Reciprocity sheaves
 Bruno Kahn

(beyond) Homotopical methods in algebraic geometry
USC, Los Angeles, May 28 - June 1, 2013
With Shuji Saito and Takao Yamazaki

What is K_{2} ?

First answer: Tate (1970es) for K_{2} / n :

$$
K_{2} / n=\left(\mathbf{G}_{m} \otimes \mathbf{G}_{m}\right) / n+\text { transfers }+ \text { projection formula. }
$$

How about K_{2} itself?

Two answers: Suslin, Kato (1980es).

Suslin:

$K_{2}=\mathbf{G}_{m} \otimes \mathbf{G}_{m}+$ transfers + projection formula + homotopy invariance.
\longrightarrow Suslin-Voevodsky motivic cohomology, Voevodsky's homotopy invariant motives.

Kato:
$K_{2}=\mathbf{G}_{m} \otimes \mathbf{G}_{m}+$ transfers + projection formula + Weil reciprocity. \longrightarrow reciprocity sheaves (so far).

1. Rosenlicht-Serre theory (1959)

$k=\bar{k}$. Two main results:
1.1. Reciprocity property. G / k connected commutative algebraic group.

Theorem 1.1. C / k smooth projective curve, $U \subset C$ affine open subset, $f: U \rightarrow G k$-morphism; \exists effective divisor \mathfrak{m} with support $C-U$ such that

$$
f(\operatorname{div}(g))=0 \text { if } g \in k(C)^{*}, g \equiv 1 \quad(\bmod \mathfrak{m})
$$

We say that f affords the modulus \mathfrak{m}.
Here, extend f to homomorphism $Z_{0}(U) \rightarrow G(k)$ by linearity; note that hypothesis on $g \Rightarrow$ support of $\operatorname{div}(g) \subset U$.

Equivalent version. $K=k(C)$: \exists local symbols

$$
\partial_{x}: G(K) \times K^{*} \rightarrow G(k) \quad(x \in C)
$$

such that

- $\partial_{x}(a, g)=v_{x}(g) \bar{a}$ if $a \in G\left(\mathcal{O}_{C, x}\right), \bar{a}=$ image of a in $G(k)$;
- $\forall a \in G(K), \forall g \in K^{*}$,
(1)

$$
\sum_{x \in C} \partial_{x}(a, g)=0
$$

(Weil reciprocity).

1.2. Representability.

Theorem 1.2. C, U as above, \mathfrak{m} effective divisor with support $C-U$. Fix $u_{0} \in U$. The functor

$$
G \mapsto\left\{f: U \rightarrow G \mid f\left(u_{0}\right)=0 \text { and } f \text { affords modulus } \mathfrak{m}\right\}
$$

from commutative algebraic groups to abelian groups is corepresentable by the generalized Jacobian $J(C, \mathfrak{m})$.
\mathfrak{m} reduced: get connected component of relative Picard group

$$
J(C, \mathfrak{m})=\operatorname{Pic}^{0}(C, C-U)
$$

In general, extension of this by unipotent group.

2. Somekawa K-Groups (1990)

k any field, G_{1}, \ldots, G_{n} semi-abelian varieties.
Definition 2.1 (K. Kato). $K\left(k, G_{1}, \ldots, G_{n}\right)$ abelian group defined by generators and relations:

Generators: $\left\{g_{1}, \ldots, g_{n}\right\}_{E / k},[E: k]<\infty, g_{i} \in G_{i}(E)$.
Relations:
(1) Multilinearity.
(2) Projection formula (for norms on the G_{i}).
(3) Weil reciprocity in the style of (1).

Theorem 2.2 (Kato, Somekawa). $K\left(k, \mathbf{G}_{m}, \ldots, \mathbf{G}_{m}\right) \simeq K_{n}^{M}(k)$.
Other formulas of Somekawa: $k=\bar{k}$,

$$
\begin{gathered}
K\left(k, J, \mathbf{G}_{m}\right)=V(C) \text { (Bloch's group) if } J=J(C) . \\
K\left(k, J_{1}, J_{2}\right)=\text { Albanese kernel of } C_{1} \times C_{2} \text { if } J_{i}=J\left(C_{i}\right) .
\end{gathered}
$$

Theorem 2.3 (K.-Yamazaki, 2011). k perfect, $\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}$ homotopy invariant Nisnevich sheaves with transfers: can generalize Somekawa's K-groups to $K\left(k, \mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right)$ and

$$
K\left(k, \mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right) \simeq \operatorname{Hom}_{D M_{-}^{\mathrm{eff}}(k)}\left(\mathbf{Z}, \mathcal{F}_{1} \otimes \cdots \otimes \mathcal{F}_{n}[0]\right)
$$

3. Beyond homotopy invariance

Can one define Somekawa K-groups for more general functors than HI sheaves, e.g. unipotent groups?
I tried in 1991 and failed. Used pre-Voevodsky set-up of "Mackey functors with reciprocity" (modelled on Rosenlicht-Serre). Guessed "empirical formulas"

$$
\begin{align*}
K\left(k, \mathbf{G}_{a}, \mathbf{G}_{m} \ldots, \mathbf{G}_{m}\right) & \simeq \Omega_{k / \mathbf{Z}}^{n} \tag{2}\\
K\left(k, \mathbf{G}_{a}, \mathbf{G}_{a}, \ldots\right) & =0 \tag{3}\\
K\left(k, \mathbf{G}_{a}, A, \ldots\right) & =0 \quad(A \text { abelian variety }) . \tag{4}
\end{align*}
$$

Taken up by Ivorra-Rülling (2012) in a framework of "reciprocity functors": k perfect field,

- Category of models: $\mathcal{C}=\{$ regular curves over function fields over $k\}$.
- Reciprocity functors: presheaves with transfers restricted to \mathcal{C}, with reciprocity condition à la Rosenlicht-Serre.
Their main result: $\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}$ reciprocity functors \mapsto new reciprocity functor $T\left(\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right)$ (a kind of tensor product).

Definition 3.1. E function field over $k: K\left(E, \mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right)=$ $T\left(\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right)(E)$.

- $\mathcal{F}_{i} \in \mathrm{HI}$: recover Somekawa K-group.
- They prove (2) and (3) above.

Problem: their tensor product T is not a priori associative.
4. Reciprocity sheaves (with S. Saito and T. Yamazaki)

In exploratory mode.
k perfect field.

- Category of models: $\operatorname{Sm}(k)$ (smooth separated k-schemes of finite type).
- Reciprocity sheaves: presheaves with transfers, with reciprocity condition à la Rosenlicht-Serre.
Makes sense more generally for a pretheory:

Definition 4.1. a) A pretheory \mathcal{F} has reciprocity if, for any relative curve X / S with good compactification \bar{X} / S and any $a \in \mathcal{F}(X)$, there exists an effective divisor Y with support $\bar{X}-X$ such that

$$
(\operatorname{div}(g), a)=0 \text { if } g \in G(\bar{X}, Y):
$$

- $():, c(X / S) \times \mathcal{F}(X) \rightarrow \mathcal{F}(S)$ pairing given by the pretheory structure $(c(X / S)$: relative cycles)
- $G(\bar{X}, Y) \subset k(X)^{*}$ subgroup defined by Suslin-Voevodsky.

We say that Y is a modulus for a.
b) A presheaf with transfers has reciprocity if the associated pretheory has reciprocity.

Proposition 4.2. a) A Nisnevich sheaf with transfers is homotopy invariant if and only if it has reciprocity "with reduced moduli" (better: "with uniformly bounded moduli").
b) Presheaves with transfers defined by connected commutative algebraic groups have reciprocity.

Theorem 4.3 (Global injectivity). \mathcal{F} reciprocity Nisnevich sheaf with transfers. Then for any $X \in \operatorname{Sm}(k)$ and $U \subset X$ dense open subset, $\mathcal{F}(X) \rightarrow \mathcal{F}(U)$ is injective.
(Generalizes a theorem of Voevodsky for HI Nisnevich sheaves with transfers.)
Sketch. (1) \mathcal{F} is \mathbf{P}^{1}-rigid: $\forall X \in \operatorname{Sm}(k), i_{0}^{*}=i_{\infty}^{*}: \mathcal{F}\left(\mathbf{P}_{X}^{1}\right) \rightarrow \mathcal{F}(X)$.
(2) \mathbf{P}^{1}-rigidity implies \mathbf{P}^{1}-invariance: $\mathcal{F}(X) \xrightarrow{\sim} \mathcal{F}\left(\mathbf{P}_{X}^{1}\right)$.
(3) \mathbf{P}^{1}-invariance implies global injectivity (an argument of Gabber).

Corollary 4.4. \mathcal{F} as above, X smooth projective: the pairing $Z_{0}(X) \times$ $\mathcal{F}(X) \rightarrow \mathcal{F}(k)$ factors through $C H_{0}(X) \times F(X)$.

Hope: in the end will have a full Gersten conjecture (with Cousin complexes), but not there yet. At the moment also have semi-local injectivity (for reciprocity presheaves with transfers) and other theorems of Voevodsky on comparing Zariski and Nisnevich sheafifications.

5. Functorial properties

Reciprocity stable under

- subobjects
- quotients
- direct sums (possibly infinite)

Not stable under

- infinite products
(Big) open question:
- by extensions?

Consequences: $\operatorname{PST}_{\text {rec }}=\{\mathcal{F} \in \mathrm{PST} \mid \mathcal{F}$ has reciprocity $\}$ cocomplete abelian subcategory of PST; don't know if it is thick.

$$
\mathrm{HI} \subset \mathrm{PST}_{\mathrm{rec}} \subset \mathrm{PST}
$$

Voevodsky: the inclusion $\mathrm{HI} \subset$ PST has the left adjoint $\mathcal{F} \mapsto h_{0}(\mathcal{F})$. Also true (but less well-known): this inclusion has a right adjoint.

Proposition 5.1. The inclusion $\mathrm{PST}_{\mathrm{rec}} \subset \mathrm{PST}$ has a right adjoint, but presumably no left adjoint [because $\mathrm{PST}_{\text {rec }}$ not complete].

Definition 5.2. $\mathcal{G} \in \mathrm{PST}$ is finitely generated if quotient of a finite direct sum of representable presheaves (equivalently: of one).
 \mathcal{G} is finitely generated, but not in general.
(Simple example: $\mathcal{G}=\mathbf{Z}^{(\mathbf{N})}, \mathcal{F}=\mathbf{G}_{a} \Rightarrow \underline{\operatorname{Hom}}(\mathcal{G}, \mathcal{F})=\mathbf{G}_{a}^{\mathbf{N}}$ which does not have reciprocity.)

6. Towards "GENERALIZED Jacobians"

X / S relative curve with good compactification $\bar{X} / S, Y$ effective divisor with support $\bar{X}-X$.

Definition 6.1. $\mathcal{F} \in \mathrm{PST}$:

$$
\mathcal{F}_{0}^{Y}(X)=\{a \in \mathcal{F}(X) \mid a \text { has modulus } Y\}
$$

Theorem 6.2. $\mathcal{F} \mapsto \mathcal{F}_{0}^{Y}(X)$ is corepresented by a quotient $\mathbf{Z}_{\mathrm{tr}}^{0}(X / S, Y)$ of $\mathbf{Z}_{\mathrm{tr}}(X)$.
(Proof not difficult.)

Take $S=$ Spec k. First guess: $\mathbf{Z}_{\mathrm{tr}}(X / k, Y)=\operatorname{Pic}(\bar{X} \times-, Y \times-)$. Is it true?
(1) $U \mapsto \operatorname{Pic}(\bar{X} \times U, Y \times U)$ defines $\mathcal{F} \in \operatorname{PST}$ (not quite immediate).
(2) By Yoneda, class of diagonal $\left[\Delta_{X}\right] \in \operatorname{Pic}(\bar{X} \times X, Y \times X)=\mathcal{F}(X)$ yields epimorphism $\mathrm{Z}_{\mathrm{tr}}(X) \rightarrow \mathcal{F}$.
(3) This factors through $\mathbf{Z}_{\mathrm{tr}}^{0}(X / k, Y) \rightarrow \mathcal{F}$.
(4) BUT not iso: kernel generated by all $G(\bar{X} \times U, Y \times U)(G(\bar{X}, Y)$ not sufficient).
Yields stronger notion of reciprocity:

Definition 6.3 (First form). X / S relative curve with good compactification $\bar{X} / S, Y$ effective divisor with support $\bar{X}-X, \mathcal{F} \in \mathrm{PST}: a \in \mathcal{F}(X)$ has universal modulus Y if for any $f: S^{\prime} \rightarrow S, f_{X}^{*} a$ has modulus $f_{X}^{*} Y$ $\left(f_{X}: X \times_{S} S^{\prime} \rightarrow X\right)$.

$$
\mathcal{F}_{1}^{Y}(X):=\{a \in \mathcal{F}(X) \mid a \text { has universal modulus } Y\}
$$

Theorem 6.4. $F \quad \mapsto \quad F_{1}^{Y}(X)$ is corepresentable by a quotient $\mathbf{Z}_{\mathrm{tr}}^{1}(X / S, Y)$ of $\mathbf{Z}_{\mathrm{tr}}^{0}(X / S, Y)$.
Case $X=$ Spec k : get exactly $\mathbf{Z}_{\mathrm{tr}}^{1}(X / k, Y) \xrightarrow{\sim} \operatorname{Pic}(\bar{X} \times-, Y \times-)$.
Moreover: $\operatorname{Pic}(\bar{X} \times-, Y \times-) \in \operatorname{PST}_{\text {rec }}$ (proof to be fu!lly checked).

How about higher dimensions?
Definition 6.5. A modulus pair is a pair $(\bar{X}, Y), \bar{X}$ normal proper, $Y \subset$ \bar{X} effective Cartier divisor such that $X=\bar{X}-Y$ is affine and smooth over k.

Define universal modulus Y (second form) for $a \in \mathcal{F}(X)$ by using relative curves in $\bar{X} \times S, S$ variable. This notion is probably corepresentable by a quotient $\mathbf{Z}_{\mathrm{tr}}(X, Y)$ of $\mathbf{Z}_{\mathrm{tr}}(X)$.

Guess: $\mathrm{Z}_{\mathrm{tr}}(X, Y)(U)=C H^{d}(\bar{X} \times U, Y \times U), d=\operatorname{dim} X$ (Kerz-Saito Chow group with modulus)...

7. Towards tensor products

Ivorra-Rülling idea:

Definition 7.1. $\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}, \mathcal{G} \in \operatorname{PST}$. An element $\varphi \in \operatorname{PST}\left(\mathcal{F}_{1} \otimes \cdots \otimes\right.$ $\left.\mathcal{F}_{n}, \mathcal{G}\right)$ is continuous if for any relative curve X / S with good compactification \bar{X} / S and any effective divisor Y with support $\bar{X}-X$,

$$
\varphi\left(\mathcal{F}_{1}^{Y}(X) \otimes \cdots \otimes \mathcal{F}_{n}^{Y}(X)\right) \subseteq \mathcal{G}^{Y}(X)
$$

($n=1$: automatic.)
Defines subgroup $\operatorname{PST}^{\text {cont }}\left(\mathcal{F}_{1} \otimes \cdots \otimes \mathcal{F}_{n}, \mathcal{G}\right) \subseteq \operatorname{PST}\left(\mathcal{F}_{1} \otimes \cdots \otimes \mathcal{F}_{n}, \mathcal{G}\right)$.
Theorem 7.2. $\mathcal{F}_{1}, \ldots, \mathcal{F}_{n} \in \mathrm{PST}_{\text {rec }}$: the functor

$$
\mathcal{G} \mapsto \operatorname{PST}^{\text {cont }}\left(\mathcal{F}_{1} \otimes \cdots \otimes \mathcal{F}_{n}, \mathcal{G}\right)
$$

is corepresentable by $T\left(\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right) \in \mathrm{PST}$.
In Ivorra-Rülling setting: $T\left(\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right) \in \mathrm{PST}_{\text {rec }}$. Here, not completely clear (to be continued).

8. What are we after?

Ultimate objective: get a "reciprocity" version of $D M$.
Several problems:

- PST $_{\text {rec }}$ perhaps not thick in PST.
- Presumably no left adjoint to the inclusion.
- Tensor structure not clear (guess: OK when restricted to finitely generated $\left.\mathcal{F} \in \mathrm{PST}_{\text {rec }}\right)$.

In Voevodsky's setting: "small" category $D M_{\mathrm{gm}}^{\mathrm{eff}}$ of geometric motives, "big" category $D M^{\text {eff }}$ of motivic complexes + "Yoneda functor"

$$
D M_{\mathrm{gm}}^{\mathrm{eff}} \rightarrow D M^{\mathrm{eff}}
$$

Here: seem to go towards a geometric category and a category of complexes of sheaves, but their functoriality is not clear.

