and similarly for
the counit morphism ε. But the identity morphism of C∨ equals

C∨ 1C∨⊗η−−−−→ C∨ ⊗ C ⊗ C∨ ε⊗1C∨−−−−→ C∨

hence factors through w−i(C
∨)⊗C ⊗w−i(C

∨); reapplying (1) and (2),
we get wj(C

∨) = 0 for j ̸= −i, as desired.
b) Since L is invertible, it is irreducible hence has a weight. The

first assertion then follows from a) and (5.2) (or from the proof of
Lemma 5.5), and the second follows from Lemma 5.1. For the third,
we distinguish two cases according as c ≥ 0 or c ≤ 0. Note that, in any
case, a+ c = b− c so this number is always ≥ 0. If c ≥ 0, we write

M⊗a ⊗ (M∨)⊗b ⊗ L⊗c ≃ M⊗a ⊗ (M∨)⊗a ⊗ (M∨)⊗2c ⊗ L⊗c

≃ M⊗a ⊗ (M∨)⊗a ⊗ (M∨)⊗c ⊗ (M∨)⊗c ⊗ L⊗c

≃ M⊗a ⊗ (M∨)⊗a ⊗ (M∨)⊗c ⊗M⊗c ≃ M⊗a+c ⊗ (M∨)⊗a+c.

The case c ≤ 0 is similar. □

Proposition 5.10. Assume that M is semi-simple and that A has a
weight grading for which w(M) = 1. Suppose moreover that, for any
n, r > 0, the composite homomorphism

A(L,Λ2(rM))⊗n → A(Ln,Λ2((rM))⊗n) → A(Ln,Λ2n(rM))

induced by Λ2(rM)⊗n → Λ2n(rM) is surjective. Then HM = U(M).

Proof. As in the proof of Lemma 5.1, we reduce to K = Q. Let n, r > 0.
By Proposition 5.7, U(M) fixes EndA(rM) ≃ A(L, (rM)⊗2), hence
also its direct summand A(L,Λ2(rM)), hence also A(L,Λ2(rM))⊗n,
and therefore A(Ln,Λ2n(rM)) by hypothesis; since M⊗2n is a direct
summand of Λ2n(2nM), U(M) fixes A(Ln,M⊗2n) ≃ EndA(M

⊗n) for
all n ≥ 0. By Lemma 5.1, we have

EndA(M
⊗n) = ω(M⊗n ⊗M∨⊗n

)HM .

By Lemma 5.9, this shows that ω(T )HM = ω(T )U(M) for any T ∈ ⟨M⟩
of the form M⊗a ⊗ (M∨)⊗b ⊗ L⊗c. Since M is semi-simple, HM is
reductive and we get the conclusion by applying [9, Prop. 3.1 (c)] with
(G,H) = (GL(ω(M)), HM). □
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Remark 5.11. The converse to Proposition 5.10 is true. Indeed, the
map

(ω(L−1 ⊗ Λ2(rM))U(M))⊗n → ω(L−n ⊗ Λ2n(rM))U(M)

is surjective for all r, n by [26, Prop. 3.4] (whose proof uses invariant
theory). The claim now follows from Lemma 5.1.

5.3. An “easy” exactness criterion. Let

(5.3) H
i−→ G

p−→ Π

be a sequence of affine groups over a field K, where i is a monomorphism
and pi = 1, i.e. H ⊆ Ker p.

Proposition 5.12. Assume G,H proreductive (not necessarily con-
nected). Then the following conditions are equivalent:

(i) H = Ker p.
(ii) For any simple S ∈ RepK(G), SH ̸= 0 ⇒ SKer p ̸= 0.
(iii) For any V ∈ RepK(G), V H = V Ker p.

(In other words, Condition H0 is sufficient in [19, Lemma C.1] when
G and H are proreductive.)

Proof. (i) ⇒ (ii) is obvious, and (ii) ⇒ (iii) by semi-simplicity. For
(iii) ⇒ (i) we may restrict to the Tannakian subcategory of RepK(G)
generated by one representation, hence assume G of finite type. Then
the conclusion follows from [9, Prop. 3.1 (c)] just as in the proof of
Proposition 5.10. □

5.4. Action of a profinite group. See also [21, §5] for a different
presentation.

We keep the setting of §5.1, and add a ⊗-action of a profinite group
Π on A. Namely, we are given a homomorphism g 7→ g∗ from Π to the
monoid of strict Q-linear ⊗-endofunctors F of A (strict means that
F (M) ⊗ F (N) = F (M ⊗ N) for any M,N ∈ A), and g∗1 = 1 for all
g ∈ Π.

Definition 5.13. Given an open subgroup U of Π, we say that an
object M ∈ A is U-centered if g∗M = M for all g ∈ U ; we say that M
is centered if it is U -centered for some U . If M is U -centered, U acts
on EndA(M). We say that Π acts continuously on A if

• any object M ∈ A is isomorphic to a centered object;
• if M is U -centered, the action of U on EndA(M) is continuous

(i.e., the stabiliser of any endomorphism is open).
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Lemma 5.14. Suppose that Π acts continuously on A.
a) If M and N are U-centered, so are M ⊕N , M ⊗N and M∨.
b) If M and N are U-centered, then U acts continuously on A(M,N).
c) If M is centered, then any direct summand of M is centered.

Proof. a) is obvious. b) follows from a) because A(M,N) is a direct
summand of EndA(M⊕N). For c), let e ∈ EndA(M) be the idempotent
corresponding to a direct summand N of M . If M is U -centered, then
by hypothesis there is an open subgroup V ⊆ U such that g(e) = e for
any g ∈ V ; equivalently, N is V -centered. □

We now assume that the action of Π is continuous. By Lemma 5.14,
the full subcategory of A consisting of centered objects is equivalent to
A and Tannakian (even though it may not be closed under extensions,
it is abelian since it is equivalent to an abelian category). Without loss
of generality, we henceforth assume that every object of A is centered.

Let B1 be the category of descent data of A with respect to the
action of Π: an object of B1 is a system (M,ug)g∈Π where M ∈ A and
ug : M

∼−→ g∗M are isomorphisms such that ugh = g∗uh ◦ ug for any
g, h ∈ Π, and a morphism from N = (M,ug) to N ′ = (M ′, u′

g) is a
morphism from M to M ′ which commutes with ug, u

′
g in an obvious

sense. We then get an action of Π on A(M,M ′) be the formula

(5.4) g(f) = u′
g
−1
g∗fug, g ∈ Π, f ∈ A(M,M ′)

so that

(5.5) B1(N,N ′) = A(M,M ′)Π.

Then B1 inherits a Q-linear ⊗-structure by

(M,ug)⊗ (N, vg) = (M ⊗N, ug ⊗ vg)

for which it is rigid, and a ⊗-functor ι1 : B1 → A, (M,ug) 7→ M .
Let (M,ug) ∈ B1, and let U ⊆ Π be such that M is U -centered.

Then the ug (g ∈ U) define an action of Uop on M .

Definition 5.15. The descent datum (M,ug) is continuous if ug =
1M ∀g ∈ V for a suitable open subgroup V ⊆ U . We write B for
the full subcategory of B1 consisting of continuous descent data, and
ι : B ↪→ A for the restriction of ι1 to B.

Proposition 5.16. a) If (M,ug), (M
′, u′

g) ∈ B, the action (5.4) is
continuous.
b) The category B is abelian; the functor ι is faithful and exact.
c) Any object M of A is a direct summand of an object of the form ι(N)
for N ∈ B; if G = Aut⊗(ωι), the natural homomorphism ι∗ : H → G
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is a monomorphism.
d) Let B0 be the full subcategory of B formed of the objects (M,ug)
where M is of the form 1r for some r ≥ 0, and let λ : B0 ↪→ B be
the full embedding. Then B0 is a rigid ⊗-subcategory of B and the
functor θ : B0 → RepQ(Π) defined by the action of Π on the ιM ’s is
an equivalence of ⊗-categories.
e) Given N ∈ B0, any subobject P of λ(N) is isomorphic to an object of
the form λ(N ′) for N ′ a subobject of N . The homomorphism π : G → Π
induced by d) is faithfully flat.

Proof. a) and b) are obvious. For c), let M ′ =
⊕

g∈Π/U g∗M (a finite
sum). Then M ′ is provided with a canonical continuous descent datum
(ug : M ′ ∼−→ g∗M

′), which permutes the summands (ug = 1M ′ if
g ∈ U). We take N = (M ′, ug). The last claim then follows from [10,
Prop. 2.21 (b)].

d) If V ∈ RepQ(Π) has dimension n, the choice of a basis of V
provides an isomorphism V ≃ θ(1n, ug) where ug is defined by the
action of g ∈ Π on V , so θ is essentially surjective. It is also fully
faithful by definition of the morphisms in B.

e) Let N = (M,ug). Since 1 is simple [10, Prop. 1.17], M ≃ 1n is
semi-simple. If P = (N ′, u′

g), then N ′ ≃ 1m for some m ≤ n. The last
claim then follows from [10, Prop. 2.21 (a)]. □

In Proposition 5.16, I don’t know if the sequence

(5.6) 1 → H
ι∗−→ G

p−→ Π → 1

is exact at G in general. This is true at least if A is semi-simple:

Proposition 5.17. If A is semi-simple,
a) so is B.
b) Let S ∈ B be simple. Then S ∈ B0 if and only if A(1, ιS) ̸= 0;
we then have S ≃ A(1, ιS), where the right hand side is viewed as a
Π-module by (5.4).
c) The full embedding λ : B0 → B has the (non monoidal) right adjoint
ρ : M 7→ A(1, ιM).
d) The sequence (5.6) is exact.

Proof. a) Let N ∈ B. By (5.5), EndB(N) is the centraliser of the
semi-simple algebra QΠ̄ in EndA(ιN), where Π̄ (a finite group) is the
image of Π in AutA(ιN) (cf. Proposition 5.16 a)). Since the latter is
semi-simple, so is EndB(N) [8, §14, no 5, th. 5 a)].

b) Write ιS ≃
⊕

α S
nα
α where the Sα’s are simple and pairwise non-

isomorphic. If A(1, ιS) ̸= 0, then Sα0 ≃ 1 for some α0, and A(1, Sα) =
A(Sα,1) = 0 for any α ̸= α0. But then, A(1, g∗Sα) = A(g∗Sα,1) = 0
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for any α ̸= α0. Thus 1nα0 splits off as a direct summand of the descent
datum S, and we must have ιS ≃ 1nα0 ; the isomorphism S ≃ A(1, ιS)
is then clear. The converse is obvious.

In c), ρ exists by [18, Prop. 5.3], which also gives the following recipe:
for S simple, ρ(S) = S if S ∈ A0 and ρ(S) = 0 otherwise. It suffices
to check that this matches with the formula of the statement, which
follows from b).

In d), the exactness at H (resp. Π) was proven in Proposition 5.16
c) (resp. e)). For the exactness at G, we are reduced by a) to checking
Condition (ii) of Proposition 5.12. By Lemma 5.1, we have the isomor-
phism ω(ιS)H = A(1, ιS)⊗K. If it is nonzero, S ∈ B0 by b). But then
the action of G on ω(ιS) factors through Π, hence Ker p acts trivially
on ω(ιS). □

We now assume that A is semi-simple as in Proposition 5.17, and
has a weight grading. Let N ∈ B be such that M = ιN is weakly
polarisable with respect to L ∈ A as in §5.1, and verifies the hypothesis
of Proposition 5.10. Applying the latter and Proposition 5.17 to ⟨N⟩ ↪→
⟨M⟩, we get a short exact sequence

(5.7) 1 → U(M)
ι∗−→ GM

π−→ ΠM → 1

where GM (resp. ΠM) is the Tannakian group of ⟨M⟩ (resp. of ⟨M⟩0 :=
⟨M⟩ ∩ B0. It remains to compute ΠM .

Lemma 5.18. The ⊗-category ⟨N⟩0 is generated by EndA(M), viewed
as a Π-module. Consequently, the group ΠM in (5.7) is the smallest
quotient of Π which acts nontrivially on EndA(M).

Proof. By Proposition 5.17 c) applied to the inclusion ⟨N⟩ ↪→ ⟨M⟩,
⟨M⟩0 is generated by the objects A(1, ιN ′) for N ′ ∈ ⟨N⟩. This is
0 unless ιN ′ has weight 0, so, reasoning as in the proof of Proposi-
tion 5.10, we may restrict to A(Ln, ιN ′) for ιN ′ of the form Λ2n(rM)
(n, r > 0), and then to n = 1 by the hypothesis of Proposition 5.10.
But A(L,Λ2(rM)) is a direct sum of copies of A(L,Λ2(M)) and of
A(L,M⊗2) ≃ EndA(M), and the former is a direct summand of the
latter. □

5.5. Proof of Theorem 5. We first consider A = LMotnum(k)0 as
in Corollary 4.1 (here Q = Q); the hypotheses on semi-simplicity and
weight grading are granted by this corollary. We take M = Lh1(A):
note that it generates the same ⊗-subcategory as Lh(A), by the same
corollary. In view of (4.2), any polarisation of A yields an isomorphism
(5.2). Moreover, Lemma 4.3 implies that the surjectivity hypothesis
of Proposition 5.10 is verified, because it implies that the morphism
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L1(Ar)⊗n → Ln(Ar) in this proposition is the one given by the inter-
section product: this computes the Tannakian group of ⟨A⟩ as UA (cf.
(0.1)). By Proposition 5.7, this yields an exact sequence

1 →
∏
A∈S0

SUA → Aut⊗(ω) → Gm → 1

where S0 is the set of isomorphism classes of simple abelian k-varieties.
When k is separably closed, we have LMotnum(k) = LMotnum(k)0:

this proves the isomorphism of Theorem 5 a).
To prove b), we apply Proposition 5.17 and Lemma 5.18. For this,

we need first to show that the action of Γ on LMot(ks) described
after Definition 4.4 is continuous in the sense of Definition 5.13, and
then that LMotnum(k) is equivalent to the corresponding category of
continuous descent data in the sense of Definition 5.15.

Let A ∈ Ab(ks). Then A is defined over some finite subextension
E/k of ks/k, which means that there exists A0 ∈ Ab(E) and an iso-
morphism A ≃ A0 ⊗E ks. Hence, if U = Gal(ks/E) and n ∈ Z,
Lh(A) ⊗ Ln is isomorphic to the U -centered motive M ⊗E ks where
M = Lh(A0)⊗Ln ∈ LMotnum(E). Moreover, R = EndLMotnum(ks)(M)
is the colimit of the EndLMotnum(E′)(M ⊗E E ′) for E ′ ⊆ ks a finite ex-
tension of E, hence U acts continuously on R. Therefore the action of
Γ on LMot(ks) is continuous, thanks to Lemma 5.14 c).

The canonical continuous descent datum on Aks attached to A ∈
LCorrnum(k) provides a ⊗-functor from LCorrnum(k) to the category
of continuous descent data on LCorrnum(ks) for the action of Γ. This
functor is fully faithful by (4.4) and (5.5), hence extends to a fully faith-
ful functor from LMotnum(k) to the category B of continuous descent
data on A = LMotnum(ks).

It remains to show its essential surjectivity. Let N = (M,ug) ∈ B.
Choose a finite subextension E/k of ks/k and M0 ∈ LMotnum(E) such
that M ≃ (M0)ks ; by the continuity of N , up to enlarging E we may
further assume that U = Gal(ks/E) is such that ug = 1 for g ∈ U ,
and moreover is normal in Γ. Let G = Γ/U = Gal(E/k); for g ∈ G,
ug descends to an isomorphism M0

∼−→ g∗M0 that we still denote by
ug. Moreover we have a canonical isomorphism λE(M0) ≃ λE(g∗M0),
where λE is the right adjoint of Lemma 4.5. This implies that the
λE(ug)’s define a homomorphism ρ from Q[G] to the endomorphism
ring of λE(M0). Let e = 1

|G]

∑
g∈G ρ(g) be the corresponding idempo-

tent, and let M1 = Im e ∈ LMotnum(k). I claim that M1 7→ N under
LMotnum → B. Indeed, the inclusion M1 → λE(M0) yields by adjunc-
tion a morphism iEM1 → M0, which is seen to be an isomorphism by
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using (4.5). This computation also shows that the canonical descent
datum of iEM1 matches with that of N .

This concludes the proof of Theorem 5. □

Remark 5.19. Proposition 5.17 also applies to prove [10, Prop. 6.23 (a)]
– except for the connectedness of G(ks) which would require the “Hodge
= absolute Hodge” conjecture –, and [2, 4.6, exemples]. It also applies
to numerical Grothendieck motives under the standard conjecture D
or, unconditionally, to this category restricted to numerical motives
of abelian type in characteristic 0. Since the Tannakian group Gs is
not connected (see [26, Table 2 p. 655]), one sees that the expected
connectedness of the motivic Galois group over separably closed fields
cannot be hoped to be proven by purely formal arguments in the above
style.

6. Remarks and questions

Remarks 6.1. 1) The algebra Bn,Q defined by Ancona in [1, Def. 5.2]
is contained in EndLMot(k)(h

1(A)⊗n): this allows one to refine his lift-
ing results. Similarly, O’Sullivan’s lifting theorem of [29] refines to
LMot(k).
2) For an abelian k-variety A, let L̃∗(A) = L∗(Aks)

G; equivalently, this
is the subalgebra of CH∗(A) generated by transfers of intersections of
divisor classes over finite separable extensions of k. One would like
to compute L̃∗(A) in the style of Theorem 2. We have the following
partial result:

Proposition 6.2. Suppose that G acts trivially on CH1
0 (Aks) ≃ NS(Aks).

Then L̃∗(A) is generated by CH0
1 (A) and CH0(A) under the Pontrjagin

product.

Proof. By the isomorphism in the proof of Lemma 2.1, G acts triv-
ially on CH0

1 (Aks). It follows by a transfer argument that the map
CH0

1 (A) → CH0
1 (Al) is surjective. The conclusion then follows from

Theorem 2 and Lemma 2.3 b). (A variant would be to use [7, Prop. 4
a)].) □

Question 6.3. More varieties than abelian varieties have a motive in
LMot(k). For example a (geometrically connected) curve C, since
h1(C) ≃ h1(J(C)) and the Chow-Künneth projectors of J(C) are in
LMot(k) by Corollary 4.1. Therefore, products of curves as well. In
general, let X be a smooth projective variety. Suppose that the motive
of X in Mot is a direct summand of the motive of an abelian variety
A. When is the corresponding projector in L∗(A × A)? Special case:
there exists a dominant rational map A 99K X.
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Variant: in Corollary 4.1, take for ∼ numerical equivalence. Then
(4.1) is a functor between semi-simple abelian categories. Let S be a
simple object of LMot∼(k). Does it remain simple in Mot∼(k)?

In particular, do the refined (Chow-)Künneth decompositions of [22,
Th. 7.7.3]

hi(A) ≃
⊕
j

hi,j(A)⊗ Lj

coincide in the two categories? This is true for i = 2 by a generalisation
of [22, Proof of Prop. 7.2.3]. However the answer is no in general, as
pointed out by Peter O’Sullivan by the following simple argument:

Suppose for example that k is separably closed and we work modulo
homological = numerical equivalence (Theorem 3 a)). There is then
an abelian variety A such that for some i the dimension d′of Li

num(A)
over Q is strictly less than the dimension d of Ai

num(A) over Q. Then
Lh2i,i(A) is the direct sum of d′ copies of the unit motive, while h2i,i(A)
is the direct sum of d > d′ copies. It follows that Lh2i,j(A) for some
j < i has a simple direct summand which is not simple in the category
of ordinary motives.
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