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Abstract. We present natural and general ways of building Lie groupoids, by using the
classical procedures of blow-ups and of deformations to the normal cone. Our constructions
are seen to recover many known ones involved in index theory. The deformation and blow-up

groupoids obtained give rise to several extensions of C∗-algebras and to full index problems.
We compute the corresponding K-theory maps. Finally, as an application, we use the blow-
up of a manifold sitting in a transverse way in the space of objects of a Lie groupoid to
construct a calculus which is quite similar to the Boutet de Monvel calculus for manifolds
with boundary.
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1. Introduction

Let G ⇒ M be a Lie groupoid. The Lie groupoid G comes with its natural
pseudodifferential calculus. For example:
• if the groupoid G is just the pair groupoid M ×M , the associated calculus

is the ordinary (pseudo)differential calculus on M ;
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2 Claire Debord and Georges Skandalis

• if the groupoid G is a family groupoid M ×BM associated with a fibration
p : M → B, the associated (pseudo)differential operators are families of
operators acting on the fibers of p (those of [3]);

• if the groupoid G is the holonomy groupoid of a foliation, the associ-
ated (pseudo)differential operators are longitudinal operators as defined
by Connes in [7];

• if the groupoid G is the monodromy groupoid, i.e., the groupoid of ho-
motopy classes (with fixed endpoints) of paths in a (compact) manifold
M , the associated (pseudo)differential operators are the π1(M)-invariant
operators on the universal cover of M ...

The groupoid G defines therefore a class of partial differential equations.
Our study will focus here on the corresponding index problems on M . The

index takes values naturally in the K-theory of the C∗-algebra of G.
Let then V be a submanifold of M . We will consider V as bringing a

singularity into the problem: it forces operators of G to “slow down” near V ,
at least in the normal directions. Inside V , they should only propagate along
a sub-Lie-groupoid Γ ⇒ V of G. One can just take Γ = V (no action) in order
to encode that the propagation slows down in all directions near V .

In these cases, this behavior is nicely encoded by a groupoid SBlupr,s(G,Γ)
obtained by using a blow-up construction of the inclusion Γ → G.

The blow-up construction (Blup) is a well known construction in algebraic
geometry as well as in differential geometry. It is closely related to the de-
formation to the normal cone which has been used in quite a few cases in
connection with non-commutative geometry.

Let X be a submanifold of a manifold Y . Denote by NY
X the normal bundle.

• The deformation to the normal cone of X in Y is a smooth manifold
DNC(Y,X) obtained by naturally gluing NY

X × {0} with Y × R∗.
• The blow-up of X in Y is a smooth manifold Blup(Y,X), where X is

inflated to the projective space PNY
X . It is obtained by gluing Y \X with

PNY
X in a natural way. We will mainly consider its variant the spherical

blow-up SBlup(Y,X) (which is a manifold with boundary), in which the
sphere bundle SNY

X replaces the projective bundle PNY
X .

The functoriality of the DNC and Blup constructions allows to naturally
endow DNC(G,Γ) and a large open subset SBlupr,s(G,Γ) of SBlup(G,Γ) with
a Lie groupoid structure for any Lie subgroupoid Γ of a Lie groupoid G. This
turns out to be very useful in order to analyze index type problems in many
geometric situations.

The first use of deformation groupoids in connection with index theory
appeared in [9]. Connes showed there that the analytic index on a compact
manifold M can be described using a groupoid, called the “tangent groupoid”.
This groupoid was obtained as a deformation to the normal cone of the diagonal
inclusion of M into the pair groupoid M ×M .

Since Connes’ construction, deformation groupoids were used by many au-
thors in various contexts.
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Blow-up constructions 3

• This idea of Connes was extended in [21] by considering the same construc-
tion of a deformation to the normal cone for smooth immersions which are
groupoid morphisms. The groupoid obtained was used in order to define
the wrong way functoriality for immersions of foliations [21, Section 3]. An
analogous construction for submersions of foliations was also given in [21,
Remark 3.19].

• In [32, 35] Monthubert and Pierrot, and Nistor, Weinstein and Xu con-
sidered the deformation to the normal cone of the inclusion G(0) → G of
the space of units of a smooth groupoid G. This generalization of Connes’
tangent groupoid was called the adiabatic groupoid of G and denoted by
Gad. It was shown that this adiabatic groupoid still encodes the analytic
index associated with G.

• Many other important articles use this idea of deformation groupoids. We
will briefly discuss some of them in the sequel of the paper.

Let us come back to our discussion above. By construction, the propagation
in the blow-up groupoid SBlupr,s(G,Γ)) is tangent to V : its orbits are either

contained in the open subset M̊ = M \ V or in its complement—the manifold
SNM

V . In other words, the groupoid SBlupr,s(G,Γ) is the union of two Lie
subgroupoids:
• an open subgroupoid, which is the restrictionGM̊

M̊
⇒ M̊ ofG to M̊ = M\V ;

• a closed subgroupoid, its restriction to the boundary which is a Lie groupoid
SNG

Γ ⇒ SNM
V .

This gives rise to a C∗-algebraic exact sequence

0 −→ C∗(GM̊
M̊
) −→ C∗(SBlupr,s(G,Γ)) −→ C∗(SNG

Γ ) −→ 0. (E∂
SBlup)

In order to study the index theory of C∗(SBlupr,s(G,Γ)), we will study this
exact sequence and, in particular, its connecting map—more precisely the class

of this exact sequence in the Kasparov group KK1(C∗(SNG
Γ ), C∗(GM̊

M̊
)).

There is a very natural parallel of this exact sequence with a corresponding
exact sequence for the deformation to the normal cone groupoid, which reads

0 −→ C∗(G× R∗
+) −→ C∗(DNC+(G,Γ)) −→ C∗(NG

Γ ) −→ 0. (E∂
DNC+

)

The sequence (E∂
DNC+

) is somewhat easier to compute than (E∂
SBlup) using [14].

In particular, if Γ = V is just a space, the class of the exact sequence (E∂
DNC+

)

is the composition of a wrong way functoriality map with the (analytic) index
map of the groupoid G (cp. Proposition 4.14 (iv)).

It turns out that there is a natural Connes–Thom map (in the sense of [8])
comparing these exact sequences. Even better, if the original propagation along
G is nowhere tangent to V (we say that V is AG-small), these Connes–Thom
maps are isomorphisms (KK1-equivalences, cp. Theorem 4.9). We therefore
naturally deduce the computation of the class of (E∂

SBlup) when Γ = V and V

is AG-small (cp. Proposition 4.15)
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We will, in addition, address another index question on the new groupoid
SBlupr,s(G,Γ). This one concerns full ellipticity, i.e., (pseudo)differential op-
erators on the groupoid SBlupr,s(G,Γ) which are invertible modulo C∗(GM̊

M̊
).

This question naturally leads us to the study of the exact sequence:

0 −→ C∗(GM̊
M̊
) −→ Ψ∗(SBlupr,s(G,Γ))

σfull−−−→ ΣSBlup(G,Γ) −→ 0, (E ĩnd
SBlup)

where Ψ∗(SBlupr,s(G,Γ)) is the C∗-algebra of pseudodifferential operators of
order ≤ 0 on the groupoid SBlupr,s(G,Γ) and ΣSBlup(G,Γ) is the quotient
Ψ∗(SBlupr,s(G,Γ))/C∗(GM̊

M̊
).

The full symbol algebra ΣSBlup(G,Γ) is naturally a fibered product (see [14,
Section 4]):

ΣSBlup(G,Γ) = C(SA∗SBlupr,s(G,Γ))×C(SA∗SNG
Γ ) Ψ

∗(SNG
Γ ).

The first component corresponds to the principal symbol of an order 0 pseu-
dodifferential operator; the second one is the restriction to the boundary.

We wish to compute the connecting map of the exact sequence (E ĩnd
SBlup),

and use again its parallel (DNC) exact sequence:

0 −→ C∗(G×R∗
+) −→ Ψ∗(DNC+(G,Γ))

σfull−−−→ ΣDNC+(G,Γ) −→ 0, (E ĩnd
DNC+

)

which we directly relate (using [14]) to the analytic index map of the groupoid
G when Γ = V .

As for the case discussed above, the sequences (E ĩnd
SBlup) and (E ĩnd

DNC+
) are

related through natural Connes–Thom maps. When V is AG-small, in fact the

maps relating sequences (E ĩnd
SBlup) and (E ĩnd

DNC+
) are KK1-equivalences.

Finally, as an application, we consider the particular case when Γ = V is
a submanifold of M transverse to the action of G. We construct a calculus
which resembles the Boutet de Monvel calculus for manifolds with boundary.
We are planning to investigate the relations between these two calculi.

The paper is organized as follows:
• In Section 2 we review two geometric constructions: deformation to the

normal cone and blow-up, and their functorial properties.
• In Section 3, using this functoriality, we study deformation to the normal

cone and blow-up in the Lie groupoid context. We outline examples which
recover groupoids constructed previously by several authors.

• In Section 4, applying the results obtained in [14], we compute the con-
necting maps and index maps of the groupoids constructed in Section 4.

• In Section 5 we describe the above mentioned Boutet de Monvel type cal-
culus.

• In Appendix A we recall a few facts on the notion of VB groupoids, and
study the particular case of a VB groupoid over a manifold.

• The present paper is the second part of the article that appeared on the
arXiv (arXiv:1705.09588). Since this paper was quite long and addressed
a large variety of situations, we decided to split it into two pieces hoping
to make it easier to read. The first part is [14].
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Blow-up constructions 5

Our constructions involved a large amount of notation, that we tried to
choose as coherent as possible. We found it, however, helpful to list several
items of the notation introduced in [14] and the one introduced here in an
index at the end of the paper.

2. Classical geometric constructions: normal bundle,
deformation to the normal cone, blow-up and functoriality

As mentioned in the introduction, index problems in a large number of geo-
metrical situations lead to consider two geometric constructions of groupoids:
deformation to the normal cone and blow-up. These two constructions are
classical in algebraic geometry. In this section we recall these constructions
and we emphasize their properties that are relevant for our purposes.

Throughout this section, Y will be a smooth manifold and X a locally
closed submanifold (the same constructions hold if we are given an injective
immersion X → Y ). Let us call such a pair (Y,X) a manifold pair.

Given two manifold pairs (Y,X) and (Y ′, X ′), a morphism f from (Y,X)
to (Y ′, X ′) is a smooth map f : Y → Y ′ which restricts to a smooth map
fX : X → X ′. Thus we have a commutative diagram of smooth maps

X
� � //

fX

��

Y

f

��

X ′ �
�

// Y ′,

where the horizontal arrows are inclusions of submanifolds.

2.1. Normal bundle. We begin by a few remarks on the normal bundle con-
struction.

We denote by NY
X =

⋃
x∈X TxY/TxX the (total space) of the normal bundle

of X in Y .

Functoriality. The differential df : TY → TY ′ of a morphism f of manifold
pairs

X
� � //

fX
��

Y

f

��

X ′ �
�

// Y ′

maps TX to TX ′. Thus it induces a natural smooth map N(f) : NY
X → NY ′

X′

given by N(f)x ◦ px = p′f(x) ◦ dfx for all x ∈ X (where px : TxY → (NY
X )x and

p′x : TxY
′ → (NY ′

X′ )x).

Exponential map. An exponential map (or tubular neighborhood construc-
tion) for the manifold pair (Y,X) is a diffeomorphism θ : U ′ → U from an
open neighborhood U ′ of the 0-section in NY

X to an open neighborhood U of X
which satisfies:

Münster Journal of Mathematics Vol. 14 (2021), 1–40



6 Claire Debord and Georges Skandalis

• the restriction of θ to X viewed as the 0-section in NY
X is the identity map:

θ(x, 0) = x for all x ∈ X ;

• the differential of θ is equal to the “identity on the normal direction to X”:

px ◦ dθx = qx for all x ∈ X,

where px : TxY → (NY
X )x = (TxY )/(TxX) and qx : TxN

Y
X ≃ (NY

X )x ⊕
(TxX) → (NY

X )x are the projections.
Note that one can just use such a construction locally, i.e., taking small

open subsets of X and diffeomorphisms of NY
V with small open subsets in Y .

One actually needs to use this local construction when X is just an immersed
submanifold of Y .

2.2. Deformation to the normal cone. The deformation to the normal
cone DNC(Y,X) is obtained by gluing NY

X × {0} with Y × R∗. The smooth
structure of DNC(Y,X) is described by use of any exponential map θ : U ′ → U
from an open neighborhood U ′ of the 0-section in NY

X to an open neighborhood
U ofX . The manifold structure of DNC(Y,X) is then given by the requirement
that:
(i) the inclusion Y × R∗ → DNC(Y,X) and
(ii) the map Θ: Ω′ = {((x, ξ), λ) ∈ NY

X × R; (x, λξ) ∈ U ′} → DNC(Y,X)
defined by Θ((x, ξ), 0) = ((x, ξ), 0) and Θ((x, ξ), λ) = (θ(x, λξ), λ) ∈ Y ×
R∗ if λ 6= 0

are diffeomorphisms onto open subsets of DNC(Y,X).
It is easily shown that DNC(Y,X) has indeed a smooth structure satisfying

these requirements and that this smooth structure does not depend on the
choice of θ. (See, for example, [6] for a detailed description of this structure).

In other words, DNC(Y,X) is obtained by gluing Y ×R∗ with Ω′ by means
of the diffeomorphism Θ: Ω′ ∩ (NY

X × R∗) → U × R∗.
Let us recall the following facts which are essential in our construction.

Definition 2.3 (The zooming action of R∗). The group R∗ acts on DNC(Y,X)
by λ.(w, t) = (w, λt) and λ.((x, ξ), 0) = ((x, λ−1ξ), 0) (with λ, t ∈ R∗, w ∈ Y ,
x ∈ X and ξ ∈ (NY

X )x).

Remarks 2.4. (i) The zooming action is easily seen to be free and proper
on the open subset DNC(Y,X) \ X × R. Indeed, for (x, ξ, t) ∈ Ω′ ⊂
NY

X × R, the zooming action is given by λ.(x, ξ, t) = (x, λ−1ξ, λt) under
the map Θ−1.

(ii) In the following sections we will apply this construction to Lie groupoids,
and many natural Lie groupoids are non Hausdorff manifolds. If the mani-
foldsX and Y are not assumed to be Hausdorff (but of course locally Haus-
dorff) and X ⊂ Y is locally closed, then DNC(Y,X) is also locally Haus-
dorff. The subset DNC(Y,X)\X×R is a submanifold if X ⊂ Y is closed.
In that case, the zooming action of R∗

+ restricted to DNC(Y,X) \X × R

is locally proper. By this, we mean that every point has a neighborhood

Münster Journal of Mathematics Vol. 14 (2021), 1–40



Blow-up constructions 7

invariant under the action, on which the action is proper (cp. [14, Re-
mark 2.5]).

Definition 2.5 (Functoriality). Given a morphism f of manifold pairs:

X � � //

fX

��

Y

f

��

X ′ �
�

// Y ′,

we naturally obtain a smooth map DNC(f) : DNC(Y,X) → DNC(Y ′, X ′).
This map is defined by DNC(f)(y, λ) = (f(y), λ) for y ∈ Y and λ ∈ R∗ and
DNC(f)(x, ξ, 0) = (N(f)(x, ξ), 0) for x ∈ X and ξ ∈ (NY

X )x. This map is of
course equivariant with respect to the zooming action of R∗.

Remarks 2.6. Let us make a few remarks concerning the DNC construction.
(i) The map equal to identity on X × R∗ and sending X × {0} to the zero

section of NY
X leads to an embedding of X × R into DNC(Y,X), we may

often identify X × R with its image in DNC(Y,X). As DNC(X,X) =
X × R, this corresponds to the functoriality of DNC for the diagram

X
� � //

��

X

��

X
� � // Y .

(ii) We have a natural smooth map π : DNC(Y,X) → Y × R defined by
π(y, λ) = (y, λ) (for y ∈ Y and λ ∈ R∗) and π((x, ξ), 0) = (x, 0) (for
x ∈ X ⊂ Y and ξ ∈ (NY

X )x a normal vector). This corresponds to the
functoriality of DNC for the diagram

X � � //

��

Y

��

Y � � // Y .

(iii) To see that the smooth structure on DNC(Y,X) is well defined and estab-
lish functoriality, one may also note that the following maps are smooth:
• the map π : DNC(Y,X) → Y × R defined above;
• given a smooth function f : Y → R whose restriction to X is 0, the

map Ff : DNC(Y,X) → R defined by Ff (y, λ) =
f(y)
λ

(for y ∈ Y and
λ ∈ R∗) and Ff (x, px(ξ), 0) = dfx(ξ) for x ∈ X and ξ ∈ TxY , where
px : TxY → (NY

X )x = TxY/TxX is the quotient map (note that dfx
vanishes on TxX).

These maps describe the smooth structure of DNC(Y,X). Indeed, given a
manifold Z, a map g : Z → DNC(Y,X) is smooth if and only if π◦g and the
maps Ff ◦ g are smooth. Actually, a finite number of those give rise to an
immersion DNC(Y,X) → Y ×R×Rk (at least locally, if we do not assume

Münster Journal of Mathematics Vol. 14 (2021), 1–40



8 Claire Debord and Georges Skandalis

X to be compact). This offers an alternative proof of the independence of
the smooth structure relative to the choice of the exponential map.

(iv) If Y1 is an open subset of Y2 such that X ⊂ Y1, then DNC(Y1, X) is an
open subset of DNC(Y2, X), and DNC(Y2, X) is the union of the open
subsets DNC(Y1, X) and Y2 × R∗. This reduces to the case when Y1 is a
tubular neighborhood, and therefore to the case where Y is (diffeomorphic
to) the total space of a real vector bundle over X . In that case, one gets
DNC(Y,X) = Y ×R and the zooming action of R∗ on DNC(Y,X) = Y ×R

is given by λ.((x, ξ), t) = ((x, λ−1ξ), λt) (with λ ∈ R∗, t ∈ R, x ∈ X and
ξ ∈ Yx).

(v) More generally, let X be a submanifold of Y and let E be (the total space
of) a real vector bundle over Y . Then DNC(E,X) identifies with the
total space of the pull back vector bundle π̂∗(E) over DNC(Y,X), where
π̂ is the composition of π : DNC(Y,X) → Y × R (remark (ii)) with the
projection Y ×R → Y . The zooming action of R∗ is λ.(w, ξ) = (λ.w, λ−1ξ)
for w ∈ DNC(Y,X) and ξ ∈ Eπ̂(w).

(vi) Let X1 be a (locally closed) smooth submanifold of a smooth mani-
fold Y1 and let f : Y2 → Y1 be a smooth map transverse to X1. Put
X2 = f−1(X1). Then the normal bundle NY2

X2
identifies with the pull back

of NY1

X1
by the restriction X2 → X1 of f . It follows that DNC(Y2, X2)

identifies with the fibered product DNC(Y1, X1)×Y1 Y2.
(vii)More generally, let Y, Y1, Y2 be smooth manifolds and fi : Yi → Y be

smooth maps. Assume that f1 is transverse to f2. Let X ⊂ Y and Xi ⊂ Yi

be (locally closed) smooth submanifolds. Assume that fi(Xi) ⊂ X and
that the restrictions gi : Xi → X of fi are also transverse. We thus have
a diagram

X1� _

��

g1
// X� _

��

X2� _

��

g2
oo

Y1
f1

// Y Y2.
f2

oo

Then the maps DNC(fi) : DNC(Yi, Xi)→ DNC(Y,X) are transverse and
the deformation to the normal cone of fibered products DNC(Y1 ×Y Y2,
X1 ×X X2) identifies with the fibered product DNC(Y1, X1) ×DNC(Y,X)

DNC(Y2, X2).
Note that construction (vi) is the particular case X = Y = Y1 of our

construction here.

Notation 2.7. We denote by DNC+(Y,X) the closed subset DNC+(Y,X) =
Y × R∗

+ ∪NY
X × {0} = π−1(Y × R+) of DNC(Y,X).

2.8. Blow-up constructions. The blow-up Blup(Y,X) is a smooth manifold
which is a union of Y \X with the (total space) P(NY

X ) of the projective space
of the normal bundle NY

X of X in Y . We will also use the “spherical version”
SBlup(Y,X) of Blup(Y,X) which is a manifold with boundary obtained by
gluing Y \ X with the (total space of the) sphere bundle S(NY

X ). We have

Münster Journal of Mathematics Vol. 14 (2021), 1–40



Blow-up constructions 9

an obvious smooth onto map SBlup(Y,X) → Blup(Y,X) with fibers 1 or 2
points. These spaces are of course similar and we will often give details in our
constructions to the one of them which is the most convenient for our purposes.

We may view Blup(Y,X) as the quotient space of a submanifold of the
deformation to the normal cone DNC(Y,X) under the zooming action of R∗.

Recall that the group R∗ acts on DNC(Y,X) by λ.(w, t) = (w, λt) and
λ.((x, ξ), 0) = ((x, λ−1ξ), 0) (with λ, t ∈ R∗, w ∈ Y , x ∈ X and ξ ∈ (NY

X )x).
According to Remark 2.4 (i), this action is free and (locally) proper on the
open subset DNC(Y,X) \X × R.

Definition 2.9. We put

Blup(Y,X) = (DNC(Y,X) \X × R)/R∗

and
SBlup(Y,X) = (DNC+(Y,X) \X × R+)/R

∗
+.

Remark 2.10. With the notation of Section 2.2, Blup(Y,X) is thus obtained
by gluing Y \X = ((Y \X)×R∗)/R∗ with (Ω′ \ (X ×R))/R∗, using the map
Θ which is equivariant with respect to the zooming action of R∗.

Choose a Euclidean metric on NY
X . Let S = {((x, ξ), λ) ∈ Ω′; ‖ξ‖ = 1} and

let τ be the involution of S given by ((x, ξ), λ) 7→ ((x,−ξ),−λ). The map Θ

induces a diffeomorphism of S/τ with an open neighborhood Ω̃ of P(NY
X ) in

Blup(Y,X).

Since π̂ : DNC(Y,X) → Y is invariant by the zooming action of R∗, we
obtain a natural smooth map π̃ : Blup(Y,X) → Y whose restriction to Y \X
is the identity and whose restriction to P(NY

X ) is the canonical projection
P(NY

X ) → X ⊂ Y . This map is easily seen to be proper.

Remark 2.11 (cp. Remark 2.4 (ii)). If X and Y are not assumed to be
Hausdorff, we may still form the manifold Blup(Y,X) since the action of R∗

+

on DNC(Y,X) \ (X×R) is locally proper. Also, the map Blup(Y,X) → Y ×R

is locally proper.

Remark 2.12. Note that, according to Remark 2.6 (v), DNC(Y,X) canoni-
cally identifies with the open subset Blup(Y ×R, X×{0})\Blup(Y ×{0}, X×
{0}) of Blup(Y × R, X × {0}). Thus, since the map Blup(Y × R, X × {0}) →
Y ×R is proper, one may think at Blup(Y ×R, X ×{0}) as a “local compact-
ification” of DNC(Y,X).

Example 2.13. In the case where Y is a real vector bundle overX , Blup(Y,X)
identifies noncanonically with an open submanifold of the bundle of projective
spaces P(Y × R) over X . Indeed, in that case, DNC(Y,X) = Y × R; choose a
Euclidean structure on the bundle Y . Consider the smooth involution Φ from
(Y \ X) × R onto itself, which to (x, ξ, t) associates (x, ξ

‖ξ‖2 , t) (for x ∈ X ,

ξ ∈ Yx, t ∈ R). This map transforms the zooming action of R∗ on DNC(Y,X)
into the action of R∗ by dilations on the vector bundle Y ×R over X and thus
defines a diffeomorphism of Blup(Y,X) into its image, which is the open set

Münster Journal of Mathematics Vol. 14 (2021), 1–40



10 Claire Debord and Georges Skandalis

P(Y × R) \X , where X embeds into P(Y × R) by mapping x ∈ X to the line
{(x, 0, t), t ∈ R}.

Functoriality.

Definition 2.14 (Functoriality). Let f be a morphism of manifold pairs:

X � � //

fX
��

Y

f

��

X ′ �
�

// Y ′.

Let Uf = DNC(Y,X)\DNC(f)−1(X ′×R) be the inverse image by DNC(f)
of the complement in DNC(Y ′, X ′) of the subset X ′ × R. We thus obtain
a smooth map Blup(f) : Blupf (Y,X) → Blup(Y ′, X ′), where Blupf (Y,X) ⊂
Blup(Y,X) is the quotient of Uf by the zooming action of R∗.

In particular:
(i) If X ⊂ Y1 are (locally) closed submanifolds of a manifold Y2, then

Blup(Y1, X) is a submanifold of Blup(Y2, X).
(ii) Also, if Y1 is an open subset of Y2 such that X ⊂ Y1, then Blup(Y1, X) is

an open subset of Blup(Y2, X) and Blup(Y2, X) is the union of the open
subsets Blup(Y1, X) and Y2 \X . This allows to reduce to the case when
Y1 is a tubular neighborhood.

Fibered products. Let X1 be a (locally closed) smooth submanifold of a smooth
manifold Y1 and let f : Y2 → Y1 be a smooth map transverse to X1. Put
X2 = f−1(X1). Recall from Remark 2.6 (vi) that in this situation DNC(Y2, X2)
identifies with the fibered product DNC(Y1, X1) ×Y1 Y2. Thus Blup(Y2, X2)
identifies with the fibered product Blup(Y1, X1)×Y1 Y2.

Vector bundles over blow-ups.

Fact 2.15. Let p : E → Y be a (real) vector bundle and let F → X be
a subbundle of the restriction of E to X . Then Blup(p) : Blupp(E,F ) →

Blup(Y,X) is a vector bundle. Indeed, N(p) : NE
F → NY

X carries a natural
vector bundle structure; therefore DNC(p) : DNC(E,F ) → DNC(Y,X) is also
a vector bundle, as well as its restriction to DNC(Y,X) \ X × R. Since this
structure is invariant by the action of R∗, it passes to the quotient.

The tangent bundle of Blup(Y,X) is naturally seen to be Blupp(TY, TX).
Note also that, given vector bundles pi : Ei → Y (i = 1, 2) and subbundles

Fi → X of the restrictions of Ei to X , the blow-up construction of a linear
bundle map f : E1 → E2 such that f(F1) ⊂ F2 induces a linear bundle map
Blup(f) : Blupp1

(E1, F1) → Blupp2
(E2, F2).

3. Constructions of groupoids

We start this section with a quick reminder of some generalities on Lie
groupoids which will be useful for the sequel of this paper. Then we use the
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functoriality of the normal space, deformation to the normal cone and blow-up
constructions to apply these constructions in the groupoid setting and look at
various examples.

3.1. Generalities around transversality and Morita equivalence of

groupoids.

3.1.1. Some notation. Let G
r,s
−−−−⇒ G(0) be a groupoid with source s, range r

and space of units G(0). For any maps f : A → G(0) and g : B → G(0), define

Gf = {(a, x) ∈ A×G; r(x) = f(a)}, Gg = {(x, b) ∈ G×B; s(x) = g(b)}

and
Gf

g = {(a, x, b) ∈ A×G×B; r(x) = f(a), s(x) = g(b)}.

In particular, for A,B ⊂ G(0), we put GA = {x ∈ G; r(x) ∈ A} and GA =
{x ∈ G; s(x) ∈ A}; we also put GB

A = GA ∩GB .

3.1.2. Transversality. Let us recall the following definition (see, e.g., [42] for
details):

Definition 3.2. Let G
r,s
−−−−⇒ M be a Lie groupoid with set of objects G(0) = M

and Lie algebroid AG with anchor map ♮. Let V be a manifold. A smooth
map f : V → M is said to be transverse to (the action of the groupoid) G if
for every x ∈ V , dfx(TxV ) + ♮f(x)Af(x)G = Tf(x)M .

An equivalent condition is that the map (γ, y) 7→ r(γ) defined on the fibered
product Gf = G ×

s,f
V is a submersion from Gf to M .

A submanifold V of M is transverse to G if the inclusion V → M is
transverse to G—equivalently, if for every x ∈ V , the composition qx =
px ◦ ♮x : AxG → (NM

V )x = TxM/TxV is onto.

Remark 3.3. Let V be a (locally) closed submanifold of M transverse to a

groupoid G
r,s
−−−−⇒ M . Denote by NM

V the (total space) of the normal bundle of
V in M . Upon arguing locally, we can assume that V is compact.

By the transversality assumption, the anchor ♮ : AG|V → TM|V induces a

surjective bundle morphism AG|V → NM
V . Choose then

(i) an exponential map θ : U ′ → U which is a diffeomorphism from a neigh-
borhood U ′ in AG → G of M onto a neighborhood U of M = G(0) in G
such that s ◦ θ(x, ξ) = x for all x ∈ M and ξ ∈ (AG)x,

(ii) a subbundle F ⊂ AG|V of the restriction AG|V such that F → NM
V is an

isomorphism.
We thus obtain a submanifold W = θ(F ∩ U ′) ⊂ G such that r : W → M is
étale at every point of V and s is a submersion from W onto V . Replacing
U ′ by a an open subset, we may assume that r : W → M is a diffeomorphism
onto a tubular neighborhood of V in M , diffeomorphic to NM

V . The map

W×V GV
V ×V W → G defined by (γ1, γ2, γ3) 7→ γ1◦γ2◦γ

−1
3 is a diffeomorphism

and a groupoid isomorphism from the pull back groupoid (see next section)

(GV
V )

s
s = W ×V GV

V ×V W onto the open subgroupoid G
r(W )
r(W ) of G.
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12 Claire Debord and Georges Skandalis

3.3.1. Pull back. If f : V → M is transverse to a Lie groupoid G
r,s
−−−−⇒ M , then

Gf
f is a submanifold of V ×G× V naturally equipped with a structure of Lie

groupoid Gf
f ⇒ V . It is called the pull back groupoid.

If fi : Vi → M are transverse to G (for i = 1, 2), then we obtain a Lie

groupoid Gf1⊔f2
f1⊔f2

⇒ V1⊔V2. The linking manifold Gf1
f2

is a clopen submanifold.

We denote by C∗(Gf1
f2
) the closure in C∗(Gf1⊔f2

f1⊔f2
) of the space of functions (half

densities) with support in Gf1
f2
; it is a C∗(Gf1

f1
)− C∗(Gf2

f2
) bimodule.

Fact 3.4. The bimodule C∗(Gf1
f2
) is full if all the G-orbits meeting f2(V2) meet

also f1(V1).

3.4.1. Morita equivalence. Two Lie groupoids G1

r,s
−−−−⇒ M1 and G2

r,s
−−−−⇒ M2

are Morita equivalent if there exists a groupoid G
r,s
−−−−⇒ M and smooth maps

fi : Mi → M transverse to G such that the pull back groupoids Gfi
fi

identify to

Gi, and fi(Mi) meets all the orbits of G.
Equivalently, a Morita equivalence is given by a linking manifold X with

extra data: surjective smooth submersions r : X → G
(0)
1 and s : X → G

(0)
2

and compositions G1 ×s,r X → X , X ×s,r G2 → X , X ×r,r X → G2 and
X ×s,s X → G1 with natural associativity conditions (see [33] for details). In
the above situation, X is the manifold Gf1

f2
and the extra data are the range

and source maps and the composition rules of the groupoid Gf1⊔f2
f1⊔f2

⇒ M1⊔M2

(see [33]).

If the map r : X → G
(0)
1 is surjective but s : X → G

(0)
2 is not necessarily

surjective, then G1 is Morita equivalent to the restriction of G2 to the open
saturated subspace s(X). We say that G1 is sub-Morita equivalent to G2.

3.4.2. Remarks on possible singularities.

About corners. We wish to emphasize a remark already made in [14]:
Many manifolds and groupoids that occur in our constructions have bound-

aries or corners. In fact, all the groupoids we consider sit naturally inside Lie
groupoids without boundaries as restrictions to closed saturated subsets. This

means that we consider subgroupoids GV
V = GV of a Lie groupoid G

r,s
−−−−⇒ G(0),

where V is a closed subset of G(0). Such groupoids have a natural algebroid,
adiabatic deformation, pseudodifferential calculus, etc. that are restrictions to
V and GV of the corresponding objects on G(0) and G. We chose to give our
definitions and constructions for Lie groupoids for the clarity of the exposition.
The case of a longitudinally smooth groupoid over a manifold with corners is
a straight-forward generalization using a convenient restriction.

About non-Haudorffness. Our groupoids need not be Hausdorff. Precisely,
for G ⇒ G(0), the manifold G may be a non-Haudorff manifold, but G(0) will
always be assumed to be Hausdorff. Of course a non-Hausdorff manifold is
locally Hausdorff.
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3.5. Normal groupoids, deformation groupoids and blow-up

groupoids.

3.5.1. Definitions. Let Γ be a closed Lie subgroupoid of a Lie groupoid G.
Using functoriality (cp. Definitions 2.5, 2.14) of the normal bundle, the DNC
and the Blup constructions, we may construct a normal, a deformation and a
blow-up groupoid.
(i) The normal bundle NG

Γ carries a Lie groupoid structure with objects
NG(0)

Γ(0) : its source and range maps are N(s) and N(r); the space of com-
posable arrows identifies with N(G(2),Γ(2)) and its product with N(m),
where m denotes both products G(2) → G and Γ(2) → Γ. We denote by
NG

Γ ⇒ NG(0)

Γ(0) this normal groupoid. Note that the source and range maps
of NG

Γ are not equal as soon as the source and range maps of G restricted
to Γ are different (it is not the vector bundle viewed as a groupoid). This
is a typical example of a VB groupoid in the sense of Pradines ([37, 23]
see also the appendix, Definition A.2).

(ii) The manifold DNC(G,Γ) is naturally a Lie groupoid (unlike what was
asserted in [21, Remark 3.19]). Its unit space is DNC(G(0),Γ(0)); its source
and range maps are DNC(s) and DNC(r); the space of composable arrows
identifies with DNC(G(2),Γ(2)) and its product with DNC(m).

(iii) The subset D̃NC(G,Γ) = Ur ∩ Us of DNC(G,Γ) consisting of elements
whose image by DNC(r) and DNC(s) is not in G(0)

1 × R is an open sub-
groupoid of DNC(G,Γ): it is the restriction of DNC(G,Γ) to the open
subspace DNC(G(0), G(0)

1 ) \G(0)
1 × R.

(iv) The group R∗ acts on DNC(G,Γ) via the zooming action by groupoid mor-

phisms. Its action on D̃NC(G,Γ) is (locally) proper. Therefore the open

subset Blupr,s(G,Γ) = D̃NC(G,Γ)/R∗ of Blup(G,Γ) inherits a groupoid
structure as well: its space of units is Blup(G(0)

2 , G(0)
1 ); its source and

range maps are Blup(s) and Blup(r) and the product is Blup(m).
(v) In the same way, we define the groupoid SBlupr,s(G,Γ). It is the quotient

of the restriction D̃NC+(G,Γ) of D̃NC(G,Γ) to R+ by the action of R∗
+.

(vi) The singular part of SBlupr,s(G,Γ), i.e., its restriction to the boundary

SNM
V is the spherical normal groupoid SNG

Γ . It is the quotient by the
action of R∗

+ of the restriction of NG
Γ ⇒ NM

V to the open subset NM
V \ V

of its objects.
An analogous result about the groupoid structure on Blupr,s(G,Γ) in the

case of Γ(0) being a hypersurface of G(0) can be found in [16, Thm. 2.8] (cp.
also [17]).

3.5.2. Algebroids and anchors. The (total space of the) Lie algebroid AΓ is a
closed submanifold (and a subbundle) of AG. The functoriality enables to get
the Lie algebroids of the previous construction. Indeed, we have the following:
(i) The Lie algebroid of NG

Γ is NAG
AΓ . Its anchor map is N(♮G) : N

AG
AΓ →

NTG(0)

TΓ(0) ≃ TNG(0)

Γ(0) .
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14 Claire Debord and Georges Skandalis

(ii) The groupoid DNC(G,Γ) is the union of its open subgroupoid G×R∗ with
its closed Lie sub-groupoid NG

Γ . The Lie algebroid of G×R∗ is AG×R∗

and the anchor is just the map ♮G×id : AG×R∗ → T (G(0)×R∗
+). It follows

that the Lie algebroid of DNC(G,Γ) is DNC(AG,AΓ). Its anchor map is
DNC(♮G) : DNC(AG,AΓ) → DNC(TG(0), TΓ(0)) ⊂ TDNC(G(0),Γ(0)).

(iii) Similarly, the Lie algebroid of Blupr,s(G,Γ) is Blupp(AG,AΓ). Its anchor
map is Blup(♮G) : Blupp(AG,AΓ) → Blupq(TG

(0), TΓ(0)). Here, p : AG →
G(0) and q : TG(0) → G(0) denote the bundle projections, see Fact 2.15.

3.5.3. Stability under Morita equivalence. Let G1 ⇒ G
(0)
1 and G2 ⇒ G

(0)
2 be

Lie groupoids, Γ1 ⊂ G1 and Γ2 ⊂ G2 Lie subgroupoids. A Morita equivalence
of the pair (Γ1 ⊂ G1) with the pair (Γ2 ⊂ G2) is given by a pair (X ⊂ Y ),
where Y is a linking manifold which is a Morita equivalence between G1 and
G2 and X ⊂ Y is a submanifold of Y such that the maps r, s and products
of Y (see page 12) restrict to a Morita equivalence X between Γ1 and Γ2.

Then, by functoriality,
• DNC(Y,X) is a Morita equivalence between DNC(G1,Γ1) and

DNC(G2,Γ2),
• DNC+(Y,X) is a Morita equivalence between DNC+(G1,Γ1) and

DNC+(G2,Γ2),
• Blupr,s(Y,X) is a Morita equivalence between Blupr,s(G1,Γ1) and

Blupr,s(G2,Γ2),
• SBlupr,s(Y,X) is a Morita equivalence between SBlupr,s(G1,Γ1) and

SBlupr,s(G2,Γ2), . . .
Note that if Y and X are sub-Morita equivalences, the above linking spaces

are also sub-Morita equivalences.

3.5.4. Groupoids on manifolds with boundary. Let M be a manifold and V
a hypersurface in M , and suppose that V cuts M into two manifolds with
boundary M = M− ∪M+ with V = M− ∩M+. Then by considering a tubular
neighborhood of V in M , DNC(M,V ) = M × R∗ ∪ NM

V × {0} identifies with

M × R, the quotient D̃NC(M,V )/R∗
+ identifies with two copies of M , and

SBlup(M,V ) identifies with the disjoint union M− ⊔ M+. Under this last
identification, the class under the zooming action of a normal vector in NM

V \
V × {0} pointing in the direction of M+ is an element of V ⊂ M+.

Let Mb be manifold with boundary V . A piece of Lie groupoid is the restric-

tion G = G̃Mb

Mb
to Mb of a Lie groupoid G̃ ⇒ M , where M is a neighborhood

of Mb and G̃ is a groupoid without boundary.
With the above notation, since V is of codimension 1 in M , SBlup(M,V ) =

Mb ⊔M−, where M− = M \ M̊ is the complement in M of the interior M̊ =
Mb \ V of Mb in M .

Let then Γ ⇒ V be a Lie subgroupoid of G̃.

We may construct SBlupr,s(G̃,Γ) and consider its restriction to the open
subset Mb of SBlup(M,V ). We thus obtain a longitudinally smooth groupoid
that will be denoted SBlupr,s(G,Γ).

Münster Journal of Mathematics Vol. 14 (2021), 1–40



Blow-up constructions 15

Note that the groupoid SBlupr,s(G,Γ) ⇒ Mb is the restriction to Mb of a
Lie groupoid G ⇒ M for which Mb is saturated. Indeed, SBlupr,s(G,Γ) is an
open subgroupoid of SBlupr,s(G̃,Γ) ⇒ Mb ⊔M−, which is a piece of the Lie

groupoid D̃NC(G̃,Γ)/R∗
+ ⇒ D̃NC(M,V )/R∗

+ ≃ M ⊔M . We may then let G

be the restriction of D̃NC(M,V )/R∗
+ to one of the copies of M .

In this way, we may treat by induction a finite number of mutually trans-
verse hypersurfaces and, in particular, groupoids on manifolds with (embeded)
corners.

Remarks 3.6. (i) Let us highlight that we do not assume V to be saturated
for G. In particular, the boundary V can happen to be transverse to the

groupoid G̃. In that case G is in fact a manifold with corners. The blow-
up groupoid SBlupr,s(G,Γ) coincides with G outside V , and V becomes a
saturated subset in this new groupoid.

(ii) If M is a manifold with boundary V and G = M×M is the pair groupoid,
then SBlupr,s(G, V ) is in fact the groupoid associated with the 0 calculus
in the sense of Mazzeo (cp. [24, 27, 26]), i.e., the canonical pseudodif-
ferential calculus associated with SBlupr,s(G, V ) is the Mazzeo–Melrose’s
0-calculus. Indeed, the sections of the algebroid of SBlupr,s(G, V ) are
exactly the vector fields of M vanishing at the boundary V , i.e., those
generating the 0-calculus.

(iii) In a recent paper [34], an alternative description of SBlupr,s(G, V ) is given
under the name of edge modification for G along the “AG-tame manifold”
V , thus, in particular, V is transverse to G. This is essentially the gluing
construction described in 3.7.4 below.

3.7. Examples of deformation groupoids and blow-up groupoids. We
examine some particular cases of inclusions of groupoids G1 ⊂ G2. The vari-
ous constructions of deformation to the normal cone and blow-up allow us to
recover many well-known groupoids.

As already noted in Section 3.4.2, our constructions immediately extend to
the case where we restrict to a closed saturated subset of a smooth groupoid,
in particular, for manifolds with corners.

3.7.1. Inclusion F ⊂ E of vector bundles—seen as groupoids. Let E be a real
vector space (considered as a group) and F a vector subspace of E. The
inclusion of groups F → E gives rise to a groupoid DNC(E,F ). Using any
complementary subspace of F in E, the space E can be seen as a vector bundle
over F ; we thus identify the groupoid DNC(E,F ) with E × R ⇒ R. Its C∗-
algebra identifies then with C0(E

∗ × R).
More generally, if F is a vector-subbundle of a vector bundle E over a

manifoldM (considered as a family of groups indexed byM), then the groupoid
DNC(E,F ) ⇒ M ×R identifies with E ×R and its C∗-algebra is C0(E

∗ ×R).
Let pE : E → M be a vector bundle over a manifold M and let V be a

submanifold of M . Let pF : F → V be a subbundle of the restriction of E
to V . We use a tubular construction and find an open subset U of M which is
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a vector bundle π : Q → V . Using π, we may extend F to a subbundle FU of
the restriction to F on U . Using that, we may identify DNC(E,F ) with the
open subset E×R∗∪ p−1

E (U)×R of E×R. Its C∗-algebra identifies then with

C0(E
∗ × R∗ ∪ p−1

E∗(U)× R).

3.7.2. Inclusion G(0) ⊂ G: adiabatic groupoid. The deformation to the normal
cone DNC(G,G(0)) is the adiabatic groupoid Gad ([32, 35]), which is obtained
by using the deformation to the normal cone construction for the inclusion of
G(0) as a Lie subgroupoid of G. The normal bundle NG

G(0) is the total space of
the Lie algebroid A(G) of G. Note that in this situation its groupoid structure
coincides with its vector bundle structure. Thus,

DNC(G,G(0)) = G× R∗ ∪ A(G)× {0} ⇒ G(0) × R.

We often denote DNC(G,G(0)) by Gad and G+
ad, G

[0,1]
ad , G

[0,1)
ad its restriction

respectively to the saturated subset G(0)×R+, to G
(0)×[0, 1] and to G(0)×[0, 1)

of G(0) × R = G
(0)
ad .

Note that Blup(G(0), G(0)) = ∅ = Blupr,s(G,G(0)).
The particular case where G is the pair groupoid M × M is the original

construction of the “tangent groupoid” of Alain Connes [9].

3.7.3. Gauge adiabatic groupoid. Start with a Lie groupoid G ⇒ V .

Let G × (R × R)
r̃,s̃
−−−−⇒ V × R be the product groupoid of G with the pair

groupoid over R. First notice that since V ×{0} is a codimension 1 submanifold
in V × R, SBlup(V × R, V × {0}) is canonically isomorphic to V × (R− ⊔

R+). Then SBlupr̃,s̃(G× (R×R), V ×{(0, 0)})
V×R+

V×R+
is the semi-direct product

groupoid Gad(V × R+)⋊R∗
+:

SBlupr̃,s̃(G× (R× R), V × {(0, 0)})
V×R+

V×R+
= G+

ad ⋊R∗ ⇒ V × R+.

In other words, SBlupr̃,s̃(G× (R×R), V ×{(0, 0)})
V×R+

V×R+
is the gauge adia-

batic groupoid used in [12]; we often denote it by Gga .
Indeed, as G× (R × R) is a vector bundle over G, DNC(G × (R × R), V ×

{(0, 0)}) ≃ DNC(G, V ) × R2 (Remark 2.6 (v)). Under this identification,
the zooming action of R∗ is given by λ.(w, t, t′) = (λ.w, λ−1t, λ−1t′). The
maps DNC(s̃) and DNC(r̃) are, respectively, (w, t, t′) 7→ (DNC(s)(w), t′) and
(w, t, t′) 7→ (DNC(r)(w), t). It follows that SBlupr̃,s̃(G×(R×R), V ×{(0, 0)}) is

the quotient by the diagonal action ofR∗
+ of the open subset DNC(G, V )×(R∗)2

of DNC+(G, V )× R2.
According to the description of the groupoid of a group action on a groupoid

given in [14, Section 2.3], it is isomorphic to DNC(G, V )+ ⋊R∗
+ × {−1,+1}2,

where {−1,+1}2 is the pair groupoid over {−1,+1}.

3.7.4. Inclusion of a transverse submanifold of the unit space. Let G be a Lie
groupoid with set of objects M = G(0) and let V be a transverse submanifold
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of M . Put G̊ = G
M\V
M\V . Upon arguing locally, we can assume that V is

compact.
By Remark 3.3, V admits a tubular neighborhood W ≃ NM

V such that GW
W

is the pull back of GV
V by the retraction q : W → V .

The DNC groupoid DNC(GW
W , V ) identifies with the pull back groupoid

(DNC(GV
V , V ))qq of the adiabatic deformation DNC(GV

V , V ) = (GV
V )ad by the

map q : NM
V → V .

The (spherical) blow-up groupoid SBlupr,s(G
W
W , V ) identifies with the pull

back groupoid (DNC+(G
V
V , V ) ⋊ R∗

+)
p
p of the gauge adiabatic deformation

DNC+(G
V
V , V )⋊R∗

+ = (GV
V )ga by the map p : SNM

V → V .

In order to get SBlupr,s(G, V ), we then may glue (DNC+(G
V
V , V ) ⋊ R∗

+)
p
p

with G̊ in their common open subset ((GV
V )

q
q)

W\V
W\V ≃ G

W\V
W\V .

3.7.5. Inclusion GV
V ⊂ G for a transverse hypersurface V of G: b-groupoid.

If V is a hypersurface of M , the blow-up Blup(M ×M,V ×V ) is just the con-
struction of Melrose of the b-space. Its open subspace Blupr,s(M ×M,V × V )
is the associated groupoid of Monthubert [30, 31]. Moreover, if G is a groupoid
on M and V is transverse to G, we can form the restriction groupoid GV

V ⊂
G, which is a submanifold of G. The corresponding blow-up construction
Blupr,s(G,GV

V ) identifies with the fibered product Blupr,s(M×M,V×V )×M×M

G (cp. Remark 2.6 (vi)).
Iterating (at least locally) this construction, we obtain the b-groupoid of

Monthubert for manifolds with corners (cp. [30, 31]).

Remark 3.8. The groupoid Blupr,s(G, V ) corresponds to inflating all the
distances when getting close to V .

The groupoid Blupr,s(G,GV
V ) is a kind of cylindric deformation groupoid

which is obtained by pushing the boundary V at infinity but keeping the dis-
tances along V constant.

Remark 3.9. Intermediate examples between these two are given by a sub-
groupoid Γ ⇒ V of GV

V .
In the case where G = M × M , such a groupoid Γ is nothing else than

the holonomy groupoid Hol(V,F) of a regular foliation F of V (with trivial
holonomy groups). The groupoid SBlupr,s(M ×M,Hol(V,F)) is a holonomy
groupoid of a singular foliation of M : the sections of its algebroid. Its leaves
are M \ V and the leaves of (V,F). The corresponding calculus, when M is a
manifold with a boundary V , is Rochon’s generalization [38] of the φ calculus
of Mazzeo and Melrose [25].

Iterating (at least locally) this construction, we obtain the holonomy group-
oid associated to a stratified space in [11].

3.9.1. Inclusion GV
V ⊂ G for a saturated submanifold V of G: shriek map for

immersions. Suppose now that V is saturated, thus GV
V = GV = GV .

In such case the groupoid GV
V acts on the normal bundle NG

GV
V

= r∗(NG(0)

V )

and DNC(G,GV
V ) ⇒ DNC(G(0), V ) coincides with the normal groupoid of the
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immersion ϕ : GV
V → G. This construction was defined in the case of foliation

groupoids in [21, Section 3] and was used in order to define ϕ! as its associated
KK-element.

3.9.2. Inclusion G1 ⊂ G2 with G
(0)
1 = G

(0)
2 . This is the case for the tangent

and adiabatic groupoid discussed above. Let us mention two other kinds of
this situation1 that can be encountered in the literature:
(i) The case of a subfoliation F1 of a foliation F2 on a manifoldM : shriek map

for submersion. As pointed out in [21, Remark 3.19], the corresponding
deformation groupoid DNC(G2, G1) gives an alternative construction of
the element ϕ!, where ϕ : M/F1 → M/F2 is a submersion of leaf spaces.

(ii) The case of a subgroup of a Lie group.
• If K is a maximal compact subgroup of a reductive Lie group G, the

connecting map associated to the exact sequence of DNC(G,K) is the
Dirac extension mapping the twisted K-theory of K to the K-theory
of C∗

r (G) (see [18]).
• In the case where Γ is a dense (nonamenable) countable subgroup of

a compact Lie group K, the groupoid DNC(K,Γ) was used in [19] in
order to produce a Hausdorff groupoid for which the Baum–Connes
map is not injective.

3.9.3. Wrong way functoriality. Let f : G1 → G2 be a morphism of Lie group-
oids. If f is an (injective) immersion, the construction of DNC+(G2, G1) gives
rise to a short exact sequence

0 −→ C∗(G2 × R∗
+) −→ C∗(DNC+(G2, G1)) −→ C∗(NG2

G1
) −→ 0,

and consequently to a connecting map from the K-theory of the C∗-algebra
of the groupoid NG2

G1
, which is a VB groupoid over G1, to the K-theory of

C∗(G2) (cp. Definition A.2 for a discussion on VB groupoids). This wrong
way functoriality map will be discussed in the next section.

More generally, let G = G(0)
1 ×G2 ×G(0)

1 be the product of G2 by the pair
groupoid of G(0)

1 . Assume that the map x 7→ (r(x), f(x), s(x)) is an immersion
from G1 → G.

The above construction gives a map fromK∗(C
∗(NG

G1
)) toK∗(C

∗(G)) which
is isomorphic to K∗(C

∗(G2)), since the groupoids G2 and G are canonically
Morita equivalent.

3.9.4. Some more recent examples. Since the present paper appeared as a
preprint, several papers have used it and applied our DNC and Blup construc-
tions in order to build interesting groupoids illustrating important geometric
phenomena. See, e.g., [1, 28, 29, 36, 40, 42, 41].

1Note that in this case Blup(G
(0)
2 , G

(0)
1 ) = ∅, whence Blupr,s(G2, G1) = ∅.
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4. The C∗-algebra of a deformation and of a blow-up groupoid,
full symbol and index map

Let G ⇒ M be a Lie groupoid and Γ ⇒ V a Lie subgroupoid of G.
The groupoids DNC+(G,Γ) and SBlupr,s(G,Γ) that we constructed admit the

closed saturated subsets NM
V × {0} and SNM

V , respectively. We apply results
of [14] in order to compute various KK-elements involved in index theory for
such situation.

In order to shorten the notation we put M̊ = M \ V .
The full symbol algebras are the quotient C∗-algebras:

• ΣDNC+
(G,Γ) = Ψ∗(DNC+(G,Γ))/C∗(G× R+∗),

• ΣSBlup(G,Γ) = Ψ∗(SBlupr,s(G,Γ))/C∗(GM̊

M̊
).

They give rise to the exact sequences

0 −→ C∗(GM̊
M̊
) −→ C∗(SBlupr,s(G,Γ)) −→ C∗(SNG

Γ ) −→ 0 (E∂
SBlup)

and

0 −→ C∗(G× R∗
+) −→ C∗(DNC+(G,Γ)) −→ C∗(NG

Γ ) −→ 0 (E∂
DNC+

)

of groupoid C∗-algebras as well as index type ones

0 −→ C∗(GM̊
M̊
) −→ Ψ∗(SBlupr,s(G,Γ)) −→ ΣSBlup(G,Γ) −→ 0 (E ĩnd

SBlup)

and

0 −→ C∗(G× R∗
+) −→ Ψ∗(DNC+(G,Γ)) −→ ΣDNC+(G,Γ) −→ 0. (E ĩnd

DNC+
)

We will compare the K-theory exact sequences given by DNC and by SBlup.
If V is AG-small (see Notation 4.6 below), we will show that, in a sense,

DNC and SBlup give rise to equivalent exact sequences—both for the “con-
necting” ones and for the “index” ones.

We will then compare these KK-elements with a coboundary construction.
We will compute these exact sequences when Γ = V ⊂ M . Finally, we will

study a refinement of these constructions using relative K-theory.

4.1. “DNC” versus “Blup”. Let Γ ⇒ V be a submanifold and a sub-
groupoid of a Lie-groupoid G ⇒ M . We will further assume that the groupoid
Γ is amenable. We still put M̊ = M \ V and let N̊G

Γ be the restriction of the

groupoid NG
Γ to the open subset N̊M

V = NM
V \ V of its unit space NM

V .

4.1.1. The connecting KK-element. As the groupoid Γ is amenable, we have
exact sequences both for the reduced and for the maximal C∗-algebras:

0 −→ C∗(GM̊
M̊
) −→ C∗(SBlupr,s(G,Γ)) −→ C∗(SNG

Γ ) −→ 0 (E∂
SBlup)

and

0 −→ C∗(G× R∗
+) −→ C∗(DNC+(G,Γ)) −→ C∗(NG

Γ ) −→ 0. (E∂
DNC+

)
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By amenability, these exact sequences admit completely positive cross sec-

tions and therefore define elements ∂G,Γ
SBlup ∈ KK1(C∗(N̊G

Γ /R∗
+), C

∗(GM̊
M̊
)) and

∂G,Γ
DNC+

∈ KK1(C∗(NG
Γ ), C∗(G× R∗

+)).

With the notation of Section 3.5, write DNC+ for DNC restricted to R+

and D̃NC+ for D̃NC restricted to R+.
By [14, Section 5.3], we have a diagram, where the vertical arrows are KK1-

equivalences and the squares commute in KK-theory:

0 // C∗(GM̊

M̊
) //

β′

C∗(SBlupr,s(G,Γ)) //

β

C∗(N̊G
Γ /R∗

+) //

β′′

0 (E∂
SBlup)

0 // C∗(GM̊
M̊

× R∗
+)

// C∗(D̃NC+(G,Γ)) // C∗(N̊G
Γ ) // 0. (E∂

D̃NC+

)

Denote by ∂G,Γ

D̃NC+

the connecting KK-element associated to (E∂

D̃NC+

). We

thus have, according to [14, Prop. 5.3]:

Fact 4.2. ∂G,Γ
SBlup ⊗ β′ = −β′′ ⊗ ∂G,Γ

D̃NC+

∈ KK1(C∗(SNG
Γ ), C∗(GM̊

M̊
× R∗

+)).

We also have a commutative diagram, where the vertical maps are inclu-
sions:

(1)

0 // C∗(GM̊

M̊
× R∗

+) //

j′

��

C∗(D̃NC+(G,Γ)) //

j

��

C∗(N̊G
Γ ) //

j′′

��

0

0 // C∗(G× R∗
+) // C∗(DNC+(G,Γ)) // C∗(NG

Γ ) // 0.

We thus find:

Fact 4.3. (j′′)∗(∂G,Γ
DNC+

) = j′∗(∂
G,Γ

D̃NC+

) ∈ KK1(C∗(N̊G
Γ ), C∗(G× R∗

+)).

4.3.1. The full symbol index. We now compare the elements

ĩnd
G,Γ

SBlup ∈ KK1(ΣSBlup(G,Γ), C∗(GM̊
M̊
))

and

ĩnd
G,Γ

DNC+
∈ KK1(ΣDNC+

(G,Γ), C∗(G× R∗
+)),

defined by the semi-split exact sequences

0 −→ C∗(GM̊
M̊
) −→ Ψ∗(SBlupr,s(G,Γ)) −→ ΣSBlup(G,Γ) −→ 0 (E ĩnd

SBlup)

and

0 −→ C∗(G× R∗
+) −→ Ψ∗(DNC+(G,Γ)) −→ ΣDNC+(G,Γ) −→ 0. (E ĩnd

DNC+
)
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Put Σ
D̃NC+

(G,Γ) = Ψ∗(D̃NC+(G,Γ))/C∗(GM̊

M̊
× R∗

+). By [14, Prop. 5.4],

we have a diagram where the vertical arrows are KK1-equivalences and the
squares commute in KK-theory:

0 // C∗(GM̊
M̊
) //

β′

Ψ∗(SBlupr,s(G,Γ)) //

βΨ

ΣSBlup(G,Γ) //

βΣ

0

0 // C∗(GM̊
M̊

× R∗
+) // Ψ∗(D̃NC+(G,Γ)) // Σ

D̃NC+
(G,Γ) // 0.

We let ĩnd
G,Γ

D̃NC+
∈ KK1(Σ

D̃NC+
(G,Γ), C∗(GM̊

M̊
× R∗

+)) be the connecting map

induced by the second exact sequence.

Fact 4.4. We have

ĩnd
G,Γ

SBlup ⊗ β′ = −βΣ ⊗ ĩnd
G,Γ

D̃NC+
∈ KK1(ΣSBlup(G,Γ), C∗(GM̊

M̊
× R∗

+)).

We also have a commutative diagram where the vertical maps are inclusions:

(2)

0 // C∗(GM̊
M̊

× R∗
+)

//

j′

��

Ψ∗(D̃NC+(G,Γ)) //

jΨ

��

Σ
D̃NC+

(G,Γ) //

jΣ

��

0

0 // C∗(G× R∗
+)

// Ψ∗(DNC+(G,Γ)) // ΣDNC+
(G,Γ) // 0.

We thus find:

Fact 4.5. j∗Σ(ĩnd
G,Γ

DNC+
) = j′∗(ĩnd

G,Γ

D̃NC+
) ∈ KK1(Σ

D̃NC+
(G,Γ), C∗(G× R∗

+)).

4.5.1. When V is AG-small. If V is small in each G orbit, i.e., if the Lebesgue
measure (in the manifold Gx) of Gx

V is 0 for every x, it follows from Propo-

sition 4.7 below that the inclusion i : C∗(GM̊

M̊
) →֒ C∗(G) is an isomorphism.

Also, if M̊ meets all the orbits of G, the inclusion i is a Morita equivalence. In

these cases ∂G,Γ
DNC+

determines ∂G,Γ
SBlup.

Definition 4.6. We will say that V is AG-small if for every x ∈ V , the
composition AGx

♮x
−→ TxM −→ (NM

V )x is not the zero map.

If V is AG-small, then the orbits of the groupoid NG
Γ are never contained in

the 0 section, i.e., they meet the open subset N̊M
V , and in fact the set V ×{0}

is small in every orbit of the groupoid DNC(G,Γ). It follows that the map j is
an isomorphism—as well of course as j′ and j′′ of diagram (1). In that case,

∂G,Γ
DNC+

and ∂G,Γ
SBlup correspond to each other under these isomorphisms.

Proposition 4.7 (cp. [20, 13]). Let G ⇒ Y be a Lie groupoid and let Z ⊂ Y be
a (locally closed) submanifold. Assume that, for every x ∈ Z, the composition

AGx
♮x
−→ TxY −→ (NY

Z )x is not the zero map. Then the inclusion C∗(G
Y \Z
Y \Z ) →

C∗(G) is an isomorphism.
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Proof. For every x ∈ Z, we can find a neighborhood U of x ∈ Y , a section
X of AG such that, for every y ∈ U , ♮y(X(y)) 6= 0, and if y ∈ U ∩ Z, then
♮y(X(y)) 6∈ Ty(Z). Denote by F the foliation of U associated with the vector
field X . It follows from [20, Lemme 4] that C0(U \Z)C∗(U,F) = C∗(U,F). As
C∗(U,F) acts in a nondegenerate way on the Hilbert-C∗(G) module C∗(GU ),
we deduce that C0(U \ Z)C∗(GU ) = C∗(GU ). We conclude, using a partition
of the identity argument, that Cc(Y \ Z)C∗(G) = Cc(Y )C∗(G), whence we
have C0(Y \ Z)C∗(G) = C0(Y )C∗(G) = C∗(G). �

Proposition 4.8. We assume that Γ is amenable and that V is AG-small.

Then the inclusions jΣ : Σ
D̃NC+

(G,Γ)→ΣDNC+
(G,Γ), jΨ : Ψ∗(D̃NC+(G,Γ))→

Ψ∗(DNC+(G,Γ)) and jsymb :C0(SA
∗(D̃NC+(G,Γ)))→C0(SA

∗(DNC+(G,Γ)))
are KK-equivalences.

Proof. We have a diagram

0

��

0 // C∗(D̃NC+(G,Γ)) //

j

��

Ψ∗(D̃NC+(G,Γ)) //

jΨ

��

C0(SA
∗(D̃NC+(G,Γ))) //

jsymb

��

0

0 // C∗(DNC+(G,Γ)) // Ψ∗(DNC+(G,Γ)) // C0(SA
∗(DNC+(G,Γ)) //

��

0

C0(SA
∗G|V × R+)

��

0.

As j is an equality, we find an exact sequence

0 −→ Ψ∗(D̃NC+(G,Γ))
jΨ
−→ Ψ∗(DNC+(G,Γ)) −→ C0(SA

∗G|V × R+) −→ 0.

As j′ : C∗(GM̊

M̊
× R∗

+) → C∗(G × R∗
+) is also an equality, we find (using dia-

gram (2)) an exact sequence

0 −→ Σ
D̃NC+

(G,Γ))
jΣ
−→ ΣDNC+

(G, V ) −→ C0(SA
∗G|V × R+) −→ 0.

As the algebra C0(SA
∗G|V × R+) is contractible, we deduce that jsymb and

then jΨ and jΣ are KK-equivalences. �

As a summary of these considerations, we find:

Theorem 4.9. Let G ⇒ M be a Lie groupoid and Γ ⇒ V a Lie subgroupoid

of G. Assume that Γ is amenable and put M̊ = M \ V . Let i : C∗(GM̊

M̊
) →
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C∗(G) be the inclusion. Put β̂′′ = j′′∗ (β
′′) ∈ KK1(C∗(SNG

Γ ), C∗(NG
Γ )) and

β̂Σ = (jΣ)∗(βΣ) ∈ KK1(ΣSBlup(G,Γ),ΣDNC+
(G, V )).

(i) We have equalities

• ∂G,Γ
SBlup ⊗ [i] = β̂′′ ⊗ ∂G,Γ

DNC+
∈ KK1(C∗(SNG

Γ ), C∗(G)) and

• ĩnd
G,Γ

SBlup ⊗ [i] = β̂Σ ⊗ ĩnd
G,Γ

DNC+
∈ KK1(C∗(ΣSBlup(G,Γ), C∗(G))).

(ii) If V is AG-small, then i is an isomorphism and the elements β̂′′ and β̂Σ

are invertible.

4.10. The KK-element associated with DNC. The connecting element

∂G,Γ
DNC+

can be expressed in the following way: let G be the restriction of

DNC(G,Γ) to [0, 1], i.e., G = NG
Γ × {0} ∪ G × (0, 1]. We have a semi-split

exact sequence:

0 → C∗(G× (0, 1]) → C∗(G)
ev0−−→ C∗(NG

Γ ) → 0.

As C∗(G× (0, 1]) is contractible, ev0 is a KK-equivalence. Let ev1 : C
∗(G) →

C∗(G) be evaluation at 1 and let δGΓ = [ev0]
−1⊗ [ev1] ∈ KK(C∗(NG

Γ ), C∗(G)).
Let [Bott] ∈ KK1(C, C0(R

∗
+)) be the Bott element.

We then have a diagram:

0 // C∗(G(0, 1)) // C∗(DNC(G,Γ))
ev0 //

��

C∗(NG
Γ ) //

��

0 (E∂
DNC+

)

0 // C∗(G(0, 1)) // C∗(G)
ev0⊕ev1// C∗(NG

Γ )⊕ C(G) // 0

0 // C∗(G(0, 1)) // C∗(G(0, 1])
ev1 //

OO

C∗(G) //

OO

0. (E−Bott)

It follows that, [ev0]⊗∂G,Γ
DNC+

+[ev1]⊗∂−Bott = 0. As ∂−Bott define the opposite

of the Bott element in KK1(C∗(G), C∗(G× (0, 1)), we find:

Fact 4.11. ∂G,Γ
DNC+

= δGΓ ⊗
C
[Bott].

Consider now the groupoid G = G
[0,1]
ad . It is a family of groupoids indexed

by [0, 1]× [0, 1]:
• its restriction to {s} × [0, 1] for s 6= 0 is G

[0,1]
ad ;

• its restriction to {0} × [0, 1] is (NG
Γ )[0,1]ad ;

• its restriction to [0, 1]× {s} for s 6= 0 is G;
• its restriction to [0, 1]× {0} is the algebroid AG which is the restriction of

DNC(AG,AΓ) to [0, 1].
For every locally closed subset X ⊂ [0, 1]× [0, 1], denote by GX the restriction
of G to X .

For every closed subset X ⊂ [0, 1]× [0, 1], denote by qX : C∗(G) → C∗(GX)
the restriction map.
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We thus have the following commutative diagram:

C∗(NG
Γ )

δGΓ

,,
G //oo C∗(G)

C∗((NG
Γ )

[0,1]
ad )

��

OO

C∗(G)

q(0,0)
uu❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦

q(0,1)

ii❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙

q(1,1)

66❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧

q(1,0)

((❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

q{1}×[0,1]
//

q[0,1]×{0}

��

q{0}×[0,1]
oo

q[0,1]×{1}

OO

C∗(G
[0,1]
ad )

OO

��

C∗(NAG
AΓ )

ind
NG

Γ

;;

δAG
AΓ

22C∗(AG, )oo // C0(A
∗G).

indG

cc

For every locally closed subset T ⊂ [0, 1], the C∗-algebras C∗(G(0,1]×T )

and C∗(GT×(0,1]) are contractible as well as C∗(G[0,1]2\{0,0)}). It follows that
q{0}×[0,1], q[0,1]×{0} and q{(0,0)} are KK-equivalences.

Now [q(0,0)]
−1 ⊗ [q(0,1)] = indNG

Γ
and it follows that [q(0,0)]

−1 ⊗ [q(1,1)] =

indNG
Γ
⊗ δGΓ .

In the same way, [q(0,0)]
−1 ⊗ [q(1,0)] = δAG

AΓ and it follows that [q(0,0)]
−1 ⊗

[q(1,1)] = δAG
AΓ ⊗ indG.

Finally, it follows from Example 3.7.1 that δAG
AΓ is associated with a mor-

phism ϕ : C0(A
∗(NG

V )) →֒ C0(A
∗G) corresponding to an inclusion of A∗(NG

Γ )
in A∗G as a tubular neighborhood.

We thus have established:

Fact 4.12. indNG
Γ
⊗ δGΓ = [ϕ]⊗ indG.

Similar groupoids and commutative diagrams for the special case of V being
the normal bundle of the inclusion of a manifold M into some Rn, G = V × V
and Γ = V ×

M
V appeared in [10, Section 6.1] in order to give a K-theoretical

proof using groupoids of the Atiyah–Singer index theorem.

4.13. The case of a submanifold of the space of units. Let G be a
Lie groupoid with objects M and let Γ = V ⊂ M be a closed submani-
fold of M . In this section, we push further the computations of the con-
necting maps and indices, i.e., the connecting maps of the exact sequences

(E∂
SBlup), (E

∂
DNC+

), (E ĩnd
SBlup) and (E ĩnd

DNC+
).

Let N = NG
V and N ′ = NM

V be the normal bundles. We identify N ′

with a subbundle of N by means of the inclusion M ⊂ G. The submer-
sions r, s : G → M give rise to bundle morphisms rN , sN : N → N ′ that are
sections of the inclusion N ′ → N . By construction, using Remark (iii) (a),
the groupoid DNC(G, V ) is the union of G × R∗ with the family of linear

groupoids NrN ,sN (N). It follows that SBlupr,s(G, V ) is the union of G
M\V
M\V

with the family (SN, rN , sN) of spherical groupoids.
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If V is transverse to G, the bundle map rN − sN : N = NG
V → N ′ = NM

V is
surjective; it follows that
• NrN ,sN (N) identifies with the pullback groupoid (A(GV

V ))
q
q , where q : N ′ →

V is the projection,
• (SN, rN , sN ) with the pullback groupoid (A(GV

V )⋊R∗
+)

p
p, where p : S(N

′)→
V is the projection.

4.13.1. Connecting map and index map. From Proposition A.9, [14, Proposi-
tions 4.1, 4.6, 4.7] and Fact 4.12, we find:

Proposition 4.14. (i) The index element indNG
V
∈KK(C0(A

∗NG
V ),C∗(NG

V ))

is invertible.
(ii) The inclusion j : ΣNM

V
×{0}(DNC+(G, V )) →֒ ΣDNC+(G, V ) is invertible in

KK-theory.
(iii) The C∗-algebra ΣDNC+(G, V ) is naturally KK1-equivalent with the map-

ping cone Cχ of the map χ : C0(A
∗G × R∗

+) → C0(DNC+(M,V )) defined
by

χ(f)(x) =

{
f(x, 0) if x ∈ M × R∗

+,

0 if x ∈ NM
V .

(iv) The connecting element ∂G,V
DNC+

∈ KK1(C∗(NG
V ), C∗(G × R∗

+)) =

KK(C∗(NG
V ), C∗(G)) is δGV = ind−1

NG
V

⊗ [ϕ]⊗ indG, where ϕ :C0(A
∗NG

V )→

C0(A
∗G) is the inclusion using the tubular neighborhood construction.

(v) Under the KK1 equivalence of (c), the full index element

ĩnd
G,V

DNC+
∈ KK1(ΣDNC+

(G, V ), C∗(G× R∗
+)) = KK1(Cχ, C

∗(G))

is q∗([Bott]⊗
C
indG), where q : Cχ → C0(A

∗G× R∗
+) is evaluation at 0.

The element [χ] ∈ KK(C0(A
∗G×R∗

+), C0(DNC+(M,V ))) is the Kasparov
product of the “Euler element” of the bundle A∗G, which is the class in
KK(C0(A

∗G), C0(M)) = KK(C0(A
∗G × R∗

+), C0(M × R∗
+)) of the map x 7→

(x, 0) with the inclusion C0(M × R∗
+) → C0(DNC+(M,V )). It follows that

[χ] is often the zero element of KK(C0(A
∗G × R∗

+), C0(DNC+(M,V ))). In
particular, this is the case when the Euler class of the bundle A∗G van-
ishes. In that case, the algebra ΣDNC+(G, V ) is KK-equivalent to C0(A

∗G)⊕
C0(DNC+(M,V )).

If V is AG small, then, by Theorem 4.9, ∂G,V
SBlup and ĩnd

G,V

SBlup are immediately
deduced from Proposition 4.14.

Proposition 4.15. Let G ⇒ M be a Lie groupoid and let V ⊂ M be a AG
small submanifold. Then the algebra C∗(N̊G

V ) is naturally KK1-equivalent to
C0(U), where U is a tubular neighborhood of V in A∗G. Under this KK-
equivalence, the connecting element of the exact sequence (E∂

SBlup) is the com-

position of the index element [indG] ∈ KK(C0(A
∗G), C∗(G)) with the inclusion

C0(U) → C0(A
∗G).
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Remark 4.16. Let Mb be a manifold with boundary and V = ∂Mb. Put M̊ =
Mb \ V . Let G be a piece of Lie groupoid on Mb in the sense of Section 3.5.4.

Thus G is the restriction of a Lie groupoid G̃ ⇒ M , whereM is a neighborhood
of Mb. Recall that in this situation, SBlup(M,V ) = Mb ⊔ M−, where M =
Mb∪M− and M∩M− = V , and we let SBlupr,s(G, V ) ⇒ Mb be the restriction

of SBlupr,s(G̃, V ) to Mb.

Let us denote by N̊G
V the open subset of N G̃

V made of (normal) tangent
vectors whose image under the differential of the source and range maps of

G̃ are nonvanishing elements of NM
V pointing in the direction of Mb. The

groupoid SBlupr,s(G, V ) is the union N̊G
V /R∗

+ ∪GM̊

M̊
.

We have exact sequences

0 → C∗(GM̊
M̊
) → C∗(SBlupr,s(G, V )) → C∗(N̊G

V /R∗
+) → 0,

0 → C∗(GM̊
M̊
) → Ψ∗(SBlupr,s(G, V )) → ΣSBlup(G, V ) → 0.

As V is of codimension 1, we find that V is AG̃-small if and only if it is

transverse to G̃. In that case, Proposition 4.14 computes the KK-theory of

C∗(N̊G
V /R∗

+) and of ΣSBlup(G, V ) and the KK-class of the connecting maps
of these exact sequences.

In particular, we obtain a six term exact sequence

K0(C(Mb)) // K0(ΣSBlup(G, V )) // K1(C0(A
∗GM̊

M̊
))

χ

��

K0(C0(A
∗GM̊

M̊
))

χ

OO

K1(ΣSBlup(G, V ))oo K0(C(Mb))oo

and the index map K∗(ΣSBlup(G, V )) → K∗+1(G
M̊
M̊
) is the composition of

K∗(ΣSBlup(G, V )) → K∗+1(C0(A
∗GM̊

M̊
)) with the index map of the groupoid

GM̊

M̊
.

This holds, in particular, if G = Mb ×Mb since the boundary V = ∂Mb is

transverse to G̃ = M×M . Note that if Mb is connected with nonempty bound-
ary, χ = 0 (in KK(C0(T

∗M̊), C0(Mb))) so that we obtain a (noncanonically)
split short exact sequence:

0 −→ K∗(C0(Mb)) −→ K∗(ΣSBlup(G, V )) −→ K∗+1(C0(A
∗GM̊

M̊
)) −→ 0.

4.16.1. The index map via relative K-theory. It follows from [14, Prop. 4.8]:

Proposition 4.17. Let ψDNC : C0(DNC+(M,V )) → Ψ∗(DNC+(G, V )) be the
inclusion map which associates to a (smooth) function f the order 0 (pseudo)
differential operator of multiplication by f and σfull : Ψ∗(DNC+(G, V )) →
ΣDNC+(G, V ) the full symbol map. Put µDNC = σfull ◦ψDNC. Then the relative
K-group K∗(µDNC) is naturally isomorphic to K∗+1(C0(A

∗G)). Under this
isomorphism, indrel : K∗(µDNC) → K∗(C

∗(G×R∗
+)) = K∗+1(C

∗(G)) identifies
with indG.
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Let us say also just a few words on the relative index map for SBlupr,s(G, V ),
i.e., for the map µSBlup : C0(SBlup+(M,V )) → ΣSBlup(G, V ), which is the
composition of the inclusion ψSBlup : C0(SBlup(M,V ) → Ψ∗(SBlupr,s(G, V ))
with the full index map σfull : Ψ

∗(SBlupr,s(G, V )) → ΣSBlup(G, V )), and the

corresponding relative index map indrel : K∗(µSBlup) → K∗(C
∗(GM̊

M̊
)). We

restrict to the case when V is AG small. Equivalently, we wish to compute

the relative index map indrel : K∗(µD̃NC
) → K∗+1(C

∗(GM̊

M̊
)), where µ

D̃NC
:

C0(D̃NC+(M,V )) → Σ
D̃NC+

(G, V ).

We have a short exact sequence

0 −→ C0(D̃NC+(M,V )) −→ C0(DNC+(M,V )) −→ C0(V × R+) −→ 0

and it follows that the inclusion C0(D̃NC+(M,V )) → C0(DNC+(M,V )) is a
KK-equivalence.

Since the inclusions

Ψ∗(D̃NC+(G, V )) → Ψ∗(DNC+(G, V )) and Σ
D̃NC+

(G, V ) → ΣDNC+
(G, V )

are also KK-equivalences (see Proposition 4.8), it follows that the inclusion
Cµ

D̃NC
→ CµDNC of mapping cones is a KK-equivalence, and therefore the

relative K-groups K∗(µD̃NC
) and K∗(µDNC) are naturally isomorphic. Using

this, together with the Connes–Thom isomorphism, we deduce:

Corollary 4.18. We assume that V is AG small.
(i) The relative K-group K∗(µD̃NC

) is naturally isomorphic to

K∗+1(C0(A
∗G)).

Under this isomorphism, indrel : K∗(µD̃NC
) → K∗(C

∗(G × R∗
+)) =

K∗+1(C
∗(G)) identifies with indG.

(ii) The relative K-group K∗(µSBlup) is naturally isomorphic to

K∗(C0(A
∗G)).

Under this isomorphism, indrel : K∗(µSBlup) → K∗(C
∗(G)) identifies with

indG.

5. Application: A Boutet de Monvel type calculus

Recall (see [4, 5, 15, 39]) that if M is a manifold with boundary ∂M , the

Boutet de Monvel algebra consists of matrices of the form (Φ++S P
T Q ). Without

entering details, let us say that

• Φ is a pseudodifferential operator on M̃ (a smooth neighborhood of M)
satisfying a property called the transmission property, and Φ+ the corre-
sponding operator on smooth functions on M ;

• S is a singular Green operator acting on M ;
• P is a singular Poisson (or Potential) operator mapping functions on ∂M

to functions on M ;
• T is a singular trace operator mapping functions on M to functions on ∂M ;
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• Q is a (usual) pseudodifferential operator on ∂M .
The Boutet de Monvel algebra has two symbol maps:
• A “usual” symbol (

Φ+ + S P
T Q

)
7→ σ(Φ)

(often called “interior symbol”) whose kernel is the algebra of operators of
the form ( S P

T Q ).
• A non-commutative one of the form

(
Φ+ + S P

T Q

)
7→

(
σGreen(Φ+ + S) σPoisson(P )

σTrace(T ) σ∂M (Q)

)

(where σ∂M is the usual symbol of ∂M).
In this section we consider the SBlup construction in the special case of a

transverse submanifold of the unit space of a groupoid. We use the bimodule
that we constructed in [12] in order to obtain an algebra resembling the algebra
of 2×2 matrices in the Boutet de Monvel pseudodifferential calculus (of order 0)
on manifolds with boundary.

From now on, we suppose that V is a transverse submanifold of M with
respect to the Lie groupoid G ⇒ M . In particular, V is AG-small—of course,
we assume that (in every connected component of V ), the dimension of V is
strictly smaller than the dimension of M .

5.1. The Poisson-trace bimodule. As V is transverse to G, the groupoid
GV

V is a Lie groupoid, so that we can construct its “gauge adiabatic groupoid”
(GV

V )ga (see Section 3.7.3).
In [12], we constructed a bimodule relating the C∗-algebra of the groupoid

(GV
V )ga and the C∗-algebra of pseudodifferential operators of GV

V .
In this section:

• We first show that the groupoid (GV
V )ga, is (sub-) Morita equivalent to

SBlupr,s(G, V ) (cp. also Section 3.7.4 for a local construction).
• Composing the resulting bimodules, we obtain the “Poisson-trace” bimod-

ule that relates the C∗-algebras C∗(SBlupr,s(G, V )) and Ψ∗(GV
V ).

5.1.1. The SBlupr,s(G, V )−(GV
V )ga-bimodule E (G, V ). Define the map j : M⊔

(V ×R) → M by letting j0 : M → M be the identity and j1 : V ×R → M the

composition of the projection V ×R → V with the inclusion. Let G = Gj
j . As

V is assumed to be transverse, the map j is also transverse, and therefore G is
a Lie groupoid.

It is the union of four clopen subsets:
• the groupoids Gj0

j0
= G = GM

M and Gj1
j1

= GV
V × (R× R) = GV ×R

V ×R
,

• the linking spaces Gj0
j1

= GM
V ×R = GV × R and Gj1

j0
= GV ×R

M = GV × R.

By functoriality, we obtain a sub-Morita equivalence of SBlupr,s(G
V
V ×R×

R, V ) and SBlupr,s(G, V ) (see Section 3.5.3).
Let us describe this sub-Morita equivalence in a slightly different way:

Münster Journal of Mathematics Vol. 14 (2021), 1–40



Blow-up constructions 29

Let also Γ = V × {0, 1}2, sitting in G:

V × {(0, 0)} ⊂ G = Gj0
j0
, V × {(0, 1)} ⊂ GV × {0} ⊂ Gj0

j1
,

V × {(1, 0)} ⊂ GV × {0} ⊂ Gj1
j0

V × {(1, 1)} ⊂ GV
V × {(0, 0)} ⊂ Gj1

j1
.

It is a subgroupoid of G. The blow-up construction applied to Γ ⊂ G gives
then a groupoid SBlupr,s(G,Γ) which is the union of:

SBlupr,s(G, V ), SBlupr,s(GV × R, V ),

SBlupr,s(G
V × R, V ), SBlupr,s(G

V
V × R× R, V ).

Recall that SBlup(V × R, V × {0}) ≃ V × (R− ⊔ R+). Thus SBlupr,s(G,Γ)
is a groupoid with objects SBlup(M,V ) ⊔ V × R− ⊔ V × R+.

The restriction of SBlupr,s(G,Γ) to V ×R+ coincides with the restriction of

SBlupr,s(G
V
V ×R×R, V ) to V ×R+: it is the gauge adiabatic groupoid (GV

V )ga
of GV

V (cp. Section 3.7.3).

Put SBlupr,s(GV ×R, V )+ = SBlupr,s(G,Γ)
SBlup(M,V )
V ×R+

. It is a linking space

between the groupoids SBlupr,s(G, V ) and (GV
V )ga. Put also SBlupr,s(G

V ×

R, V )+ = SBlupr,s(G,Γ)
V ×R+

SBlup(M,V ).

With the notation used in Fact 3.4, we define the C∗(SBlupr,s(G, V )) −

C∗((GV
V )ga)-bimodule E (G, V ) to be C∗(SBlupr,s(GV × R, V )+). It is the

closure of Cc(SBlupr,s(GV × R, V )+) in C∗(SBlupr,s(G,Γ)). It is a Hilbert-

C∗(SBlupr,s(G, V ))− C∗((GV
V )ga)-bimodule.

The Hilbert-C∗((GV
V )ga)-module E (G, V ) is full and K(E (G, V )) is the ideal

C∗(SBlupr,s(G
Ω
Ω, V )), where Ω = r(GV ) is the union of orbits which meet V .

Notice that Ω = M \V ⊔V ×R∗ and F = SNM
V ⊔V ⊔V gives a partition by,

respectively, open and closed saturated subsets of the units of SBlupr,s(G,Γ).

Furthermore, SBlupr,s(G,Γ)
Ω
Ω = GΩ

Ω and C∗(GΩ
Ω) = C∗(G), according to Propo-

sition 4.7. This decomposition gives rise to an exact sequence of C∗-algebras.

0 −→ C∗(G) −→ C∗(SBlupr,s(G,Γ)) −→ C∗(SNG
Γ ) −→ 0.

This exact sequence gives rise to an exact sequence of bimodules:

0 // C∗(G) //

E̊ (G,V )

C∗(SBlupr,s(G, V )) //

E (G,V )

C∗(SNG
V ) //

E
∂ (G,Γ)

0

0 // C∗(G
V ×R

∗
+

V ×R∗
+
) // C∗((GV

V )ga)
// C∗(AGV

V ⋊R∗
+) // 0,

where

E̊ (G, V ) = C∗(G
M\V
V ×R∗

+
) E

∂(G,Γ) = C∗((SNG
Γ )

SNM
V

V ) = E (G, V )/E̊ (G, V ).
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5.1.2. The Poisson-trace bimodule EPT . In [12], we constructed, for every Lie
groupoid H , a C∗(Hga)−Ψ∗(H)-bimodule EH .

Recall that the Hilbert Ψ∗(H)-module EH is full and that K(EH) ⊂ C∗(Hga)

is the kernel of a natural ∗-homomorphism C∗(Hga) → C0(H
(0) ×R). We also

showed that the bimodule EH gives rise to an exact sequence of bimodules as
above:

0 // C∗(H × R∗
+ × R∗

+) //

E̊H

C∗(Hga) //

EH

C∗(AH ⋊R∗
+) //

E
∂
H

0

0 // C∗(H) // Ψ∗(H) // C0(SA
∗H) // 0.

Then, by putting together the bimodule E (G, V ) and EGV
V
, we obtain a

C∗(SBlupr,s(G, V ))−Ψ∗(GV
V ) bimodule E (G, V )⊗C∗((GV

V
)ga) EGV

V
that we call

the Poisson-trace bimodule and we denote it by EPT (G, V ) or just EPT . It
leads to the exact sequence of bimodule:

0 // C∗(G) //

E̊PT (G,V )

C∗(SBlupr,s(G, V )) //

EPT (G,V )

C∗(SNG
V ) //

E
∂
PT (G,V )

0

0 // C∗(GV
V )

// Ψ∗(GV
V )

// C0(SA
∗GV

V )
// 0.

The Poisson-trace bimodule is a full Hilbert Ψ∗(GV
V )-module; K(EPT (G, V )) is

a two sided ideal of C∗(SBlupr,s(G, V )). Denote by EPT (G, V )∗ its dual mod-

ule, i.e., the Ψ∗(GV
V )− C∗(SBlupr,s(G, V ))-bimodule K(EPT (G, V ),Ψ∗(GV

V )).

5.2. A boundary modeled algebra. The C∗-algebraC∗
BM (G, V ) is the alge-

bra K(C∗(SBlupr,s(G, V ))⊕ EPT (G, V )∗) of compact operators of the Hilbert
C∗(SBlupr,s(G, V ))-module C∗(SBlupr,s(G, V )) ⊕ EPT (G, V )∗. Its elements
are matrices of the form (K P

T Q ), where
• K ∈ C∗(SBlupr,s(G, V )) = K(C∗(SBlupr,s(G, V ))),
• P ∈ EPT (G, V ) = K(EPT (G, V )∗, C∗(SBlupr,s(G, V ))),
• T ∈ EPT (G, V )∗ = K(C∗(SBlupr,s(G, V ), EPT (G, V )∗)),

• Q ∈ Ψ∗(GV
V ) = K(EPT (G, V )∗).

We have an exact sequence (where M̊ ⊔ V 6= M denotes the topological

disjoint union of M̊ with V ):

0 −→ C∗(GM̊⊔V

M̊⊔V
) −→ C∗

BM (G, V )
rC

∗

V−−→ ΣC∗

bound(G, V ) −→ 0,

where the quotient ΣC∗

bound(G, V ) is the algebra of the Boutet de Monvel type

boundary symbols. It is the algebra of matrices of the form ( k p
t q ), where

k ∈ C∗(SNG
V ), q ∈ C(SA∗GV

V ), p, t∗ ∈ E
V
PT (G, V ) := EPT (G, V ) ⊗Ψ∗(GV

V )

C(SA∗GV
V ). The map rC

∗

V is of the form

rC
∗

V

(
K P
T Q

)
=

(
r ≬

V (K) rV (P )
rV (T ) σV (Q)

)
,
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where:
• the quotient map σV is the ordinary order 0 principal symbol map on the

groupoid GV
V ;

• the quotient maps r ≬

V , rV , rV are restrictions to the boundary NM
V :

r ≬
V : C∗(SBlupr,s(G, V )) → C∗(SNG

V ) = C∗(SBlupr,s(G, V ))/C∗(GM̊

M̊
),

rV : EPT (G, V ) → E
V
PT (G, V ) = EPT (G, V )/C∗(GM̊

V ),

and rV (T ) = rV (T ∗)∗.

The map rC
∗

V is called the zero order symbol map of the Boutet de Monvel
type calculus.

5.3. A boundary modeled pseudodifferential algebra. We denote by
Ψ∗

BM (G, V ) the algebra of matrices (Φ P
T Q ), with Φ ∈ Ψ∗(SBlupr,s(G, V )), P ∈

EPT (G, V ), T ∈ EPT (G, V )∗ and Q ∈ Ψ∗(GV
V ).

Such an operator R = (Φ P
T Q ) has two symbols:

• the classical symbol σc : Ψ
∗
BM (G, V ) → C0(SA

∗SBlupr,s(G, V )) given by

σc(
Φ P
T Q ) = σc(Φ), with its kernel being C∗

BM (G, V ).

• the boundary symbol rBM
V : Ψ∗

BM (G, V ) → ΣΨ∗

bound(G, V ) defined by

rV

(
Φ P
T Q

)
=

(
rψV (Φ) rV (P )
rV (T ) σV (Q)

)
,

where rψV : Ψ∗(SBlupr,s(G, V )) → Ψ∗(SNG
V ) is the restriction.

Here ΣΨ∗

bound(G, V ) denotes the algebra of matrices of the form ( φ p
t q ), with

φ ∈ Ψ∗(SNG
V ), p, t∗ ∈ E

V
PT (G, V ) and q ∈ C(SA∗GV

V ).
The full symbol map is the morphism

σBM : Ψ∗
BM (G, V ) → ΣBM (G, V ),

where

ΣBM (G, V ) := C0(SA
∗SBlupr,s(G, V ))×C0(SA∗SNG

V
) Σ

Ψ∗

bound(G, V ),

defined by σBM (R) = (σc(R), rV (R)).
We have an exact sequence:

0 −→ C∗(GM̊⊔V

M̊⊔V
) −→ Ψ∗

BM (G, V )
σBM−−−→ ΣBM (G, V ) −→ 0. (EBM )

We may note that Ψ∗(SBlupr,s(G, V )) (resp. Ψ∗(SNG
V )) identifies with the

full hereditary subalgebra of Ψ∗
BM (G, V ) (resp. of ΣBM (G, V )) consisting of

elements of the form ( x 0
0 0 ).

5.4. K-theory of the symbol algebras and index maps. In this sec-
tion we examine the index map corresponding to the Boutet de Monvel type
calculus and, in particular, to the exact sequence (EBM ). We compute the

K-theory of the symbol algebra ΣBM and the connecting element ĩndBM ∈
KK1(ΣBM , C∗(G)).2

2We use the Morita equivalence of C∗(G) with C∗(GM̊⊔V

M̊⊔V
).
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We then extend this computation by including bundles into the picture, i.e.,
by computing a relative K-theory map.

As the Hilbert Ψ∗(GV
V ) module EPT (G, V ) is full,

• the subalgebra

{(
K 0
0 0

)
; K ∈ C∗(SBlupr,s(G, V ))

}

is a full hereditary subalgebra of C∗
BM (G, V );

• the subalgebra

{(
Φ 0
0 0

)
; Φ ∈ Ψ∗(SBlupr,s(G, V ))

}

is a full hereditary subalgebra of Ψ∗
BM (G, V );

• the subalgebra
{(

x 0
0 0

)
; x ∈ ΣSBlup(G, V )

}

is a full hereditary subalgebra of ΣBM (G, V );
• the subalgebra

{(
k 0
0 0

)
; k ∈ C∗(SNG

V )

}

is a full hereditary subalgebra of ΣC∗

bound(G, V );
• the subalgebra

{(
φ 0
0 0

)
; φ ∈ Ψ∗(SNG

V )

}

is a full hereditary subalgebra of ΣΨ∗

bound(G, V ).
We have a diagram of exact sequences, where the vertical inclusions are

Morita equivalences:

0 // C∗(GM̊
M̊
) //

� _

��

Ψ∗(SBlupr,s(G, V ))
σfull //

� _

��

ΣSBlup(G, V ) //
� _

��

0

0 // C∗(GM̊⊔V
M̊⊔V

) // Ψ∗
BM (G, V )

σBM // ΣBM (G, V ) // 0.

We thus deduce immediately from Theorem 4.9 and Proposition 4.14 (with
the notation of Proposition 4.14) the following:

Corollary 5.5. The algebra ΣBM (G, V )) is KK-equivalent with the mapping

cone Cχ and, under this K-equivalence, the index ĩndBM is q∗([Bott]⊗C indG),
where q : Cχ → C0(A

∗G× R∗
+) is evaluation at 0.
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Appendix A. Bundle groupoids

In this section we describe the structure of the normal groupoid NG
Γ , i.e.,

the restriction of DNC(G,Γ) to its singular part NM
V , as well as the projective

normal groupoid PNG
Γ , the restriction of Blupr,s(G,Γ) to its singular part

PNM
V . The groupoid NG

Γ is a VB groupoid in the sense of Pradines [37, 23]. In
the particular case where Γ = V is just a space, the groupoids NG

Γ and PNG
Γ

are bundles of linear and projective groupoids over the base V in a sense defined
bellow. In that case, a Thom–Connes isomorphism computes the KK-theory
of C∗(NG

Γ ) (Proposition A.9).

A.1. VB groupoids. In [37], Pradines introduced the notion of a VB groupoid
(see also [23]). Such groupoids naturally appear in our construction, as well as
their projective and spherical analogues.

Recall from [37, 23] that a VB groupoid is a groupoid which is a vector
bundle over a groupoid G. More precisely:

Definition A.2. Let G
rG,sG
−−−−−−−−⇒ G

(0)
be a groupoid. A VB groupoid over G is

a vector bundle p : E → G with a groupoid structure E
rE ,sE
−−−−−−−−⇒ E(0) such that

all the groupoid maps are linear vector bundle morphisms. This means that
E(0) ⊂ E is a vector subbundle of the restriction of E to G(0) and that rE , sE ,
x 7→ x−1 and the composition are linear bundle maps:

E //
//

��

E(0)

��

G //
// G(0).

We also assume that the bundle maps rE : E → r∗G(E
(0)) and sE : E →

s∗G(E
(0)) are surjective.

When Γ is a closed Lie subgroupoid of G, the projection NG
Γ → Γ is a

groupoid morphism and it is easily seen that NG
Γ is a VB groupoid over Γ. In

fact, every VB groupoid E → Γ can be seen as a normal groupoid: the normal
groupoid to the inclusion Γ → E.

To any VB groupoid p : E → G, we can associate a projective bundle groupoid
and a spherical bundle groupoid.

Definition A.3. Let p : E → G. Denote by Ẽ(0) the complement in E(0) of

the zero-section G(0). Let Ẽ be the restriction E
˜E(0)

˜E(0)
= r−1

E (Ẽ(0)) ∩−1
E (Ẽ(0))

of E to its open subset Ẽ(0) of its objects.
The natural scaling action α of the group R∗ on the vector bundle E is free

and proper on Ẽ; for every λ, αλ is an automorphism of the groupoid E. The

quotient spaces PE = Ẽ/R∗ and SE = Ẽ/R∗
+ are Lie groupoids, respectively,

called the projective bundle groupoid, and the spherical bundle groupoid of E
their units are, respectively, PE(0) and SE.
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A.4. Linear groupoids. An easy case of VB groupoids G → Γ, relevant to
our discussion, is when the base groupoid Γ is just a space. In that case, a
natural Connes–Thom isomorphism relates the K-theory of C∗(G) with that
of the space C0(G).

In order to understand this case, we examine linear, projective and spherical
groupoids in an even simple case, when the base groupoid is just one point.
We briefly examine this situation.

Let E be a vector space over a field K and let F be a vector sub-space. Let
r, s : E → F be linear retractions of the inclusion F → E.

A.4.1. The linear groupoid. The space E is endowed with a groupoid structure
E with base F . The range and source maps are r and s and the product is
(x, y) 7→ (x ·y) = x+y−s(x) for (x, y) composable, i.e., such that s(x) = r(y).
One can easily check:
• Since r and s are linear retractions, r(x · y) = r(x) and s(x · y) = s(y).
• If (x, y, z) are composable, then (x ·y) ·z = x+y+z−(r+s)(y) = x ·(y ·z).
• The inverse of x is (r + s)(x)− x.

Remarks A.5. (i) Note that, given E and linear retractions r, s : E ⇒ F ,
the only possible linear groupoid structure on E is the one described
above.3 Indeed, for any x ∈ E, one must have x ·s(x) = x and r(x) ·x = x.
By linearity, it follows that for every composable pair (x, y) = (x, s(x)) +
(0, y − s(x)), we have x · y = x · s(x) + 0 · (y − s(x)) = x+ y − s(x).

(ii) The morphism r− s : E/F → F gives an action of E/F on F by addition.
The groupoid E is in fact the groupoid E/F ⋊F ⇒ F associated with this
action.

(iii) Given a linear groupoid structure on a vector space E, we obtain the
“dual” linear groupoid structure E∗ on the dual space E∗ given by the
subspace F⊥ = {ξ ∈ E∗; ξ|F = 0} and the two retractions r∗, s∗ : E∗ →
F⊥ with kernels (ker r)⊥ and (ker s)⊥: for ξ ∈ E∗ and x ∈ E, r∗(ξ)(x) =
ξ(x− r(x)) and, similarly, s∗(ξ)(x) = ξ(x− s(x)).

A.5.1. The projective groupoid. The multiplicative group K∗ acts on E by

groupoid automorphisms. This action is free on the restriction Ẽ = E \ (ker r∪
ker s) of the groupoid E to the subset F \ {0} of E(0) = F .

The projective groupoid is the quotient groupoid PE = Ẽ/K∗. It is de-
scribed as follows.

As a set, PE = P(E) \ (P(ker r) ∪ P(ker s)) and P(0) = P(F ) ⊂ P(E). The
source and range maps r, s : PE → P(F ) are those induced by r, s : E → F .
The product of x, y ∈ PE with s(x) = r(y) is the line x ·y = {u+v−s(u); u ∈
x, v ∈ y; s(u) = r(v)}. The inverse of x ∈ PE is (r + s− id)(x).

Remarks A.6. (i) When F is just a vector line, PE is a group. Let us
describe it:

3A linear groupoid is a groupoid G such that G(0) and G are vector spaces and all
structure maps (unit, range, source, product) are linear.
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We have a canonical morphism h : PE → K∗ defined by r(u) = h(x)s(u)
for u ∈ x. The kernel of h is P(ker(r − s)) \ P(ker r). Note that F ⊂
ker(r − s) and therefore ker(r − s) 6⊂ ker r, whence ker r ∩ ker(r − s) is
a hyperplane in ker(r − s). The group kerh is then easily seen to be
isomorphic to ker(r) ∩ ker(s). Indeed, choose a nonzero vector w in F ;
then the map which assigns to u ∈ ker(r) ∩ ker(s) the line with direction
w + u gives such an isomorphism onto kerh.

Then:
• If r = s, PE is isomorphic to the abelian group ker(r) = ker(s).
• If r 6= s, choose x such that r and s do not coincide on x and let P be

the plane F ⊕ x. The subgroup P(P ) \ {ker r ∩ P, ker s ∩ P} of PE is
isomorphic through h with K∗. It thus defines a section of h. In that
case PE is the group of dilations (ker(r) ∩ ker(s))⋊K∗.

(ii) In the general case, let d ∈ P(F ). Put Ed
d = r−1(d) ∩ s−1(d).

• The stabilizer (PE)dd is the group PEd
d = P(Ed

d) \ (P(ker r)∪P(ker s))
described above.

• The orbit of a line d is the set of r(x) for x ∈ PE such that s(x) = d.
It is therefore P(d+ r(ker s)).

(iii) The following are equivalent:
(i) (r, s) : E → F × F is onto,
(ii) r(ker s) = F ,
(iii) (r − s) : E/F → F is onto,
(iv) the groupoid PE has just one orbit.

(iv) When r = s, the groupoid PE is the product of the abelian group E/F
by the space P(F ).

When r 6= s, the groupoid Ẽ is Morita equivalent to E , since F \ {0}
meets all the orbits of E .

If K is a locally compact field and r 6= s, the smooth groupoid PE is

Morita equivalent to the groupoid crossed-product Ẽ ⋊K∗.
In all cases, when K is a locally compact field, PE is amenable.

A.6.1. The spherical groupoid. If the field is R, we may just take the quotient
by R∗

+ instead of R∗. We then obtain, similarly, the spherical groupoid SE =

S(E) \ (S(ker r) ∪ S(ker s)), where S(0)(E) = S(F ) ⊂ S(E).
The involutive automorphism u 7→ −u of E leads to a Z/2Z action, by

groupoid automorphisms on SE. Since this action is free (and proper!), it
follows that the quotient groupoid PE and the crossed product groupoid SE⋊

Z/2Z are Morita equivalent. Thus SE is also amenable.
As for the projective case, if (r, s) : E → F × F is onto, the groupoid SE

has just one orbit. The stabilizer of d ∈ S(F ) identifies with the group (ker r∩
ker s)⋊R∗

+, and therefore the groupoid SE is Morita equivalent to the group
(ker r ∩ ker s)⋊R∗

+.

A.7. A Connes–Thom isomorphism for families of linear groupoids.

We may of course perform the constructions of Section A.5.1 (with say K = R)
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when E → X is a (real) vector bundle over a locally compact space X , F is
a subbundle and r, s : E → F are linear bundle maps. We obtain, respec-
tively, families E , (PE, r, s) and (SE, r, s) of linear, projective and spherical
groupoids.

Remarks A.8. (i) A family of linear groupoids is just given by a bundle
morphism α = (r − s) : E/F → F . It is isomorphic to the semi-direct
product F ⋊α E/F .

(ii) All the groupoids defined here are amenable, since they are continuous
fields of amenable groupoids (cp. [2, Prop. 5.3.4]).

The groupoid E is a vector bundle E over a locally compact space X , E(0) is
a vector subbundle F and E is given by a linear bundle map (r−s) : E/F → F .

Proposition A.9 (A Thom–Connes isomorphism). Let E → X be a family
of linear groupoids. Then C∗(E) is KK-equivalent to C0(E). More precisely,
the index indE : KK(C0(A

∗E), C∗(E)) is invertible.

Proof. Put F = E(0) and H = E/F . The groupoid H acts on C0(F ) and
C∗(E) = C0(F )⋊H .

We use the equivariant KK-theory of Le Gall (cp. [22]) KKH(A,B).
The Thom element of the complex bundle H ⊕ H defines an invertible

element

tH ∈ KKH(C0(X), C0(H ⊕H)).

We deduce that, for every pair A,B of H algebras, the morphism

τC0(H) : KKH(A,B) → KKH(A⊗C0(X) C0(H), B ⊗C0(X) C0(H))

is an isomorphism. Its inverse is x 7→ tH ⊗ τC0(H)(x) ⊗ t−1
H .

Note that for every H-algebra A, the H-algebra C0(H) ⊗C(X) A is the
algebra of continuous sections of the form (x, ξ) 7→ ϕ(x, ξ) ∈ Ax (where x ∈ X ,
ξ ∈ Hx and Ax is the fibre of A at x ∈ X) vanishing at infinity. The fibre of
(C0(H)⊗C(X) A)x is C0(Hx, Ax) and the action of Hx on the fibre is given by
(ξ · ϕ)(η) = ξ · (ϕ(η − ξ)).

Denote by A0 the C0(X) algebra A endowed with the trivial action of H .
We have an isomorphism ofH-algebras uA : C0(H)⊗C(X)A0 ≃ C0(H)⊗C(X)A:
put (uA(ϕ))(x, ξ) = ξ · (ϕ(x, ξ)).

It follows that the restriction map KKH(A,B) to KKX(A,B) (associated
to the groupoid morphism X → H) is an isomorphism—compatible of course
with the Kasparov product.

Let vA ∈ KKH(A0, A) be the element whose image in KKX(A0, A) is
the identity. Its descent jH(vA) ∈ KK(C0(H

∗) ⊗C(X) A,A ⋊ H) is a KK-
equivalence.

The index map is given by letting G = DNC(E,F )[0,1] and putting ind =

ev1⊗ ev−1
0 , where ev0 : C

∗(G) → C∗(AG) = C∗(H)⊗C0(F ) is evaluation at 0,
which is a KK-equivalence and ev1 : C

∗(G) = C0(F × [0, 1])⋊H → C∗(E) =
C0(F ) ⋊ H is evaluation at 1. Since the evaluation F × [0, 1] → F at 1 is
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a KKX equivalence, it is also KKH invertible. It follows that [ev1] is also
invertible. �
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reading and for pointing out quite a few typos in an earlier version of the
manuscript.

List of Symbols

Groupoids, deformation and blow-up spaces.

G
r,s
−−−−⇒ G(0): A Lie groupoid with source s, range r and space of units G(0).

AG: The Lie algebroid of the groupoid G.

GA, GB , GA
B: If A and B are subsets of G(0), GA = {x ∈ G; r(x) ∈ A},

GB = {x ∈ G; s(x) ∈ B} and GB
A = GA ∩GB , page 11.

Gf , Gg, G
f
g : If f : A → G(0) and g : B → G(0) are maps, Gf = {(a, x) ∈ A×G;

r(x) = f(a)}, Gg = {(x, b) ∈ G× B; s(x) = g(b)} and Gf
g = Gf ∩ Gg, page

11.

NM
V : The normal bundle of a submanifold V of a manifold M .

DNC(Y,X): The deformation to the normal cone of the inclusion of a sub-
manifold X in a manifold Y , DNC(Y,X) = Y × R∗ ∪NY

X , page 6.

DNC+(Y,X): The restriction DNC(Y,X) \ Y × (−∞, 0), page 9.

Blup(Y,X): The blow-up of the inclusion of a submanifold X in a manifold Y ,
Blup(Y,X) = Y \X ∪ P(NY

X ), page 8.

SBlup(Y,X): The spherical blow-up of the inclusion of a submanifold X in a
manifold Y , SBlup(Y,X) = Y \X ∪ S(NY

X ), page 8.

Blupf (Y,X): The subspace of Blup(Y,X) on which Blup(f) : Blupf (Y,X) →
Blup(Y ′, X ′) can be defined for a smooth map f : Y → Y ′ (with f(X) ⊂
X ′), page 10.

DNC(G,Γ) ⇒ DNC(G(0),Γ(0)): The deformation groupoid, where Γ is a closed
Lie subgroupoid of a Lie groupoid G, page 13.

D̃NC(G,Γ), D̃NC+(G,Γ): The open subgroupoid of DNC(G,Γ) consisting of
elements whose image by DNC(r) and DNC(s) is not in Γ(0) × R and its
restriction to R+, page 13.

Blupr,s(G,Γ) ⇒ Blup(G(0),Γ(0)): The blow-up groupoid Blupr(G,Γ) ∩
Blups(G,Γ), where Γ is a closed Lie subgroupoid of a Lie groupoid G; it is

the quotient of D̃NC(G,Γ) under the zooming action, page 13.

SBlupr,s(G,Γ): The spherical version of Blupr,s(G,Γ); it is quotient of

D̃NC+(G,Γ) under the restricted zooming action, page 13.

C∗-algebras.

C∗(G): The (either maximal or reduced) C∗-algebra of the groupoid G.
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Ψ∗(G): The C∗-algebra of order ≤ 0 pseudodifferential operators on G van-
ishing at infinity on G(0).

Cf : The mapping cone of a morphism f : A → B of C∗-algebra.

ΣW (G): The quotient Ψ∗(G)/C∗(GW ).

ΣDNC+
(G,Γ), Σ

D̃NC+
(G,Γ): Respectively, the algebras Ψ∗(DNC+(G,Γ))/

C∗(G× R+∗) and Ψ∗(D̃NC+(G,Γ))/C∗(GM̊
M̊

× R∗
+), page 19.

ΣSBlup(G,Γ): The algebra Ψ∗(SBlupr,s(G,Γ))/C∗(GM̊

M̊
), page 19.

KK-elements.

[f ]: The KK-element, in KK(A,B) associated to a morphism of C∗-algebra
f : A → B.

indG: TheKK-element [ev0]
−1⊗[ev1], which belongs toKK(C0(A

∗G), C∗(G)),

associated to the deformation groupoid G
[0,1]
ad = G× (0, 1] ∪ A(G)× {0} ⇒

G(0) × [0, 1].

ĩndG: The connecting element, which belongs to KK1(C(SA∗G), C∗(G)) asso-
ciated to the short exact sequence 0→C∗(G)→Ψ∗(G)→C(SA∗G)→ 0.

∂W
G : The connecting element, which belongs to KK1(C∗(G|F ), C∗(G|W )), as-
sociated to the short exact sequence 0 → C∗(G|W ) → C∗(G) →
C∗(G|F ) → 0, whereW is a saturated open subset of G(0) and F = G(0)\W .

∂G,Γ
SBlup, ∂

G,Γ
DNC+

, ∂G,Γ

D̃NC+

: Respectively, the element ∂M̊
SBlupr,s(G,Γ), ∂

M×R
∗
+

DNC+(G,Γ)

and ∂
M̊×R

∗
+

D̃NC+(G,Γ)
, page 20.

ĩnd
W

full(G): The connecting element, which belongs to KK1(ΣW (G), C∗(GW ))
associated to the short exact sequence 0 → C∗(GW ) → Ψ∗(G) → ΣW (G) →
0.

ĩnd
G,Γ

SBlup, ĩnd
G,Γ

DNC+
, ĩnd

G,Γ

D̃NC+
: Respectively, the elements ĩnd

M̊

full(SBlupr,s(G,Γ)),

ĩnd
M×R

∗
+

full (DNC+(G,Γ)) and ĩnd
M̊×R

∗
+

full (D̃NC+(G,Γ)).
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Differ. Equ. (Basel), Birkhäuser, Basel, 2001. MR1827171

[40] M. Yamashita, A topological approach to indices of geometric operators on manifolds
with fibered boundaries, preprint, arXiv:1902.03767v3 [math.KT] (2019).

[41] V. F. Zenobi, The adiabatic groupoid and the Higson–Roe exact sequence, preprint,
arXiv:1901.05081v1 [math.KT] (2019).

[42] V. F. Zenobi, Adiabatic groupoid and secondary invariants in K-theory, Adv. Math.
347 (2019), 940–1001. MR3922452

Received October 30, 2019; accepted January 6, 2020

Claire Debord and Georges Skandalis
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