Reciprocity sheaves Bruno Kahn

(beyond) Homotopical methods in algebraic geometry USC, Los Angeles, May 28 – June 1, 2013 With Shuji Saito and Takao Yamazaki

What is K_2 ?

First answer: Tate (1970es) for K_2/n :

 $K_2/n = (\mathbf{G}_m \otimes \mathbf{G}_m)/n + \text{ transfers} + \text{ projection formula.}$

How about K_2 itself?

Two answers: Suslin, Kato (1980es).

Suslin:

 $K_2 = \mathbf{G}_m \otimes \mathbf{G}_m + \text{transfers} + \text{projection formula} + \text{homotopy invariance.}$ \longrightarrow Suslin-Voevodsky motivic cohomology, Voevodsky's homotopy invariant motives.

Kato:

 $K_2 = \mathbf{G}_m \otimes \mathbf{G}_m + \text{ transfers} + \text{projection formula} + \text{Weil reciprocity.}$ \longrightarrow reciprocity sheaves (so far).

1. ROSENLICHT-SERRE THEORY (1959)

 $k = \overline{k}$. Two main results:

1.1. Reciprocity property. G/k connected commutative algebraic group.

Theorem 1.1. C/k smooth projective curve, $U \subset C$ affine open subset, $f: U \to G$ k-morphism; \exists effective divisor \mathfrak{m} with support C - U such that

$$f(\operatorname{div}(g)) = 0 \text{ if } g \in k(C)^*, g \equiv 1 \pmod{\mathfrak{m}}.$$

We say that f affords the modulus \mathfrak{m} .

Here, extend f to homomorphism $Z_0(U) \to G(k)$ by linearity; note that hypothesis on $g \Rightarrow$ support of $\operatorname{div}(g) \subset U$.

Equivalent version. K = k(C): \exists local symbols

$$\partial_x : G(K) \times K^* \to G(k) \quad (x \in C)$$

such that

•
$$\partial_x(a,g) = v_x(g)\bar{a}$$
 if $a \in G(\mathcal{O}_{C,x})$, $\bar{a} = \text{image of } a$ in $G(k)$;
• $\forall a \in G(K), \forall g \in K^*$,

(1)

$$\sum_{x \in C} \partial_x(a,g) = 0$$

(Weil reciprocity).

1.2. Representability.

Theorem 1.2. C, U as above, \mathfrak{m} effective divisor with support C - U. Fix $u_0 \in U$. The functor

$$G \mapsto \{f : U \to G \mid f(u_0) = 0 \text{ and } f \text{ affords modulus } \mathfrak{m}\}$$

from commutative algebraic groups to abelian groups is corepresentable by the generalized Jacobian $J(C, \mathfrak{m})$.

 ${\mathfrak m}$ reduced: get connected component of relative Picard group

$$J(C, \mathfrak{m}) = \operatorname{Pic}^0(C, C - U).$$

In general, extension of this by unipotent group.

2. Somekawa K-groups (1990)

k any field, G_1, \ldots, G_n semi-abelian varieties.

Definition 2.1 (K. Kato). $K(k, G_1, \ldots, G_n)$ abelian group defined by generators and relations:

Generators: $\{g_1, \ldots, g_n\}_{E/k}$, $[E:k] < \infty$, $g_i \in G_i(E)$. Relations:

(1) Multilinearity.

(2) Projection formula (for norms on the G_i).

(3) Weil reciprocity in the style of (1).

Theorem 2.2 (Kato, Somekawa). $K(k, \mathbf{G}_m, \ldots, \mathbf{G}_m) \simeq K_n^M(k)$.

Other formulas of Somekawa: $k = \bar{k}$,

 $K(k, J, \mathbf{G}_m) = V(C)$ (Bloch's group) if J = J(C).

 $K(k, J_1, J_2) =$ Albanese kernel of $C_1 \times C_2$ if $J_i = J(C_i)$.

Theorem 2.3 (K.-Yamazaki, 2011). k perfect, $\mathcal{F}_1, \ldots, \mathcal{F}_n$ homotopy invariant Nisnevich sheaves with transfers: can generalize Somekawa's K-groups to $K(k, \mathcal{F}_1, \ldots, \mathcal{F}_n)$ and

 $K(k, \mathcal{F}_1, \ldots, \mathcal{F}_n) \simeq \operatorname{Hom}_{DM_{-}^{\operatorname{eff}}(k)}(\mathbf{Z}, \mathcal{F}_1 \otimes \cdots \otimes \mathcal{F}_n[0]).$

3. Beyond homotopy invariance

Can one define Somekawa K-groups for more general functors than HI sheaves, e.g. unipotent groups?

I tried in 1991 and failed. Used pre-Voevodsky set-up of "Mackey functors with reciprocity" (modelled on Rosenlicht-Serre). Guessed "empirical formulas"

- (2) $K(k, \mathbf{G}_a, \mathbf{G}_m \dots, \mathbf{G}_m) \simeq \Omega_{k/\mathbf{Z}}^n$
- (3) $K(k, \mathbf{G}_a, \mathbf{G}_a, \dots) = 0$
- (4) $K(k, \mathbf{G}_a, A, \dots) = 0$ (A abelian variety).

Taken up by Ivorra-Rülling (2012) in a framework of "reciprocity functors": k perfect field,

- Category of models: $C = \{ \text{regular curves over function fields over } k \}.$
- Reciprocity functors: presheaves with transfers restricted to \mathcal{C} , with reciprocity condition à la Rosenlicht-Serre.

Their main result: $\mathcal{F}_1, \ldots, \mathcal{F}_n$ reciprocity functors \mapsto new reciprocity functor $T(\mathcal{F}_1, \ldots, \mathcal{F}_n)$ (a kind of tensor product).

Definition 3.1. *E* function field over k: $K(E, \mathcal{F}_1, \ldots, \mathcal{F}_n) = T(\mathcal{F}_1, \ldots, \mathcal{F}_n)(E).$

- $\mathcal{F}_i \in \mathrm{HI}$: recover Somekawa K-group.
- They prove (2) and (3) above.

Problem: their tensor product T is not a priori associative.

4. RECIPROCITY SHEAVES (WITH S. SAITO AND T. YAMAZAKI) In exploratory mode. k perfect field.

- Category of models: Sm(k) (smooth separated k-schemes of finite type).
- Reciprocity sheaves: presheaves with transfers, with reciprocity condition à la Rosenlicht-Serre.

Makes sense more generally for a *pretheory*:

Definition 4.1. a) A pretheory \mathcal{F} has reciprocity if, for any relative curve X/S with good compactification \overline{X}/S and any $a \in \mathcal{F}(X)$, there exists an effective divisor Y with support $\overline{X} - X$ such that

 $(\operatorname{div}(g), a) = 0$ if $g \in G(\overline{X}, Y)$:

- $(,): c(X/S) \times \mathcal{F}(X) \to \mathcal{F}(S)$ pairing given by the pretheory structure (c(X/S): relative cycles)
- $G(\bar{X}, Y) \subset k(X)^*$ subgroup defined by Suslin-Voevodsky.

We say that Y is a *modulus* for a.

b) A presheaf with transfers *has reciprocity* if the associated pretheory has reciprocity.

Proposition 4.2. *a)* A Nisnevich sheaf with transfers is homotopy invariant if and only if it has reciprocity "with reduced moduli" (better: "with uniformly bounded moduli").

b) Presheaves with transfers defined by connected commutative algebraic groups have reciprocity.

Theorem 4.3 (Global injectivity). \mathcal{F} reciprocity Nisnevich sheaf with transfers. Then for any $X \in \text{Sm}(k)$ and $U \subset X$ dense open subset, $\mathcal{F}(X) \to \mathcal{F}(U)$ is injective.

(Generalizes a theorem of Voevodsky for HI Nisnevich sheaves with transfers.)

Sketch. (1) \mathcal{F} is \mathbf{P}^1 -rigid: $\forall X \in \mathrm{Sm}(k), i_0^* = i_\infty^* : \mathcal{F}(\mathbf{P}^1_X) \to \mathcal{F}(X).$ (2) \mathbf{P}^1 -rigidity implies \mathbf{P}^1 -invariance: $\mathcal{F}(X) \xrightarrow{\sim} \mathcal{F}(\mathbf{P}^1_X).$

(3) \mathbf{P}^1 -invariance implies global injectivity (an argument of Gabber).

Corollary 4.4. \mathcal{F} as above, X smooth projective: the pairing $Z_0(X) \times \mathcal{F}(X) \to \mathcal{F}(k)$ factors through $CH_0(X) \times F(X)$.

Hope: in the end will have a full Gersten conjecture (with Cousin complexes), but not there yet. At the moment also have semi-local injectivity (for reciprocity presheaves with transfers) and other theorems of Voevodsky on comparing Zariski and Nisnevich sheafifications.

5. Functorial properties

Reciprocity stable under

- subobjects
- quotients
- direct sums (possibly infinite)

Not stable under

• infinite products

(Big) open question:

• by extensions?

Consequences: $PST_{rec} = \{ \mathcal{F} \in PST \mid \mathcal{F} \text{ has reciprocity} \}$ cocomplete abelian subcategory of PST; don't know if it is thick.

 $\mathrm{HI} \subset \mathrm{PST}_{\mathrm{rec}} \subset \mathrm{PST}$

Voevodsky: the inclusion $HI \subset PST$ has the left adjoint $\mathcal{F} \mapsto h_0(\mathcal{F})$. Also true (but less well-known): this inclusion has a right adjoint.

Proposition 5.1. The inclusion $PST_{rec} \subset PST$ has a right adjoint, but presumably no left adjoint [because PST_{rec} not complete].

Definition 5.2. $\mathcal{G} \in \text{PST}$ is *finitely generated* if quotient of a finite direct sum of representable presheaves (equivalently: of one).

Proposition 5.3. $\mathcal{F} \in \text{PST}_{\text{rec}}$, $\mathcal{G} \in \text{PST}$. Then $\underline{\text{Hom}}(\mathcal{G}, \mathcal{F}) \in \text{PST}_{\text{rec}}$ if \mathcal{G} is finitely generated, but not in general.

(Simple example: $\mathcal{G} = \mathbf{Z}^{(\mathbf{N})}, \ \mathcal{F} = \mathbf{G}_a \Rightarrow \underline{\mathrm{Hom}}(\mathcal{G}, \mathcal{F}) = \mathbf{G}_a^{\mathbf{N}}$ which does not have reciprocity.)

6. Towards "generalized Jacobians"

X/S relative curve with good compactification \bar{X}/S , Y effective divisor with support $\bar{X} - X$.

Definition 6.1. $\mathcal{F} \in PST$:

$$\mathcal{F}_0^Y(X) = \{ a \in \mathcal{F}(X) \mid a \text{ has modulus } Y \}.$$

Theorem 6.2. $\mathcal{F} \mapsto \mathcal{F}_0^Y(X)$ is corepresented by a quotient $\mathbf{Z}_{tr}^0(X/S, Y)$ of $\mathbf{Z}_{tr}(X)$.

(Proof not difficult.)

- Take $S = \operatorname{Spec} k$. First guess: $\mathbf{Z}_{\operatorname{tr}}(X/k, Y) = \operatorname{Pic}(\overline{X} \times -, Y \times -)$. Is it true?
- (1) $U \mapsto \operatorname{Pic}(\bar{X} \times U, Y \times U)$ defines $\mathcal{F} \in \operatorname{PST}$ (not quite immediate).
- (2) By Yoneda, class of diagonal $[\Delta_X] \in \operatorname{Pic}(\bar{X} \times X, Y \times X) = \mathcal{F}(X)$ yields epimorphism $\mathbf{Z}_{\operatorname{tr}}(X) \twoheadrightarrow \mathcal{F}$.
- (3) This factors through $\mathbf{Z}^0_{\mathrm{tr}}(X/k, Y) \twoheadrightarrow \mathcal{F}$.
- (4) BUT not iso: kernel generated by all $G(\bar{X} \times U, Y \times U)$ ($G(\bar{X}, Y)$ not sufficient).

Yields stronger notion of reciprocity:

Definition 6.3 (First form). X/S relative curve with good compactification \overline{X}/S , Y effective divisor with support $\overline{X} - X$, $\mathcal{F} \in \text{PST}$: $a \in \mathcal{F}(X)$ has universal modulus Y if for any $f : S' \to S$, f_X^*a has modulus f_X^*Y $(f_X : X \times_S S' \to X)$.

 $\mathcal{F}_1^Y(X) := \{ a \in \mathcal{F}(X) \mid a \text{ has universal modulus } Y \}.$

Theorem 6.4. $F \mapsto F_1^Y(X)$ is corepresentable by a quotient $\mathbf{Z}^1_{\mathrm{tr}}(X/S,Y)$ of $\mathbf{Z}^0_{\mathrm{tr}}(X/S,Y)$.

Case X = Spec k: get exactly $\mathbf{Z}_{\text{tr}}^1(X/k, Y) \xrightarrow{\sim} \text{Pic}(\bar{X} \times -, Y \times -)$. **Moreover:** $\text{Pic}(\bar{X} \times -, Y \times -) \in \text{PST}_{\text{rec}}$ (proof to be fully checked). How about higher dimensions?

Definition 6.5. A modulus pair is a pair (\bar{X}, Y) , \bar{X} normal proper, $Y \subset \bar{X}$ effective Cartier divisor such that $X = \bar{X} - Y$ is affine and smooth over k.

Define universal modulus Y (second form) for $a \in \mathcal{F}(X)$ by using relative curves in $\overline{X} \times S$, S variable. This notion is probably corepresentable by a quotient $\mathbf{Z}_{tr}(X, Y)$ of $\mathbf{Z}_{tr}(X)$.

Guess: $\mathbf{Z}_{tr}(X, Y)(U) = CH^d(\overline{X} \times U, Y \times U), d = \dim X$ (Kerz-Saito Chow group with modulus)...

7. TOWARDS TENSOR PRODUCTS Ivorra-Rülling idea:

Definition 7.1. $\mathcal{F}_1, \ldots, \mathcal{F}_n, \mathcal{G} \in \text{PST}$. An element $\varphi \in \text{PST}(\mathcal{F}_1 \otimes \cdots \otimes \mathcal{F}_n, \mathcal{G})$ is *continuous* if for any relative curve X/S with good compactification \overline{X}/S and any effective divisor Y with support $\overline{X} - X$,

$$\varphi(\mathcal{F}_1^Y(X)\otimes\cdots\otimes\mathcal{F}_n^Y(X))\subseteq\mathcal{G}^Y(X).$$

(n = 1: automatic.)Defines subgroup $\operatorname{PST}^{\operatorname{cont}}(\mathcal{F}_1 \otimes \cdots \otimes \mathcal{F}_n, \mathcal{G}) \subseteq \operatorname{PST}(\mathcal{F}_1 \otimes \cdots \otimes \mathcal{F}_n, \mathcal{G}).$ **Theorem 7.2.** $\mathcal{F}_1, \ldots, \mathcal{F}_n \in \operatorname{PST}_{\operatorname{rec}}: \text{ the functor}$ $\mathcal{G} \mapsto \operatorname{PST}^{\operatorname{cont}}(\mathcal{F}_1 \otimes \cdots \otimes \mathcal{F}_n, \mathcal{G})$

is corepresentable by $T(\mathcal{F}_1, \ldots, \mathcal{F}_n) \in PST$.

In Ivorra-Rülling setting: $T(\mathcal{F}_1, \ldots, \mathcal{F}_n) \in PST_{rec}$. Here, not completely clear (to be continued).

8. What are we after?

Ultimate objective: get a "reciprocity" version of DM. Several problems:

- PST_{rec} perhaps not thick in PST.
- Presumably no left adjoint to the inclusion.
- Tensor structure not clear (guess: OK when restricted to finitely generated $\mathcal{F} \in PST_{rec}$).

In Voevodsky's setting: "small" category $DM_{\rm gm}^{\rm eff}$ of geometric motives, "big" category $DM^{\rm eff}$ of motivic complexes + "Yoneda functor"

$$DM_{\rm gm}^{\rm eff} \to DM^{\rm eff}$$

Here: seem to go towards a geometric category and a category of complexes of sheaves, but their functoriality is not clear.