On the injectivity and non-injectivity of the *l***-adic cycle class maps** Bruno Kahn

Conférence inaugurale du Laboratoire de Mathématiques franco-japonais Komaba April 5, 2024

1. CHOW GROUPS

 \boldsymbol{X} algebraic variety over a field \boldsymbol{k}

 $n \ge 0$: $Z_n(X)$ free abelian group on closed integral subvarieties of X

Too coarse, e.g. for intersection theory

Solution: impose rational equivalence (\equiv homotopy)

Get *Chow group* $CH_n(X)$.

X non singular (= smooth): can number by codimension $\mapsto CH^n(X)$.

e.g. $CH^{1}(X) = Pic(X)$.

2. CYCLE CLASS MAPS

To understand algebraic cycles, use cycle class maps

Most classical: $k={\bf C},$ singular cohomology: $CH^n(X) \to H^{2n}(X({\bf C}),{\bf Z})$

Here: use *étale cohomology*

SGA 4 1/2: *l* prime number invertible in $k, \nu \ge 1$ $\operatorname{cl}_{\nu}^{n}: CH^{n}(X)/l^{\nu} \to H^{2n}_{\acute{e}t}(X, \mu_{l\nu}^{\otimes n})$

Surjectivity? \leftrightarrow Hodge conjecture (over C), Tate conjecture (over finitely generated k).

To express the Tate conjecture, pass from k to \bar{k} (algebraic closure) and replace $H_{\text{ét}}^{2n}(X, \mu_{l^{\nu}}^{\otimes n})$ by

$$H^{2n}(\bar{X}, \mathbf{Z}_l(n)) := \varprojlim_{\nu} H^{2n}_{\text{\'et}}(\bar{X}, \mu_{l^{\nu}}^{\otimes n})$$

finitely generated \mathbf{Z}_l -module.

Over k, can do the same, but get an awkward theory: refined by U. Jannsen to *continuous étale cohomology* $H_{\text{cont}}^{2n}(X, \mathbf{Z}_l(n))$: Milnor exact sequences

$$0 \to \varprojlim^1 H^{2n-1}_{\text{\'et}}(\bar{X}, \mu_{l^\nu}^{\otimes n}) \to H^{2n}_{\text{cont}}(X, \mathbf{Z}_l(n)) \to \varprojlim H^{2n}_{\text{\'et}}(\bar{X}, \mu_{l^\nu}^{\otimes n}) \to 0$$

and Jannsen's l-adic cycle class map

$$\operatorname{cl}_X^n : CH^n(X) \otimes \mathbf{Z}_l \to H^{2n}_{\operatorname{cont}}(X, \mathbf{Z}_l(n)).$$

3. The image of cl_X^n

Theorem 1 (S. Saito, essentially). X smooth over k finitely generated. For any $n \ge 0$, the image of cl_X^n is a finitely generated \mathbf{Z}_l -module.

4. The kernel of cl_X^n

Question 1. When is cl_X^n injective?

Completely false in general: e.g. $k = \overline{k}, n = 1, X$ smooth projective curve: $0 \rightarrow \operatorname{Pic}^{0}(X) \rightarrow CH^{1}(X) \rightarrow \operatorname{NS}(X) \rightarrow 0$ but $\operatorname{Pic}^{0}(X) = J(X)(k)$ is divisible hence killed by $\operatorname{cl}_{X}^{1}$.

Theorem 2 (Jannsen). If k is finitely generated, cl_X^1 is injective.

(N.B. Pic(X) f.g. abelian group in this case.)

Important conjecture on Chow groups: Bloch-Beilinson–Murre (BBM): for X smooth projective, \exists filtration on $CH^n(X) \otimes \mathbf{Q}$ with very good properties.

Theorem 3 (Jannsen). If $cl_X^n \otimes \mathbf{Q}$ is injective for X smooth projective over finitely generated k, the BBM conjecture is true.

People have studied the injectivity of cl_X^n restricted to $CH^n(X)_{tors}$: S. Saito (positive cases), Scavia-Suzuki, Alexandrou-Schreieder, Colliot-Thélène-Scavia (negative cases). But what about $\otimes \mathbf{Q}$?

Question 2. Is the converse to Jannsen's theorem 3 true?

I don't know!

Question 3. Are there known conjectures which would imply the injectivity of $cl_X^n \otimes \mathbf{Q}$ for X smooth projective over f.g. k's?

Theorem 4. Yes in positive characteristic.

(I don't know in characteristic 0.)

5. WITH Q COEFFICIENTS

k finite field, X smooth projective: Tate-Beilinson conjecture

Conjecture 1. $\operatorname{cl}_X^n \otimes \mathbf{Q}$ is bijective for all $n \ge 0$.

Theorem 5. Conjecture 1 implies that $cl_X^n \otimes \mathbf{Q}$ is injective for any smooth projective X over any k finitely generated over \mathbf{F}_p ($p \neq l$).

Sketch. Extend Conjecture 1 to a statement on general smooth \mathbf{F}_q -varieties; if $k = \mathbf{F}_q(U)$ with U smooth small enough, spread X to smooth projective morphism $\mathcal{X} \to U$, apply Deligne's degeneration criterion for Leray spectral sequence and pass to the limit.

In characteristic 0 I don't know any similar conjecture implying the injectivity of $cl_X^* \otimes \mathbf{Q}$.

6. **RESTRICTION TO TORSION**

6.1. Positive results: decomposition of the diagonal.

Theorem 6. k finitely generated of char. 0, X smooth projective. Assume that $CH_0(X_{k(X)}) \otimes \mathbf{Q} \xrightarrow{\deg \otimes \mathbf{Q}} \mathbf{Q}$ is an isomorphism. Let $\delta = |\operatorname{Coker} \deg|$. Then $\delta \operatorname{Ker} \operatorname{cl}_X^2 = 0$, and $\operatorname{Ker} \operatorname{cl}_X^2$ is finite if k is of Kronecker dimension ≤ 2 . If char k = p > 0, this is true up to p-primary groups of finite exponent.

(Kronecker dimension: in characteristic p, transcendence degree over \mathbf{F}_p ; in characteristic 0, transcendence degree over $\mathbf{Q} + 1$.)

Sketch. All is due to S. Saito (in char. 0), except the case of Kronecker dimension 2. In this case, use finite generation of CH_0 of arithmetic surfaces (Bloch, Kato-Saito). (Tricky!)

Counterexamples. Of two types: 1) for CH^2 ; for CH^n , n > 2. **6.2**. To understand these examples, refine cycle class map using étale Chow groups:

$$CH^{n}(X) \otimes \mathbf{Z}_{l} \xrightarrow{\alpha_{X}^{n}} CH^{n}_{\text{ét}}(X) \otimes \mathbf{Z}_{l} \xrightarrow{\beta_{X}^{n}} H^{2n}_{\text{cont}}(X, \mathbf{Z}_{l}(n))$$

where $CH^{n}_{\text{ét}}(X) = H^{2n}_{\text{ét}}(X, \mathbf{Z}(n))$ is étale motivic cohomology $(\text{cl}_{X}^{n} \circ \alpha_{Y}^{n}).$

For n = 2, short exact sequence

W

$$0 \to CH^2(X) \xrightarrow{\alpha_X^2} CH^2_{\text{\'et}}(X) \to H^3_{\text{nr}}(X, \mathbf{Q}/\mathbf{Z}(2)) \to 0$$

but α_X^n not injective for n > 2 in general. In fact:

Theorem 7. In all examples of Scavia-Suzuki and Alexandrou-Schreieder with n > 2, the cycle in Ker cl_X^n is already killed by α_X^n .

Trivialises their proofs, e.g. no need of refined Bloch maps in Alexandrou-Schreieder.

For n = 2, two examples: Scavia-Suzuki and Colliot-Thélène-Scavia. First one uses a norm variety (used in proof of Bloch-Kato conjecture) and corresponding Rost motive \mathcal{R} , with $CH^2(\mathcal{R}) = \mathbf{Z}/l$. One way to understand it is

Proposition 1. *a) The canonical map*

$$CH^2_{\text{\acute{e}t}}(k) \otimes \mathbf{Z}_{(l)} \to CH^2_{\text{\acute{e}t}}(\mathcal{R})$$

is an isomorphism. b) $\beta_{\mathcal{R}}^2 = 0.$

a) is basically because \mathcal{R} becomes trivial over \overline{k} . In view of a), the reason for b) is that $H_{\text{cont}}^4(k, \mathbf{Z}_l(2)) = 0$ because k is chosen with cohomological dimension 3!

Second counterexample much more delicate to "explain" in this way...

$\mathcal{T}he \ \mathcal{E}nd$