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What is K2?



First answer: Tate (1970es) for K2/n:

K2/n = (Gm ⊗Gm)/n + transfers + projection formula.

How about K2 itself?



Two answers: Suslin, Kato (1980es).

Suslin:

K2 = Gm⊗Gm+ transfers + projection formula + homotopy invariance.

−→ Suslin-Voevodsky motivic cohomology, Voevodsky’s homotopy invariant
motives.

Kato:

K2 = Gm ⊗Gm + transfers + projection formula + Weil reciprocity.

−→ reciprocity sheaves (so far).



1. Rosenlicht-Serre theory (1959)

k = k̄. Two main results:

1.1. Reciprocity property. G/k connected commutative algebraic
group.

Theorem 1.1.C/k smooth projective curve, U ⊂ C affine open subset,
f : U → G k-morphism; ∃ effective divisor m with support C − U such
that

f (div(g)) = 0 if g ∈ k(C)∗, g ≡ 1 (mod m).

We say that f affords the modulus m.

Here, extend f to homomorphism Z0(U) → G(k) by linearity; note that
hypothesis on g ⇒ support of div(g) ⊂ U .



Equivalent version. K = k(C): ∃ local symbols

∂x : G(K)×K∗→ G(k) (x ∈ C)

such that

• ∂x(a, g) = vx(g)ā if a ∈ G(OC,x), ā = image of a in G(k);
• ∀a ∈ G(K), ∀g ∈ K∗,

(1)
∑
x∈C

∂x(a, g) = 0

(Weil reciprocity).



1.2. Representability.
Theorem 1.2. C,U as above, m effective divisor with support C − U .
Fix u0 ∈ U . The functor

G 7→ {f : U → G | f (u0) = 0 and f affords modulus m}

from commutative algebraic groups to abelian groups is corepresentable
by the generalized Jacobian J(C,m).

m reduced: get connected component of relative Picard group

J(C,m) = Pic0(C,C − U).

In general, extension of this by unipotent group.



2. Somekawa K-groups (1990)

k any field, G1, . . . , Gn semi-abelian varieties.

Definition 2.1 (K. Kato). K(k,G1, . . . , Gn) abelian group defined by
generators and relations:

Generators: {g1, . . . , gn}E/k, [E : k] <∞, gi ∈ Gi(E).
Relations:
(1) Multilinearity.
(2) Projection formula (for norms on the Gi).
(3) Weil reciprocity in the style of (1).

Theorem 2.2 (Kato, Somekawa).K(k,Gm, . . . ,Gm) ' KM
n (k).

Other formulas of Somekawa: k = k̄,

K(k, J,Gm) = V (C) (Bloch’s group) if J = J(C).

K(k, J1, J2) = Albanese kernel of C1 × C2 if Ji = J(Ci).



Theorem 2.3 (K.-Yamazaki, 2011). k perfect, F1, . . . ,Fn homotopy in-
variant Nisnevich sheaves with transfers: can generalize Somekawa’s
K-groups to K(k,F1, . . . ,Fn) and

K(k,F1, . . . ,Fn) ' Hom
DM eff

− (k)
(Z,F1 ⊗ · · · ⊗ Fn[0]).



3. Beyond homotopy invariance

Can one define Somekawa K-groups for more general functors than HI
sheaves, e.g. unipotent groups?
I tried in 1991 and failed. Used pre-Voevodsky set-up of “Mackey func-
tors with reciprocity” (modelled on Rosenlicht-Serre). Guessed “empirical
formulas”

K(k,Ga,Gm . . . ,Gm) ' Ωn
k/Z(2)

K(k,Ga,Ga, . . . ) = 0(3)

K(k,Ga, A, . . . ) = 0 (A abelian variety).(4)



Taken up by Ivorra-Rülling (2012) in a framework of “reciprocity functors”:
k perfect field,

• Category of models: C = {regular curves over function fields over k}.
•Reciprocity functors: presheaves with transfers restricted to C, with

reciprocity condition à la Rosenlicht-Serre.

Their main result: F1, . . . ,Fn reciprocity functors 7→ new reciprocity func-
tor T (F1, . . . ,Fn) (a kind of tensor product).

Definition 3.1. E function field over k: K(E,F1, . . . ,Fn) =
T (F1, . . . ,Fn)(E).

• Fi ∈ HI: recover Somekawa K-group.
• They prove (2) and (3) above.

Problem: their tensor product T is not a priori associative.



4. Reciprocity sheaves (with S. Saito and T. Yamazaki)

In exploratory mode.
k perfect field.

• Category of models: Sm(k) (smooth separated k-schemes of finite type).
•Reciprocity sheaves: presheaves with transfers, with reciprocity condi-

tion à la Rosenlicht-Serre.

Makes sense more generally for a pretheory :



Definition 4.1. a) A pretheory F has reciprocity if, for any relative curve
X/S with good compactification X̄/S and any a ∈ F(X), there exists an
effective divisor Y with support X̄ −X such that

(div(g), a) = 0 if g ∈ G(X̄, Y ) :

• (, ) : c(X/S)×F(X)→ F(S) pairing given by the pretheory structure
(c(X/S): relative cycles)
•G(X̄, Y ) ⊂ k(X)∗ subgroup defined by Suslin-Voevodsky.

We say that Y is a modulus for a.
b) A presheaf with transfers has reciprocity if the associated pretheory has
reciprocity.



Proposition 4.2. a) A Nisnevich sheaf with transfers is homotopy in-
variant if and only if it has reciprocity “with reduced moduli” (better:
“with uniformly bounded moduli”).
b) Presheaves with transfers defined by connected commutative algebraic
groups have reciprocity.



Theorem 4.3 (Global injectivity). F reciprocity Nisnevich sheaf with
transfers. Then for any X ∈ Sm(k) and U ⊂ X dense open subset,
F(X)→ F(U) is injective.

(Generalizes a theorem of Voevodsky for HI Nisnevich sheaves with trans-
fers.)

Sketch. (1)F is P1-rigid : ∀X ∈ Sm(k), i∗0 = i∗∞ : F(P1
X)→ F(X).

(2) P1-rigidity implies P1-invariance: F(X)
∼−→ F(P1

X).

(3) P1-invariance implies global injectivity (an argument of Gabber).
�

Corollary 4.4.F as above, X smooth projective: the pairing Z0(X)×
F(X)→ F(k) factors through CH0(X)× F (X).



Hope: in the end will have a full Gersten conjecture (with Cousin com-
plexes), but not there yet. At the moment also have semi-local injectivity
(for reciprocity presheaves with transfers) and other theorems of Voevodsky
on comparing Zariski and Nisnevich sheafifications.



5. Functorial properties

Reciprocity stable under

• subobjects
• quotients
• direct sums (possibly infinite)

Not stable under

• infinite products

(Big) open question:

• by extensions?



Consequences: PSTrec = {F ∈ PST | F has reciprocity} cocomplete
abelian subcategory of PST; don’t know if it is thick.

HI ⊂ PSTrec ⊂ PST

Voevodsky: the inclusion HI ⊂ PST has the left adjoint F 7→ h0(F).
Also true (but less well-known): this inclusion has a right adjoint.

Proposition 5.1. The inclusion PSTrec ⊂ PST has a right adjoint, but
presumably no left adjoint [because PSTrec not complete].



Definition 5.2. G ∈ PST is finitely generated if quotient of a finite direct
sum of representable presheaves (equivalently: of one).

Proposition 5.3.F ∈ PSTrec, G ∈ PST. Then Hom(G,F) ∈ PSTrec if
G is finitely generated, but not in general.

(Simple example: G = Z(N), F = Ga ⇒ Hom(G,F) = GN
a which does

not have reciprocity.)



6. Towards “generalized Jacobians”

X/S relative curve with good compactification X̄/S, Y effective divisor
with support X̄ −X .

Definition 6.1.F ∈ PST:

FY
0 (X) = {a ∈ F(X) | a has modulus Y }.

Theorem 6.2.F 7→ FY
0 (X) is corepresented by a quotient Z0

tr(X/S, Y )
of Ztr(X).

(Proof not difficult.)



Take S = Spec k. First guess: Ztr(X/k, Y ) = Pic(X̄ × −, Y × −). Is it
true?

(1) U 7→ Pic(X̄ × U, Y × U) defines F ∈ PST (not quite immediate).
(2) By Yoneda, class of diagonal [∆X ] ∈ Pic(X̄ × X, Y × X) = F(X)

yields epimorphism Ztr(X)→→ F .
(3) This factors through Z0

tr(X/k, Y )→→ F .
(4) BUT not iso: kernel generated by all G(X̄ × U, Y × U) (G(X̄, Y ) not

sufficient).

Yields stronger notion of reciprocity:



Definition 6.3 (First form). X/S relative curve with good compactifica-
tion X̄/S, Y effective divisor with support X̄ −X , F ∈ PST: a ∈ F(X)
has universal modulus Y if for any f : S′ → S, f∗Xa has modulus f∗XY
(fX : X ×S S′→ X).

FY
1 (X) := {a ∈ F(X) | a has universal modulus Y }.

Theorem 6.4. F 7→ FY
1 (X) is corepresentable by a quotient

Z1
tr(X/S, Y ) of Z0

tr(X/S, Y ).

Case X = Spec k: get exactly Z1
tr(X/k, Y )

∼−→ Pic(X̄ ×−, Y ×−).

Moreover: Pic(X̄ ×−, Y ×−) ∈ PSTrec (proof to be fu!lly checked).



How about higher dimensions?

Definition 6.5. A modulus pair is a pair (X̄, Y ), X̄ normal proper, Y ⊂
X̄ effective Cartier divisor such that X = X̄ − Y is affine and smooth over
k.

Define universal modulus Y (second form) for a ∈ F(X) by using relative
curves in X̄ × S, S variable. This notion is probably corepresentable by a
quotient Ztr(X, Y ) of Ztr(X).

Guess: Ztr(X, Y )(U) = CHd(X̄ × U, Y × U), d = dimX (Kerz-Saito
Chow group with modulus). . .



7. Towards tensor products

Ivorra-Rülling idea:

Definition 7.1.F1, . . . ,Fn,G ∈ PST. An element ϕ ∈ PST(F1 ⊗ · · · ⊗
Fn,G) is continuous if for any relative curve X/S with good compactifica-
tion X̄/S and any effective divisor Y with support X̄ −X ,

ϕ(FY
1 (X)⊗ · · · ⊗ FY

n (X)) ⊆ GY (X).

(n = 1: automatic.)
Defines subgroup PSTcont(F1 ⊗ · · · ⊗ Fn,G) ⊆ PST(F1 ⊗ · · · ⊗ Fn,G).

Theorem 7.2.F1, . . . ,Fn ∈ PSTrec: the functor

G 7→ PSTcont(F1 ⊗ · · · ⊗ Fn,G)

is corepresentable by T (F1, . . . ,Fn) ∈ PST.

In Ivorra-Rülling setting: T (F1, . . . ,Fn) ∈ PSTrec. Here, not completely
clear (to be continued).



8. What are we after?

Ultimate objective: get a “reciprocity” version of DM .
Several problems:

• PSTrec perhaps not thick in PST.
• Presumably no left adjoint to the inclusion.
• Tensor structure not clear (guess: OK when restricted to finitely gen-

erated F ∈ PSTrec).



In Voevodsky’s setting: “small” category DM eff
gm of geometric motives, “big”

category DM eff of motivic complexes + “Yoneda functor”

DM eff
gm→ DM eff

Here: seem to go towards a geometric category and a category of complexes
of sheaves, but their functoriality is not clear.
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