
INDEX THEORY AND GROUPOIDS

CLAIRE DEBORD AND JEAN-MARIE LESCURE

Abstract. These lecture notes are mainly devoted to a proof using groupoids and
KK-theory of Atiyah and Singer’s index theorem on compact smooth manifolds.
We first present an elementary introduction to groupoids, C∗-algebras, KK-theory
and pseudodifferential calculus on groupoids. We then show how the point of view
adopted here generalizes to the case of conical pseudo-manifolds.
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INTRODUCTION

During this course we intend to give the tools involved in our approach of index
theory for singular spaces. The global framework adopted here is Noncommutative
Geometry, with a particular focus on groupoids, C∗-algebras and bivariant K-theory.

The idea to use C∗-algebras to study spaces may be understood with the Gelfand
theorem which asserts that Hausdorff locally compact spaces are in one to one
correspondance with commutative C∗-algebras.

A starting point in Noncommutative Geometry is then to think of noncommu-
tative C∗-algebras as corresponding to a wider class of spaces, more singular than
Hausdorff locally compact spaces.



As a first consequence, given a geometrical or topological object which is badly be-
haved with respect to classical tools, Noncommutative Geometry suggests to define
a C∗-algebra encoding relevant information carried by the original object.

Refining this construction, one may try to define this C∗-algebra as the C∗-algebra
of a groupoid [46, 47]. That is, one can try to build a groupoid directly, encoding
the original object and regular enough to allow the construction of its C∗-algebra.
In the ideal case where the groupoid is smooth, one gets much more than a C∗-
algebra, which only reflects topological properties: the groupoid has a geometrical
and analytical flavor enabling many applications.

An illuminating example is the study of the space of leaves of a foliated manifold
(M,F) [10, 11, 14]. While this space M/F is usually very singular, the holonomy
groupoid of the foliation leads to a C∗-algebra C∗(M,F) replacing with great success
the algebra of continuous functions on the space M/F . Moreover, the holonomy
groupoid is smooth and characterizes the original foliation.

Once a C∗-algebra is built for the study of a given problem, one can look for
invariants attached to it. For ordinary spaces, basic invariants live in the homology
or cohomology of the space. When dealing with C∗-algebras, the suitable homology
theory is K-theory, or better the KK-theory developped by G. Kasparov [30, 31, 49]
(when a smooth subalgebra of the C∗-algebra is specified, which for instance is the
case if a smooth groupoid is available, one may also consider cyclic (co-)homology,
but this theory is beyond the scope of these notes).

There is a fundamental theory which links the previous ideas, namely index theory.
In the 60’s, M. Atiyah and I. Singer [6] showed their famous index theorem. Roughly
speaking, they showed that, given a closed manifold, one can associate to any elliptic
operator an integer called the index which can be described in two different ways:
one purely analytic and the other one purely topological. This result is stated with
the help of K-theory of spaces. Hence using the Swan-Serre theorem, it can be
formulated with K-theory of (commutative) C∗-algebras. This point, and the fact
that the index theorem can be proved in many ways using K-theoretic methods,
leads to the attempt to generalize it to more singular situations where appropriate
C∗-algebras are available. In this a way, Noncommutative Geometry is a very general
framework in which one can try to state and prove index theorems. The case of
foliations illustrates this perfectly again: elliptic operators along the leaves and
equivariant with respect to the holonomy groupoid, admit an analytical index living
in the K-theory of the C∗-algebra C∗(M,F). Moreover this index can also be
described in a topological way and this is the contents of the index theorem for
foliations of A. Connes and G. Skandalis [14].

A. Connes [13] also observed the important role played by groupoids in the defini-
tion of the index map: in both cases of closed manifolds and foliations, the analyt-
ical index map can be described with the use of a groupoid, namely a deformation
groupoid. This approach has been extented by the authors and V. Nistor [20] who
showed that the topological index of Atiyah-Singer can also be described using
deformation groupoids. This leads to a geometrical proof of the index theorem of
Atiyah-Singer; moreover this proof easily apply to a class of singular spaces (namely,
pseudomanifolds with isolated singularities).

The contents of this serie of lectures are divided into three parts. Let us briefly
describe them:



Part 1: Groupoids and their C∗-algebras.

As mentioned earlier, the first problem in the study of a singular geometrical
situation is to associate to it a mathematical object which carries the information
one wants to study and which is regular enough to be analyzed in a reasonable way.
In noncommutative geometry, answering this question amounts to looking for a good
groupoid and constructing its C∗-algebra. These points will be the subject of the
first two sections.

Part 2: KK-theory.

Once the situation is desingularized, say trough the construction of a groupoid
and its C∗-algebra, one may look for invariants which capture the basic properties.
Roughly speaking, the KK-theory groups are convenient groups of invariants for
C∗-algebras and KK-theory comes with powerful tools to carry out computations.
Kasparov’s bivariant K-theory will be the main topic of sections 3 to 5.

Part 3: Index theorems.

We first briefly explain in section 6 the pseudo-differential calculus on groupoids.
Then in Section 7, we give a geometrical proof of the Atiyah Singer index theorem for
closed manifolds using the language of groupoids and KK-theory. Finally we show
in the last section how these results can be extended to conical pseudo-manifolds.

Prerequists. The reader interested in this course should have background on
several domains. Familiarity with basic differential geometry (manifolds, tangent
spaces) is needed. The notions of fibre bundle, of K-theory for locally compact
spaces should be known. Basic functional analysis like analysis of linear operators
on Hilbert spaces should be familiar. The knowledge of pseudodifferential calculus
(basic definitions, ellipticity) is necessary. Altough it is not absolutely necessary,
some familiarity with C∗-algebras is preferable.

Acknowledgments We would like to thank Georges Skandalis who allowed us
to use several of his works to write up this course, in particular the manuscript of
one of his courses [48, 49]. We would like to warmly thank Jorge Plazas for having
typewritten a part of this course during the summer school and Jérôme Chabert
who carefully read these notes and corrected several mistakes. We are grateful to all
the organizers for their kind invitation to the extremely stimulating summer school
held at Villa de Leyva in July 2007 and we particulary thank Sylvie Paycha both as
an organizer and for her valuable comments on this document.



GROUPOIDS AND THEIR C∗-ALGEBRAS

This first part will be devoted to the notion of groupoid, specifically that of
differentiable groupoid. We provide definitions and consider standard examples.
The interested reader may look for example at [35, 12]. We then recall the definition
of C∗-algebras and see how one can associate a C∗-algebra to a groupoid. The theory
of C∗-algebra of groupoid was initiated by Jean Renault [46]. A really good reference
for the construction of groupoid C∗-algebras is [32] from which the end of this section
is inspired.

1. Groupoids

1.1. Definitions and basic examples of groupoids.

Definition 1.1. Let G and G(0) be two sets. A structure of groupoid on G over G(0)

is given by the following homomorphisms:

◦ An injective map u : G(0) → G. The map u is called the unit map. We often
identify G(0) with its image in G. The set G(0) is called the set of units of
the groupoid.
◦ Two surjective maps: r, s : G → G(0), which are respectively the range and

source map. They are equal to identity on the space of units.
◦ An involution:

i : G → G
γ 7→ γ−1

called the inverse map. It satisfies: s ◦ i = r.
◦ A map

p : G(2) → G
(γ1, γ2) 7→ γ1 · γ2

called the product, where the set

G(2) := {(γ1, γ2) ∈ G×G | s(γ1) = r(γ2)}

is the set of composable pairs. Moreover for (γ1, γ2) ∈ G(2) we have r(γ1·γ2) =
r(γ1) and s(γ1 · γ2) = s(γ2).

The following properties must be fulfilled:

◦ The product is associative: for any γ1, γ2, γ3 in G such that s(γ1) = r(γ2)
and s(γ2) = r(γ3) the following equality holds

(γ1 · γ2) · γ3 = γ1 · (γ2 · γ3) .

◦ For any γ in G: r(γ) · γ = γ · s(γ) = γ and γ · γ−1 = r(γ).

A groupoid structure on G over G(0) is usually denoted by G ⇒ G(0), where the
arrows stand for the source and target maps.

We will often use the following notations:

GA := s−1(A) , GB = r−1(B) and GB
A = GA ∩GB .

If x belongs to G(0), the s-fiber (resp. r-fiber) of G over x is Gx = s−1(x) (resp.
Gx = r−1(x)).



The groupoid is topological when G and G(0) are topological spaces with G(0) Haus-
dorff, the structural homomorphisms are continuous and i is an homeomorphism.
We will often require that our topological groupoids be locally compact. This means
that G⇒ G(0) is a topological groupoid, such that G is second countable, each point
γ in G has a compact (Hausdorff) neighborhood, and the map s is open. In this
situation the map r is open and the s-fibers of G are Hausdorff.

The groupoid is smooth when G and G(0) are second countable smooth manifolds
with G(0) Hausdorff, the structural homomorphisms are smooth, u is an embedding,
s is a submersion and i is a diffeomorphism.

When G ⇒ G(0) is at least topological, we say that G is s-connected when for any
x ∈ G(0), the s-fiber of G over x is connected. The s-connected component of a
groupoid G is ∪x∈G(0)CGx where CGx is the connected component of the s-fiber Gx

which contains the unit u(x).

Examples

1. A space X is a groupoid over itself with s = r = u = Id.

2. A group G ⇒ {e} is a groupoid over its unit e, with the usual product and
inverse map.

3. A group bundle : π : E → X is a groupoid E ⇒ X with r = s = π and algebraic
operations given by the group structure of each fiber Ex, x ∈ X.

4. If R is an equivalence relation on a space X, then the graph of R:

GR := {(x, y) ∈ X ×X | xRy}

admits a structure of groupoid over X, which is given by:

u(x) = (x, x) , s(x, y) = y , r(x, y) = x , (x, y)−1 = (y, x) , (x, y) · (y, z) = (x, z)

for x, y, z in X.

When xRy for any x, y in X, GR = X ×X ⇒ X is called the pair groupoid.

5. If G is a group acting on a space X, the groupoid of the action is G ×X ⇒ X
with the following structural homomorphisms

u(x) = (e, x) , s(g, x) = x , r(g, x) = g · x ,
(g, x)−1 = (g−1, g · x) , (h, g · x) · (g, x) = (hg, x) ,

for x in X and g, h in G.

6. Let X be a topological space the homotopy groupoid of X is

Π(X) := {c̄ | c : [0, 1]→ X a continuous path}⇒ X

where c̄ denotes the homotopy class (with fixed endpoints) of c. We let

u(x) = cx where cx is the constant path equal to x, s(c) = c(0), r(c) = c(1)

c−1 = c−1 where c−1(t) = c(1− t),
c1 · c2 = c1 · c2 where c1 · c2(t) = c2(2t) for t ∈ [0, 1

2 ] and c1 · c2(t) = c1(2t− 1) for t ∈ [1
2 , 1] .

When X is a smooth manifold of dimension n, Π(X) is naturally endowed with a
smooth structure (of dimension 2n). A neighborhood of c̄ is of the form {c̄1c̄c̄0 | c1(0) =
c(1), c(0) = c0(1), Imci ⊂ Ui i = 0, 1} where Ui is a given neighborhood of c(i) in X.



1.2. Homomorphisms and Morita equivalences.

Homomorphisms
Let G ⇒ G(0) be a groupoid of source sG and range rG and H ⇒ H(0) be a groupoid of
source sH and range rH . A groupoid homomorphism from G to H is given by two maps :

f : G→ H and f (0) : G(0) → H(0)

such that

◦ rH ◦ f = f (0) ◦ rG,
◦ f(γ)−1 = f(γ−1) for any γ ∈ G,
◦ f(γ1 · γ2) = f(γ1) · f(γ2) for γ1, γ2 in G such that sG(γ1) = rG(γ2).

We say that f is a homomorphism over f (0). When G(0) = H(0) and f (0) = Id we say that
f is a homomorphism over the identity.

The homomorphism f is an isomorphism when the maps f , f (0) are bijections and f−1 :
H → G is a homomorphism over (f (0))−1.

As usual, when dealing with topological groupoids we require that f to be continuous and
when dealing with smooth groupoids, that f be smooth.

Morita equivalence
In most situations, the right notion of “isomorphism of locally compact groupoids” is the
weaker notion of Morita equivalence.

Definition 1.2. Two locally compact groupoids G ⇒ G(0) and H ⇒ H(0) are Morita
equivalent if there exists a locally compact groupoid P ⇒ G(0) tH(0) such that

◦ the restrictions of P over G(0) and H(0) are respectively G and H:

PG
(0)

G(0) = G and PH
(0)

H(0) = H

◦ for any γ ∈ P there exists η in PH
(0)

G(0) ∪PG
(0)

H(0) such that (γ, η) is a composable pair

(ie s(γ) = r(η)).

Examples 1. Let f : G→ H be an isomorphism of locally compact groupoid. Then the
following groupoid defines a Morita equivalence between H and G:

P = G t G̃ t G̃−1 tH ⇒ G(0) tH(0)

where with the obvious notations we have

G = G̃ = G̃−1

sP =


sG on G

sH ◦ f on G̃

rG on G̃−1

sH on H

, rP =

 rG on G t G̃
sH ◦ f on G̃−1

rH on H

, uP =

{
uG on G(0)

uH on H(0)

iP (γ) =


iG(γ) on G
iH(γ) on H

γ ∈ G̃−1 on G̃

γ ∈ G̃ on G̃−1

, pP (γ1, γ2) =



pG(γ1, γ2) on G(2)

pH(γ1, γ2) on H(2)

pG(γ1, γ2) ∈ G̃ for γ1 ∈ G, γ2 ∈ G̃
pG(γ1, f

−1(γ2)) ∈ G̃ for γ1 ∈ G̃, γ2 ∈ H
pG(γ1, γ2) ∈ G for γ1 ∈ G̃, γ2 ∈ G̃−1

f ◦ pG(γ1, γ2) ∈ H for γ1 ∈ G̃, γ2 ∈ G̃−1

2. Suppose that G ⇒ G(0) is a locally compact groupoid and ϕ : X → G(0) is an
open surjective map, where X is a locally compact space. The pull back groupoid is the
groupoid:

∗ϕ∗(G) ⇒ X



where
∗ϕ∗(G) = {(x, γ, y) ∈ X ×G×X | ϕ(x) = r(γ) and ϕ(y) = s(γ)}

with s(x, γ, y) = y, r(x, γ, y) = x, (x, γ1, y) · (y, γ2, z) = (x, γ1 · γ2, z) and (x, γ, y)−1 =
(y, γ−1, x).
One can show that this endows ∗ϕ∗(G) with a structure of locally compact groupoid.
Moreover the groupoids G and ∗ϕ∗(G) are Morita equivalent, but not isomorphic in gen-
eral.

To prove this last point, one can put a structure of locally compact groupoid on P =
GtX×rGtG×sXt∗ϕ∗(G) over XtG(0) where X×rG = {(x, γ) ∈ X×G | ϕ(x) = r(γ)}
and G×s X = {(γ, x) ∈ G×X | ϕ(x) = s(γ)}.

1.3. The orbits of a groupoid.
Suppose that G⇒ G(0) is a groupoid of source s and range r.

Definition 1.3. The orbit of G passing trough x is the following subset of G(0):

Orx = r(Gx) = s(Gx) .

We let G(0)/G or Or(G) be the space of orbits.

The isotropy group of G at x is Gxx, which is naturally endowed with a group structure
with x as unit. Notice that multiplication induces a free left (resp. right) action of Gxx on
Gx (resp. Gx). Moreover the orbits space of this action is precisely Orx and the restriction
s : Gx → Orx is the quotient map.

Examples and remarks 1. In Example 4. above, the orbits of GR correspond exactly
to the orbits of the equivalence relation R. In Example 5. above the orbits of the groupoid
of the action are the orbits of the action.
2. The second assertion in the definition of Morita equivalence precisely means that both
G(0) and H(0) meet all the orbits of P . Moreover one can show that the map

Or(G) → Or(H)

Or(G)x 7→ Or(P )x ∩H(0)

is a bijection. In other word, when two groupoids are Morita equivalent, they have the
same orbits space.

Groupoids are often used in Noncommutative Geometry for the study of geometrical sin-
gular situations. In many geometrical situations, the topological space which arises is
strongly non Hausdorff and the standard tools do not apply. Nevertheless, it is sometimes
possible to associate to such a space X a relevant C∗-algebra as a substitute for C0(X).

Usually we first associate a groupoid G ⇒ G(0) such that its space of orbits G(0)/G is
(equivalent to) X. If the groupoid is regular enough (smooth for example) then we can
associate natural C∗-algebras to G. This point will be discussed later.
In other words we desingularize a singular space by viewing it as coming from the action of
a nice groupoid on its space of units. To illustrate this point let us consider two examples.

1.4. Groupoids associated to a foliation. Let M be a smooth manifold.

Definition 1.4. A (regular) smooth foliation F on M of dimension p is a partition {Fi}I
of M where each Fi is an immersed sub-manifold of dimension p called a leaf. Moreover
the manifold M admits charts of the following type:

ϕ : U → Rp × Rq

where U is open in M and such that for any connected component P of Fi ∩ U where
i ∈ I, there is a t ∈ Rq such that ϕ(P ) = Rp × {t}.



In this situation the tangent space to the foliation, TF := ∪ITFi, is a sub-bundle of TM
stable under Lie bracket.

The space of leaves M/F is the quotient of M by the equivalence relation: being on the
same leaf.

A typical example. Take M = P × T where P and T are connected smooth manifolds
with the partition into leaves given by {P ×{t}}t∈T . Every foliation is locally of this type.

The space of leaves of a foliation is often difficult to study, as it appears in the following
two examples:

Examples 1. Let F̃a be the foliation on the plane R2 by lines {y = ax + t}t∈R where a
belongs to R. Take the torus T = R2/Z2 to be the quotient of R2 by translations of Z2.

We denote by Fa the foliation induced by F̃a on T . When a is rational the space of leaves
is a circle but when a is irrational it is topologically equivalent to a point (ie: each point
is in any neighborhood of any other point).
2. Let C \ {(0)} be foliated by:

{St}t∈]0,1] ∪ {Dt}t∈]0,2π]

where St = {z ∈ C | |z| = t} is the circle of radius t and Dt = {z = ei(x+t)+x | x ∈ R+
∗ }.

The holonomy groupoid is a smooth groupoid which desingularizes the space of leaves of
a foliation. Precisely, if F is a smooth foliation on a manifold M its holonomy groupoid is
the smallest s-connected smooth groupoid G ⇒ M whose orbits are precisely the leaves
of the foliation.
Here, smallest means that if H ⇒M is another s-connected smooth groupoid whose orbits
are the leaves of the foliation then there is a surjective groupoid homomorphism : H → G
over identity.

The first naive attempt to define such a groupoid is to consider the graph of the equivalence
relation being on the same leaf. This does not work: you get a groupoid but it may be not
smooth. This fact can be observed on example 2. below. Another idea consists in looking
at the homotopy groupoid. Let Π(F) be the set of homotopy classes of smooth paths lying
on leaves of the foliation. It is naturally endowed with a groupoid structure similarly
to the homotopy groupoid of Section 1. Example 6. Such a groupoid can be naturally
equipped with a smooth structure (of dimension 2p+ q) and the holonomy groupoid is a
quotient of this homotopy groupoid. In particular, when the leaves have no homotopy, the
holonomy groupoid is the graph of the equivalence relation of being in the same leaf.

1.5. The noncommutative tangent space of a conical pseudomanifold. It may
happen that the underlying topological space which is under study is a nice compact
space which is “almost” smooth. This is the case of pseudo-manifolds [24, 36, 53], for a
review on the subject see [9, 28]. In such a situation we can desingularize the tangent
space [19, 18]. Let us see how this works in the case of a conical pseudomanifold with one
singularity.



Let M be an m-dimensional compact manifold with a compact boundary L. We attach
to L the cone cL = L × [0, 1]/L × {0}, using the obvious map L × {1} → L ⊂ ∂M . The
new space X = cL ∪M is a compact pseudomanifold with a singularity [24]. In general,
there is no manifold structure around the vertex c of the cone.

We will use the following notations: X◦ = X \{c} is the regular part, X+ denotes M \L =
X \ cL, X+ = M its closure in X and X− = L×]0, 1[. If y is a point of the cylindrical
part of X \ {c}, we write y = (yL, ky) where yL ∈ L and ky ∈]0, 1] are the tangential and
radial coordinates. The map y → ky is extended into a smooth defining function for the
boundary of M . In particular, k−1(1) = L = ∂M and k(M) ⊂ [1,+∞[.

cL

L

X

c M

Let us consider TX+, the restriction to X+ of the tangent bundle of X◦. As a C∞ vector
bundle, it is a smooth groupoid with unit space X+. We define the groupoid T SX as the
disjoint union:

T SX = X− ×X− ∪ TX+
s
⇒
r
X◦,

where X− ×X− ⇒ X− is the pair groupoid.

In order to endow T SX with a smooth structure, compatible with the usual smooth struc-
ture on X− ×X− and on TX+, we have to take care of what happens around points of
TX+|

∂X+ .

Let τ be a smooth positive function on R such that τ−1({0}) = [1,+∞[. We let τ̃ be the
smooth map from X◦ to R+ given by τ̃(y) = τ ◦ k(y).

Let (U, φ) be a local chart for X◦ around z ∈ ∂X+. Setting U− = U ∩ X− and

U+ = U ∩X+, we define a local chart of T SX by:

φ̃ : U− × U− ∪ TU+ −→ Rm × Rm

φ̃(x, y) = (φ(x),
φ(y)− φ(x)

τ̃(x)
) if (x, y) ∈ U− × U− and (1.1)

φ̃(x, V ) = (φ(x), (φ)∗(x, V )) elsewhere.

We define in this way a structure of smooth groupoid on T SX. Note that at the topological
level, the space of orbits of T SX is equivalent to X: there is a canonical isomorphism
between the algebras C(X) and C(X◦/T SX).

The smooth groupoid T SX ⇒ X◦ is called the noncommutative tangent space of X.

1.6. Lie Theory for smooth groupoids. Let us go into the more specific world of
smooth groupoids. Similarly to Lie groups which admit Lie algebras, any smooth groupoid
has a Lie algebroid [43, 42].

Definition 1.5. A Lie algebroid A = (p : A → TM, [ , ]A) on a smooth manifold M is
a vector bundle A → M equipped with a bracket [ , ]A : Γ(A) × Γ(A) → Γ(A) on the
module of sections of A together with a homomorphism of fiber bundle p : A → TM from
A to the tangent bundle TM of M called the anchor, such that:

i) the bracket [ , ]A is R-bilinear, antisymmetric and satisfies the Jacobi identity,



ii) [X, fY ]A = f [X,Y ]A + p(X)(f)Y for all X, Y ∈ Γ(A) and f a smooth function
of M ,

iii) p([X,Y ]A) = [p(X), p(Y )] for all X, Y ∈ Γ(A).

Each Lie groupoid admits a Lie algebroid. Let us recall this construction.

Let G
s
⇒
r
G(0) be a Lie groupoid. We denote by T sG the subbundle of TG of s-vertical

tangent vectors. In other words, T sG is the kernel of the differential Ts of s.

For any γ in G let Rγ : Gr(γ) → Gs(γ) be the right multiplication by γ. A tangent vector
field Z on G is right invariant if it satisfies:

– Z is s-vertical: Ts(Z) = 0.

– For all (γ1, γ2) in G(2), Z(γ1 · γ2) = TRγ2(Z(γ1)).

Note that if Z is a right invariant vector field and ht its flow then for any t, the local
diffeomorphism ht is a local left translation of G that is ht(γ1 · γ2) = ht(γ1) · γ2 when it
makes sense.

The Lie algebroid AG of G is defined as follows:

– The fiber bundle AG → G(0) is the restriction of T sG to G(0). In other words:
AG = ∪x∈G(0)TxGx is the union of the tangent spaces to the s-fiber at the corre-
sponding unit.

– The anchor p : AG→ TG(0) is the restriction of the differential Tr of r to AG.
– If Y : U → AG is a local section of AG, where U is an open subset of G(0), we

define the local right invariant vector field ZY associated with Y by

ZY (γ) = TRγ(Y (r(γ))) for all γ ∈ GU .

The Lie bracket is then defined by:

[ , ] : Γ(AG)× Γ(AG) −→ Γ(AG)
(Y1, Y2) 7→ [ZY1 , ZY2 ]G(0)

where [ZY1 , ZY2 ] denotes the s-vertical vector field obtained with the usual bracket

and [ZY1 , ZY2 ]G(0) is the restriction of [ZY1 , ZY2 ] to G(0).

Example If Π(F) is the homotopy groupoid (or the holonomy groupoid) of a smooth
foliation, its Lie algebroid is the tangent space TF to the foliation. The anchor is the
inclusion. In particular the Lie algebroid of the pair groupoid M × M on a smooth
manifold M is TM , the anchor being the identity map.

Lie theory for groupoids is much trickier than for groups. For a long time people thought
that, as for Lie algebras, every Lie algebroid integrates into a Lie groupoid [44]. In fact
this assertion, named Lie’s third theorem for Lie algebroids is false. This was pointed
out by a counter example given by P. Molino and R. Almeida in [1]. Since then, a lot of
work has been done around this problem. A few years ago M. Crainic and R.L. Fernandes
[15] completely solved this question by giving a necessary and sufficient condition for the
integrability of Lie algebroids.

1.7. Examples of groupoids involved in index theory. Index theory is a part of
non commutative geometry where groupoids may play a crucial role. Index theory will be
discussed later in this course but we want to present here some of the groupoids which
will arise.

Definition 1.6. A smooth groupoid G is called a deformation groupoid if:

G = G1 × {0} ∪G2×]0, 1] ⇒ G(0) = M × [0, 1] ,



where G1 and G2 are smooth groupoids with unit space M . That is, G is obtained by
gluing G2×]0, 1] ⇒ M×]0, 1] which is the groupoid G2 parametrized by ]0, 1] with the
groupoid G1 × {0}⇒M × {0}.

Example Let G be a smooth groupoid and let AG be its Lie algebroid. The adiabatic
groupoid of G [13, 38, 39] is a deformation of G on its Lie algebroid:

Gad = AG× {0} ∪G×]0, 1] ⇒ G(0) × [0, 1],

where One can put a natural smooth structure on Gad. Here, the vector bundle π : AG→
G(0) is considered as a groupoid in the obvious way.

The tangent groupoid
A special example of adiabatic groupoid is the tangent groupoid of A. Connes [13]. Consider
the pair groupoid M ×M on a smooth manifold M . We saw that its Lie algebroid is TM .
In this situation, the adiabatic groupoid is called the tangent groupoid and is given by:

GtM := TM × {0} tM ×M×]0, 1] ⇒M × [0, 1] .

The Lie algebroid is the bundle A(GtM ) := TM × [0, 1] → M × [0, 1] with anchor p :
(x, V, t) ∈ TM × [0, 1] 7→ (x, tV, t, 0) ∈ TM × T [0, 1].
Choose a riemannian metric on M . The smooth structure on GtM is such that the following
map :

U ⊂ TM × [0, 1] → GtM
(x, V, t) 7→

{
(x, V, 0) if t = 0
(x, expx(−tV ), t) elsewhere

is a smooth diffeomorphism on its range, where U is an open neighborhood of TM × {0}.
The previous construction of the tangent groupoid of a compact manifold generalizes to
the case of conical manifold. When X is a conical manifold, its tangent groupoid is
a deformation of the pair groupoid over X◦ into the groupoid T SX. This deformation
has a nice description at the level of Lie algebroids. Indeed, with the notation of 1.5,
the Lie algebroid of GtX is the (unique) Lie algebroid given by the fiber bundle AGtX =

[0, 1]×A(T SX) = [0, 1]× TX◦ → [0, 1]×X◦, with anchor map

pGtX : AGtX = [0, 1]× TX◦ −→ T ([0, 1]×X◦) = T [0, 1]× TX◦
(λ, x, V ) 7→ (λ, 0, x, (τ̃(x) + λ)V ) .

Such a Lie algebroid is almost injective, thus it is integrable [15, 17].
Moreover, it integrates into the tangent groupoid which is defined by:

GtX = X◦ ×X◦×]0, 1] ∪ T SX × {0}⇒X◦ × [0, 1].

Once again one can equip such a groupoid with a smooth structure compatible with the
usual one on each piece: X◦ ×X◦×]0, 1] and T SX × {0} [19].

The Thom groupoid
Another important deformation groupoid for our purpose is the Thom groupoid [20].
Let π : E → X be a conical vector bundle. This means that X is a conical manifolds (or
a smooth manifold without vertices) and we have a smooth vector bundle π◦ : E◦ → X◦

which restriction to X− = L×]0, 1[ is equal to EL×]0, 1[ where EL → L is a smooth vector
bundle. If E+ → X+ denotes the bundle E◦ restricted to X+, then E is the conical
manifold: E = cEL ∪ E+.

When X is a smooth manifold (with no conical point), this boils down to the usual notion
of smooth vector bundle.

From the definition, π restricts to a smooth vector bundle map π◦ : E◦ → X◦. We let
π[0,1] = π◦ × id : E◦ × [0, 1]→ X◦ × [0, 1].



We consider the tangent groupoids GtX ⇒ X◦ × [0, 1] for X and GtE ⇒ E◦ × [0, 1] for
E equipped with a smooth structure constructed using the same gluing function τ (in
particular τ̃X ◦ π = τ̃E). We denote by ∗π∗[0,1](G

t
X) ⇒ E◦ × [0, 1] the pull back of GtX by

π[0,1].

We first associate to the conical vector bundle E a deformation groupoid T tE from ∗π∗[0,1](G
t
X)

to GtE . More precisely, we define:

T tE := GtE × {0} t ∗π∗[0,1](G
t
X)×]0, 1] ⇒ E◦ × [0, 1]× [0, 1].

Once again, one can equip T tE with a smooth structure [20] and the restriction of T tE to
E◦ × {0} × [0, 1] leads to a smooth groupoid:

HE = T SE × {0} t ∗π∗(T SX)×]0, 1] ⇒ E◦ × [0, 1],

called a Thom groupoid associated to the conical vector bundle E over X.

The following example explains what these constructions become if there is no singularity.

Example Suppose that p : E → M is a smooth vector bundle over the smooth manifold
M . Then we have the usual tangent groupoids GtE = TE×{0}tE×E×]0, 1] ⇒ E× [0, 1]
and GtM = TM × {0} tM ×M×]0, 1] ⇒M × [0, 1]. In this example the groupoid T tE will
be given by

T tE = TE × {0} × {0} t ∗p∗(TM)× {0}×]0, 1] t E × E×]0, 1]× [0, 1] ⇒ E × [0, 1]× [0, 1]

and is smooth. Similarly, the Thom groupoid will be given by: HE := TE × {0} t
∗p∗(TM)×]0, 1] ⇒ E × [0, 1].

1.8. Haar systems. A locally compact groupoid G⇒ G(0) can be viewed as a family of
locally compact spaces:

Gx = {γ ∈ G | s(γ) = x}
parametrized by x ∈ G(0). Moreover, right translations act on these spaces. Precisely, to
any γ ∈ G one associates the homeomorphism

Rγ : Gy → Gx
η 7→ η · γ .

This picture enables to define the right analogue of Haar measure on locally compact
groups to locally compact groupoids, namely Haar systems. The following definition is
due to J. Renault [46].

Definition 1.7. A Haar system on G is a collection ν = {νx}x∈G(0) of positive regular
Borel measure on G satisfying the following conditions:

(1) Support: For every x ∈ G(0), the support of νx is contained in Gx.

(2) Invariance: For any γ ∈ G, the right-translation operator Rγ : Gy → Gx is
measure-preserving. That is, for all f ∈ Cc(G):∫

f(η)dνy(η) =

∫
f(η · γ)dνx(η) .

(3) Continuity: For all f ∈ Cc(G), the map

G(0) → C
x 7→

∫
f(γ)dνx(γ)

is continuous.



In contrast to the case of locally compact groups, Haar systems on groupoids may not
exist. Moreover, when such a Haar system exists , it may not be unique. In the special
case of a smooth groupoid, a Haar system always exists [40, 45] and any two Haar systems

{νx} and {µx} differ by a continuous and positive function f on G(0): νx = f(x)µx for all

x ∈ G(0).

Example: When the source and range maps are local homeomorphisms, a possible choice
for νx is the counting measure on Gx.

2. C∗-algebras of groupoids

This second part starts with the definition of a C∗-algebra together with some results.
Then we construct the maximal and minimal C∗-algebras associated to a groupoid and
compute explicit examples.

2.1. C∗-algebras - Basic definitions. In this chapter we introduce the terminology and
give some examples and properties of C∗-algebras. We refer the reader to [21, 41, 3] for a
more complete overview on this subject.

Definition 2.1. A C∗-algebra A is a complex Banach algebra with an involution x 7→ x∗

such that:

(1) (λx+ µy)∗ = λ̄x∗ + µ̄y∗ for λ, µ ∈ C and x, y ∈ A,

(2) (xy)∗ = y∗x∗ for x, y ∈ A, and

(3) ‖x∗x‖ = ‖x‖2 for x ∈ A.

Note that it follows from the definition that ∗ is isometric.

The element x in A is self-adjoint if x∗ = x, normal if xx∗ = x∗x. When 1 belongs to A,
x is unitary if xx∗ = x∗x = 1.
Given two C∗-algebras A,B, a homomorphism respecting the involution is a called a ∗-
homomorphism.

Examples 1. Let H be an Hilbert space. The algebra L(H) of all continuous linear
transformations of H is a C∗-algebra. The involution of L(H) is given by the usual
adjunction of bounded linear operators.
2. Let K(H) be the norm closure of finite rank operators on H. It is the C∗-algebra of
compact operators on H.
3. The algebra Mn(C) is a C∗-algebra. It is a special example of the previous kind, when
dim(H) = n.
4. Let X be a locally compact, Hausdorff, topological space. The algebra C0(X) of
continuous functions vanishing at∞, endowed with the supremum norm and the involution
f 7→ f̄ is a commutative C∗-algebra. When X is compact, 1 belongs to C(X) = C0(X).

Conversely, the Gelfand’d theorem asserts that every commutative C∗-algebra A is iso-
morphic to C0(X) for some locally compact space X (and it is compact precisely when
A is unital). Precisely, a character X of A is a continuous homomorphism of algebras
X : A → C. The set X of characters of A, called the spectrum of A, can be endowed
with a locally compact space topology. The Gelfand transform F : A → C0(X) given by
F(x)(X ) = X (x) is the desired ∗-isomorphism.

Let A be a C∗-algebra and H a Hilbert space.

Definition 2.2. A ∗-representation of A in H is a ∗-homomorphism π : A→ L(H). The
representation is faithful if π is injective.



Theorem 2.3. (Gelfand-Naimark) If A is a C∗-algebra, there exists a Hilbert space H
and a faithful representation π : A→ L(H).

In other words, any C∗-algebra is isomorphic to a norm-closed involutive subalgebra of
L(H). Moreover, when A is separable, H can be taken to be the (unique up to isometry)
separable Hilbert space of infinite dimension.

Enveloping algebra
Given a Banach ∗-algebra A, consider the family πα of all continuous ∗-representations for
A. The Hausdorff completion of A for the seminorm ‖x‖ = supα(‖πα(x)‖) is a C∗-algebra
called the enveloping C∗-algebra of A.

Units
A C∗-algebra may or may not have a unit, but it can always be embedded into a unital
C∗-algebra Ã:

Ã := {x+ λ | x ∈ A, λ ∈ C}
with the obvious product and involution. The norm on Ã is given for all x ∈ Ã by:
‖x‖∼ = Sup{‖xy‖, y ∈ A ; ‖y‖ = 1}. On A we have ‖ · ‖ = ‖ · ‖∼. The algebra A is a

closed two sided ideal in Ã and Ã/A = C.

Functional calculus
Let A be a C∗-algebra. If x belongs to A, the spectrum of x in A is the compact set:

Sp(x) = {λ ∈ C | x− λ is not invertible in Ã}

The spectral radius of X is the number:

ν(x) = sup{|λ| ; λ ∈ Sp(x)} .

We have:
Sp(x) ⊂ R when x is self-adjoint (x∗ = x),

Sp(x) ⊂ R+ when x is positive (x = y∗y with y ∈ A),
Sp(x) ⊂ U(1) when x is unitary (x∗x = xx∗ = 1) .

When x is normal: x∗x = xx∗, these conditions on the spectrum are equivalences.

When x is normal, ν(x) = ‖x‖. From these, one infers that for any polynomial P ∈ C[x],
‖P (x)‖ = sup{P (t) | t ∈ Sp(x)} (using that Sp(P (x)) = P (Sp(x))). We can then define
f(x) ∈ A for every continuous function f : Sp(x)→ C. Precisely, according to Weierstrass’
theorem, there is a sequence (Pn) of polynomials which converges uniformly to f on Sp(x).
We simply define f(x) = limPn(x).

2.2. The reduced and maximal C∗-algebras of a groupoid. We restrict our study
to the case of Hausdorff locally compact groupoids. For the non Hausdorff case, which is
also important and not exceptional, in particular when dealing with foliations, we refer
the reader to [13, 11, 32] .

From now on, G ⇒ G(0) is a locally compact Hausdorff groupoid equipped with a fixed
Haar system ν = {νx}x∈G(0) . We let Cc(G) be the space of complex valued functions with
compact support on G. It is provided with a structure of involutive algebra as follows. If
f and g belong to Cc(G) we define
the involution by

for γ ∈ G, f∗(γ) = f(γ−1),

the convolution product by

for γ ∈ G, f ∗ g(γ) =

∫
η∈Gx

f(γη−1)g(η)dνx(η),



where x = s(γ). The 1-norm on Cc(G) is defined by

‖f‖1 = sup
x∈G(0)

max

(∫
Gx

|f(γ)|dνx(γ),

∫
Gx

|f(γ−1)|dνx(γ)

)
.

The groupoid full C∗-algebra C∗(G, ν) is defined to be the enveloping C∗-algebra of the

Banach ∗-algebra Cc(G)
‖·‖1

obtained by completion of Cc(G) with respect to the norm
‖ · ‖1.

Given x in G(0), f in Cc(G), ξ in L2(Gx, νx) and γ in Gx, we set

πx(f)(ξ)(γ) =

∫
η∈Gx

f(γη−1)ξ(η)dνx(η) .

One can show that πx defines a ∗-representation of Cc(G) on the Hilbert space L2(Gx, νx).
Moreover for any f ∈ Cc(G), the inequality ‖πx(f)‖ ≤ ‖f‖1 holds. The reduced norm on
Cc(G) is

‖f‖r = sup
x∈G(0)

{‖πx(f)‖}

which defines a C∗-norm. The reduced C∗-algebra Cr(G, ν) is defined to be the C∗-algebra
obtained by completion of A with respect to ‖ · ‖r.
When G is smooth, the reduced and maximal C∗-algebras of the groupoid G do not depend
up to isomorphism on the choice of the Haar system ν. In the general case they do not
depend on ν up to Morita equivalence [46]. When there is no ambiguity on the Haar
system, we write C∗(G) and C∗r (G) for the maximal and reduced C∗-algebras.

The identity map on Cc(G) induces a surjective homomorphism from C∗(G) to C∗r (G).
Thus C∗r (G) is a quotient of C∗(G).
For a quite large class of groupoids, amenable groupoids [2], the reduced and maximal
C∗-algebras are equal. This will be the case for all the groupoids we will meet in the last
part of this course devoted to index theory.

Examples 1. When X ⇒ X is a locally compact space, C∗(X) = C∗r (X) = C0(X).
2. When G ⇒ e is a group and ν a Haar measure on G, we recover the usual notion of
reduced and maximal C∗-algebras of a group.
3. Let M be a smooth manifold and TM ⇒ M the tangent bundle. Let us equip the
vector bundle TM with a euclidean structure. The Fourier transform:

f ∈ Cc(TM), (x,w) ∈ T ∗M, f̂(x,w) =
1

(2π)n/2

∫
X∈TxM

e−iw(X)f(X)dX

gives rise to an isomorphism between C∗(TM) = C∗r (TM) and C0(T ∗M). Here, n denotes
the dimension of M and T ∗M the cotangent bundle of M .
4. Let X be a locally compact space, with µ a measure on X and consider the pair
groupoid X×X ⇒ X. If f, g belongs to Cc(X×X), the convolution product is given by:

f ∗ g(x, y) =

∫
z∈X

f(x, z)g(z, y)dµ(z)

and a representation of Cc(X ×X) by

π : Cc(X ×X)→ L(L2(X,µ)); π(f)(ξ)(x) =

∫
z∈X

f(x, z)ξ(z)dµ(z)

when f ∈ Cc(X ×X), ξ ∈ L2(X,µ) and x ∈ X.
It turns out that C∗(X ×X) = C∗r (X ×X) ' K(L2(X,µ)).
5. Let M be a compact smooth manifold and GtM ⇒ M × [0, 1] its tangent groupoid. In



this situation C∗(GtM ) = C∗r (GtM ) is a continuous field (At)t∈[0,1] of C∗-algebras ([21]) with

A0 ' C0(T ∗M) a commutative C∗-algebra and for any t ∈]0, 1], At ' K(L2(M)) [13].

In the sequel we will need the two following properties of C∗-algebras of groupoids.

Properties 1. Let G1 and G2 be two locally compact groupoids equipped with Haar
systems and suppose for instance that G1 is amenable. Then according to [2], C∗(G1) =
C∗r (G1) is nuclear - which implies that for any C∗-algebra B there is only one tensor
product C∗-algebra C∗(G1)⊗B. The groupoid G1 ×G2 is locally compact and

C∗(G1 ×G2) ' C∗(G1)⊗ C∗(G2) and C∗r (G1 ×G2) ' C∗(G1)⊗ C∗r (G2) .

2. Let G⇒ G(0) be a locally compact groupoid with a Haar system ν.
An open subset U ⊂ G(0) is saturated if U is a union of orbits of G, in other words if
U = s(r−1(U)) = r(s−1(U)). The set F = G(0) \ U is then a closed saturated subset of

G(0). The Haar system ν can be restricted to the restrictions G|U := GUU and G|F := GFF
and we have the following exact sequence of C∗-algebras [27, 45]:

0→ C∗(G|U )
i→ C∗(G)

r→ C∗(G|F )→ 0

where i : Cc(G|U )→ Cc(G) is the extension of functions by 0 while r : Cc(G)→ Cc(G|F )
is the restriction of functions.



KK-THEORY

This part on KK-theory starts with a historical introduction. In order to motivate our
purpose we list most of the properties of the KK-functor. Sections 4 to 5 are devoted to
a detailed description of the ingredients involved in KK-theory. As already pointed out

in the introduction we made an intensive use of the following references [49, 26, 48, 54].
Moreover a significant part of this chapter has been written by Jorge Plazas from the
lectures held in Villa de Leyva and we would like to thank him for his great help.

3. Introduction to KK-theory

3.1. Historical comments. The story begins with several studies of M. Atiyah [4, 5].

Firstly, recall that if X is a compact space, the K-theory of X is constructed in the
following way: let Ev be the set of isomorphism classes of continuous vector bundles over
X. Thanks to the direct sum of bundles, the set Ev is naturally endowed with a structure
of abelian semi-group. One can then symetrize Ev in order to get a group, this gives the
K-theory group of X:

K0(X) = {[E]− [F ] ; [E], [F ] ∈ Ev}.
For example the K-theory of a point is Z since a vector bundle on a point is just a vector
space and vector spaces are classified, up to isomorphism, by their dimension.

A first step towards KK-theory is the discover, made by M. Atiyah [4] and indepen-
dently K. Jänich [29], that K-theory of a compact space X can be described with Fredholm
operators.

When H is an infinite dimensional separable Hilbert space, the set F(H) of Fredholm
operators on H is the open subset of L(H) made of bounded operators T on H such that
the dimension of the kernel and cokernel of T are finite. The set F(H) is stable under
composition. We set

[X,F(H)] = {homotopy classes of continuous maps: X → F(H)}.
The set [X,F(H)] is naturally endowed with a structure of semi-group. M. Atiyah and K.
Jänich, showed that [X,F(H)] is actually (a group) isomorphic to K0(X) [4]. The idea
of the proof is the following. If f : X → F(H) is a continuous map, one can choose a
subspace V of H of finite codimension such that:

∀x ∈ X,V ∩ ker fx = {0} and
⋃
x∈X
H/fx(V ) is a vector bundle. (3.1)

Denoting by H/f(V ) the vector bundle arising in (3.1) and by H/V the product bundle
X ×H/V , the Atiyah-Janich isomorphism is then given by:

[X,F(H)] → K0(X)
[f ] 7→ [H/V ]− [H/f(V )].

(3.2)

Note that choosing V amounts to modify f inside its homotopy class into f̃ (defined to
be equal to f on V and to 0 on a supplement of V ) such that:

Kerf̃ := ∪x∈XKer(f̃x) and CoKerf̃ := ∪x∈XH/f̃x(H) (3.3)

are vector bundles over X. These constructions contain relevant information for the sequel:
the map f arises as a generalized Fredholm operator on the Hilbert C(X)-module C(X,H).

Later, M. Atiyah tried to describe the dual functor K0(X), the K-homology of X, with
the help of Fredholm operators. This gave rise to Ell(X) whose cycles are triples (H,π, F )
where:



- H = H0 ⊕H1 is a Z2 graded Hilbert space,
- π : C(X) → L(H) is a representation by operators of degree 0 (this means that

π(f) =

(
π0(f) 0

0 π1(f)

)
),

- F belongs to L(H), is of degree 1 (thus it is of the form F =

(
0 G
T 0

)
) and

satisfies

F 2 − 1 ∈ K(H) and [π, F ] ∈ K(H) .

In particular G is an inverse of T modulo compact operators.

Elliptic operators on closed manifolds produce natural examples of such cycles. Moreover,
there exists a natural pairing between Ell(X) and K0(X), justifying the choice of Ell(X)
as a candidate for the cycles of the K-homology of X:

K0(X)× Ell(X) → Z
([E], (H,π, F )) 7→ Index(FE)

(3.4)

where Index(FE) = dim(Ker(FE))− dim(CoKer(FE)) is the index of a Fredholm operator
associated to a vector bundle E on X and a cycle (H,π, F ) as follows.
Let E′ be a vector bundle on X such that E ⊕ E′ ' CN ×X and let e be the projection
of CN × X onto E. We can identify C(X,CN ) ⊗

C(X)
H with HN . Let ẽ be the image

of e ⊗ 1 under this identification. We define FE := ẽFN |ẽ(HN ) where FN is the diagonal
operator with F in each diagonal entry. The operator FE is the desired Fredholm operator
on ẽ(HN ).

Now, we should recall that to any C∗-algebra A (actually, to any ring) is associated a
group K0(A). When A is unital, it can be defined as follows:

K0(A) = {[E ]− [F ] ; [E ], [F ] are isomorphism classes of
finitely generated projective A-modules} .

Recall that a A-module E is finitely generated and projective if there exists another A-
module G such that E ⊕ G ' AN for some integer N .

The Swan-Serre theorem asserts that for any compact space X, the category of (complex)
vector bundles over X is equivalent to the category of finitely generated projective modules
over C(X), in particular: K0(X) ' K0(C(X)). This fact and the (C∗-)algebraic flavor of
the constructions above leads to the natural attempt to generalize them for noncommuta-
tive C∗-algebras.

During the 79 ∼ 80’s G. Kasparov defined with great success for any pair of C∗-algebras a
bivariant theory, the KK-theory. This theory generalizes both K-theory and K-homology
and carries a product generalizing the pairing (3.4). Moreover, in many cases KK(A,B)
contains all the morphisms from K0(A) to K0(B). To understand this bifunctor, we
will study the notions of Hilbert modules, of adjointable operators acting on them and
of generalized Fredholm operators which generalize to arbitrary C∗-algebras the notions
encountered above for C(X). Before going to this functional analytic part, we end this
introduction by listing most of the properties of the bi-functor KK.

3.2. Abstract properties of KK(A,B). Let A an B be two C∗-algebras. In order to
simplify our presentation, we assume that A and B are separable. Here is the list of the
most important properties of the KK functor.

• KK(A,B) is an abelian group.



• Functorial properties The functor KK is covariant in B and contravariant in A:
if f : B → C and g : A → D are two homomorphisms of C∗-algebras, there exist two
homomorphisms of groups:

f∗ : KK(A,B)→ KK(A,C) and g∗ : KK(D,B)→ KK(A,B) .

In particular id∗ = id and id∗ = id.

• Each *-morphism f : A→ B defines an element, denoted by [f ], in KK(A,B). We set
1A := [idA] ∈ KK(A,A).

• Homotopy invariance KK(A,B) is homotopy invariant.
Recall that the C∗-algebras A and B are homotopic, if there exist two *-morphisms f :
A→ B and g : B → A such that f ◦ g is homotopic to idB and g ◦ f is homotopic to idA.
Two homomorphisms F,G : A → B are homotopic when there exists a ∗-morphism
H : A→ C([0, 1], B) such that H(a)(0) = F (a) and H(a)(1) = G(a) for any a ∈ A.

• Stability If K is the algebra of compact operators on a Hilbert space, there are isomor-
phisms:

KK(A,B ⊗K) ' KK(A⊗K, B) ' KK(A,B) .

More generally, the bifunctor KK is invariant under Morita equivalence.

• Suspension If E is a C∗-algebra there exists an homomorphism

τE : KK(A,B)→ KK(A⊗ E,B ⊗ E)

which satisfies τE ◦ τD = τE⊗D for any C∗-algebra D.

• Kasparov product There is a well defined bilinear coupling:

KK(A,D)×KK(D,B) → KK(A,B)
(x, y) 7→ x⊗ y

called the Kasparov product. It is associative, covariant in B and contravariant in A: if
f : C → A and g : B → E are two homomorphisms of C∗-algebras then

f∗(x⊗ y) = f∗(x)⊗ y and g∗(x⊗ y) = x⊗ g∗(y).

If g : D → C is another *-morphism, x ∈ KK(A,D) and z ∈ KK(C,B) then

h∗(x)⊗ z = x⊗ h∗(z) .
Moreover, the following equalities hold:

f∗(x) = [f ]⊗ x , g∗(z) = z ⊗ [g] and [f ◦ h] = [h]⊗ [f ] .

In particular
x⊗ 1D = 1A ⊗ x = x .

The Kasparov product behaves well with respect to suspensions. If E is a C∗-algebra:

τE(x⊗ y) = τE(x)⊗ τE(y) .

This enables to extend the Kasparov product:

⊗
D

: KK(A,B ⊗D)×KK(D ⊗ C,E) → KK(A⊗ C,B ⊗ E)

(x, y) 7→ x⊗
D
y := τC(x)⊗ τB(y)

• The Kasparov product ⊗
C

is commutative.

• Higher groups For any n ∈ N, let

KKn(A,B) := KK(A,C0(Rn)⊗B) .

An alternative definition, leading to isomorphic groups, is

KKn(A,B) := KK(A,Cn ⊗B),



where Cn is the Clifford algebra of Cn. This will be explained later. The functor KK
satisfies Bott periodicity: there is an isomorphism

KK2(A,B) ' KK(A,B) .

• Exact sequences Consider the following exact sequence of C∗-algebras:

0→ J
i→ A

p→ Q→ 0

and let B be another C∗-algebra. Under a few more assumptions (for example all the C∗-
algebras are nuclear orK-nuclear, or the above exact sequence admits a completely positive
norm decreasing cross section [50]) we have the following two periodic exact sequences

KK(B, J)
i∗−−−−→ KK(B,A)

p∗−−−−→ KK(B,Q)

δ

x yδ
KK1(B,Q) ←−−−−

p∗
KK1(B,A) ←−−−−

i∗
KK1(B, J)

KK(Q,B)
p∗−−−−→ KK(A,B)

i∗−−−−→ KK(J,B)

δ

x yδ
KK1(J,B) ←−−−−

i∗
KK1(A,B) ←−−−−

p∗
KK1(Q,B)

where the connecting homomorphisms δ are given by Kasparov products.

• Final remark Let us go back to the end of the introduction in order to make it more
precise.
The usual K-theory groups appears as special cases of KK-groups:

KK(C, B) ' K0(B),

while the K-homology of a C∗-algebra A is defined by

K0(A) = KK(A,C) .

Any x ∈ KK(A,B) induces a homomorphism of groups:

KK(C, A) ' K0(A) → K0(B) ' KK(C, B)
α 7→ α⊗ x

In most situations, the induced homomorphism KK(A,B)→Mor(K0(A),K0(B)) is sur-
jective. Thus one can think of KK-elements as homomorphisms between K-groups.

When X is a compact space, one has K0(X) ' K0(C(X)) ' KK(C, C(X)) and as we will
see shortly, K0(C(X)) = KK(C(X),C) is a quotient of the set Ell(X) introduced by M.
Atiyah. Moreover the pairing K0(X)×Ell(X)→ Z coincides with the Kasparov product
KK(C, C(X))×KK(C(X),C)→ KK(C,C) ' Z.

4. Hilbert modules

We review the main properties of Hilbert modules over C∗-algebras, necessary for a
correct understanding of bivariant K-theory. We closely follow the presentation given by
G. Skandalis [48]. Most proofs given below are taken from his lectures on the subject. We
are indebted to him for allowing us to use his lectures notes. Some of the material given
below can also be found in [54], where the reader will find a guide to the literature and a
more detailed presentation.



4.1. Basic definitions and examples. Let A be a C∗-algebra and E be a A-right mod-
ule.

A sesquilinear form (·, ·) : E × E → A is positive if for all x ∈ E, (x, x) ∈ A+. Here A+

denotes the set of positive elements in A. It is positive definite if moreover (x, x) = 0 if
and only if x = 0.

Let (·, ·) : E × E → A be a positive sesquilinear form and set Q(x) = (x, x). By the
polarization identity:

∀x, y ∈ E, (x, y) =
1

4
(Q(x+ y)− iQ(x+ iy)−Q(x− y) + iQ(x− iy))

we get:
∀x, y ∈ E, (x, y) = (y, x)∗

Definition 4.1. A pre-Hilbert A-module is a right A-module E with a positive definite
sesquilinear map (·, ·) : E × E → A such that y 7→ (x, y) is A-linear.

Proposition 4.2. Let (E, (·, ·)) be a pre-Hilbert A-module. The following:

∀x ∈ E, ‖x‖ =
√
‖(x, x)‖ (4.1)

defines a norm on E.

The only non trivial fact is the triangle inequality, which results from:

Lemma 4.3. (Cauchy-Schwarz inequality)

∀x, y ∈ E, (x, y)∗(x, y) ≤ ‖x‖2(y, y)

In particular: ‖(x, y)‖ ≤ ‖x‖‖y‖.
Set a = (x, y). We have for all t ∈ R: (xa+ ty, xa+ ty) ≥ 0, thus:

2ta∗a ≤ a∗(x, x)a+ t2(y, y) (4.2)

Since (x, x) ≥ 0, we have: a∗(x, x)a ≤ ‖x‖2a∗a (it uses the equivalence: z∗z ≤ w∗w if and
only if ‖zx‖ ≤ ‖wx‖ for all x ∈ A) and choosing t = ‖x‖2 in (4.2) gives the result.

Definition 4.4. A Hilbert A-module is a pre-Hilbert A-module which is complete for the
norm defined in (4.1).
A Hilbert A-submodule of a Hilbert A-module is a closed A-submodule provided with the
restriction of the A-valued scalar product.

When there is no ambiguity about the base C∗-algebra A, we simply say pre-Hilbert
module and Hilbert module.

Let (E, (·, ·)) be a pre-Hilbert A-module. From the continuity of the sesquilinear form
(·, ·) : E × E → A and of the right multiplication E → E, x 7→ xa for any a ∈ A, we infer
that the completion of E for the norm (4.1) is a Hilbert A-module.

Remark 4.5. In the definition of a pre-Hilbert A-module, one could remove the hypothesis
(·, ·) is definite. In that case, (4.1) defines a semi-norm and one checks that the Hausdorff
completion of a pre-Hilbert A-module, in this extended sense, is a Hilbert A-module.

We continue this paragraph with classical examples.
1. The algebra A is a Hilbert A-module with its obvious right A-module structure and:

(a, b) := a∗b .

2. For any positive integer n, An is a Hilbert A-module with its obvious right A-module
structure and:

((ai), (bi)) :=

n∑
i=1

a∗i bi .



Observe that
∑n

i=1 a
∗
i ai is a sum of positive elements in A, which implies that

‖(ai)‖ =

√√√√‖ n∑
i=1

a∗i ai‖ ≥ ‖ak‖

for all k. It follows that if (am1 , . . . , a
m
n )m is a Cauchy sequence in An, the sequences (amk )m

are Cauchy in A, thus convergent and we conclude that An is complete.
3. Example 2. can be extended to the direct sum of n Hilbert A-modules E1, . . . , En with
the Hilbertian product:

((xi), (yi)) :=

n∑
i=1

(xi, yi)Ei

4. If F is a closed A-submodule of a Hilbert A-module E then F is a Hilbert A-module.
For instance, a closed right ideal in A is a Hilbert A-module.
5. The standard Hilbert A-module is defined by

HA = {x = (xk)k∈N ∈ AN |
∑
k∈N

x∗kxk converges }. (4.3)

The right A-module structure is given by (xk)a = (xka) and the Hilbertian A-valued
product is:

((xk), (yk)) =
+∞∑
k=0

x∗kyk (4.4)

This sum converges for elements of HA, indeed for all q > p ∈ N:

‖
q∑

k=p

x∗kyk‖ = ‖
(
(xk)

q
p, (yk)

q
p

)
Aq−p

‖

≤ ‖(xk)qp‖Aq−p‖(yk)qp‖Aq−p (Cauchy Schwarz inequality inAq−p)

=

√√√√‖ q∑
k=p

x∗kxk‖

√√√√‖ q∑
k=p

y∗kyk‖

This implies that
∑

k≥0 x
∗
kyk satisfies the Cauchy criterion, and therefore converges, so

that (4.4) makes sense. Since for all (xk), (yk) in HA:∑
k≥0

(xk + yk)
∗(xk + yk) =

∑
k≥0

x∗kxk +
∑
k≥0

y∗kxk +
∑
k≥0

x∗kyk +
∑
k≥0

y∗kyk

is the sum of four convergent series, we find that (xk) + (yk) = (xk + yk) is in HA. We
also have, as before, that for all a ∈ A and (xk) ∈ HA:

‖
+∞∑
k=0

(xka)∗(xka)‖ ≤ ‖a‖2‖
+∞∑
k=0

x∗kxk‖

Hence, HA is a pre-Hilbert A-module, and we need to check that it is complete. Let
(un)n = ((uni ))n be a Cauchy sequence in HA. We get, as in Example 2., that for all
i ∈ N, the sequence (uni )n is Cauchy in A, thus converges to an element denoted vi. Let
us check that (vi) belongs to HA.
Let ε > 0. Choose n0 such that

∀p > q ≥ n0, ‖uq − up‖HA ≤ ε/2 .



Choose i0 such that

∀k > j ≥ i0, ‖
k∑
i=j

un0
i
∗un0
i ‖

1/2 ≤ ε/2 .

Then thanks to the triangle inequality in Ak−j we get for all p, q ≥ n0 and j, k ≥ i0:

‖
k∑
i=j

upi
∗upi ‖

1/2 ≤ ‖
k∑
i=j

(upi − u
n0
i )∗(upi − u

n0
i )‖1/2 + ‖

k∑
i=j

un0
i
∗un0
i ‖

1/2 ≤ ε

Taking the limit p→ +∞, we get: ‖
∑k

i=j v
∗
i vi‖1/2 ≤ ε for all j, k ≥ i0 which implies that

(vi) ∈ HA. It remains to check that (un)n converges to v = (vi) in HA. With the notations
above:

∀p, q ≥ n0, ∀I ∈ N, ‖
I∑
i=0

(upi − u
q
i )
∗(upi − u

q
i )‖

1/2 ≤ ε,

taking the limit p→ +∞:

∀q ≥ n0, ∀I ∈ N, ‖
I∑
i=0

(vi − uqi )
∗(vi − uqi )‖

1/2 ≤ ε,

taking the limit I → +∞:

∀q ≥ n0, ‖v − uq‖ ≤ ε,
which ends the proof. 2

The standard Hilbert module HA is maybe the most important Hilbert module. Indeed,
Kasparov proved:

Theorem 4.6. Let E be a countably generated Hilbert A-module. Then HA and E ⊕HA
are isomorphic.

The proof can be found in [54]. This means that there exists a A-linear unitary map
U : E ⊕ HA → HA. The notion of unitary uses the notion of adjoint, which will be
explained later.

Remark 4.7. 1. The algebraic sum ⊕
N
A is dense in HA.

2. We can replace in HA the summand A by any sequence of Hilbert A-modules (Ei)i∈N
and the Hilbertian A-valued product by:

((xk), (yk)) =

+∞∑
k=0

(xk, yk)Ek

If Ei = E for all i ∈ N, the resulting Hilbert A-module is denoted by l2(N, E).
3. We can generalize the construction to any family (Ei)i∈I using summable families
instead of convergent series.

We end this paragraph with two concrete examples.

a. Let X be a locally compact space and E an hermitian vector bundle. The space
C0(X,E) of continuous sections of E vanishing at infinity is a Hilbert C0(X)-module with
the module structure given by:

ξ.a(x) = ξ(x)a(x), ξ ∈ C0(X,E), a ∈ C0(X)

and the C0(X)-valued product given by:

(ξ, η)(x) = (ξ(x), η(x))Ex



b. Let G be a locally compact groupoid with a Haar system λ and E a hermitian vector
bundle over G(0). Then

f, g ∈ Cc(G, r∗E), (f, g)(γ) =

∫
Gs(γ)

(f(ηγ−1), g(η))Er(η)dλ
s(γ)(η) (4.5)

gives a positive definite sesquilinear Cc(G)-valued form which has the correct behav-
ior with respect to the right action of Cc(G) on Cc(G, r

∗E). This leads to two norms

‖f‖ = ‖(f, f)‖1/2C∗(G) and ‖f‖r = ‖(f, f)‖1/2C∗r (G) and two completions of Cc(G, r
∗E), de-

noted C∗(G, r∗E) and C∗r (G, r∗E) which are Hilbert modules, respectively over C∗(G)
and C∗r (G).

4.2. Homomorphisms of Hilbert A-modules. Let E,F be Hilbert A-modules. We
will need the orthogonality in Hilbert modules:

Lemma 4.8. Let S be a subset of E. The orthogonal of S:

S⊥ = {x ∈ E | ∀y ∈ S, (y, x) = 0}
is a Hilbert A-submodule of E.

4.2.1. Adjoints. Let T : E → F be a map. T is adjointable if there exists a map S : F → E
such that:

∀(x, y) ∈ E × F, (Tx, y) = (x, Sy) (4.6)

Definition 4.9. Adjointable maps are called homomorphisms of Hilbert A-modules. The
set of adjointable maps from E to F is denoted by Mor(E,F ), and Mor(E) = Mor(E,E).
The space of linear continuous maps from E to F is denoted by L(E,F ) and L(E) =
L(E,E).

The terminology will become clear after the next proposition.

Proposition 4.10. Let T ∈ Mor(E,F ).

(a) The operator satisfying (4.6) is unique. It is denoted by T ∗ and called the adjoint
of T . One has T ∗ ∈ Mor(F,E) and (T ∗)∗ = T .

(b) T is linear, A-linear and continuous.
(c) ‖T‖ = ‖T ∗‖, ‖T ∗T‖ = ‖T‖2, Mor(E,F ) is a closed subspace of L(E,F ). In

particular Mor(E) is a C∗-algebra.
(d) If S ∈ Mor(E,F ) and T ∈ Mor(F,G) then TS ∈ Mor(E,G) and (TS)∗ = S∗T ∗.

Proof. (a) Let R,S be two maps satisfying (4.6) for T . Then:

∀x ∈ E, y ∈ F, (x,Ry − Sy) = 0

and taking x = Ry − Sy yields Ry − Sy = 0. The remaining part of the assertion is
obvious.
(b) ∀x, y ∈ E, z ∈ F, λ ∈ C,

(T (x+ λy), z) = (x+ λy, T ∗z) = (x, T ∗z) + λ(y, T ∗z) = (Tx, z)(λTy, z)

thus T (x+ λy) = Tx+ λTy and T is linear. Moreover:

∀x ∈ E, y ∈ F, a ∈ A, (T (xa), y) = (xa, T ∗y) = a∗(x, T ∗y) = ((Tx)a, y),

which gives the A-linearity. Consider the set

S = {(−T ∗y, y) ∈ E × F |y ∈ F} .
Then

(x0, y0) ∈ S⊥ ⇔ ∀y ∈ F, (x0,−T ∗y) + (y0, y) = 0

⇔ ∀y ∈ F, (y0 − Tx0, y) = 0



Thus G(T ) = {(x, y) ∈ E × F | y = Tx} = S⊥ is closed and the closed graph theorem
implies that T is continuous.
(c) We have:

‖T‖2 = sup
‖x‖≤1

‖Tx‖2 = sup
‖x‖≤1

(x, T ∗Tx) ≤ ‖T ∗T‖ ≤ ‖T ∗‖‖T‖ .

Thus ‖T‖ ≤ ‖T ∗‖ and switching T and T ∗ gives the equality.
One has also proved:

‖T‖2 ≤ ‖T ∗T‖ ≤ ‖T ∗‖‖T‖ = ‖T‖2

thus ‖T ∗T‖ = ‖T‖2 and the norm of Mor(E) satisfies the C∗-algebraic equation.

Let (Tn)n be a sequence in Mor(E,F ), which converges to T ∈ L(E,F ). Since ‖T‖ = ‖T ∗‖
and since T → T ∗ is (anti-)linear, the sequence (T ∗n)n is a Cauchy sequence, and therefore
converges to an operator S ∈ L(F,E). It then immediately follows that S is the adjoint
of T . This proves that Mor(E,F ) is closed, in particular Mor(E) is a C∗-algebra.
(d) Easy. �

Remark 4.11. There exist continuous linear and A-linear maps T : E → F which do
not have an adjoint. For instance, take A = C([0, 1]), J = C0(]0, 1]) and T : J ↪→ A the
inclusion. Assuming that T is adjointable, a one line computation proves that T ∗1 = 1.
But 1 does not belong to J . Thus J ↪→ A has no adjoint.
One can also take E = C([0, 1])⊕ C0(]0, 1]) and T : E → E, x+ y 7→ y + 0 to produce an
example of T ∈ L(E) and T 6∈ Mor(E).

One can characterize self-adjoint and positive elements in the C∗-algebra Mor(E) as fol-
lows.

Proposition 4.12. Let T ∈ Mor(E).
(a) T = T ∗ ⇔ ∀x ∈ E, (x, Tx) = (x, Tx)∗

(b) T ≥ 0⇔ ∀x ∈ E, (x, Tx) ≥ 0

Proof. (a) The implication (⇒) is obvious. Conversely, set QT (x) = (x, Tx). Using the
polarization identity:

(x, Ty) =
1

4
(QT (x+ y)− iQT (x+ iy)−QT (x− y) + iQT (x− iy))

one easily gets (x, Ty) = (Tx, y) for all x, y ∈ E, thus T is self-adjoint.
(b) If T is positive, there exists S ∈ Mor(E) such that T = S∗S. Then (x, Tx) = (Sx, Sx)
is positive for all x. Conversely, if (x, Tx) ≥ 0 for all x then T is self-adjoint using (a) and
there exist positive elements T+, T− such that:

T = T+ − T−, T+T− = T−T+ = 0

It follows that:

∀x ∈ E, (x, T+x) ≥ (x, T−x)

∀z ∈ E, (T−z, T+T−z) ≥ (T−z, T−T−z)

∀z ∈ E, (z, (T−)3z) ≤ 0

Since T− is positive, T 3
− is also positive and the last line above implies T 3

− = 0. It follows
that T− = 0 and then T = T+ ≥ 0. �



4.2.2. Orthocompletion. Recall that for any subset S of E, S⊥ is a Hilbert submodule of
E. It is also worth noticing that any orthogonal submodules: F ⊥ G of E are direct
summands.

The following properties are left to check as an exercise:

Proposition 4.13. Let F,G be A-submodules of E.

• E⊥ = {0} and {0}⊥ = E.

• F ⊂ G⇒ G⊥ ⊂ F⊥.
• F ⊂ F⊥⊥.
• If F ⊥ G and F ⊕G = E then F⊥ = G and G⊥ = F . In particular F and G are

Hilbert submodules.

Definition 4.14. A Hilbert A-submodule F of E is said to be orthocomplemented if
F ⊕ F⊥ = E.

Remark 4.15. A Hilbert submodule is not necessarily orthocomplemented, even if it can
be topologically complemented. For instance consider A = C([0, 1]) and J = C0(]0, 1]) as
a Hilbert A-submodule of A. One easily check that J⊥ = {0}, thus J is not orthocomple-
mented. On the other hand: A = J ⊕ C.

Lemma 4.16. Let T ∈ Mor(E). Then

• kerT ∗ = (ImT )⊥

• ImT ⊂ (kerT ∗)⊥

The proof is obvious. Note the difference in the second point with the case of bounded
operators on Hilbert spaces (where equality always occurs). Thus, in general, kerT ∗⊕ImT
is not the whole of E. Such a situation can occur when ImT is not orthocomplemented.

Let us point out that we can have T ∗ injective without having ImT dense in E (for
instance: T : C[0, 1]→ C[0, 1], f 7→ tf). Nevertheless, we have:

Theorem 4.17. Let T ∈ Mor(E,F ). The following assertions are equivalent:

(1) ImT is closed,
(2) ImT ∗ is closed,
(3) 0 is isolated in spec(T ∗T ) (or 0 6∈ spec(T ∗T )),
(4) 0 is isolated in spec(TT ∗) (or 0 6∈ spec(TT ∗)),

and in that case ImT , ImT ∗ are orthocomplemented.

Thus, under the assumption of the theorem kerT ∗⊕ ImT = F , kerT ⊕ ImT ∗ = E. Before
proving the theorem, we gather some technical preliminaries into a lemma:

Lemma 4.18. Let T ∈ Mor(E,F ). Then

(1) T ∗T ≥ 0. We set |T | =
√
T ∗T .

(2) ImT ∗ = Im |T | = ImT ∗T
(3) Assume that T (E1) ⊂ F1 for some Hilbert submodules E1, F1. Then T |E1 ∈

Mor(E1, F1).
(4) If T is onto then TT ∗ is invertible (in Mor(F )) and E = kerT ⊕ ImT ∗.

Proof of the lemma. (1) is obvious.
(2) On has T ∗T (E) ⊂ T ∗(F ). Conversely:

T ∗ = limT ∗(1/n+ TT ∗)−1TT ∗ .

This is a convergence in norm since:

‖T ∗(1/n+ TT ∗)−1TT ∗ − T ∗‖ = ‖ 1

n
T ∗(

1

n
+ TT ∗)−1‖ = O(1/

√
n).



It follows that T ∗(F ) ⊂ T ∗T (E) and thus ImT ∗ = ImT ∗T . Replacing T by |T | yields the
other equality.
(3) Easy.
(4) By the open mapping theorem, there exists a positive real number k > 0 such that
each y ∈ F has a preimage xy by T with ‖y‖ ≥ k‖xy‖. Using Cauchy-Schwarz for T ∗y
and xy, we get:

(∗) ‖T ∗y‖ ≥ k‖y‖ ∀y ∈ F .

Recall that in a C∗-algebra, the inequality a∗a ≤ b∗b is equivalent to: ‖ax‖ ≤ ‖bx‖ for all
x ∈ A. It can be adapted to Hilbert modules to show that (∗) implies TT ∗ ≥ k2 in Mor(F ),
so that TT ∗ is invertible. Then p = T ∗(TT ∗)−1T is an idempotent and E = ker p⊕ Im p.
Moreover (TT ∗)−1T is onto from which it follows that Im p = ImT ∗. On the other hand,
T ∗(TT ∗)−1 is injective, so that ker p = kerT . �

Proof of the theorem. Let us start with the implication (1) ⇒ (3). By point (3) of the
lemma S := (T : E → TE) ∈ Mor(E, TE) and by point (4) of the lemma SS∗ is invertible.
Since the spectra of SS∗ and S∗S coincide outside 0 and since S∗S = T ∗T , we get (3).
The implication (4) ⇒ (1). Consider the functions f, g : R → R defined by f(0) =
g(0) = 0, f(t) = 1, g(t) = 1/t for t 6= 0. Thus f and g are continuous on the spectrum
of TT ∗. Using the equalities f(t)t = t and tg(t) = f(t), we get f(TT ∗)TT ∗ = TT ∗

and TT ∗g(TT ∗) = f(TT ∗) from which we deduce Im f(TT ∗) = ImTT ∗. But f(TT ∗)
is a projector (self-adjoint idempotent), hence ImTT ∗ is closed and orthocomplemented.
Using point (2) of the lemma and the inclusion ImTT ∗ ⊂ ImT , yields (1) (and also the
orthocomplementability of ImT ).
At this point we have the following equivalences (1)⇔ (3)⇔ (4). Replacing T by T ∗ we
get (2)⇔ (3)⇔ (4). �

Another result which deserves to be stated is:

Proposition 4.19. Let H be a Hilbert submodule of E and T : E → F a A-linear map.

• H is orthocomplemented if and only if i : H ↪→ E ∈ Mor(H,E).
• T ∈ Mor(E,F ) if and only if the graph of T :

{(x, y) ∈ E × F |y = Tx}

is orthocomplemented.

4.2.3. Partial isometries. The following easy result is left as an exercise:

Proposition 4.20. (and definition). Let u ∈ Mor(E,F ). The following assertions are
equivalent:

(1) u∗u is an idempotent,
(2) uu∗ is an idempotent,
(3) u∗ = u∗uu∗,
(4) u = uu∗u.

u is then called a partial isometry, with initial support I = Imu∗ and final support J =
Imu.

Remark 4.21. If u is a partial isometry, then keru = keru∗u, keru∗ = keruu∗, Imu =
Imuu∗ and Imu∗ = Imu∗u. In particular u has closed range and E = keru ⊕ Imu∗,
F = keru∗ ⊕ Imu where the direct sums are orthogonal.



4.2.4. Polar decompositions. All homomorphisms do not admit a polar decomposition. For
instance, consider: T ∈ Mor(C[−1, 1]) defined by Tf = t.f (here C[−1, 1] is regarded as
a Hilbert C[−1, 1]-module). T is self-adjoint and |T | : f 7→ |t|.f . The equation T = u|T |,
u ∈ Mor(C[−1, 1]) leads to the constraint u(1)(t) = sign(t), so u(1) 6∈ C[−1, 1] and u does
not exist.

The next result clarifies the requirements for a polar decomposition to exist:

Theorem 4.22. Let T ∈ Mor(E,F ) such that ImT and ImT ∗ are orthocomplemented.
Then there exists a unique u ∈ Mor(E,F ), vanishing on kerT , such that

T = u|T |
Moreover, u is a partial isometry with initial support ImT ∗ and final support ImT .

Proof. We first assume that T and T ∗ have dense range. Setting un = T (1/n+ T ∗T )−1/2

we get a bounded sequence (‖un‖ ≤ 1) such that for all y ∈ F , un(T ∗y) = T (1/n +

T ∗T )−1/2T ∗y →
√
TT ∗(y). Thus, by density of ImT ∗, un(x) converges for all x ∈ E. Let

v(x) denotes the limit. Replacing above T by T ∗, we also have that u∗n(y) converges for
all y ∈ F , which yields v ∈ Mor(E,F ). A careful computation shows that un|T | − T goes
to 0 in norm. Thus v|T | = T . The homomorphism v is unique by density of Im |T | and
unitary since u∗nun(x)→ x for all x ∈ ImT ∗T , which proves v∗v = 1 and similarly for vv∗.
Now consider the general case and set E1 = ImT ∗, F1 = ImT . One applies the first
step to the restriction T1 ∈ Mor(E1, F1) of T , and we call v1 the unitary constructed.
We set u(x) = v1(x) if x ∈ E1 and u(x) = 0 if x ∈ E⊥1 = kerT . This definition forces
the uniqueness, and it is clear that u is a partial isometry with the claimed initial/final
supports. �

Remark 4.23. u is the strong limit of T (1/n+ T ∗T )−1/2.

4.2.5. Compact homomorphisms. Let x ∈ E, y ∈ F and define θy,x ∈ Mor(E,F ) by

θy,x(z) = y.(x, z) .

The adjoint is given by θ∗y,x = θx,y. Then

Definition 4.24. We define K(E,F ) to be the closure of the linear span of {θy,x; x ∈
E, y ∈ F} in Mor(E,F ).

One easily checks that

• ‖θy,x‖ ≤ ‖x‖‖y‖ and ‖θx,x‖ = ‖x‖2,
• Tθy,x = θTy,x and θy,xS = θy,S∗x,
• K(E) := K(E,E) is a closed two-sided ideal of Mor(E) (and hence a C∗-algebra).

We also prove:

Proposition 4.25.
M(K(E)) ' Mor(E)

where M(A) denotes the multiplier algebra of a C∗-algebra A.

Proof. One can show that for all x ∈ E there is a unique y ∈ E such that x = y. < y, y > (a

technical exercise: show that the limit y = limx.fn(
√

(x, x)) with fn(t) = t1/3.(1/n+ t)−1

exists and satisfies the desired assertion).

Consequently, E is a non degenerate K(E)-module (ie, K(E).E = E), indeed x = y. <
y, y >= θy,y(y). Using an approximate unit (uλ)Λ for K(E), we can extend the K(E)-
module structure of E into a M(K(E))-module structure:

∀T ∈M(K(E)), x ∈ E, T.x = lim
Λ
T (uλ).x



The existence of the limit is a consequence of x = θy,y(y) and T (uλ).θy,y = T (uλθy,y) →
T (θy,y). The limit is T (θy,y).y. By the uniqueness of y, this module structure, extending
that of K(E) is unique.

Hence each m ∈M(K(E)) gives rise to a map M : E → E. For any x, z in E,

(z,M.x) = (z, (mθy,y).y) = ((mθy,y)
∗(z), y)

thus M has an adjoint: M ∈ Mor(E) and M∗ corresponds to m∗. The map ρ : m → M
provides a ∗-homomorphism from M(K(E)) to Mor(E) which is the identity on K(E).
On the other hand let π : Mor(E) →M(K(E) be the unique ∗-homomorphism, equal to
identity on K(E), associated to the inclusion K(E) ⊂ Mor(E) as a closed ideal. We have
π ◦ ρ = Id, and by unicity of the M(K(E))-module structure of E, ρ ◦ π = Id. �

Let us give some generic examples:

(1) Consider A as a Hilbert A-module. We know that for any a ∈ A, there exists
c ∈ A such that a = cc∗c. It follows that the map γa : A → A, b 7→ ab is equal
to θc,c∗c and thus is compact. We get a ∗-homomorphism γ : A → K(A), a 7→ γa
which has dense image (the linear span of the θ’s is dense in K(A)) and clearly
injective, because yb = 0 for all b ∈ A implies y = 0. Thus γ is an isomorphism;

K(A) ' A .

In particular, Mor(A) 'M(A), and if 1 ∈ A, then A ' Mor(A) = K(A).
(2) For any n, one has in a similar way K(An) 'Mn(A) and Mor(An) 'Mn(M(A)).

If moreover 1 ∈ A,

(i) Mor(An) = K(An) 'Mn(A) .

For any Hilbert A-module E, we also have K(En) 'Mn(K(E)).

Relations (i) can be extended to arbitrary finitely generated Hilbert A-modules:

Proposition 4.26. Let A be a unital C∗-algebra and E a A-Hilbert module. Then the
following are equivalent:

(1) E is finitely generated.
(2) K(E) = Mor(E).
(3) IdE is compact.

In that case, E is also projective (ie, it is a direct summand of An for some n).

For the proof we refer to [54].

4.3. Generalized Fredholm operators. Atkinson’s theorem claims that for any bounded
linear operator on a Hilbert space H, the assertion:

kerF and kerF ∗ are finite dimensional,
is equivalent to:

there exists a linear bounded operator G such that FG− Id, GF − Id are compact .
This situation is a little more subtle on Hilbert A-modules, since first of all the kernel
of homomorphisms are A-modules which are non necessarily free and secondly, replacing
the condition “finite dimensional” by “finitely generated”, is not enough to recover the
previous equivalence. This is why one uses the second assertion as a definition of Fredholm
operator in the context of Hilbert modules, and we will see how to adapt Atkison’s classical
result to this new setup.

Definition 4.27. The homomorphism T ∈ Mor(E,F ) is a generalized Fredholm operator
if there exists G ∈ Mor(F,E) such that:

GF − Id ∈ K(E) and FG− Id ∈ K(F ) .



The following theorem is important to understand the next chapter on KK-theory.

Theorem 4.28. Let A be a unital C∗-algebra, E a countably generated Hilbert A-module
and F a generalized Fredholm operator on E.

(1) If ImF is closed, then kerF and kerF ∗ are finitely generated Hilbert modules.
(2) There exists a compact perturbation G of F such that ImG is closed.

Proof. (1) Since ImF is closed, so is ImF ∗ and both are orthocomplemented by, respec-
tively, kerF ∗ and kerF . Let P ∈ Mor(E) be the orthogonal projection on kerF . Since
F is a generalized Fredholm operator, there exists G ∈ Mor(E) such that Q = 1 −GF is
compact. In particular, Q is equal to Id on kerF and:

QP : E = kerF ⊕ ImF ∗ → E , x⊕ y 7→ x⊕ 0.

Since QP is compact, its restriction: QP |kerF : kerF → kerF is also compact, but
QP |kerF = IdkerF hence Proposition 4.26 implies that kerF is finitely generated. The
same argument works for kerF ∗.
(2) Let us denote by π the projection homomorphism:

π : Mor(E)→ C(E) := Mor(E)/K(E) .

Since π(F ) is invertible in C(E) it has a polar decomposition: π(F ) = ω.|π(F )|. Any
unitary of C(E) can be lifted to a partial isometry of Mor(E) [54]. Let U be such a lift of
the unitary ω. Using |π(F )| = π(|F |), it follows that:

F = U |F | mod K(E) .

Since π(|F |) is also invertible, and positive, we can form log(π(|F |)) and choose a self-
adjoint H ∈ Mor(E) with π(H) = log(π(|F |)). Then:

π(UeH) = ωπ(|F |) = π(F )

that is, UeH is a compact perturbation of F (and thus is a generalized Fredholm operator).
U is a partial isometry, hence has a closed image, and eH is invertible in Mor(E), hence
UeH has closed image and the theorem is proved. �

4.4. Tensor products.

4.4.1. Inner tensor products. Let E be a Hilbert A-module, F a Hilbert B-module and
π : A→ Mor(F ) a ∗-homomorphism. We define a sesquilinear form on E⊗AF by setting:

∀x, x′ ∈ E, y, y′ ∈ F, (x⊗ y, x′ ⊗ y′)E⊗F := (y, (x, x′)E · y′)F
where we have set a · y = π(a)(y) to lighten the formula. This sesquilinear form is a
B-valued scalar product: only the positivity axiom needs some explanation. Set:

b = (
∑
i

xi ⊗ yi,
∑
i

xi ⊗ yi) =
∑
i,j

(yi, (xi, xj).yj)

where π has been omitted. Let us set P = ((xi, xj))i,j ∈ Mn(A). The matrix P provides
a (self-adjoint) compact homomorphism of An, which is positive since:

∀a ∈ An, (a, Pa)An =
∑
i,j

a∗i (xi, xj)aj = (
∑
i

xiai,
∑
j

xjaj) ≥ 0 .

This means that P = Q∗Q for some Q ∈Mn(A). On the other hand, one can consider P
as a homomorphism on Fn and setting y = (y1, . . . , yn) ∈ Fn we have:

b = (y, Py) = (Qy,Qy) ≥ 0 .



Thus E ⊗A F is a pre-Hilbert module in the generalized sense (i.e. we do not require
the inner product to be definite) and the Hausdorff completion of E ⊗A F is a Hilbert
B-module denoted in the same way.

Proposition 4.29. Let T ∈ Mor(E) and S ∈ Mor(F ).

• T ⊗ 1 : x⊗ y 7→ Tx⊗ y defines a homomorphism of E ⊗A F .
• If S commutes with π then 1 ⊗ S : x ⊗ y 7→ x ⊗ Sy is a homomorphism which

commutes with any T ⊗ 1.

Remark 4.30. 1. Even if T is compact, T ⊗ 1 is not compact in general. The same is
true for 1⊗ S when defined.
2. In general 1⊗ S is not even defined.

4.4.2. Outer tensor products. Now forget the homomorphism π and consider the tensor
product over C of E and F . We set:

∀x, x′ ∈ E, y, y′ ∈ F, (x⊗ y, x′ ⊗ y′)E⊗F := (x, x′)E ⊗ (y, y′)F ∈ A⊗B .

This defines a pre-Hilbert A⊗ B-module in the generalized sense (the proof of positivity
uses similar arguments), where A⊗B denotes the spatial tensor product (as it will be the
case in the following, when not otherwise specified). The Hausdorff completion will be
denoted E ⊗C F .

Examples 4.31. Let H be a separable Hilbert space. Then:

H ⊗C A ' HA

4.4.3. Connections. We turn back to internal tensor products. We keep notations of the
corresponding subsection. A. Connes and G. Skandalis [14] introduced the notion of
connection to bypass in general the non existence of 1⊗ S.

Definition 4.32. Consider two C∗-algebras A and B. Let E be a Hilbert A-module and
F be a Hilbert B-module. Assume there is a ∗-morphism

π : A→ L(F )

and take the inner tensor product E ⊗A F . Given x ∈ E we define a homomorphism

Tx : E → E ⊗A F
y 7→ x⊗ y

whose adjoint is given by

T ∗x : E ⊗A F → F

z ⊗ y 7→ π((x, z))y .

If S ∈ L(F ), an S-connection on E ⊗A F is given by an element

G ∈ L(E ⊗A F )

such that for all x ∈ E:

TxS −GTx ∈ K(F,E ⊗A F )

ST ∗x − T ∗xG ∈ K(E ⊗A F, F ) .

Proposition 4.33. (1) If [π, S] ⊂ K(F ) then there are S-connections.
(2) If Gi, i = 1, 2 are Si-connections, then G1 +G2 is a S1 +S2-connection and G1G2

is a S1S2-connection.
(3) For any S-connection G, [G,K(E)⊗ 1] ⊂ K(E ⊗A F ).



(4) The space of 0-connections is exactly:

{G ∈ Mor(F,E ⊗A F ) | (K(E)⊗ 1)G and G(K(E)⊗ 1) are subsets of K(E ⊗A F )}

All these assertions are important for the construction of the Kasparov product. For the
proof, see [14]

5. KK-Theory

5.1. Kasparov modules and homotopies. Given two C∗-algebras A and B a Kasparov
A-B-module (abbreviated “Kasparov module”) is given by a triple

x = (E , π, F )

where E = E0
⊕
E1 is a (Z/2Z)-graded countably generated Hilbert B-module, π : A →

L(E) is a ∗-morphism of degree 0 with respect to the grading, and F ∈ L(E) is of degree
1. These data are required to satisfy the following properties:

π(a)(F 2 − 1) ∈ K(E) for all a ∈ A
[π(a), F ] ∈ K(E) for all a ∈ A.

We denote the set of Kasparov A-B-modules by E(A,B).
Let us immediately define the equivalence relation leading to KK-groups. We denote

B([0, 1]) := C([0, 1] , B).

Definition 5.1. A homotopy between two Kasparov A-B-modules x = (E , π, F ) and
x′ = (E ′, π′, F ′) is a Kasparov A-B([0, 1])-module x̃ such that:

(evt=0)∗(x̃) = x, (5.1)

(evt=1)∗(x̃) = x′.

Here evt=· is the evaluation map at t = ·. Homotopy between Kasparov A-B-modules is
an equivalence relation. If there exists a homotopy between x and x′ we write x ∼h x′.
The set of homotopy classes of Kasparov A-B-modules is denoted KK(A,B).

There is a natural sum on E(A,B): if x = (E , π, F ) and x′ = (E ′, π′, F ′) belong to
E(A,B), their sum x+ x′ ∈ E(A,B) is defined by

x+ x′ = (E ⊕ E ′, π ⊕ π′, F ⊕ F ′).
A Kasparov A−B-module x = (E , π, F ) is called degenerate if for all a ∈ A, π(a)(F 2−

1) = 0 and [π(a), F ] = 0. It follows:

Proposition 5.2. Degenerate elements of E(A,B) are homotopic to (0, 0, 0).
The sum of Kasparov A−B-modules provides KK(A,B) with a structure of abelian group.

Proof. Let x = (E , π, F ) ∈ E(A,B) be a degenerate element. Set x̃ = (Ẽ , π̃, F̃ ) ∈
E(A,B([0, 1])) with

Ẽ = C0([0, 1[ , E)

π̃(a)ξ(t) = π(a)ξ(t),

F̃ ξ(t) = Fξ(t).

Then x̃ is a homotopy between x and (0, 0, 0).
One can easily show that the sum of Kasparov modules makes sense at the level of

their homotopy classes. Thus KK(A,B) admits a commutative semi-group structure with
(0, 0, 0) as a neutral element. Finally, the opposite inKK(A,B) of x = (E , π, F ) ∈ E(A,B)
may be represented by:

(Eop, π,−F ).



where Eop is E with the opposite graduation: (Eop)i = E1−i. Indeed, the module (E , π, F )⊕
(Eop, π,−F ) is homotopically equivalent to the degenerate module

(E ⊕ Eop, π ⊕ π,
(

0 Id
Id 0

)
)

This can be realized with the homotopy

Gt = cos(
πt

2
)

(
F 0
0 −F

)
+ sin(

πt

2
)

(
0 Id
Id 0

)
�

5.2. Operations on Kasparov modules. Let us explain the functoriality of KK-groups
with respect to its variables. The following two operations on Kasparov modules make
sense on KK-groups:

• Pushforward along ∗-morphisms: covariance in the second variable.
Let x = (E , π, F ) ∈ E(A,B) and let g : B → C be a ∗-morphism. We define an

element g∗(x) ∈ E(A,C) by

g∗(x) = (E ⊗g C, π ⊗ 1, F ⊗ Id),

where E ⊗g C is the inner tensor product of the Hilbert B-module E with the
Hilbert C-module C endowed with the left action of B given by g.
• Pullback along ∗-morphisms: contravariance in the first variable.

Let x = (E , π, F ) ∈ E(A,B) and let f : C → A be a ∗-morphism. We define an
element f∗(x) ∈ E(C,B) by

f∗(x) = (E , π ◦ f, F ).

Provided with these operations, KK-theory is a bifunctor from the category (of pairs) of
C∗-algebras to the category of abelian groups.

We recall another useful operation in KK-theory:

• Suspension:
Let x = (E , π, F ) ∈ E(A,B) and let D be a C∗-algebra. We define an element

τD(x) ∈ E(A⊗D,B ⊗D) by

τD(x) = (E ⊗C D,π ⊗ 1, F ⊗ id).

Here we take the external tensor product E⊗CD, which is a B⊗D-Hilbert module.

5.3. Examples of Kasparov modules and of homotopies between them.

5.3.1. Kasparov modules coming from homomorphisms between C∗-algebras. Let A,B be
two C∗-algebras and f : A→ B a ∗-homomorphism. Since K(B) ' B, the following:

[f ] := (B, f, 0)

defines a Kasparov A−B-module. If A and B are Z2-graded, f has to be a homomorphism
of degree 0 (ie, respecting the grading).

5.3.2. Atiyah’s Ell. Let X be a compact Hausdorff topological space. Take A = C(X) be
the algebra of continuous functions on X and let B = C. Then

E(A,B) = Ell(X)

the ring of generalized elliptic operators on X as defined by M. Atiyah. Below we give
two concrete examples of such Kasparov modules:



• Assume X is a compact smooth manifold, let A = C(X) as above and let B = C .
Let E and E′ be two smooth vector bundles over X and denote by π the action of
A = C(X) by multiplication on L2(X,E)⊕L2(X,E′). Given a zero order elliptic
pseudo-differential operator

P : C∞(E)→ C∞(E′)

with parametrix Q : C∞(E′)→ C∞(E) the triple

xP =

(
L2(X,E)⊕ L2(X,E′), π,

(
0 Q
P 0

))
defines an element in E(A,B) = E(C(X),C).
• Let X be a compact spinc manifold of dimension 2n, let A = C(X) be as above

and let B = C. Denote by S = S+ ⊕ S− the complex spin bundle over X and let

D/ : L2(X,S)→ L2(X,S)

be the corresponding Dirac operator. Let π be the action of A = C(X) by multi-
plication on L2(X,S). Then, the triple

xD/ =

(
L2(X,S), π,

D/√
1 +D/ 2

)

defines an element in E(A,B) = E(C(X),C).

5.3.3. Compact perturbations. Let x = (E , π, F ) ∈ E(A,B). Let P ∈ Mor(E) which
satisfy:

∀a ∈ A, π(a).P ∈ K(E) and P.π(a) ∈ K(E) (5.2)

Then:

x ∼h (E , π, F + P ).

The homotopy is the obvious one: (E ⊗ C([0, 1]), π ⊗ Id, F + tP ). In particular, when B
is unital, we can always choose a representative (E , π,G) with ImG closed (cf. Theorem
4.28).

5.3.4. (Quasi) Self-adjoint representatives. There exists a representative (E , π,G) of x =
(E , π, F ) ∈ E(A,B) satisfying:

π(a)(G−G∗) ∈ K(E) . (5.3)

Just take (E ⊗ C([0, 1]), π ⊗ Id, Ft) as a homotopy where

Ft = (tF ∗F + 1)1/2F (tF ∗F + 1)−1/2

Then G = F1 satisfies (5.3). Now, H = (G + G∗)/2 is self-adjoint and P = (G − G∗)/2
satisfies (5.2) thus (E , π,H) is another representative of x.

Note that (5.3) is often useful in practice and is added as an axiom in many definitions
of KK-theory, like the original one of Kasparov. It was observed in [49] that it could be
omitted.



5.3.5. Stabilization and Unitarily equivalent modules. Any Kasparov module (E, π, F ) ∈
E(A,B) is homotopic to a Kasparov module (ĤB, ρ,G) where ĤB = HB⊕HB is the stan-

dard graded Hilbert B-module. Indeed, add to (E, π, F ) the degenerate module (ĤB, 0, 0)

and consider a grading preserving isometry u : E ⊕ ĤB → ĤB provided by Kasparov

stabilization theorem. Then, set Ẽ = E⊕ĤB, F̃ = F ⊕0, π̃ = π⊕0, ρ = uπ̃u∗, G = uF̃u∗

and consider the homotopy:(
Ẽ ⊕ ĤB, π̃ ⊕ ρ,

(
cos( tπ2 ) −u∗ sin( tπ2 )
u sin( tπ2 ) cos( tπ2 )

)(
F̃ 0
0 J

)(
cos( tπ2 ) u∗ sin( tπ2 )
−u sin( tπ2 ) cos( tπ2 )

))
(5.4)

between (E, π, F )⊕ (ĤB, 0, 0) = (Ẽ, π̃, F̃ ) and (ĤB, ρ,G). Above, J denotes the operator(
0 1
1 0

)
defined on ĤB.

On says that two Kasparov modules (Ei, πi, Fi) ∈ E(A,B), i = 1, 2 are unitarly equiv-
alent when there exists a grading preserving isometry v : E1 → E2 such that:

vF1v
∗ = F2 and ∀a ∈ A, vπ1(a)v∗ − π2(a) ∈ K(E2)

Unitarily equivalent Kasparov modules are homotopic. Indeed, one can replace (Ei, πi, Fi),

i = 1, 2, by homotopically, equivalent modules (ĤB, ρi, Gi), i = 1, 2. It follows from the

construction above that the new modules (ĤB, ρi, Gi) remain unitarly equivalent and one
adapts immediately (5.4) into a homotopy between then.

5.3.6. Relationship with ordinary K-theory. Let B be a unital C∗-algebra. A finitely
generated (Z/2Z-graded) projective B-module E is a submodule of some BN ⊕ BN and
can then be endowed with a structure of Hilbert B-module. On the other hand, IdE is a
compact morphism (prop. 4.26), thus:

(E , ι, 0) ∈ E(C, B)

where ι is just multiplication by complex numbers. This provides a group homomorphism
K0(B)→ KK(C, B).

Conversely, let (E , 1, F ) ∈ E(C, B) be any Kasparov module where we have chosen F
with closed range (see above): kerF is then a finitely generated Z/2Z-graded projective

B-module. Consider Ẽ = {ξ ∈ C([0, 1], E) | ξ(1) ∈ kerF} and F̃ (ξ) : t 7→ F (ξ(t)). The

triple (Ẽ , 1, F̃ ) provides a homotopy between (E , 1, F ) and (kerF, 1, 0). This also gives an
inverse of the previous group homomorphism.

5.3.7. A non trivial generator of KK(C,C). In the special caseB = C, we getKK(C,C) '
K0(C) ' Z and under this isomorphism, the following triple:(

L2(R)2, 1,
1√

1 +H

(
0 −∂x + x

∂x + x 0

))
where H = −∂2

x + x2 (5.5)

corresponds to +1. The reader can check as an exercise that ∂x + x and H are essentially
self-adjoint as unbounded operators on L2(R), that H has a compact resolvant and that
∂x + x has a Fredholm index equal to +1. It follows that the Kasparov module in (5.5) is
well defined and satisfies the required claim.

5.4. Ungraded Kasparov modules and KK1. Triple (E , π, F ) satisfying properties
(5.1) can arise with no natural grading for E , and consequently with no diagonal/antidiagonal
decompositions for π, F . We refer to those as ungraded Kasparov A-B-modules and the
corresponding set is denoted by E1(A,B). The direct sum is defined in the same way,
as well as the homotopy, which is this times an element of E1(A,B[0, 1]). The homotopy
defines an equivalence relation on E1(A,B) and the quotient inherits a structure of abelian
group as before.



Let C1 be the complex Clifford Algebra of the vector space C provided with the obvious
quadratic form [33]. It is the C∗-algebra C ⊕ εC generated by ε satisfying ε∗ = ε and
ε2 = 1. Assigning to ε the degree 1 yields a Z/2Z-grading on C1. We have:

Proposition 5.3. The following map:

E1(A,B) −→ E(A,B ⊗ C1)
(E , π, F ) 7−→ (E ⊗ C1, π ⊗ Id, F ⊗ ε) (5.6)

induces an isomorphism between the quotient of E1(A,B) under homotopy and KK1(A,B) =
KK(A,B ⊗ C1).

Proof. The grading of C1 gives the one of E ⊗ C1 and the map (5.6) easily gives a homo-
morphism c from KK1(A,B) to KK(A,B ⊗ C1).

Now let y = (E , π, F ) ∈ E(A,B ⊗C1). The multiplication by ε on the right of E makes
sense, even if B is not unital, and one has E1 = E0ε. It follows that E = E0 ⊕ E1 ' E0 ⊕ E0

and any T ∈ Mor(E), thanks to the B ⊗ C1-linearity, has the following expression:

T =

(
Q P
P Q

)
P,Q ∈ MorB(E0)

Thus F =

(
0 P
P 0

)
, π =

(
π0 0
0 π0

)
and c−1[y] = [E0, π0, P ]. �

Remark 5.4. The opposite of (E , π, F ) in KK1(A,B) is represented by (E , π,−F ). One
may wonder why we have to decide if a Kasparov module is graded or not. Actually, If we
forget the Z/2Z grading of a graded Kasparov A − B-module x = (E , π, F ) and consider
it as an ungraded module, then we get the trivial class in KK1(A,B). Let us prove this
claim.

The grading of x implies that E has a decomposition E = E0⊕E1 for which F has degree

1, that is: F =

(
0 Q
P 0

)
. Now:

Gt = cos(tπ/2)F + sin(tπ/2)

(
1 0
0 −1

)
(5.7)

provides an homotopy in KK1 between x and (E , π,
(

1 0
0 −1

)
). Since the latter is degen-

erate, the claim is proved.

Examples 5.5. Take again the example of the Dirac operator D/ introduced in (5.3.2) on a
spinc manifold X whose dimension is odd. There is no natural Z/2Z grading for the spinor
bundle. The previous triple xD/ provides this time an interesting class in E1(C(X),C).

5.5. The Kasparov product. In this section we construct the product

KK(A,B)⊗KK(B,C)→ KK(A,C) .

It satisfies the properties given in Section 3. Actually:

Theorem 5.6. Let x = (E , π, F ) in E(A,B) and x = (E ′, π′, F ′) in E(B,C) be two
Kasparov modules. Set

E ′′ = E ⊗B E ′

and

π′′ = π ⊗ 1

Then there exists a unique, up to homotopy, F ′-connection on E ′′ denoted by F ′′ such that

• (E ′′, π′′, F ′′) ∈ E(A,C)



• π′′(a) [F ′′, F ⊗ 1]π′′(a) is nonnegative modulo K(E ′′) for all a ∈ A.

(E ′′, π′′, F ′′) is the Kasparov product of x and x′. It enjoys all the properties described in
Section 3.

Idea of the proof. We only explain the construction of the operator F ′′. For a complete
proof, see for instance [30, 14]. A very naive idea for F ′′ could be F ⊗ 1 + 1 ⊗ F ′ but
the trouble is that the operator 1 ⊗ F ′ is in general not well defined. We can overcome
this first difficulty by replacing the not well defined 1 ⊗ F ′ by any F ′-connection G on
E ′′, and try F ⊗ 1 + G. We stumble on a second problem, namely that the properties
of Kasparov module are not satisfied in general with this candidate for F ′′: for instance
(F 2 − 1)⊗ 1 ∈ K(E)⊗ 1 6⊂ K(E ′′) as soon as E ′′ is not finitely generated.

The case of tensor products of elliptic self-adjoint differential operators on a closed mani-
fold M , gives us a hint towards the right way. If D1 and D2 are two such operators and
H1,H2 the natural L2 spaces on which they act, then the bounded operator on H1 ⊗H2:

D1√
1 +D2

1

⊗ 1 + 1⊗ D2√
1 +D2

2

(5.8)

inherits the same problem as F ⊗ 1 +G but:

D′′ :=
1√

2 +D2
1 ⊗ 1 + 1⊗D2

2

(D1 ⊗ 1 + 1⊗D2)

has better properties: D′′2 − 1 and [C(M), D′′] belong to K(H1 ⊗H2). Note that

D′′ =
√
M.

D1√
1 +D2

1

⊗ 1 +
√
N.1⊗ D2√

1 +D2
2

with

M =
1 +D2

1 ⊗ 1

2 +D2
1 ⊗ 1 + 1⊗D2

2

and N =
1 + 1⊗D2

2

2 +D2
1 ⊗ 1 + 1⊗D2

2

.

The operators M,N are bounded on H1 ⊗H2, positive, and satisfy M +N = 1. We thus
see that in that case, the naive idea (5.8) can be corrected by combining the involved
operators with some adequate “partition of unity”.

Turning back to our problem, this calculation leads us to look for an adequate operator
F ′′ in the following form:

F ′′ =
√
M.F ⊗ 1 +

√
NG .

We need to have that F ′′ is a F ′-connection, and satisfies a.(F ′′2 − 1) ∈ K(E′′) and
[a, F ′′] ∈ K(E′′) for all a ∈ A (by a we mean π′′(a)). Using the previous form for F ′′, a
small computation shows that these assertions become true if all the following conditions
hold:

(ı) M is a 0-connection (equivalently, N is a 1-connection),
(ıı) [M,F ⊗ 1], N.[F ⊗ 1, G], [G,M ], N(G2 − 1) belong to K(E′′),

(ııı) [a,M ], N.[G, a] belong to K(E′′).

At this point there is a miracle:

Theorem 5.7 (Kasparov’s technical theorem). Let J be a C∗-algebra and denote byM(J)
its multipliers algebra. Assume there are two subalgebras A1, A2 of M(J) and a linear
subspace 4 ⊂M(J) such that

A1A2 ⊂ J,

[4, A1] ⊂ J.



Then there exist two nonnegative elements M,N ∈M(J) with M +N = 1 such that

M A1 ⊂ J,

N A2 ⊂ J,

[M,4] ⊂ J.

For a proof, see [25].
Now, to get (ı), (ıı), (ııı), we apply this theorem with:

A1 = C∗〈K(E)⊗ 1, K(E ′′)〉,
A2 = C∗〈G2 − 1, [G,F ⊗ 1] ,

[
G, π′′

]
〉,

4 = V ect〈π′′(A), G, F ⊗ 1〉.
This gives us the correct F ′′. �

5.6. Equivalence and duality in KK-theory. With the Kasparov product come the
following notions:

Definition 5.8. Let A,B be two C∗-algebras.

• One says that A and B are KK-equivalent if there exist α ∈ KK(A,B) and
β ∈ KK(B,A) such that:

α⊗ β = 1A ∈ KK(A,A) and β ⊗ α = 1B ∈ KK(B,B).

In that case, the pair (α, β) is called a KK-equivalence and it gives rise to isomor-
phisms

KK(A⊗ C,D) ' KK(B ⊗ C,D) and KK(C,A⊗D) ' KK(C,B ⊗D)

given by Kasparov products for all C∗-algebras C,D.
• One says that A and B are KK-dual (or Poincaré dual) if there exist δ ∈ KK(A⊗
B,C) and λ ∈ KK(C, A⊗B) such that:

λ⊗
B
δ = 1 ∈ KK(A,A) and λ⊗

A
δ = 1 ∈ KK(B,B) .

In that case, the pair (λ, δ) is called a KK-duality and it gives rise to isomorphisms

KK(A⊗ C,D) ' KK(C,B ⊗D) and KK(C,A⊗D) ' KK(B ⊗ C,B ⊗D)

given by Kasparov products for all C∗-algebras C,D.

We continue this paragraph with classical computations illustrating these notions.

5.6.1. Bott periodicity. Let β ∈ KK(C, C0(R2)) be represented by the Kasparov module:

(E , π, C) =

(
C0(R2)⊕ C0(R2), 1,

1√
1 + c2

(
0 c−
c+ 0

))
.

where c+, c− are the operators given by pointwise multiplication by x − ıy and x + ıy

respectively and c =

(
0 c−
c+ 0

)
.

Let α ∈ KK(C0(R2),C) be represented by the Kasparov module:

(H, π, F ) =

(
L2(R2)⊕ L2(R2), π,

1√
1 +D2

(
0 D−
D+ 0

))
where π : C0(R2)→ L(L2(R2)⊕L2(R2)) is the action given by multiplication of functions
and the operators D+ and D− are given by

D+ = ∂x + ı∂y

D− = −∂x + ı∂y.



and D =

(
0 D−
D+ 0

)
.

Theorem 5.9. α and β provide a KK-equivalence between C0(R2) and C

This is the Bott periodicity Theorem in the bivariant K-theory framework.

Proof. Let us begin with the computation of β⊗α ∈ KK(C,C). We have an identification:

E ⊗
C0(R2)

H ' H⊕H (5.9)

where on the right, the first copy of H stands for E0 ⊗
C0(R2)

H0 ⊕ E1 ⊗
C0(R2)

H1 and the

second for E0 ⊗
C0(R2)

H1 ⊕ E1 ⊗
C0(R2)

H0. One checks directly that under this identification

the following operator

G =
1√

1 +D2


0 0 D− 0
0 0 0 −D+

D+ 0 0 0
0 −D− 0 0

 (5.10)

is an F -connection. On the other hand, under the identification (5.10), the operator C⊗1
gives:

1√
1 + c2


0 0 0 c−
0 0 c+ 0
0 c− 0 0
c+ 0 0 0

 (5.11)

It immediately follows that β ⊗ α is represented by:

δ =

(
H⊕H, 1, 1√

1 + c2 +D2
D

)
, (5.12)

where D =

(
0 D−

D+ 0

)
; D+ =

(
D+ c−
c+ −D−

)
and D− = D∗+. Observe that, denoting by

ρ the rotation in R2 of angle π/4, we have:(
ρ−1 0
0 ρ

)(
0 D−

D+ 0

)(
ρ 0
0 ρ−1

)
=

(
0 ρ−1D−ρ

−1

ρD+ρ 0

)

=


0 0 ı(∂y − y) −∂x + x
0 0 ∂x + x −ı(∂y + y)

ı(∂y + y) −∂x + x 0 0
∂x + x ı(−∂y + y) 0 0


=

(
0 x−∂x

x+∂x 0

)
⊗1+1⊗

(
0 ı(∂y−y)

ı(∂y+y) 0

)
.

Of course

δ ∼h
(
H⊕H, 1, 1√

1 + c2 +D2

(
0 ρ−1D−ρ

−1

ρD+ρ 0

))
and the above computation shows that δ coincides with the Kasparov product u⊗ u with
u ∈ KK(C,C) given by:

u =

(
L2(R)2, 1,

1√
1 + x2 + ∂2

x

(
0 x− ∂x

x+ ∂x 0

))
.

A simple exercise shows that ∂x + x : L2(R) → L2(R) is essentially self-adjoint with one
dimensional kernel and zero dimensional cokernel, thus 1 = u = u⊗ u ∈ KK(C,C).



Let us turn to the computation of α ⊗ β ∈ KK(C0(R2), C0(R2)): it is a Kasparov
product over C, thus it commutes:

α⊗ β = τC0(R2)(β)⊗ τC0(R2)(α) (5.13)

but we must observe that the two copies of C0(R2) in τC0(R2)(β) and τC0(R2)(α) play a

different rôle: on should think of the first copy as functions of the variable u ∈ R2 and of
the variable v ∈ R2 for the second. It follows that one can not directly factorize τC0(R2) on
the right hand side of (5.13) in order to use the value of β ⊗ α. This is where a classical
argument, known as the rotation trick of Atiyah, is necessary:

Lemma 5.10. Let φ : C0(R2) ⊗ C0(R2) → C0(R2) ⊗ C0(R2) be the flip automorphism:
φ(f)(u, v) = f(v, u). Then:

[φ] = 1 ∈ KK(C0(R2)⊗ C0(R2), C0(R2)⊗ C0(R2))

Proof of the lemma. Let us denote by I2 the identity matrix of M2(R). Use a continu-

ous path of isometries of R4 connecting

(
0 I2

I2 0

)
to

(
I2 0
0 I2

)
. This gives a homotopy

(C0(R2)⊗ C0(R2), φ, 0) ∼h (C0(R2)⊗ C0(R2), Id, 0). �

Now

α⊗ β = τC0(R2)(β)⊗ τC0(R2)(α) = τC0(R2)(β)⊗ [φ]⊗ τC0(R2)(α) (5.14)

= τC0(R2)(β ⊗ α) = τC0(R2)(1) = 1 ∈ KK(C0(R2), C0(R2)).

�

5.6.2. Self duality of C0(R). With the same notations as before, we get:

Corollary 5.11. The algebra C0(R) is Poincaré dual to itself.

Other examples of Poincaré dual algebras will be given later.

Proof. The automorphism ψ of C0(R)⊗
3

given by ψ(f)(x, y, z) = f(z, x, y) is homotopic
to the identity thus:

β ⊗
C0(R)

α = τC0(R)(β)⊗ τC0(R)(α) = τC0(R)(β)⊗ [ψ]⊗ τC0(R)(α) (5.15)

= τC0(R)(β ⊗ α) = τC0(R)(1) = 1 ∈ KK(C0(R), C0(R)).

�

Exercise 5.12. With C1 = C⊕ εC the Clifford algebra of C, consider:

βc =

(
C0(R)⊗ C1, 1,

x√
x2 + 1

⊗ ε
)
∈ KK(C, C0(R)⊗ C1),

αc =

(
L2(R,Λ∗R), π,

1√
1 + ∆

(d+ δ)

)
∈ KK(C0(R)⊗ C1,C),

where (d+δ)(a+bdx) = −b′+a′dx, ∆ = (d+δ)2 and π(f⊗ε) sends a+bdx to f(b+adx).
Show that βc, αc provide a KK-equivalence between C and C0(R)⊗ C1 (Hints: compute
directly βc ⊗ αc, then use the commutativity of the Kasparov product over C and check

that the flip of (C0(R)⊗ C1)⊗
2

is 1 to conclude about the computation of αc ⊗ βc ).



5.6.3. A simple Morita equivalence. Let ın = (M1,n(C), 1, 0) ∈ E(C,Mn(C)) where the
Mn(C)-module structure is given by multiplication by matrices on the right. Note that
[ın] is also the class of the homomorphism C→Mn(C) given by the left up corner inclusion.
Let also n = (Mn,1(C),m, 0) ∈ E(Mn(C),C) where m is multiplication by matrices on
the left. It follows in a straightforward way that:

ın ⊗ n ∼h (C, 1, 0) and n ⊗ ın ∼h (Mn(C), 1, 0)

thus C and Mn(C) are KK-equivalent and this is an example of a Morita equivalence.
The map in K-theory associated with : · ⊗ n : K0(Mn(C)) → Z is just the trace ho-
momorphism. Similarly, let us consider the Kasparov elements ı ∈ E(C,K(H)) associated
to the homomorphism ı : C → K(H) given by the choice of a rank one projection and
 = (H,m, 0) ∈ E(K(H),C) where m is just the action of compact operators on H: they
provide a KK-equivalence between K and C.

5.6.4. C0(R) and C1. We leave the proof of the following result as an exercise:

Proposition 5.13. The algebras C0(R) and C1 are KK-equivalent.

Hint for the proof: Consider

α̃ =

(
L2(R,Λ∗R),m,

1√
1 + ∆

(d+ δ)

)
∈ KK(C0(R), C1)

where d, δ,∆ are defined in the previous exercise, m(f)(ξ) = fξ, and the C1-right module
structure of L2(R,Λ∗R) is given by (a+ bdx) · ε = −ib+ iadx. Consider also:

β̃ =

(
C0(R)2, ϕ,

x√
1 + x2

(
0 1
1 0

))
∈ KK(C1, C0(R))

where ϕ(ε)(f, g) = (−ig, if). Prove that they provide the desired KK-equivalence. �

Exercise 5.14. (1) Check that τC1 : KK(A,B) → KK(A ⊗ C1, B ⊗ C1) is an iso-
morphism.

(2) Check that under τC1 and the Morita equivalence M2(C) ∼ C, the elements αc, βc
of the previous exercise coincide with α̃, β̃ and recover the KK-equivalence be-
tween C1 and C0(R).

Remark 5.15. At this point, one sees that KK1(A,B) = KK(A,B(R)) , (B(R) :=
C0(R)⊗B) can also be presented in the following different ways:

E1(A,B)/∼h' KK(A,B ⊗ C1) ' KK(A⊗ C1, B) ' KK(A(R), B)

5.7. Computing the Kasparov product without its definition. Computing the
product of two Kasparov modules is in general quite hard, but we are very often in one of
the following situations.

5.7.1. Use of the functorial properties. Thanks to the functorial properties listed in Section
3, many products can be deduced from known, already computed, ones. For instance, in
the proof of Bott periodicity (the KK-equivalence between C and C0(R2)) one had to
compute two products: the first one was directly computed, the second one was deduced
from the first using the properties of the Kasparov product and a simple geometric fact.
There are numerous examples of this kind.



5.7.2. Maps between K-theory groups. Let A,B be two unital (if not, add a unit) C∗-
algebras, x ∈ KK(A,B) be given by a Kasparov module (E , π, F ) where F has a closed
range and assume that we are interested in the map φx : K0(A)→ K0(B) associated with
x in the following way:

y ∈ K0(A) ' KK(C, A); φx(y) = y ⊗ x
This product takes a particularly simple form when y is represented by (P, 1, 0) with P a
finitely generated projective A-module (see 5.3.6):

y ⊗ x =

(
P ⊗

A
E , 1⊗ π, Id⊗F

)
= (ker(Id⊗F ), 1, 0) .

5.7.3. Kasparov elements constructed from homomorphisms. Sometimes, Kasparov classes
y ∈ KK(B,C) can be explicitly represented as Kasparov products of classes of homomor-
phisms with inverses of such classes. Assume for instance that y = [e0]−1 ⊗ [e1] where
e0 : C → B, e1 : C → C are homomorphisms of C∗-algebras and e0 produces an invertible
element in KK-theory (for instance: ker e0 is K-contractible and: B is nuclear or C, B
K-nuclear, see [50, 16]). Then computing a Kasparov product x⊗ y where x ∈ KK(A,B)
amounts to lifting x to KK(A, C), that is to finding x′ ∈ KK(A, C) such that (e0)∗(x

′) = x
and restrict this lift to KK(A,C), that is evaluate x” = (e1)∗(x

′). It follows from the prop-
erties of the product that x” = x⊗ y.

Examples 5.16. Consider the tangent groupoid GR of R and let δ = [e0]−1 ⊗ [e1] ⊗ µ
be the associated deformation element: e0 : C∗(GR) → C∗(TR) ' C0(R2) is evaluation
at t = 0, e1 : C∗(GR) → C∗(R × R) ' K(L2(R)) ' K is evaluation at t = 1 and
µ = (L2(R),m, 0) ∈ KK(K,C) gives the Morita equivalence K ∼ C.

Let β ∈ KK(C, C0(R2)) be the element used in paragraph 5.6.1. Then β⊗δ ∈ KK(C,C)
is easy to compute. The lift β′ ∈ KK(C, C∗(GR)) is produced using the pseudodifferential
calculus for groupoids (see below) and can be presented as a family β′ = (βt) with:

β0 = β; t > 0, βt =

(
C∗(R× R,

dx

t
), 1,

1√
1 + x2 + t2∂2

x

(
0 x− t∂x

x+ t∂x 0

))
After restricting at t = 1 and applying the Morita equivalence; only the index of the
Fredholm operator appearing in β1 remains, that is +1, and this proves β ⊗ δ = 1.

Observe that by uniqueness of the inverse, we conclude that δ = α in KK(C0(R2),C).

Examples 5.17. (Boundary homomorphisms in long exact sequences) Let

0→ I →
i
A→

p
B → 0

be a short exact sequence of C∗-algebras. We assume that either it admits a com-
pletely positive, norm decreasing linear section or I, A,B are K-nuclear ([50]). Let
Cp = {(a, ϕ) ∈ A⊕C0([0, 1[, B) |p(a) = ϕ(0)} be the cone of the homomorphism p : A→ B
and denote by d the homomorphism: C0(]0, 1[, B) ↪→ Cp given by d(ϕ) = (0, ϕ) and by
e the homomorphism: I → Cp given by e(a) = (a, 0). Thanks to the hypotheses, [e] is
invertible in KK-theory. One can set δ = [d]⊗ [e]−1 ∈ KK(C0(R)⊗ B, I) and using the
Bott periodicity C0(R2) ∼

KK
C in order to identify:

KK2(C,D) = KK(C0(R2)⊗ C,D) ' KK(C,D),

the connecting maps in the long exact sequences:

· · · → KK1(I,D)→ KK(B,D)
i∗→ KK(A,D)

p∗→ KK(I,D)→ KK1(B,D)→ · · · ,

· · · → KK1(C,B)→ KK(C, I)
i∗→ KK(C,A)

p∗→ KK(C,B)→ KK1(C, I)→ · · ·



are given by the appropriate Kasparov products with δ.



INDEX THEOREMS

6. Introduction to pseudodifferential operators on groupoids

The historical motivation for developing pseudodifferential calculus on groupoids comes
from A. Connes, who implicitly introduced this notion for foliations. Later on, this calculus
was axiomatized and studied on general groupoids by several authors [38, 39, 52].

The following example illustrates how pseudodifferential calculus on groupoids arises in
our approach of index theory. If P is a partial differential operator on Rn:

P (x,D) =
∑
|α|≤d

cα(x)Dα
x

we may associate to it the following asymptotic operator:

P (x, tD) =
∑
|α|≤d

cα(x)(tDx)α

by introducing a parameter t ∈]0, 1] in front of each ∂xj . Here we use the usual convention:
Dα
x = (−i∂x1)α1 . . . (−i∂xn)αn . We would like to give a (interesting) meaning to the limit

t→ 0. Of course we would not be very happy with tD → 0.
To investigate this question, let us look at P (x, tD) as a left multiplier on C∞(Rn ×

Rn×]0, 1]) rather as a linear operator on C∞(Rn):

P (x, tDx)u(x, y, t) =

∫
e(x−z).ξP (x, tξ)u(z, y, t)dzdξ

=

∫
e
x−z
t
.ξP (x, ξ)u(z, y, t)

dzdξ

tn

=

∫
e(X−Z).ξP (x, ξ)u(x− t(X − Z), x− tX, t)dZdξ.

In the last line we introduced the notation X = x−y
t and performed the change of variables

Z = z−y
t .

At this point, assume that u has the following behaviour near t = 0:

u(x, y, t) = ũ(y,
x− y
t

, t) where ũ ∈ C∞(R2n × [0, 1]).

It follows that:

P (x, tDx)u(x, x− tX, t) =

∫
e(X−Z).ξP (x, ξ)ũ(x− tX,Z, t)dZdξ

t→0−→
∫
e(X−Z).ξP (x, ξ)ũ(x, Z, 0)dZdξ

= P (x,DX)ũ(x,X, 0).

Observations

• P (x,DX) is a partial differential operator in the variable X with constant coef-
ficients, depending smoothly on a parameter x and with symbol coinciding with
the one of P (x,Dx) in the sense that: σ(P (x,DX)(x,X, ξ) = P (x, ξ). In par-
ticular, P (x,DX) is invariant under the translation X 7→ X + X0. Of course,
P (x,DX) is nothing else, up to a Fourier transform in X, than the symbol P (x, ξ)
of P (x,Dx). In other words, denoting by SX(TRn) the space of smooth functions
f(x,X) rapidly decreasing in X and by FX the Fourier transform with respect to



the variable X, we have a commutative diagram:

SX(TRn)
P (x,DX)//

FX
��

SX(TRn)

FX
��

Sξ(T
∗Rn)

P (x,ξ)// Sξ(T
∗Rn)

where P (x,DX) acts as a left multiplier on the convolution algebra SX(TRn) and
P (x, ξ) acts as a left multiplier on the function algebra Sξ(T

∗Rn) (equipped with
the pointwise multiplication of functions).
• u and ũ are related by the bijection:

φ : R2n × [0, 1] −→ GRn
(x,X, t) 7−→ (x− tX, x, t) if t > 0
(x,X, 0) 7−→ (x,X, 0)

(φ−1(x, y, t) = (y, (x − y)/t, t), φ−1(x,X, 0) = (x,X, 0)). In fact, the smooth
structure of the tangent groupoid GRn of the manifold Rn (see Paragraph 1.7) is
defined by requiring that φ is a diffeomorphism. Thus ũ ∈ C∞(R2n× [0, 1]) means
u ∈ C∞(GRn).

Thus P (x,DX) is another way to look at, and even, another way to define, the symbol
of P (x,Dx). What is important for us is that it arises as a “limit” of a family Pt constructed
with P , and the pseudodifferential calculus on the tangent groupoid of Rn will enable us
to give a rigorous meaning to this limit and perform interesting computations.

The material below is taken from [38, 39, 52]. Let G be a Lie groupoid, with unit space

G(0) = V and with a smooth (right) Haar system dλ. We assume that V is a compact
manifold and that the s-fibers Gx, x ∈ V , have no boundary. We denote by Uγ the map
induced on functions by right multiplication by γ, that is:

Uγ : C∞(Gs(γ)) −→ C∞(Gr(γ)); Uγf(γ′) = f(γ′γ).

Definition 6.1. A G-operator is a continuous linear map P : C∞c (G) −→ C∞(G) such
that:

(i) P is given by a family (Px)x∈V of linear operators Px : C∞c (Gx)→ C∞(Gx) and:

∀f ∈ C∞c (G), P (f)(γ) = Ps(γ)fs(γ)(γ)

where fx stands for the restriction f |Gx .
(ii) The following invariance property holds:

UγPs(γ) = Pr(γ)Uγ .

Let P be a G-operator and denote by kx ∈ C−∞(Gx ×Gx) the Schwartz kernel of Px,
for each x ∈ V , as obtained from the Schwartz kernel theorem applied to the manifold Gx
provided with the measure dλx.

Thus, using the property [i]:

∀γ ∈ G, f ∈ C∞(G), Pf(γ) =

∫
Gx

kx(γ, γ′)f(γ′)dλx(γ′), (x = s(γ)).

Next:

UγPf(γ′) = Pf(γ′γ) =

∫
Gx

kx(γ′γ, γ′′)f(γ′′)dλx(γ′′), (x = s(γ)),



and

P (Uγf)(γ′) =

∫
Gy

ky(γ
′, γ′′)f(γ′′γ)dλy(γ

′′), (y = r(γ))

η=γ′′γ
=

∫
Gx

ky(γ
′, ηγ−1)f(η)dλx(η), (x = s(γ))

where the last line uses the invariance property of Haar systems. Axiom [ii] is equivalent
to the following equalities of distributions on Gx ×Gx, for all x ∈ V :

∀γ ∈ G, kx(γ′γ, γ′′) = ky(γ
′, γ′′γ−1) (x = s(γ), y = r(γ)).

Setting kP (γ) := ks(γ)(γ, s(γ)), we get kx(γ, γ′) = kP (γγ′−1), and the linear operator
P : C∞c (G)→ C∞(G) is given by:

P (f)(γ) =

∫
Gx

kP (γγ′−1)dλx(γ′) (x = s(γ)).

We may consider kP as a single distribution on G acting on smooth functions on G by
convolution. With a slight abuse of terminology, we will refer to kP as the Schwartz (or
convolution) kernel of P .

We say that P is smoothing if kP lies in C∞(G) and is compactly supported or uniformly
supported if kP is compactly supported (which implies that each Px is properly supported).

Let us develop some examples of G-operators.

Examples 6.2. (1) if G = G(0) = V is just a set, then Gx = {x} for all x ∈ V . The
property [i] is empty and the property [ii] implies that a G-operator is given by
pointwise multiplication by a smooth function P ∈ C∞(V ): Pf(x) = P (x).f(x).

(2) G = V ×V the pair groupoid, and the Haar system dλ is given in the obvious way
by a single measure dy on V :

dλx(y) = dy under the identification Gx = V × {x} ' V
It follows that for any G-operator P :

Pg(z, x) =

∫
V×{x}

kP (z, y)g(y, x)dλx(y, x) =

∫
V
kP (z, y)g(y, x)dy

which immediately proves that Px = Py are equal as linear operators on C∞(V )
under the obvious identifications V ' V × {x} ' V × {y}.

(3) Let p : X → Z a submersion, and G = X ×
Z
X = {(x, y) ∈ X ×X |p(x) = p(y)}

the associated subgroupoid of the pair groupoid X ×X. The manifold Gx can be
identified with the fiber p−1(p(x)). Axiom [ii] implies that for any G-operator P ,
we have Px = Py as linear operators on p−1(p(x)) as soon as y ∈ p−1(p(x)). Thus,

P is actually given by a family P̃z, z ∈ Z of operators on p−1(z), with the relation

Px = P̃p(x).
(4) Let G = E be the total space of a (euclidean, hermitian) vector bundle p : E → V ,

with r = s = p. The Haar system dxw, x ∈ V , is given by the metric structure on
the fibers of E. We have here:

Pf(v) =

∫
Ex

kP (v − w)f(w)dxw (x = p(v))

Thus, for all x ∈ V , Px is a convolution operator on the linear space Ex.
(5) Let G = GV = TV × {0} t V × V×]0, 1] be the tangent groupoid of V . It can be

viewed as a family of groupoids Gt parametrized by [0, 1], where G0 = TV and
Gt = V × V for t > 0. A GV -operator is given by a family Pt of Gt-operators, and



(Pt)t>0 is a family of operators on C∞c (V ) parametrized by t while P0 is a family of
translation invariant operators on TxV parametrized by x ∈ V . The GV -operators
are thus a blend of Examples 2 and 4.

We now turn to the definition of pseudodifferential operators on a Lie groupoid G.

Definition 6.3. A G-operator P is a G-pseudodifferential operator of order m if:

(1) The Schwartz kernel kP is smooth outside G(0).
(2) For every distinguished chart ψ : U ⊂ G→ Ω× s(U) ⊂ Rn−p × Rp of G:

U
ψ //

s !!B
BB

BB
BB

B Ω× s(U)

p2yyttttttttt

s(U)

the operator (ψ−1)∗Pψ∗ : C∞c (Ω × s(U)) → C∞c (Ω × s(U)) is a smooth family
parametrized by s(U) of pseudodifferential operators of order m on Ω.

We will use very few properties of this calculus and only provide some examples and a
list of properties. The reader can find a complete presentation in [52, 51, 39, 38, 37].

Examples 6.4. In the previous five examples, a G-pseudodifferential operator is:

(1) an operator given by pointwise multiplication by a smooth function on V ;
(2) a single pseudodifferential operator on V ;
(3) a smooth family parametrized by Z of pseudodifferential operators in the fibers:

this coincides with the notion of [7];
(4) a family parametrized by x ∈ V of convolution operators in Ex such that the

underlying distribution kP identifies with the Fourier transform of a symbol on
E (that is, a smooth function on E satisfying the standard decay conditions with
respect to its variable in the fibers);

(5) the data provided by an asymptotic pseudodifferential operator on V together
with its complete symbol, the choice of it depending on the gluing in GV : this is
quite close to the notions studied in [23, 8, 22].

It turns out that the space Ψ∗c(G) of compactly supportedG-pseudodifferential operators
is an involutive algebra.

The principal symbol of a G-pseudodifferential operator P of order m is defined as a
function σm(P ) on A∗(G) \G(0) by:

σm(P )(x, ξ) = σpr(Px)(x, ξ)

where σpr(Px) is the principal symbol of the pseudodifferential operator Px on the manifold
Gx. Conversely, given a symbol f of order m on A∗(G) together with the following data:

(1) A smooth embedding θ : U → AG, where U is a open set in G containing G(0),

such that θ(G(0)) = G(0), (dθ)|G0 = Id and θ(γ) ∈ As(γ)G for all γ ∈ U ;

(2) A smooth compactly supported map φ : G→ R+ such that φ−1(1) = G(0);

we get a G-pseudodifferential operator Pf,θ,φ by the formula:

u ∈ C∞c (G), Pf,θ,φu(γ) =

∫
γ′∈Gs(γ),
ξ∈A∗

r(γ)
(G)

e−iθ(γ
′γ−1).ξf(r(γ), ξ)φ(γ′γ−1)u(γ′)dλs(γ)(γ

′)

The principal symbol of Pf,θ,φ is just the leading part of f .
The principal symbol map respects pointwise product while the product law for total

symbols is much more involved. An operator is elliptic when its principal symbol never



vanishes and in that case, as in the classical situation, it has a parametrix inverting it
modulo Ψ−∞c (G) = C∞c (G).

Operators of negative order in Ψ∗c(G) are actually in C∗(G), while zero order operators
are in the multiplier algebra M(C∗(G)).

All these definitions and properties immediately extend to the case of operators acting
between sections of bundles on G(0) pulled back to G with the range map r. The space
of compactly supported pseudodifferential operators on G acting on sections of r∗E and
taking values in sections of r∗F will be noted Ψ∗c(G,E, F ). If F = E we get an algebra
denoted by Ψ∗c(G,E).

Examples 6.5. (1) The family given by Pt = P (x, tDx) for t > 0 and P0 = P (x,DX)
described in the introduction of this section is a G-pseudodifferential operator with
G the tangent groupoid of Rn.

(2) More generally, let V be a closed manifold endowed with a riemannian metric. We
note exp the exponential map associated with the metric. Let f be a symbol on
V . We get a GV -pseudodifferential operator P by setting:

(t > 0) Ptu(x, y, t) =

∫
z∈V,ξ∈T ∗xV

e
exp−1

x (z)
t

.ξf(x, ξ)u(z, y)
dzdξ

tn

P0u(x,X, 0) =

∫
Z∈TxV,ξ∈T ∗xV

e(X−Z).ξf(x, ξ)u(x, Z)dZdξ

Moreover, P1 is a pseudodifferential operator on the manifold V which admits f
as a complete symbol.

7. Index theorem for smooth manifolds

The purpose of this last lecture is to present a proof of the Atiyah-Singer index theorem
using deformation groupoids and show how it generalizes to conical pseudomanifolds. The
results presented here come from recent works of the authors together with a joint work
with V. Nistor [19, 20, 18], we refer to [19, 20] for the proofs.

The KK-element associated to a deformation groupoid
Before going to the description of the index maps, let us describe a useful and classical
construction [13, 27].
Let G be a smooth deformation groupoid (definition 1.6):

G = G1 × {0} ∪G2×]0, 1] ⇒ G(0) = M × [0, 1].

One can consider the saturated open subset M×]0, 1] of G(0). Using the isomorphisms
C∗(G|M×]0,1]) ' C∗(G2)⊗ C0(]0, 1]) and C∗(G|M×{0}) ' C∗(G1), we obtain the following
exact sequence of C∗-algebras:

0 −−−−→ C∗(G2)⊗ C0(]0, 1])
iM×]0,1]−−−−−→ C∗(G)

ev0−−−−→ C∗(G1) −−−−→ 0

where iM×]0,1] is the inclusion map and ev0 is the evaluation map at 0, that is ev0 is the
map coming from the restriction of functions to G|M×{0}.
We assume now that C∗(G1) is nuclear. Since the C∗-algebra C∗(G2) ⊗ C0(]0, 1]) is
contractible, the long exact sequence in KK-theory shows that the group homomorphism
(ev0)∗ = ·⊗[ev0] : KK(A,C∗(G)) → KK(A,C∗(G1)) is an isomorphism for each C∗-
algebra A.
In particular with A = C∗(G) we get that [ev0] is invertible in KK-theory: there is an ele-
ment [ev0]−1 in KK(C∗(G1), C∗(G)) such that [ev0]⊗[ev0]−1 = 1C∗(G) and [ev0]−1⊗[ev0] =
1C∗(G1).



Let ev1 : C∗(G)→ C∗(G2) be the evaluation map at 1 and [ev1] the corresponding element
of KK(C∗(G), C∗(G2)).

The KK-element associated to the deformation groupoid G is defined by:

δ = [ev0]−1⊗[ev1] ∈ KK(C∗(G1), C∗(G2)) .

We will meet several examples of this construction in the sequel.

The analytical index
Let M be a closed manifold and consider its tangent groupoid:

GtM := TM × {0} ∪M ×M×]0, 1] ⇒M × [0, 1]

It is a deformation groupoid and the construction above provides us a KK-element:

∂M = (eM1 )∗ ◦ (eM0 )−1
∗ ∈ KK(C0(T ∗M),K) ' KK(C0(T ∗M),C),

where eMi : C∗(GtM )→ C∗(GtM )|t=i are evaluation homomorphisms.
The analytical index is then [13]

IndaM := (eM1 )∗ ◦ (eM0 )−1
∗ : KK(C, C0(T ∗M)) → KK(C,K(L2(M))

' K0(C0(T ∗M)) ' Z
or in terms of Kasparov product

IndaM = · ⊗ ∂M .

Using the notion of pseudodifferential calculus for GtM , it is easy to justify that this map
is the usual analytical index map. Indeed, let f(x, ξ) be an elliptic zero order symbol and
consider the GtM -pseudodifferential operator, Pf = (Pt)0≤t≤1, defined as in Example 6.5.
Then f provides a K-theory class [f ] ∈ K0(C∗(TM)) ' K0(C0(T ∗M)) while P provides
a K-theory class [P ] ∈ K0(C∗(GtM )) and:

(eM0 )∗([P ]) = [f ] ∈ K0(C∗(TM))

Thus:
[f ]⊗ [eM0 ]−1 ⊗ [eM1 ] = [P1] ∈ K0(K)

and [P1] coincides with Ind(P1) under K0(K) ' Z.
Since P1 has principal symbol equal to the leading part of f , and since every class in
K0(C0(T ∗M)) can be obtained from a zero order elliptic symbol, the claim is justified.

To be complete, let us explain that the analytical index map is the Poincaré dual of the
homomorphism in K-homology associated with the obvious map: M → {·}. Indeed,
thanks to the obvious homomorphism Ψ : C∗(TM) ⊗ C(M) → C∗(TM) given by multi-
plication, ∂M can be lifted into an element DM = Ψ∗(∂M ) ∈ KK(C∗(TM)⊗C(M),C) =
K0(C∗(TM)⊗C(M)), called the Dirac element. This Dirac element yields the well known
Poincaré duality between C0(T ∗M) and C(M) ([14, 31, 19]), and in particular it gives an
isomorphism:

· ⊗
C∗(TM)

DM : K0(C∗(TM))
'−→ K0(C(M))

whose inverse is induced by the principal symbol map.
One can then easily show the following proposition:

Proposition 7.1. Let q : M → · be the projection onto a point. The following diagram
commutes:

K0(T ∗M)
PD−−−−→ K0(M)

Inda

y yq∗
Z =−−−−→ Z



The topological index
Take an embedding M → Rn, and let p : N → M be the normal bundle of this embed-
ding. The vector bundle TN → TM admits a complex structure, thus we have a Thom
isomorphism:

T : K0(C∗(TM))
'−→ K0(C∗(TN))

given by a KK-equivalence:

T ∈ KK(C∗(TM), C∗(TN)) .

T is called the Thom element [30].

The bundle N identifies with an open neighborhood of M into Rn, so we have the excision
map:

j : C∗(TN)→ C∗(TRn).

Consider also: B : K0(C∗(TRn)) → Z given by the isomorphism C∗(TRn) ' C0(R2n)
together with Bott periodicity.

The topological index map Indt is the composition:

K(C∗(TM))
T−→K(C∗(TN))

j∗−→ K(C∗(TRn))
B−→
'

Z.

This classical construction can be reformulated with groupoids.

First, let us give a description of T , or rather of its inverse, in terms of groupoids. Recall
the construction of the Thom groupoid. We begin by pulling back TM over N in the
groupoid sense:

Let : ∗p∗(TM) = N ×
M
TM ×

M
N ⇒ N.

Let : TN = TN × {0} t ∗p∗(TM)×]0, 1] ⇒ N × [0, 1].

This Thom groupoid and the Morita equivalence between ∗p∗(TM) and TM provides the
KK-element:

τN ∈ KK(C∗(TN), C∗(TM)) .

This element is defined exactly as ∂M is. Precisely, the evaluation map at 0, ẽ0 : C∗(TN )→
C∗(TN) defines an invertible KK-element. We let ẽ1 : C∗(TN ) → C∗(∗p∗(TM)) be the
evaluation map at 1. The Morita equivalence between the groupoids TM and ∗p∗(TM)
leads to a Morita equivalence between the corresponding C∗-algebra and thus to a KK-
equivalence M∈ KK(C∗(∗p∗(TM)), C∗(TM)). Then

τN := [ẽ0]−1 ⊗ [ẽ1]⊗M .

We have the following:

Proposition 7.2. [20] If T is the KK-equivalence giving the Thom isomorphism then:

τN = T−1.

This proposition also applies to interpret the isomorphism B : K0(C∗(TRn))→ Z .

Indeed, consider the embedding · ↪→ Rn. The normal bundle is just Rn → · and we get as
before:

τRn ∈ KK(C∗(TRn),C)

Using the previous proposition we get: B = · ⊗ τRn .

Remark also that TRn = GRn so that τRn = [eR
n

0 ]−1 ⊗ [eR
n

1 ].

Finally the topological index:
Indt = τRn ◦ j∗ ◦ τ−1

N

is entirely described using (deformation) groupoids.



The equality of the indices
A last groupoid is necessary in order to prove the equality of index maps. Namely, this

groupoid is obtained by recasting the construction of the Thom groupoid at the level of
tangent groupoids:

T̃N = GN × {0} t ∗(p⊗ Id[0,1])
∗(GM )×]0, 1] (7.1)

As before, this yields a class:

τ̃N ∈ KK(C∗(GN ), C∗(GM )).

All maps in the following diagram:

Z Z Z

eM1

x eN1

x eR
n

1

x
K0(C∗(GM ))

⊗τ̃N←−−−− K0(C∗(GN ))
j̃∗−−−−→ K0(C∗(GRn))

eM0

y' eN0

y' eR
n

0

y'
K0(C∗(TM))

⊗τN←−−−−
'

K0(C∗(TN))
j∗−−−−→ K0(C∗(TRn))

(7.2)

are given by Kasparov products with:

(1) classes of homomorphisms coming from restrictions or inclusions between groupoids,
(2) inverses of such classes,
(3) explicit Morita equivalences.

This easily yields the commutativity of diagram (7.2). Having in mind the previous de-
scription of index maps using groupoids, this commutativity property just implies:

Inda = Indt

8. The case of pseudomanifolds with isolated singularities

As we explained earlier, the proof of the K-theoretical form of the Atiyah-Singer pre-
sented in these lectures extends very easily to the case of pseudomanifolds with isolated
singularities. This is achieved provided one uses the correct notion of tangent space of
the pseudomanifold and for a pseudomanifold X with one conical point (the case of sev-
eral isolated singularities is similar), this is the noncommutative tangent space defined in
section 1.5:

T SX = X− ×X− ∪ TX+ ⇒ X◦

In the sequel, it will replace the ordinary tangent space of a smooth manifold. Moreover,
it gives rise to another deformation groupoid which will replace the ordinary tangent
groupoid of a smooth manifold:

GtX = T SX × {0} ∪X◦ ×X◦×]0, 1] ⇒ X◦ × [0, 1]

We call GtX the tangent groupoid of X. It can be provided with a smooth structure such

that T SX is a smooth subgroupoid. Moreover both are amenable so their reduced and
maximal C∗-algebras coincide and are nuclear.

With these choices of T SX as a tangent space for X and of GtX as a tangent groupoid,
one can follow step by step all the constructions made in the previous section.



8.1. The analytical index. Using the partition X◦ × [0, 1] = X◦ × {0} ∪X◦×]0, 1] into
saturated open and closed subsets of the units space of the tangent groupoid, we define
the KK-element associated to the tangent groupoid of X:

∂X := [e0]−1 ⊗ [e1] ∈ KK(C∗(T SX),K) ' KK(C∗(T SX),C) ,

where e0 : C∗(GtX)→ C∗(GtX |X◦×{0}) ' C∗(T SX) is the evaluation at 0 and e1 : C∗(GtX)→
C∗(GtX |X◦×{1}) ' K(L2(X)) is the evaluation at 1.

Now we can define the analytical index exactly as we did for closed smooth manifolds.
Precisely, the analytical index for X is set to be the map:

IndXa = · ⊗ ∂X : KK(C, C∗(T SX))→ KK(C,K(L2(X◦))) ' Z .

The interpretation of this map as the Fredholm index of an appropriate class of elliptic
operators is possible and carried out in [34].

8.2. The Poincaré duality. Pursuing the analogy with smooth manifolds, we explain
in this paragraph that the analytical index map for X is Poincaré dual to the index map
in K-homology associated to the obvious map : X → {.}.
The algebras C(X) and C•(X) := {f ∈ C(X) | f is constant on cL} are isomorphic. If
g belongs to C•(X) and f to Cc(T

SX), let g · f be the element of Cc(T
SX) defined by

g · f(γ) = g(r(γ))f(γ). This induces a *-morphism

Ψ : C(X)⊗ C∗(T SX)→ C∗(T SX) .

The Dirac element is defined to be

DX := [Ψ]⊗ ∂X ∈ KK(C(X)⊗ C∗(T SX),C).

We recall

Theorem 8.1. [19] There exists a (dual-Dirac) element λX ∈ KK(C, C(X)⊗C∗(T SX))
such that

λX ⊗
C(X)

DX = 1C∗(T SX) ∈ KK(C∗(T SX), C∗(T SX)) ,

λX ⊗
C∗(T SX)

DX = 1C(X) ∈ KK(C(X), C(X)) .

This means that C(X) and C∗(T SX) are Poincaré dual.

Remark 8.2. The explicit construction of λX , which is heavy gooing and technical, can
be avoided. In fact, the definitions of T SX, GtX and thus of DX , can be extended in a very
natural way to the case of an arbitrary pseudomanifold and the proof of Poincaré duality
can be done using a recursive argument on the depth of the stratification, starting with
the case depth= 0, that is with the case of smooth closed manifolds. This is the subject
of [18].

The theorem implies that:

KK(C, C∗(T SX)) ' K0(C∗(T SX)) → K(C(X),C) ' K0(C(X))
x 7→ x ⊗

C∗(T SX)
DX

is an isomorphism. In [34], it is explained how to in interpret its inverse as a principal
symbol map, and one also get the analogue of Proposition 7.1:



Proposition 8.3. Let q : X → · be the projection onto a point. The following diagram
commutes:

K0(C∗(T SX))
PD−−−−→ K0(X)

IndXa

y yq∗
Z =−−−−→ Z

8.3. The topological index.
Thom isomorphism Take an embedding X ↪→ cRn = Rn × [0,+∞[/Rn × {0}. This
means that we have a map which restricts to an embedding X◦ → Rn×]0,+∞[ in the
usual sense and which sends c to the image of Rn × {0} in cRn. Moreover we require the
embedding on X− = L×]0, 1[ to be of the form j× Id where j is an embedding of L in Rn.

Such an embedding provides a conical normal bundle. Precisely, let p : N◦ → X◦ be the
normal bundle associated with X◦ ↪→ Rn×]0,+∞[. We can identify N◦|X− ' N◦|L×]0, 1[,
and set :

N = c̄N◦|L ∪N◦|X+ .

Thus N is the pseudomanifold with an isolated singularity obtained by gluing the closed
cone c̄N◦|L := N◦|L× [0, 1]/N◦|L×{0} with N◦|X+ along their common boundary N◦|L×
{1} = N◦|∂X+ . Moreover p : N → X is a conical vector bundle.

The Thom groupoid is then:

TN = T SN × {0} t ∗p∗(T SX)×]0, 1] .

It is a deformation groupoid. The corresponding KK-element gives the inverse Thom
element:

τN ∈ KK(C∗(T SN), C∗(T SX)) .

Proposition 8.4. [20] The following map is an isomorphism.

K(C∗(T SN))
·⊗τN−→ K(C∗(T SX))

Roughly speaking, the inverse of ·⊗τN is the Thom isomorphism for the “vector bundle”
T SN “over” T SX. One can show that it really restricts to usual Thom homomorphism
on regular parts.

Excision The groupoid T SN is identified with an open subgroupoid of T ScRn and we
have an excision map:

j : C∗(T SN)→ C∗(T SRn) .

Bott element Consider c ↪→ cRn.
The (conical) normal bundle is cRn itself. Remark that GtcRn = TcRn . Then

τcRn ∈ KK(C∗(T ScRn),C)

gives an isomorphism:

B = (· ⊗ τcRn) : K0(C∗(T ScRn))→ Z

Definition 8.5. The topological index is the morphism

IndXt = B ◦ j∗ ◦ τ−1
N : K0(C∗(T SX))→ Z

The following index theorem can be proved along the same lines as in the smooth case:

Theorem 8.6. The following equality holds:

IndXa = IndXt
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