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Abstract. We define an analytical index map and a topological index map for coni-
cal pseudomanifolds. These constructions generalize the analogous constructions used by
Atiyah and Singer in the proof of their topological index theorem for a smooth, compact
manifold M. A main new ingredient in our proof is a non-commutative algebra that
plays in our setting the role of C0ðT �MÞ. We prove a Thom isomorphism between non-
commutative algebras which gives a new example of wrong way functoriality in K-theory.
We then give a new proof of the Atiyah-Singer Index Theorem using deformation groupoids
and show how it generalizes to conical pseudomanifolds. We thus prove a topological index
theorem for conical pseudomanifolds.

Introduction

Let V be a closed, smooth manifold and let P be an elliptic pseudo-di¤erential oper-
ator acting between Sobolev spaces of sections of two vector bundles over V . The ellipticity
of P ensures that P has finite dimensional kernel and cokernel. The di¤erence

Ind P :¼ dimðKer PÞ � dimðCoker PÞ

is called the Fredholm index of P and turns out to depend only on the K-theory class
½sðPÞ� A K 0ðT �VÞ of the principal symbol of P (we always use K-theory with compact sup-
ports). Since every element in K 0ðT �VÞ can be represented by the principal symbol of an
elliptic pseudo-di¤erential operator, one obtains in this way a group morphism

IndV
a : K 0ðT �VÞ ! Z; IndV

a

�
sðPÞ

�
¼ Ind P;ð0:1Þ

called the analytical index, first introduced by M. Atiyah and I. Singer [4].

At first sight, the map IndV
a seems to depend essentially on the analysis of elliptic

equations. In [4], Atiyah and Singer used embedding of V in Euclidean space to give a
topological construction of the index map, and this leads to the so called topological index
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map IndV
t . The main result of [4] is that the topological index map IndV

t and the Fredholm
index map IndV

a coincide. See [17] for review of these results, including an extension to non-
compact manifolds.

The equality of the topological and Fredholm indices then allowed M. Atiyah and I.
Singer to obtain a formula for the index of an elliptic operator P in terms of the Chern
classes of ½sðPÞ�. Their formula, the celebrated Atiyah-Singer Index Formula, involves, in
addition to the Chern character of the principal symbol of P, also a universal characteristic
class associated with the manifold, the so called Todd class of the given manifold.

It is a natural and important question then to search for extensions of the Atiyah-
Singer results. It is not the place here to mention all existing generalizations of the
Atiyah-Singer index theory, but let us mention here the fundamental work of A. Connes
on foliations [20], [21], [22], [23], [24] as well as [7], [32], [54], [55]. The index theorem for
families and Bismut’s superconnection formalism play an important role in the study of the
so called ‘‘anomalies’’ in physics [9], [10], [12], [30]. A di¤erent but related direction is to
extend this theory to singular spaces [3]. An important step in the index problem on singu-
lar manifolds was made by Melrose [44], [45] and Schulze [60], [61] who have introduced
the ‘‘right class of pseudodi¤erential operators’’ for index theory on singular spaces. See
also [1], [28], [29], [43], [53], [62]. Generalizations of this theory to singular spaces may
turn out to be useful in the development of e‰cient numerical methods [6].

In this paper, we shall focus on the case of a pseudomanifold X with isolated conical
singularities. In earlier work [27], the first two authors defined a C �-algebra AX that is dual
to the algebra of continuous functions on X from the point of view of K-theory (i.e. AX is
a ‘‘K-dual of X ’’ in the sense of [22], [24], [37]), which implies that there exists a natural
isomorphism

K0ðXÞ !
SX

K0ðAX Þð0:2Þ

between the K-homology of X and the K-theory of T SX . The C �-algebra AX is the C �-
algebra of a groupoid denoted T SX .

One of the main results in [40], see also [47], [52], [51], [59] for similar results using
di¤erent methods, is that the inverse of the map SX of Equation (0.2) can be realized, as
in the smooth case, by a map that assigns to each element in K0ðAX Þ an elliptic operator.
Thus elements of K0ðAX Þ can be viewed as the symbols of some natural elliptic pseudo-
di¤erential operators realizing the K-homology of X . Of course, in the singular setting, one
has to explain what is meant by ‘‘elliptic operator’’ and by ‘‘symbol’’ on X . An example of
a convenient choice of elliptic operator in our situation is an elliptic pseudodi¤erential op-
erator in the b-calculus [44], [60] or Melrose’s c-calculus. As for the symbols, the notion is
more or less the same as in the smooth case. On a manifold V , a symbol is a function
on T �V . For us, it will be convenient to view a symbol as a pointwise multiplication
operator on Cy

c ðT �VÞ. A Fourier transform will allow us then to see a symbol as a family
of convolution operators on Cy

c ðTxVÞ, x A V . Thus symbols on V appear to be pseudo-
di¤erential operators on the groupoid TV . This picture generalizes then right away to our
singular setting. In particular, it leads to a good notion of symbol for conical pseudomani-
folds and enables us to interpret (0.2) as the principal symbol map.
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In order to better explain our results, we need to introduce some notation. If G is an
amenable groupoid, we let K 0ðGÞ denote K0

�
C �ðGÞ

�
. The analytical index is then defined

exactly as in the regular case by

IndX
a : K 0ðT SXÞ ! Z;

½a� 7! Ind
�
S�1

X ðaÞ
�
;

where Ind : K0ðX Þ ! Z is the usual Fredholm index on compact spaces. Moreover one can
generalise the tangent groupoid of A. Connes to our situation and get a nice description of
the analytical index.

Following the spirit of [4], we define in this article a topological index IndX
t that gen-

eralizes the classical one and which satisfies the equality:

IndX
a ¼ IndX

t :

In fact, we shall see that all ingredients of the classical topological index have a natural
generalisation to the singular setting.

� Firstly the embedding of a smooth manifold into RN gives rise to a normal bundle
N and a Thom isomorphism K 0ðT �VÞ ! K 0ðT �NÞ. In the singular setting we embed
X into RN , viewed as the cone over S N�1. This gives rise to a conical vector bundle

which is a conical pseudomanifold called the normal space and we get an isomorphism:
K 0ðT SXÞ ! K 0ðT SNÞ. This map restrict to the usual Thom isomorphism on the regular
part and is called again the Thom isomorphism.

� Secondly, in the smooth case, the normal bundle N identifies with an open subset
of RN , and thus provides an excision map KðTNÞ ! KðTRNÞ. The same is true in the
singular setting: T SN appears to be an open subgroupoid of T SRN so we have an excision
map K 0ðT SNÞ ! K 0ðT SRNÞ.

� Finally, using the Bott periodicity K 0ðT �RNÞFK 0ðR2NÞ ! Z and a natural KK-
equivalence between T SRN with TRN we obtain an isomorphism K 0ðT SRNÞ ! Z.

As for the usual definition of the topological index, this allows us to define our gen-
eralisation of the topological Indt for conical manifolds.

This construction of the topological index is inspired from the techniques of deforma-

tion groupoids introduced by M. Hilsum and G. Skandalis in [33]. Moreover, the demon-
stration of the equality between Inda and Indt will be the same in the smooth and in the
singular setting with the help of deformation groupoids.

We claim that our index maps are straight generalisations of the classical ones. To
make this claim more concrete, consider a closed smooth manifold V and choose a point
c A V . Take a neighborhood of c di¤eomorphic to the unit ball in Rn and consider it as the
cone over S n�1. This provides V with the structure of a conical manifold. Then the index
maps IndS

� : K 0ðT SVÞ ! Z and Ind� : K 0ðTVÞ ! Z both correspond to the canonical map
K0ðVÞ ! Z through the Poincaré duality K0ðVÞFK 0ðT �VÞ and K0ðVÞFK 0ðT SVÞ. In
other words both notions of indices coincide trough the KK-equivalence TV FT SV .
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We will investigate the case of general stratifications and the proof of an index for-
mula in forthcoming papers.

The paper is organized as follows. In Section 2 we describe the notion of conical pseu-
domanifolds and conical bundles. Section 2 reviews general facts about Lie groupoids. Sec-
tion 3 is devoted to the construction of tangent spaces and tangent groupoids associated to
conical pseudomanifolds as well as other deformation groupoids needed in the subsequent
sections. Sections 4 and 5 contain the construction of analytical and topological indices,
and the last section is devoted to the proof of our topological index theorem for conical
pseudomanifolds, that is, the proof of the equality of analytical and topological indices
for conical pseudomanifolds.

1. Cones and stratified bundles

We are interested in studying conical pseudomanifolds, which are special examples of
stratified pseudomanifolds of depth one [31]. We will use the notations and equivalent de-
scriptions given by A. Verona in [64] or used by J. P. Brasselet, G. Hector and M. Saralegi
in [14]. See [35] for a review of the subject.

1.1. Conical pseudomanifolds. If L is a smooth manifold, the cone over L is, by def-
inition, the topological space

cL :¼ L� ½0;þy½=L� f0g:ð1:1Þ

Thus L� f0g maps into a single point c of cL. We shall refer to c as the singular point of

L. If z A L and t A ½0;þy½ then ½z; t� will denote the image of ðz; tÞ in cL. We shall denote
by

rcL : cL! ½0;þy½; rcLð½z; t�Þ :¼ t

the map induced by the second projection and we call it the defining function of the cone.

Definition 1.1. A conical stratification is a triplet ðX ;S;CÞ where:

(i) X is a Hausdor¤, locally compact, and secound countable space.

(ii) SHX is a finite set of points, called the singular set of X , such that X � :¼ XnS is
a smooth manifold.

(iii) C ¼ fðNs; rs;LsÞgs AS is the set of control data, where Ns is an open neighbor-
hood of s in X and rs : Ns ! ½0;þy½ is a surjective continuous map such that r�1

s ð0Þ ¼ s.

(iv) For each s A S, there exists a homeomorphism js : Ns ! cLs, called trivialisation

map, such that rcLs
� js ¼ rs and such that the induced map Nsnfsg ! Ls � �0;þy½ is a

di¤eomorphism. Moreover, if s0; s1 A S then either Ns0
XNs1

¼ j or s0 ¼ s1.

Let us notice that it follows from the definition that the connected components of X �

are smooth manifolds. These connected components are called the regular strata of X .
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Definition 1.2. Two conical stratifications ðX ;SX ;CX Þ and ðY ;SY ;CY Þ are called
isomorphic if there is an homeomorphism f : X ! Y such that:

(i) f maps SX onto SY .

(ii) f restricts to a smooth di¤eomorphism f � : X � ! Y �.

(iii) The defining function rs of any s A SX is equal to rf ðsÞ � f , where rf ðsÞ is the de-
fining function of f ðsÞ A SY (in particular f ðNsÞ ¼Nf ðsÞ).

An isomorphism class of conical stratifications will be called a conical pseudomani-

fold.

In other words, a conical pseudomanifold is a locally compact, metrizable, second
countable space X together with a finite set of points SHX such that X � ¼ XnS is a
smooth manifold and one can find a set of control data C such that ðX ;S;CÞ is a conical
stratification.

Let M be a smooth manifold with boundary L :¼ qM. An easy way to construct a
conical pseudomanifold is to glue to M the closed cone cL :¼ L� ½0; 1�=L� f0g along the
boundary.

Notice that we do not ask the link L to be connected. For example, if M is a smooth man-
ifold, the space M � S1=M � fpg, p A S1, is a conical pseudomanifold with L consisting of
two disjoint copies of M:

1.2. Conical bundles. We next introduce ‘‘conical bundles,’’ a class of spaces not to
be confused with vector bundles over conical manifolds. Assume that L is a smooth mani-
fold, cL is the cone over L, px : x! L is a smooth vector bundle over L, and cx is the cone
over x. We define p : cx! cL by pð½z; t�Þ ¼ ½pxðzÞ; t� for ðz; tÞ A x� ½0;þy½. The set ðcx; pÞ
is the cone over the vector bundle ðx; pxÞ. Let us notice that the fiber above the singular
point of cL is the singular point of cx. In particular, cx is not a vector bundle over cL.
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Definition 1.3. Let ðX ;SX ;CX Þ be a conical stratification. A conical vector bundle

ðE; pÞ over X is a conical stratification ðE;SE ;CEÞ together with a continuous surjective
map p : E ! X such that:

(1) p induces a bijection between the singular sets SE and SX .

(2) If E � :¼ EnSE , the restriction p� : E � ! X � is a smooth vector bundle.

(3) The control data fMz; rz; xzgz ASE
of E and fNs; rs;Lsgs ASX

of X satisfy:
Mz ¼ p�1ðNpðzÞÞ and rz ¼ rpðzÞ � p. Moreover for z A SE and s ¼ pðzÞ A SX , the restriction
pz : Mz !Ns is a cone over the vector bundle xz. More precisely, we have the following
commutative diagram:

Mz ���!pz
Ns

Cz

???y ???yjs

cxz ���! cLs

where xz ! Ls is a smooth vector bundle over Ls, the bottom horizontal arrow is the cone
over xz ! Ls and Cz, js are trivialisation maps.

If X is a conical pseudomanifold, the isomorphism class of a conical vector bundle
over a conical stratification ðX ;SX ;CX Þ will be called again a conical vector bundle over X .

We are interested in conical vector bundles because they allow us to introduce the
right notion of tubular neighborhood in the class of conical manifolds.

Let L be a compact manifold and cL the cone over L. For N A N large enough, we
can find an embedding jL : L! S N�1 where S N�1 HRN denotes the unit sphere. Let
VL ! L be the normal bundle of this embedding. We let cVL ¼VL � ½0;þy½=VL � f0g
be the cone over VL; it is a conical vector bundle over cL. Notice that the cone cS N�1

over S N�1 is isomorphic to RN
� which is RN with 0 as a singular point. We will say that

cL is embedded in RN
� and that cVL is the tubular neighborhood of this embedding.

Now, let X ¼ ðX ;S;CÞ be a compact conical stratification. Let

C ¼ fðNs; rs;LsÞ; s A Sg

be the set of control data, where Ns is a cone over Ls and choose a trivialisation map
js : Ns ! cLs for each singular point s. For N A N large enough, one can find an embed-
ding j : X � ¼ XnS! RN such that:

� For any s A S, j � j�1
c ðLs � flgÞ lies on a sphere SðOs; lÞ centered on Os and of

radius l for l A �0; 1½.

� The open balls BðOs; 1Þ centered on Os and of radius 1 are disjoint.
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� For each singular point s there is an embedding jLs
: Ls ! SðOc; 1ÞHRN such that

cs � j � j�1
c jL��0;1½ ¼ jLs

� Id;

where cs : BðOs; 1ÞnfOsg ! SðOs; 1Þ � �0; 1½ is the canonical di¤eomorphism.

Let VLs
! Ls be the normal bundle of the embedding jLs

and V! X � be the
normal bundle of the embedding j. Then we can identify the restriction of V to
Nsj�0;1½ :¼ fz A Ns j 0 < rsðzÞ < 1g with VLs

� �0; 1½. Let cVLs
¼VLs

� ½0; 1½=VLs�f0g be the
cone over Ls. We define the conical manifold

W ¼V
S

s AS
cVLs

by glueing with Tjs the restriction of V over Nsj�0;1½ with cVLs
nfsg. The conical manifold

W is a conical vector bundle over X . It follows that W is a sub-stratified pseudomanifold
of ðRNÞS which is RN with fOsgs AS as singular points. We will say that W is the tubular

neighborhood of the embedding of X in ðRNÞS.

2. Lie groupoids and their Lie algebroids

We refer to [58], [16], [42] for the classical definitions and construction related to
groupoids and their Lie algebroids.

2.1. Lie groupoids. Groupoids, and especially di¤erentiable groupoids will play
an important role in what follows, so we recall the basic definitions and results needed for
this paper. Recall first that a groupoid is a small category in which every morphism is an
isomorphism.

Let us make the notion of a groupoid more explicit. Thus, a groupoid G is a pair
ðGð0Þ;Gð1ÞÞ of sets together with structural morphisms u : Gð0Þ ! Gð1Þ, s; r : Gð1Þ ! Gð0Þ,
i : Gð1Þ ! Gð1Þ, and, especially, the multiplication m which is defined for pairs
ðg; hÞ A Gð1Þ � Gð1Þ such that sðgÞ ¼ rðhÞ. Here, the set Gð0Þ denotes the set of objects (or
units) of the groupoid, whereas the set Gð1Þ denotes the set of morphisms of G. Each object
of G can be identified with a morphism of G, the identity morphism of that object, which

leads to an injective map u : Gð0Þ ! G. Each morphism g A G has a ‘‘source’’ and a
‘‘range.’’ We shall denote by sðgÞ the source of g and by rðgÞ the range of g. The inverse of a
morphism g is denoted by g�1 ¼ iðgÞ. The structural maps satisfy the following properties:

(i) rðghÞ ¼ rðgÞ and sðghÞ ¼ sðhÞ, for any pair g, h satisfying sðgÞ ¼ rðhÞ.

(ii) s
�
uðxÞ

�
¼ r

�
uðxÞ

�
¼ x, u

�
rðgÞ

�
g ¼ g, gu

�
sðgÞ

�
¼ g.

(iii) rðg�1Þ ¼ sðgÞ, sðg�1Þ ¼ rðgÞ, gg�1 ¼ u
�
rðgÞ

�
, and g�1g ¼ u

�
sðgÞ

�
.

(iv) The partially defined multiplication m is associative.

We shall need groupoids with smooth structures.
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Definition 2.1. A Lie groupoid is a groupoid

G ¼ ðGð0Þ;Gð1Þ; s; r; m; u; iÞ

such that Gð0Þ and Gð1Þ are manifolds with corners, the structural maps s, r, m, u, and i are
di¤erentiable, the domain map s is a submersion and Gx :¼ s�1ðxÞ, x A M, are all Haus-
dor¤ manifolds without corners.

The term ‘‘di¤erentiable groupoid’’ was used in the past instead of ‘‘Lie groupoid’’,
whereas ‘‘Lie groupoid’’ had a more restricted meaning [42]. The usage has changed how-
ever more recently, and our definition reflects this change.

An example of a Lie groupoid that will be used repeatedly below is that of pair group-

oid, which we now define. Let M be a smooth manifold. We let Gð0Þ ¼M, Gð1Þ ¼M �M,
sðx; yÞ ¼ y, rðx; yÞ ¼ x, ðx; yÞðy; zÞ ¼ ðx; zÞ, and embedding uðxÞ ¼ ðx; xÞ. The inverse is
iðx; yÞ ¼ ðy; xÞ.

The infinitesimal object associated to a Lie groupoid is its ‘‘Lie algebroid,’’ which we
define next.

Definition 2.2. A Lie algebroid A over a manifold M is a vector bundle A!M, to-
gether with a Lie algebra structure on the space GðAÞ of smooth sections of A and a bundle
map % : A! TM whose extension to sections of these bundles satisfies

(i) %ð½X ;Y �Þ ¼ ½%ðXÞ; %ðYÞ�, and

(ii) ½X ; fY � ¼ f ½X ;Y � þ
�
%ðXÞ f

�
Y ,

for any smooth sections X and Y of A and any smooth function f on M.

The map % is called the anchor map of A. Note that we allow the base M in the def-
inition above to be a manifold with corners.

The Lie algebroid associated to a di¤erentiable groupoid G is defined as follows [42].
The vertical tangent bundle (along the fibers of s) of a di¤erentiable groupoid G is, as usual,

TvertG ¼ ker s� ¼
S

x AM

TGx HTG:ð2:1Þ

Then AðGÞ :¼ TvertGjM , the restriction of the s-vertical tangent bundle to the set of units,
defines the vector bundle structure on AðGÞ.

We now construct the bracket defining the Lie algebra structure on G
�
AðGÞ

�
. The

right translation by an arrow g A G defines a di¤eomorphism

Rg : GrðgÞ C g 0 7! g 0g A GdðgÞ:

A vector field X on G is called s-vertical if s�
�
XðgÞ

�
¼ 0 for all g. The s-vertical vector fields

are precisely the vector fields on G that can be restricted to vector fields on the submani-
folds Gx. It makes sense then to consider right-invariant vector fields on G. It is not di‰cult
to see that the sections of AðGÞ are in one-to-one correspondence with s-vertical, right-
invariant vector fields on G.
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The Lie bracket ½X ;Y � of two s-vertical, right-invariant vector fields X and Y is also
s-vertical and right-invariant, and hence the Lie bracket induces a Lie algebra structure on
the sections of AðGÞ. To define the action of the sections of AðGÞ on functions on M, let us
observe that the right invariance property makes sense also for functions on G, and that
CyðMÞ may be identified with the subspace of smooth, right-invariant functions on G. If
X is a right-invariant vector field on G and f is a right-invariant function on G, then Xð f Þ
will still be a right invariant function. This identifies the action of G

�
AðGÞ

�
on CyðMÞ.

2.2. Pull back groupoids. Let G x M be a groupoid with source s and range r. If
f : N !M is a surjective map, the pull back groupoid �f �ðGÞx N of G by f is by defini-
tion the set

�f �ðGÞ :¼ fðx; g; yÞ A N � G �N j rðgÞ ¼ f ðxÞ; sðgÞ ¼ f ðyÞg

with the structural morphisms given by

(1) the unit map x 7!
�
x; f ðxÞ; x

�
,

(2) the source map ðx; g; yÞ 7! y and range map ðx; g; yÞ 7! x,

(3) the product ðx; g; yÞðy; h; zÞ ¼ ðx; gh; zÞ and inverse ðx; g; yÞ�1 ¼ ðy; g�1; xÞ.

The results of [50] apply to show that the groupoids G and �f �ðGÞ are Morita equi-
valent.

Let us assume for the rest of this subsection that G is a smooth groupoid and that f is
a surjective submersion, then �f �ðGÞ is also a Lie groupoid. Let

�
AðGÞ; q; ½ ; �

�
be the Lie

algebroid of G (which is defined since G is smooth). Recall that q : AðGÞ ! TM is the
anchor map. Let

�
A
��f �ðGÞ�; p; ½ ; �

�
be the Lie algebroid of �f �ðGÞ and Tf : TN ! TM

be the di¤erential of f . Then we claim that there exists an isomorphism

A
��f �ðGÞ�F fðV ;UÞ A TN �AðGÞ jTf ðVÞ ¼ qðUÞ A TMg

under which the anchor map p : A
��f �ðGÞ�! TN identifies with the projection

TN �AðGÞ ! TN. In particular, if ðU ;VÞ A A
��f �ðGÞ� with U A TxN and V A AyðGÞ,

then y ¼ f ðxÞ.

2.3. Quasi-graphoid and almost injective Lie algebroid. Our Lie groupoids arise
mostly as Lie groupoids with a given Lie algebroid. This is because often in analysis, one
is given the set of derivations (di¤erential operators), which forms a Lie algebra under the
commutator. The groupoids are then used to ‘‘quantize’’ the given Lie algebra of vector
fields to algebra of pseudodi¤erential operators [1], [45], [48], [57]. This has motivated sev-
eral works on the integration of Lie algebroids [25], [26], [56]. We recall here some useful
results of the first named author [26] on the integration of some Lie algebroids. See also
[25], [42], [56].

Proposition 2.3. Let G x
s

r
M be a Lie groupoid over the manifold M. Let us denote by

s its domain map, by r its range map, and by u : M ! G its unit map. The two following

assertions are equivalent:
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(1) If n : V ! G is a local section of s then r � n ¼ 1V if, and only if, n ¼ ujV .

(2) If N is a manifold, f and g are two smooth maps from N to G such that

(i) s � f ¼ s � g and r � f ¼ r � g,

(ii) one of the maps s � f and r � f is a submersion,

then f ¼ g.

Definition 2.4. A Lie groupoid that satisfies one of the two equivalent properties of
Proposition 2.3 will be called a quasi-graphoid.

Suppose that G x M is a quasi-graphoid and denote by AG ¼ ðp : AG ! TM; ½ ; �AÞ
its Lie algebroid. A direct consequence of the previous definition is that the anchor p of
AG is injective when restricted to a dense open subset of the base space M. In other words
the anchor p induces an injective morphism ~pp from the set of smooth local sections of AG

onto the set of smooth local tangent vector fields over M. In this situation we say that the
Lie algebroid AG is almost injective.

A less obvious remarkable property of a quasi-graphoid is that its s-connected com-
ponent is determined by its infinitesimal structure. Precisely:

Proposition 2.5 ([26]). Two s-connected quasi-graphoids having the same space of

units are isomorphic if, and only if, their Lie algebroids are isomorphic.

Note that we are not requiring the groupoids in the above proposition to be s-simply
connected. The main result of [26] is the following:

Theorem 2.6. Every almost injective Lie algebroid is integrable by an s-connected

quasi-graphoid (uniquely by the above proposition).

Finally, let A be a smooth vector bundle over a manifold M and p : A! TM a
morphism. We denote by ~pp the map induced by p from the set of smooth local sections of
A to the set of smooth local vector fields on M. Notice that if ~pp is injective then A can be
equipped with a Lie algebroid structure over M with anchor p if, and only if, the image of
~pp is stable under the Lie bracket.

Examples 2.7. Regular foliation. A smooth regular foliation F on a manifold M

determines an integrable subbundle F of TM. Such a subbundle is an (almost) injective Lie
algebroid over M. The holonomy groupoid of F is the s-connected quasi-graphoid which
integrates F ([66]).

Tangent groupoid. One typical example of a quasi-graphoid is the tangent groupoid
of A. Connes [22]. Let us denote by A t B the disjoint union of the sets A and B. If M is a
smooth manifold, the tangent groupoid of M is the disjoint union

G t
M ¼ TM � f0g tM �M � �0; 1�x M � ½0; 1�:

10 Debord, Lescure and Nistor, Conical pseudo-manifolds

Brought to you by | BCU - Sciences et Techniques STAPS
Authenticated | 193.54.49.3

Download Date | 7/11/14 4:23 PM



In order to equip G t
M with a smooth structure, we choose a riemannian metric on M and we

require that the map

V HTM � ½0; 1� ! G t
M ;

ðx;V ; tÞ 7! ðx;V ; 0Þ if t ¼ 0;�
x; expxð�tVÞ; t

�
if t3 0;

(

be a smooth di¤eomorphism onto its image, where V is open in TM � ½0; 1� and contains
TM � f0g. The tangent groupoid of M is the s-connected quasi-graphoid which integrates
the almost injective Lie algebroid:

pt
M : AG t

M ¼ TM � ½0; 1� ! TðM � ½0; 1�ÞFTM � T ½0; 1�;

ðx;V ; tÞ 7! ðx; tV ; t; 0Þ:

2.4. Deformation of quasi-graphoids. In this paper, we will encounter deforma-
tion groupoids. The previous results give easy arguments to get sure that these defor-
mation groupoids can be equipped with a smooth structure. For example, let
Gi x M, i ¼ 1; 2, be two s-connected quasi-graphoids over the manifold M and let
AGi ¼ ðpi : AGi ! TM; ½ ; �Ai

Þ be the corresponding Lie algebroid. Suppose that:

� The bundles AG1 and AG2 are isomorphic.

� There is a morphism p : A :¼AG1 � ½0; 1� ! TM � Tð½0; 1�Þ of the form:

pðV ; 0Þ ¼
�

p1ðVÞ; 0; 0
�

and pðV ; tÞ ¼
�

p2 �FðV ; tÞ; t; 0
�

if t3 0;

where F : AG1 � �0; 1� !AG2 � �0; 1� is an isomorphism of bundles over M � �0; 1�.
Moreover the image of ~pp is stable under the Lie bracket.

In this situation, A is an almost injective Lie algebroid that can be integrated by the
groupoid H ¼ G1 � f0gWG2 � �0; 1�x M � ½0; 1�. In particular, there is a smooth struc-
ture on H compatible with the smooth structure on G1 and G2.

3. A non-commutative tangent space for conical pseudomanifolds

In order to obtain an Atiyah-Singer type topological index theorem for our conical
pseudomanifold X , we introduce in this chapter a suitable notion of tangent space to X

and a suitable normal space to an embedding of X in RNþ1 that sends the singular point
to 0 and X � to fx1 > 0g.

3.1. The S-tangent space and the tangent groupoid of a conical space. We recall here
a construction from [27] that associates to a conical pseudomanifold X a groupoid T SX

that is a replacement of the notion of tangent space of X (for the purpose of studying
K-theory) in the sense the C �-algebras C �ðT SXÞ and CðXÞ are K-dual [27].

Let ðX ;S;CÞ be a conical pseudomanifold. Without loss of generality, we can assume
that X has only one singular point. Thus S ¼ fcg is a single point and C ¼ fðN; r;LÞg,
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where NF cL is a cone over L and r is the defining function of the cone. We set r ¼ þy
outside N. We let X � ¼ Xnfcg. Recall that X � is a smooth manifold. We denote by OX

the open set OX ¼ fz A X � j rðzÞ < 1g.

At the level of sets, the S-tangent space of X is the groupoid:

T SX :¼ TX �jX �nOX
tOX �OX x X �:

Here, the groupoid TX �jX �nOX
x X �nOX is the usual tangent vector bundle TX � of X � re-

stricted to the closed subset X �nOX ¼ fz A X � j rðzÞf 1g. The groupoid OX �OX x OX

is the pair groupoid over OX .

The tangent groupoid of X is, as in the regular case [22], a deformation of its ‘‘tangent
space’’ to the pair groupoid over its units:

G t
X :¼ T SX � f0g t X � � X � � �0; 1�x X � � ½0; 1�:

Here, the groupoid X � � X � � �0; 1�x X � � �0; 1� is the product of the pair groupoid on
X � with the set �0; 1�.

In order to equip G t
X , and so T SX , with a smooth structure we have to choose a glu-

ing function. First choose a positive smooth map t : R! R such that tð½0;þy½Þ ¼ ½0; 1�,
t�1ð0Þ ¼ ½1;þy½ and t 0ðtÞ3 0 for t < 1. We denote by tX : X ! R the map which
assigns t

�
rðxÞ

�
to x A X �XN and 0 elsewhere. Thus tX ðX �Þ ¼ ½0; 1½, tX restricted to

OX ¼ fz A N j 0 < rðzÞ < 1g is a submersion and t�1
X ð0Þ ¼ X �nOX .

Proposition 3.1 ([27]). There is a unique structure of Lie groupoid on G t
X such that its

Lie algebroid is the bundle TX � � ½0; 1� with anchor

p : ðx;V ; tÞ A TX � � ½0; 1� 7!
�
x;
�
tþ t2

X ðxÞ
�
V ; t; 0

�
A TX � � T ½0; 1�:

Let us notice that the map p is injective when restricted to X � � �0; 1�, which is a
dense open subset of X � � ½0; 1�. Thus there exists one, and only one, structure of (almost
injective) Lie algebroid on TX � � ½0; 1� with p as anchor since the family of local vector
fields on X � induced by the image by p of local sections of TX � � ½0; 1� is stable under
the Lie bracket. We know from [26], [56] that such a Lie algebroid is integrable. Moreover,
according to Theorem 2.6, there is a unique Lie groupoid which integrates this algebroid
and restricts over X � � �0; 1� to X � � X � � �0; 1�x X � � �0; 1�.

Let us give an alternative proof of the previous proposition.

Proof. Recall that the (classical) tangent groupoid of X � is

G t
X � ¼ TX � � f0g t X � � X � � �0; 1�x X � � ½0; 1�

and that its Lie algebroid is the bundle TX � � ½0; 1� over X � � ½0; 1� with anchor
ðx;V ; tÞ A TX � � ½0; 1� 7! ðx; tV ; t; 0Þ A TX � � T ½0; 1�. Similary, one can equip the group-
oid H ¼ TX � � fð0; 0Þg t X � � X � � ½0; 1�2nfð0; 0Þg with a unique smooth structure such
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that its Lie algebroid is the bundle TX � � ½0; 1�2 with anchor the map

p : A ¼ TN1 � ½0; 1� � ½0; 1� ! TN1 � Tð½0; 1�Þ � Tð½0; 1�Þ;

ðx;V ; t; lÞ 7!
�
x; ðtþ lÞV ; t; 0; l; 0

�
:

Let d : H ! R be the map which sends any g A H with source sðgÞ ¼ ðy; t; lÞ and
range rðgÞ ¼ ðx; t; lÞ to dðgÞ ¼ l � tX ðxÞtX ðyÞ. One can check that d is a smooth submer-
sion, so Hd :¼ d�1ð0Þ is a submanifold of H. Moreover Hd :¼ d�1ð0Þ inherits from H a
structure of Lie groupoid over X � � ½0; 1� whose Lie algebroid is given by

TX � � ½0; 1� ! TX � � Tð½0; 1�Þ;

ðx;V ; tÞ 7!
�
x;
�
tþ t2

X ðxÞ
�
V ; t; 0

�
:

The groupoid Hd is (obviously isomorphic) to G t
X . r

We now introduce the tangent groupoid of a stratified pseudomanifold.

Definition 3.2. The groupoid G t
X equipped with the smooth structure associated with

a gluing function t as above is called a tangent groupoid of the stratified pseudomanifold
ðX ;S;CÞ. The corresponding S-tangent space is the groupoid T SX FG t

X jX ��f0g equipped
with the induced smooth structure.

Remark 3.3. We will need the following remarks. See [27] for a proof.

(i) If X has more than one singular point, we let, for any s A S,

Os :¼ fz A X �XNs j rsðzÞ < 1g;

and we define O ¼
F

s AS
Os. The S-tangent space to X is then

T SX :¼ TX �jX �nO
F

s AS
Os �Os x X �;

with the analogous smooth structure. In this situation the Lie algebroid of G t
X is defined as

previously with tX : X ! R being the map which assigns t
�
rsðzÞ

�
to z A X �XNs and 0

elsewhere.

(ii) The orbit space of T SX is topologically equivalent to X : there is a canonical
isomorphism between the algebras CðXÞ and CðX=T SXÞ.

(iii) The tangent groupoid and the S-tangent space depend on the gluing. Neverthe-
less the K-theory of the C �-algebras C �ðG t

X Þ and C �ðT SXÞ do not.

(iv) The groupoid T SX is a continuous field of amenable groupoids parametrized by
X , thus T SX is amenable as well. It follows that G t

X is also amenable as a continuous field
of amenable groupoids parametrised by ½0; 1�. Hence the reduced and maximal C �-algebras
of T SX and of G t

X are equal and they are nuclear.
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Examples 3.4. Here are two basic examples.

(i) When X is a smooth manifold, that is X0 ¼ j and X � ¼ X , the previous construc-
tion gives rise to the usual tangent groupoid

G t
X ¼ TX � f0g t X � X � �0; 1�x X � ½0; 1�:

Moreover, T SX ¼ TX x X is the usual tangent space.

(ii) Let L be a manifold and consider the (trivial) cone cL ¼ L� ½0;þy½=L� f0g
over L. In this situation X � ¼ L� �0;þy½, OX ¼ L� �0; 1½ and

T SX ¼ TðL� ½1;þy½Þ t L� �0; 1½ � L� �0; 1½|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
the pair groupoid

x L� �0;þy½;

where TðL� ½1;þy½Þ denotes the restriction to L� ½1;þy½ of the tangent space TðL� RÞ.
The general case is always locally of this form.

3.2. The deformation groupoid of a conical vector bundle. Let ðE;SE ;CEÞ be a coni-
cal vector bundle over ðX ;SX ;CX Þ and denote by p : E ! X the corresponding projection.
From the definition, p restricts to a smooth vector bundle map p� : E � ! X �. We let
p½0;1� ¼ p� � id : E � � ½0; 1� ! X � � ½0; 1�.

We consider the tangent groupoids G t
X x X � for X and G t

E x E � for E equipped
with a smooth structure constructed using the same gluing function t (in particular
tX � p ¼ tE). We denote by �p�½0;1�ðG

t
X Þx E � � ½0; 1� the pull back of G t

X by p½0;1�.

Our next goal is to associate to the conical vector bundle E a deformation groupoid
T t

E using �p�½0;1�ðG
t
X Þ to G t

E . More precisely, we define:

T t
E :¼ G t

E � f0g t �p�½0;1�ðG t
X Þ � �0; 1�x E � � ½0; 1� � ½0; 1�:

In order to equip T t
E with a smooth structure, we first choose a smooth projection

P : TE � ! KerðTpÞ.

A simple calculation shows that the Lie algebroid of �p�½0;1�ðG
t
X Þ is isomorphic to the

bundle TE � � ½0; 1� endowed with the almost injective anchor map

ðx;V ; tÞ 7!
�
x;Pðx;VÞ þ

�
tþ tEðxÞ2

��
V � Pðx;VÞ

�
; t; 0

�
:

We consider the bundle A ¼ TE � � ½0; 1� � ½0; 1� over E � � ½0; 1� � ½0; 1� and the almost
injective morphism:

p : A ¼ TE � � ½0; 1� � ½0; 1� ! TX � � T ½0; 1� � T ½0; 1�;

ðx;V ; t; lÞ 7!
�
x;
�
tþ t2

EðxÞ
�
V þ lPðx;VÞ

�
:

The image of ~pp is stable under the Lie bracket, thus A is an almost injective Lie algebroid.
Moreover, the restriction of A to E � � ½0; 1� � f0g is the Lie algebroid of G t

E and its
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restriction to E � � ½0; 1� � �0; 1� is isomorphic to the Lie algebroid of �p�½0;1�ðG
t
X Þ � �0; 1�.

Thus A can be integrated by T t
E . In particular, T t

E is a smooth groupoid. In conclusion,
the restriction of T t

E to E � � f0g � ½0; 1� leads to a Lie groupoid:

HE ¼ T SE � f0g t �p�ðT SX Þ � �0; 1�x E � � ½0; 1�;

called a Thom groupoid associated to the conical vector bundle E over X .

The following example explains what these constructions become if there are no sin-
gularities.

Example 3.5. Suppose that p : E !M is a smooth vector bundle over the
smooth manifold M. Then SE ¼ SM ¼ j, G t

E ¼ TE � f0g t E � E � �0; 1�x E � ½0; 1�
and G t

M ¼ TM � f0g tM �M � �0; 1�x M � ½0; 1� are the usual tangent groupoids. In
these examples associated to a smooth vector bundle, tE is the zero map. The groupoid
T t

E will then be given by

Tt
E ¼ TE � f0g � 0g t �p�ðTMÞ � f0g � �0; 1� t E �E � �0; 1� � ½0; 1�x E � ½0; 1� � ½0; 1�

and is smooth. Similarly, the Thom groupoid will be given by:

HE :¼ TE � f0g t �p�ðTMÞ � �0; 1�x E � ½0; 1�:

We now return to the general case of a conical vector bundle.

Remark 3.6. The groupoids TE and HE are continuous fields of amenable groupoids
parametrized by ½0; 1�. Thus they are amenable, their reduced and maximal C �-algebras are
equal, and are nuclear.

4. The analytical index

Let X be a conical pseudomanifold, and let

G t
X ¼ X � � X � � �0; 1� t T SX � f0gx X � � ½0; 1�

be the tangent groupoid (unique up to isomorphism) for X for a given gluing function.
Also, let T SX x X � be the corresponding S-tangent space.

Since the groupoid G t
X is a deformation groupoid of amenable groupoids, it defines a

KK-element [27], [33]. More precisely, let

e1 : C �ðG t
X Þ ! C �ðG t

X jX ��f1gÞ ¼K
�
L2ðX �Þ

�
be the evaluation at 1 and let ½e1� A KK

�
C �ðG t

X Þ;K
�
L2ðX �Þ

��
the element defined by e1

in Kasparov’s bivariant K-theory. Similarly, the evaluation at 0 defines a morphism
e0 : C �ðG t

X Þ ! C �ðG t
X jX ��f0gÞ ¼ C �ðT SX Þ and then an element

½e0� A KK
�
C �ðG t

X Þ;C �ðT SX Þ
�
:
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The kernel of e0 is contractible and so e0 is KK-invertible. We let:

~qq ¼ ½e0��1 n ½e1� A KK
�
C �ðT SXÞ;K

�
;

be the Kasparov product over C �ðG t
X Þ of ½e1� and the K-inverse of ½e0�. Take b to be a gen-

erator of KKðK;CÞFZ. We set q ¼ ~qqn b. The element q belongs to KK
�
C �ðT SXÞ;C

�
.

Definition 4.1. The map ðe0Þ� : K0

�
C �ðG t

X Þ
�
! K0

�
C �ðT SXÞ

�
is an isomorphism

and we define the analytical index map by

IndX
a :¼ ðe1Þ� � ðe0Þ�1

� : K0

�
C �ðT SX Þ

�
! K0ðKÞFZ;ð4:1Þ

or in other words, as the map defined by the Kasparov product with q.

Remarks 4.2. (1) Notice that in the case of a smooth manifold with the usual defini-
tion of tangent space and tangent groupoid, this definition leads to the classical definition
of the analytical index map ([22], II.5).

(2) One can associate to a Lie groupoid a di¤erent analytical map. More precisely,
when G x M is smooth, one can consider the adiabatic groupoid which is a deformation
groupoid of G on its Lie algebroid AG [57]:

G t :¼AG � f0g t G � �0; 1�x M � ½0; 1�:

Under some asumption G t defines a KK-element in KK
�
C �ðAGÞ;C �ðGÞ

�
and thus a map

from K0

�
C �ðAGÞ

�
to K0

�
C �ðGÞ

�
.

Now, let X be a conical pseudomanifold and S its set of singular points. Choose a
singular point s A S. Let us denote Xs;þ :¼ X �nOs. The S-tangent space of X is then

T SX ¼ Os �Os t T SXs;þ x X �

where Os �Os x Os is the pair groupoid and T SXs;þ :¼ T SX jXs;þ
. Then we have the fol-

lowing exact sequence of C �-algebras:

0! C �ðOs �OsÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼KðL2ðOsÞÞ

!i C �ðT SXÞ !rþ C �ðT SXs;þÞ ! 0;ð4:2Þ

where i is the inclusion morphism and rþ comes from the restriction of functions.

Proposition 4.3. The exact sequence (4.2) induces the short exact sequence

0 �! K0ðKÞFZ �!i� K0

�
C �ðT SXÞ

� �!ðrþÞ� K0

�
C �ðT SXs;þÞ

� �! 0:

Moreover IndX
a � i� ¼ IdZ, thus�

IndX
a ; ðrþÞ�

�
: K0

�
C �ðT SX Þ

�
! ZlK0

�
C �ðT SXs;þÞ

�
is an isomorphism.
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Proof. In order to prove the first statement, let us first consider the six terms
exact sequence associated to the exact sequence of C �-algebras of (4.2). Then recall
that K1ðKÞ ¼ 0. It remains to show that i� is injective. This point is a consequence
of the second statement which is proved here’after. Let G t

X x X � � ½0; 1� be a tangent
groupoid for X . Its restriction G t

X jOs�½0;1� to Os � ½0; 1� is isomorphic to the groupoid
ðOs �OsÞ � ½0; 1�x Os � ½0; 1�, the pair groupoid of Os parametrized by ½0; 1�. The inclu-
sion of C0ðG t

X jOs�½0;1�Þ in C0ðG t
X Þ induces a morphism of C �-algebras

i t : C �ðG t
X jOs�½0;1�ÞFK

�
L2ðOsÞ

�
nCð½0; 1�Þ ! C �ðG t

X Þ:

Moreover, we have the following commutative diagram of C �-algebra morphisms:

C �ðT SX Þ  ���e0
C �ðG t

X Þ ���!e1
K

�
L2ðX �Þ

�
i

x??? x???i t

x???iK

K
�
L2ðOsÞ

�
 ���

ev0

K
�
L2ðOsÞ

�
nCð½0; 1�Þ ���!

ev1

K
�
L2ðOsÞ

�
where iK is the isomorphism induced by the inclusion of the pair groupoid of Os in the pair
groupoid of X �, and ev0, ev1 are the evaluation maps at 0 and 1. The KK-element ½ev0� is
invertible and

½ev0��1 n ½ev1� ¼ 1 A KK
�
K

�
L2ðOsÞ

�
;K

�
L2ðOsÞ

��
:

Moreover �n ½iK� induces an isomorphism from KK
�
C;K

�
L2ðOsÞ

��
FZ onto

KK
�
C;K

�
L2ðX �Þ

��
FZ. Thus ½i�n ~qq ¼ ½iK�, which proves that IndX

a � i� ¼ IdZ and
ensures that i� is injective. r

5. The inverse Thom map

Let ðE;SE ;CEÞ be a conical vector bundle over ðX ;SX ;CX Þ and p : E ! X the cor-
responding projection. We let

HE :¼ T SE � f0g t �p�ðT SXÞ � �0; 1�x E � � ½0; 1�ð5:1Þ

be the Thom groupoid of E, as before. The C �-algebra of HE is nuclear as well as the
C �-algebra of T SE. Thus HE defines a KK-element:

qHE
:¼ ½e0��1 n ½e1� A KK

�
C �ðT SEÞ;C �ðT SXÞ

�
;ð5:2Þ

where e1 : C �ðHEÞ ! C �ðHE jE ��f1gÞ ¼ C �
��p�ðT SXÞ

�
is the evaluation map at 1 and

e0 : C �ðHEÞ ! C �ðHE jE ��f0gÞ ¼ C �ðT SEÞ, the evaluation map at 0 is K-invertible.

Definition 5.1. The element qHE
A KK

�
C �ðT SEÞ;C �ðT SX Þ

�
defined by equation

(5.2) will be called the inverse Thom element.

Definition-Proposition 5.2. Let M be the isomorphism induced by the Morita equiva-

lence between T SX and �p�ðT SX Þ and let �n qHE
be the right Kasparov product by qHE

over C �ðT SEÞ. Then the following diagram is commutative:
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K
�
C �ðT SEÞ

� ���!IndE
a

Z

�nqHE

???y x???IndX
a

K
�
C �

��p�ðT SXÞ
�� ���!F

M
K
�
C �ðT SX Þ

�
:

The map Tinv :¼M � ð�n qHE
Þ is called the inver se Thom map.

Proof. First consider the deformation groupoid T t
E :

T t
E :¼ G t

E � f0g t �p�½0;1�ðG t
X Þ � �0; 1�x E � � ½0; 1� � ½0; 1�:

One can easily see that

T t
E ¼ T SE � f0g � f0g t �p�ðT SX Þ � f0g � �0; 1� t E � � E � � �0; 1� � ½0; 1�

FHE � f0g t ðE � � E � � ½0; 1�Þ � �0; 1�:

The groupoid T t
E is equipped with a smooth structure compatible with the smooth

structures of G t
E � f0g, �p�½0;1�ðG

t
X Þ � �0; 1� as well as with the smooth structures of HE and

ðE � � E � � ½0; 1�Þ � �0; 1�.

We therefore have the following commutative diagram of evaluation morphisms of
C �-algebras of groupoids:

C �ðE � � E �Þ  ���ev0
C �ðE � � E � � ½0; 1�Þ ���!ev1

C �ðE � � E �Þ

eE
1

x??? x???q1; �

x???�p�eX
1

C �ðG t
EÞ  ���q�; 0

C �ðT t
E Þ ���!q�; 1

C �
��p�½0;1�ðG t

X Þ
�

eE
0

???y ???yq0; �

???y�p�eX
0

C �ðT SEÞ  ���
e0

C �ðHEÞ ���!
e1

C �
��p�ðT SX Þ

�
:

In this diagram, the KK-elements ½eE
0 �, ½�p�eX

0 �, ½q�;0�, ½e0�, ½ev1� and ½ev0� are invertible.
Let M : K

�
C �

��p�ðT SX Þ
�
! K

�
C �ðT SXÞ

��
be the isomorphism induced by the Morita

equivalence between �p�ðT SXÞ and T SX . Also, let x belong to

K
�
C �

��p�ðT SX Þ
��
¼ KK

�
C; �p�ðT SXÞ

�
:

Then one can easily check the equality

MðxÞn ~qq ¼ xn ½�p�eX
0 �
�1 n ½�p�eX

1 �:

Of course ½ev0��1 n ½ev1� ¼ 1 A KK
�
C �ðE � � E �Þ;C �ðE � � E �Þ

�
. Thus the previous dia-

gram implies that for any x A K
�
C �ðT SEÞ

�
¼ KK

�
C;C �ðT SEÞ

�
we have:
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IndX
a � TinvðxÞ ¼ xn ½e0��1 n ½e1�n ½�p�eX

0 �
�1 n ½�p�eX

1 �n b

¼ xn ½eE
0 �
�1 n ½eE1 �n ½ev0��1 n ½ev1�n b

¼ IndE
a ðxÞ: r

6. Index theorem

In this section, we state and prove our main theorem, namely, a topological index
theorem for conical pseudomanifolds in the setting of groupoids. We begin with an account
of the classical Atiyah-Singer topological index theorem in our groupoid setting.

6.1. A variant of the proof of Atiyah-Singer index theorem for compact manifolds using

groupoids. Let V be the normal bundle of an embedding of a smooth manifold M in
some euclidean space. In this subsection, we shall first justify the terminology of ‘‘inverse
Thom map’’ we introduced for the map Tinv of Proposition 5.2 by showing that it coincides
with the inverse of the classical Thom isomorphism when E ¼ TV and X ¼ TM.

In fact, we will define the Thom isomorphism when X is a locally compact space and
E ¼ N nC is the complexification of a real vector bundle N ! X . As a consequence, we
will derive a simple proof of the Atiyah-Singer Index Theorem for closed smooth mani-
folds. Our approach has the advantage that it extends to the singular setting.

Let us recall some classical facts [2], [4]. If p : E ! X is a complex vector bundle over
a locally compact space X , one can define a Thom map

i! : K 0ðXÞ ! K 0ðEÞ;ð6:1Þ

which turns to be an isomorphism. This Thom map is defined as follows. Let x A K 0ðXÞ be
represented by ½x0; x1; a� where x0, x1 are complex vector bundles over X and a : x0 ! x1 is
an isomorphism outside a compact subset of X . With no loss of generality, one can assume
that x0, x1 are hermitian and that a is unitary outside a compact subset of X .

Let us consider next the endomorphism of the vector bundle p�ðLEÞ ! E given
by

ðCoÞðvÞ ¼ CðvÞoðvÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kvk2

q �
v5oðvÞ � v�G oðvÞ

�
:

The endomorphism Co is selfadjoint, of degree 1 with respect to the Z2-grading
L0 ¼ LevenE, L1 ¼ LoddE of the space of exterior forms. Moreover, we have that
ðCoÞ2 ! 1 as o approaches infinity in the fibers of E. Then, as we shall see in the next
proposition, the Thom morphism i! of equation (6.1) can be expressed, in terms of the
Kasparov products, as

i!ðxÞ :¼ x0 nL0 l x1 nL1; x0 nL1 l x1 nL0; y ¼
Nð1nCÞ Mða�n 1Þ
Mðan 1Þ �Nð1nCÞ

� �� 	
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where M and N are the multiplication operators by the functions MðvÞ ¼ 1

kvk2 þ 1
and

N ¼ 1�M, respectively.

Proposition 6.1. Let p : E ! X be a complex vector bundle over a locally compact

base space X and i! : K 0ðX Þ ! K 0ðEÞ the corresponding Thom map. Denote by T the Kas-

parov element

T :¼
�
C0

�
E; p�ðLEÞ

�
; r;C

�
A KK

�
C0ðXÞ;C0ðEÞ

�
where r is multiplication by functions. Then i!ðxÞ ¼ xnT for any x A K 0ðXÞ.

Proof. The isomorphism K 0ðX ÞFKK
�
C;C0ðXÞ

�
is such that to the triple ½x0; x1; a�

there corresponds to the Kasparov module:

x ¼
�
C0ðX ; xÞ; 1; ~aa

�
; x ¼ x0 l x1 and ~aa ¼ 0 a�

a 0

� �
:

Similarly, i!ðxÞ corresponds to ðE; ~yyÞ where

E ¼ C0ðX ; xÞn
r

C0

�
E; p�ðLEÞ

�
FC0

�
E; p�ðxnLEÞ

�
and ~yy ¼ 0 y�

y 0

� �
A LðEÞ:

We next use the language of [13], [65], where the notion of ‘‘connection’’ in the framework
of Kasparov’s theory was defined. It is easy to check that Mð~aa n̂n 1Þ is a 0-connection on E
and Nð1 n̂nCÞ is a C-connection on E (the symbol n̂n denotes the graded tensor product),
which yields that

~yy ¼Mð~aa n̂n 1Þ þNð1 n̂nCÞ

is a C-connection on E. Moreover, for any f A C0ðXÞ, we have

f ½~aa n̂n 1; ~yy� f � ¼ 2Mj f j2~aa2 n̂n 1f 0;

which proves that ðE; ~yyÞ represents the Kasparov product of x and T . r

It is known that T is invertible in KK-theory ([36], paragraph 5, theorem 8). We
now give a description of its inverse via a deformation groupoid when the bundle E is
the complexification of a real euclidean bundle N. Hence let us assume that E ¼ N nC

or, up to a C-linear vector bundle isomorphism, let us assume that the bundle E is the
Withney sum N lN of two copies of some real euclidean vector bundle pN : N ! X

with the complex structure given by Jðv;wÞ ¼ ð�w; vÞ, ðv;wÞ A N lN. We endow the com-
plex bundle E with the induced hermitian structure. We then define the Thom groupoid as
follows:

IN :¼ E � ½0; 1�x N � ½0; 1�

with structural morphism given by
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rðv;w; 0Þ ¼ sðv;w; 0Þ ¼ ðv; 0Þ;

rðv;w; tÞ ¼ ðv; tÞ;

sðv;w; tÞ ¼ ðw; tÞ; t > 0;

ðv;w; 0Þ � ðv;w 0; 0Þ ¼ ðv;wþ w 0; 0Þ and

ðv;w; tÞ � ðw; u; tÞ ¼ ðv; u; tÞ; t > 0:

Thus, for t ¼ 0, the groupoid structure of E corresponds to the vector bundle structure
given by the first projection E ¼ N lN ! N while for t > 0 the groupoid structure of E

corresponds to the pair groupoid structure in each fiber Ex ¼ Nx �Nx.

The topology of IN is inherited from the usual tangent groupoid topology, in par-
ticular IN is a Hausdor¤ topological groupoid that can be viewed as a continuous field
of groupoids over X with typical fiber the tangent groupoid of the typical fiber of the
vector bundle N ! X . More precisely, the topology of IN is such that the map
E � ½0; 1� ! IN sending ðu; v; tÞ to ðu; uþ tv; tÞ if t > 0 and equal to identity if t ¼ 0 is a
homeomorphism.

The family of Lebesgue measures on euclidean fibers Nx, x A X , gives rise to a
continuous Haar system on TN that allows us to define the C �-algebra of IN as a con-
tinuous field of amenable groupoids. Therefore, IN is amenable. We also get an element of
KK

�
C �ðEÞ;C0ðXÞ

�
, denoted by Tinv and defined as usual by

Tinv :¼ ½e0��1 n ½e1�nM:

Here, as before, the morphism e0 : C �ðINÞ ! C �ðIN jt¼0Þ ¼ C �ðEÞ is the evaluation at
0, the morphism e1 : C �ðINÞ ! C �ðIN jt¼1Þ is the evaluation at 1, and M is the natural
Morita equivalence between C �ðIN jt¼1Þ and C0ðX Þ. For instance, M is represented by
the Kasparov module ðH;m; 0Þ where H is the continuous field over X of Hilbert spaces
Hx ¼ L2ðNxÞ, x A X , and m is the action of C �ðIN jt¼1Þ ¼ C �ðN �

X
NÞ by compact opera-

tors on H.

We denote T0 ¼ ðE0; r0;F0Þ A KK
�
C0ðXÞ;C �ðEÞ

�
the element corresponding to the

Thom element T of Proposition 6.1 through the isomorphism C0ðEÞFC �ðEÞ. This iso-
morphism is given by the Fourier transform applied to the second factor in E ¼ N lN pro-
vided with the groupoid structure of IN jt¼0. The C �ðEÞ-Hilbert module E0 ¼ C �ðE;LEÞ is
the natural completion of Cc

�
E; p�ðLEÞ

�
( p is the bundle map E ! X ). The representation

r0 of C0ðXÞ and the endomorphism F0 of E0 are given by

r0ð f Þoðv;wÞ ¼ f ðxÞoðv;wÞ;

F0oðv;wÞ ¼
Ð

ðw 0;xÞ ANx�N �x

eiðw�w 0Þ:xCðvþ ixÞoðv;w 0Þ dw 0 dx:

In the above formulas, f A C0ðXÞ, o A Cc

�
E; p�ðLEÞ

�
and ðv;wÞ A Ex. We can therefore

state the following result.

Theorem 6.2. The elements Tinv and T0 are inverses to each other in KK-theory.
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Proof. We know ([36], paragraph 5, theorem 8) that T , hence T0, is invertible so it is
enough to check that T0 nTinv ¼ 1 A KK

�
C0ðXÞ;C0ðX Þ

�
.

Since Tinv :¼ ½e0��1 n ½e1�nM where et are restriction morphisms at t ¼ 0; 1 in the
groupoid IN we first compute ~TT ¼ T0 n ½e0��1, that is, we look for

~TT ¼ ðE; r;FÞ A KK
�
C0ðXÞ;C �ðINÞ

�
such that

ðe0Þ�ð ~TTÞ ¼
�
En

e0

C �ðEÞ; r;F n 1
�
¼ T0:

Let E ¼ C �ðIN ;LEÞ be the C �ðINÞ-Hilbert module completion of Cc

�
IN ; ðr 0Þ�LE

�
,

where r 0 ¼ p � pr1 � r : IN ! X . Let us define a representation r of C0ðX Þ on E by

rð f Þoðv;w; tÞ ¼ f
�

pðvÞ
�
oðv;w; tÞ for all f A C0ðX Þ; o A E; ðv;w; tÞ A IN :

Let F be the endomorphism of E densely defined on Cc

�
IN ; ðr 0Þ�LE

�
by

Foðv;w; tÞ ¼
Ð

ðv 0;xÞ ANx�N �x

ei
�

v�v 0
t

�
:xCðvþ ixÞoðv 0;w; tÞ dv 0

tn
dx;

if t > 0 and by Foðv;w; 0Þ ¼ F0oðv;w; 0Þ if t ¼ 0. The integer n above is the rank of the
bundle N ! X . One can check that the triple ðE; r;FÞ is a Kasparov

�
C0ðX Þ;C �ðINÞ

�
-

module and that under the obvious isomorphism

qEn
e0

C �ðEÞFE0;

r coincides with r0 while F n 1 coincides with F0.

Next, we evaluate ~TT at t ¼ 1 and T1 :¼ ðe1Þ�ð ~TTÞ A KK
�
C0ðX Þ;C �ðN �

X
NÞ

�
is

represented by ðE1; r1;F1Þ where E1 ¼ C �ðN �
X

N;LEÞ is the C �ðN �
X

NÞ-Hilbert module

completion of Cc

�
IN jt¼1; ðp � rÞ�LE

�
and r1, F1 are given by the formulas above where t is

replaced by 1.

Now, applying the Morita equivalence M to T1 gives:

ðE1; r1;F1Þn ðH;m; 0Þ ¼ ðHLE ; f;F1Þ;

where HLE ¼
�
L2ðNx;LExÞ

�
x AX

, f is the obvious action of C0ðX Þ on HLE and F1 is the

same operator as above identified with a continuous family of Fredholm operators acting
on L2ðNx;LExÞ:

F1oðx; vÞ ¼
Ð

ðv 0;xÞ ANx�N �x

eiðv�v 0Þ:xCðvþ ixÞoðx; v 0Þ dv 0 dx:

By [24], lemma 2.4, we know that ðHLE ; f;F1Þ represents 1 in KK
�
C0ðXÞ;C0ðXÞ

�
(the key

point is again that the equivariant On-index of F1 restricted to even forms is 1, see also [34])
and the theorem is proved. r

22 Debord, Lescure and Nistor, Conical pseudo-manifolds

Brought to you by | BCU - Sciences et Techniques STAPS
Authenticated | 193.54.49.3

Download Date | 7/11/14 4:23 PM



Now let us consider the vector bundle p : TV! TM, where M is a compact
manifold embedded in some RN and V is the normal bundle of the embedding. We let
q : TM !M be the canonical projection and to simplify notations, we denote again by p

the bundle map V!M and by V the pull-back of V to TM via q.

Using the identifications TxM lVx FTðx; vÞV for all x A M and v A Vx, we get the
isomorphism of vector bundles over TM:

q�ðVlVÞ C ðx;X ; v;wÞ 7! ðx; v;X þ wÞ A TV:

It follows that TV inherits a complex structure from VlVFVnC and we take the
Atiyah-Singer convention: via the above isomorphism, the first parameter is real and the
second is imaginary.

The previous construction leads to the groupoid IV giving the inverse of the Thom
isomorphism. Actually, we slighty modify to retain the natural groupoid structure carried
by the base space TM of the vector bundle TV (it is important in the purpose of extending
the Thom isomorphism to the singular setting). Thus, we set

HV ¼ TV� f0g t �p�ðTMÞ � �0; 1�x V� ½0; 1�:

This is the Thom groupoid defined in the Section 3.2. The groupoids IV and HV are not
isomorphic, but a Fourier transform in the fibers of TM provides an isomorphism of their
C �-algebras: C �ðIVÞFC �ðHVÞ. Moreover, this isomorphism is compatible with the re-
striction morphisms and we can rewrite Theorem 6.2:

Corollary 6.3. Let qHV
¼ ½e0��1 n ½e1� be the KK-element associated with the

deformation groupoid HV and let M be the natural Morita equivalence between

C �
��p�ðTMÞ

�
and C �ðTMÞ. Then Tinv ¼ qHV

nM A KK
�
C �ðTVÞ;C �ðTMÞ

�
gives the in-

verse of the Thom isomorphism T A KK
�
C0ðT �MÞ;C0ðT �VÞ

�
through the isomorphisms

C0ðT �MÞFC �ðTMÞ and C0ðT �VÞFC �ðTVÞ.

Remarks 6.4. (1) Let us assume that M is a point and V ¼ RN . The groupoid HV

is equal in that case to the tangent groupoid of the manifold RN and the associated KK-
element qHV

nM gives the Bott periodicity between the point and R2N .

(2) Let Mþ be a compact manifold with boundary and M the manifold without
boundary obtained by doubling Mþ. Keeping the notations above, let Vþ be the restriction
of V to Mþ. All the previous constructions applied to M restrict to Mþ and give the
inverse Tþinv of the Thom element Tþ A KK

�
C0ðT �MþÞ;C0ðT �VþÞ

�
.

With this description of the (inverse) Thom isomorphism in hand, the equality
between the analytical and topological indices of Atiyah and Singer [2] follows from a
commutative diagram. Let us denote by p½0;1� the map p� Id : V� ½0; 1� !M � ½0; 1�.
We consider the deformation groupoid (cf. Example 3.5)

T t
V ¼ G t

V�f0g t �p�½0;1�ðG t
MÞFHV�f0g t ðV�V� ½0; 1�Þ � �0; 1�x V� ½0; 1� � ½0; 1�:

We use the obvious notation for restriction morphisms (cf. proof of Definition-Proposition
5.2) and M for the various (but always obvious) Morita equivalence maps. To shorten
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the diagram, we set KðGÞ :¼ K0

�
C �ðGÞ

�
for all the (amenable) groupoids met below. We

have:

ð6:2Þ
Kð�Þ  ��¼ Kð�Þ  ��½ev0�

Kð½0; 1�Þ ��!½ev1�
Kð�Þ ��!¼ Kð�Þ

M

x??? M

x??? M

x??? M

x??? M

x???
KðRN � RNÞ  ��j1

KðV�VÞ  ��½ev0�
KðV�V� ½0; 1�Þ ��!½ev1�

KðV�VÞ ��!M KðM �MÞ

½eRN

1
�

x??? ½eV
1
�

x??? x???½q1; � �

x???½ �p �e M
1
�

x???½e M
1
�

KðG t
RN Þ  ��j

KðG t
VÞ  ��½q�; 0�

KðT t
VÞ ��!½q�; 1�

K
��p�½0; 1�ðG t

MÞ
� ��!M KðG t

MÞ

½eRN

0
�

???y ½eV
0
�

???y ???y½q0; � �

???y½ �p �e M
0
�

???y½e M
0
�

KðTRNÞ  ��
j0

KðTVÞ  ��
½e0 �

C �ðHVÞ ��!
½e1�

K
��p�ðTMÞ

� ��!
M

KðTMÞ:

The commutativity of this diagram is obvious. From the previous remark we deduce that
the map KðTRNÞ ! Z associated with ½eRN

0 �
�1 n ½eRN

1 �nM on the left column is equal to
the Bott periodicity isomorphism b. Thanks to Corollary 6.3, the map KðTMÞ ! KðTVÞ
associated with M�1 n q�1

HV
¼ T0 on the bottom line is equal to the Thom isomorphism,

while j0 is the usual excision map resulting from the identification of V with an open subset
of RN . It follows that composing the bottom line with the left column produces the map

b � j0 � T0 : KðTMÞ ! Z

which is exaclty the Atiyah-Singer’s definition of the topological index map. We already
know that the map KðTMÞ ! Z associated with ½eM

0 �
�1 n ½eM

1 �nM on the right column
is the analytical index map. Finally, the commutativity of the diagram and the fact that the
map associated with ½ev0��1 n ½ev1� on the top line is identity, completes our proof of the
Atiyah-Singer Index Theorem.

Another proof of the usual Atiyah-Singer Index Theorem in the framework of defor-
mation groupoids can be found in [49].

6.2. An index theorem for conical pseudomanifolds. We define for a conical manifold
a topological index and prove the equality between the topological and analytical indices.
Both indices are straight generalisations of the ones used in the Atiyah-Singer Index Theo-
rem: indeed, if we apply our constructions to a smooth manifold and its tangent space,
we find exaclty the classical topological and analytical indices. Thus, the egality of indices
we proove can be presented as the index theorem for conical manifolds. Moreover, the
K-theory of T SX is exhausted by elliptic symbols associated with pseudo-di¤erential
operators in the b-calculus [40] and the analytical index can be interpreted via the Poincaré
duality [27], as their Fredholm index.

Let X be a compact conical pseudomanifold embedded in ðRNÞS for some N and let
W be a tubular neighborhood of this embedding as in 1. We first assume that X has only
one singularity. We denote by

HW ¼ T SW� f0g t �p�ðT SXÞ � �0; 1�x W� � ½0; 1�
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the Thom groupoid associated with p : W! X and by

Hþ ¼ TWþ � f0g t �p�þðTXþÞ � �0; 1�x Wþ � ½0; 1�

the Thom groupoid associated with pþ : Wþ ! Xþ. Here

Wþ ¼WnOW ¼ fðz;VÞ A W j rðzÞf 1g and Xþ ¼ XnOX ¼ fz A X j rðzÞf 1g;

where r is in both cases the defining function of the singularity. We denote by Tinv and Tþinv

the respective inverse-Thom elements. Recall (cf. Proposition 4.3) that we have the two fol-
lowing short exact sequences coming from inclusion and restriction morphisms:

0 �! K
�
K

�
L2ðOWÞ

�� �!iV� K
�
C �ðT SWÞ

� �!rW� K
�
C �ðTWþÞ

� �! 0;

0 �! K
�
K

�
L2ðOX Þ

�� �! K
�
C �ðT SXÞ

� �! K
�
C �ðTXþÞ

� �! 0:

Definition-Proposition 6.5. The following diagram commutes:

ð6:3Þ
0 ���! K

�
K

�
L2ðOWÞ

�� ���!iW�
K
�
C �ðT SWÞ

� ���!rW�
K
�
C �ðTWþÞ

� ���! 0

M

???y �nTinv

???y �nTþ
inv

???y
0 ���! K

�
K

�
L2ðOX Þ

�� ���! K
�
C �ðT SXÞ

� ���! K
�
C �ðTXþÞ

� ���! 0

where M is the natural Morita equivalence map. In particular, the map

�nTinv : K
�
C �ðT SWÞ

�
! K

�
C �ðT SXÞ

�
ð6:4Þ

is an isomorphism. Its inverse is denoted by T and called the Thom isomorphism.

Proof. Let us note again by p the (smooth) vector bundle map W� ! X � and con-
sider the following diagram:

ð6:5Þ
0! C �ðOW �OWÞ ���! C �ðT SWÞ ���!rþ

C �ðTWþÞ ! 0

ev0

x??? ev0

x??? ev0

x???
0! C �ðOW �OW � ½0; 1�Þ ���! C �ðHWÞ ���!rþ

C �ðHþÞ ! 0

ev1

???y ev1

???y ev1

???y
0! C �

��p�ðOX �OX Þ
� ���! C �

��p�ðT SX Þ
� ���!rþ

C �
��p�ðTXþÞ

�
! 0

where the (Lie) groupoid isomorphism �p�ðOX �OX ÞFOW �OW has been used. Apply-
ing the K functor and Morita equivalence maps to the bottom line to get rid of the pull
back �p� and using the fact that the long exact sequences in K-theory associated to the
top and bottom lines split in short exact sequences, give the diagram (6.3). Since M and
Tþinv are isomorphisms, the same is true for Tinv. r
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Remarks 6.6. (1) When X has several singular points, the invertibility of �nTinv re-
mains true. This can be checked thanks to a recursive process on the number k of singular
points. First choose a singular point s A S and call again s its image in W by the embedding
p. Denote by

Hs;þ ¼ TWs;þ � f0g t �p�s;þðT SXs;þÞ � �0; 1�x Ws;þ � ½0; 1�

the Thom groupoid associated with ps;þ : Ws;þ ! Xs;þ. Recall that

Ws;þ ¼ fðz;VÞ A W j rsðzÞf 1g and Xs;þ ¼ XnOs ¼ fz A X j rsðzÞf 1g;

where rs is in both cases the defining function associated to s. We denote by T s;þ
inv the cor-

responding inverse-Thom element. The same proof as before gives that the map

�nTinv : K
�
C �ðT SWÞ

�
! K

�
C �ðT SXÞ

�
is an isomorphism as soon as

�nT
s;þ
inv : K

�
C �ðT SWs;þÞ

�
! K

�
C �ðT SXs;þÞ

�
is. But now Xs;þ has k � 1 singular points.

(2) The Thom map we define extends the usual one: this is exactly what is said by the
commutativity of the diagram (6.3).

Let us recall that we started with an embedding of X into ðRNÞS which is RN with
k singular points where k is the cardinal of S. The S-tangent space T SW of W is obviously
isomorphic to an open subgroupoid of the S-tangent space T SðRNÞS. Thus we get an exci-
sion homomorphism:

j : C �ðT SWÞ ! C �
�
T SðRNÞS

�
:

There is a natural identification of the K-theory group K
�
T SðRNÞS

�
with Z, analog to the

one given by Bott periodicity in the case of TRN ¼ R2N coming from its tangent groupoid
(cf. Remark 6.4):

qðRN ÞS ¼ ½e0��1 n ½e1�nM : K
�
T SðRNÞS

�
! Z;

K
�
C �

�
T SðRNÞS

��
 ½e0�

K
�
C �ðG t

ðRN ÞSÞ
�
!½e1�

K
�
K

�
L2ðRNÞ

��
!M Kð�ÞFZ:

We are now in position to extend the Atiyah-Singer topological index to conical pseudo-
manifolds:

Definition 6.7. The topological index of the conical pseudomanifold X is defined
by

IndX
t ¼ qðRN ÞS � ½ j� � T :

Moreover, we obtain the following extension of the Atiyah-Singer Index Theorem.
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Theorem 6.8. If X is a pseudomanifold with conical singularities then

IndX
a ¼ IndX

t :

Proof. The proof is similar to our proof of the Atiyah-Singer Index Theorem. Indeed,
let us write down the analog of the diagram (6.2) for the singular manifold X :

ð6:6Þ
Kð�Þ  ��¼ Kð�Þ  ��½ev0�

Kð½0; 1�Þ ��!½ev1�
Kð�Þ ��!¼ Kð�Þ

M

x??? M

x??? M

x??? M

x??? M

x???
KðR2NÞ  ��j1

KðW2Þ  ��½ev0�
KðW2 � ½0; 1�Þ ��!½ev1�

KðW2Þ ��!M K
�
ðX oÞ2

�
½eðR

N Þ c
1

�

x??? ½eW
1
�

x??? x???½q1; ��

x???½ �p�eX
1
�

x???½eX
1
�

KðG t

ðRNÞSÞ  ��j
KðG t

WÞ  ��½q�; 0�
KðT t

WÞ ��!½q�; 1�
K
��p�½0;1�ðG t

X Þ
� ��!M KðG t

X Þ

½eðR
N Þ c

0
�

???y ½eW
0
�

???y ???y½q0; ��

???y½ �p�eX
0
�

???y½eX
0
�

K
�
T SðRNÞS

�
 ��

j0
KðT SWÞ  ��

½e0�
C �ðHWÞ ��!

½e1�
K
��p�ðT SXÞ

� ��!
M

KðT SXÞ:

This diagram involves various deformation groupoids associated to X and its embedding
into ðRNÞS. The commutativity is obvious since everything comes from morphisms of alge-
bras or from explicit Morita equivalences. As before, the convention KðGÞ ¼ K0

�
C �ðGÞ

�
is

used to shorten the diagram and intuitive notations are chosen to name the various restric-
tion morphisms. Starting from the bottom right corner and following the right column
gives the analytical index map. Starting from the bottom right corner and following the
bottom line and next the left column gives the topological index map. r

6.3. Signification of the index map. In the sequel we suppose that X has only one
singularity.

In [27], a Poincaré duality in bivariant K-theory between CðX Þ and C �ðT SXÞ is
proved. Taking the Kasparov product with the dual-Dirac element involved in this duality
provides an isomorphism:

K0ðXÞ !
SX

K 0ðT SXÞ:ð6:7Þ

When a K-homology class of X and a K-theory class of T SX coincide trough this isomor-
phism, we say that they are Poincaré dual.

If p : X ! � is the trivial map, then (6.7) satisfies ([40])

IndX
a � SX ¼ p� : K0ðX Þ ! ZFK0ð�Þ:ð6:8Þ

Remember that cycles of K0ðYÞ, for a compact Hausdor¤ space Y , are given by triples
ðH; p;FÞ where H ¼ HþlH� is a Z2-graded Hilbert space, p a degree 0 homomorphism
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of CðY Þ into the algebra of bounded operators on H and F ¼ 0 F�
Fþ 0

� �
a bounded

operator on H of degree 1 such that F 2 � 1 and ½p;F � are compact. Since

p�ðH; p;FÞ ¼ Fredholm-IndexðPÞ;

the equality (6.8) implies that IndX
a produces indices of Fredholm operators. To make

things more concrete and see what Fredholm operators come into the play, one needs to
compute explicitely (6.7), or mimeting the case of smooth manifolds, interpret it as a
symbol map associating K-theory classes of the tangent space to elliptic pseudodi¤erential

operators. This is done in full details, and summarized below, for the 0-order case in [40].
We give also an account of the unbounded case, necessary to compare our index with the
ones computed in [18], [15], [19], [39].

6.3.1. K-homology of the conical pseudomanifold and elliptic operators. Let C�b be
the algebra of the b-calculus [44] on X � (the obvious compactification of X � into a mani-
fold with boundary). A b-pseudodi¤erential operator P is said to be fully elliptic if its
principal symbol sintðPÞ, regarded as an ordinary pseudodi¤erential operator on X � is in-
vertible and the indicial family

�
P̂PðtÞ

�
t AR

is everywhere invertible [44] (that is, for all t A R,
the pseudodi¤erential operator P̂PðtÞ on L ¼ qX � is invertible). A full parametrix of P is
then another b-operator Q such that PQ and QP are equal to 1 modulo a negative order
b-operator with vanishing indicial family. When P is a zero order fully elliptic b-operator, it

is Fredholm on the Hilbert space L2;b :¼ L2ðX �; dmbÞ for the natural measure dmb ¼
dh

h
dy

coming with an exact b-metric [44], and we get a canonically defined K-homology class
of X :

½P� :¼ ½ðH b; p;PÞ� A K0ðXÞð6:9Þ

where P ¼ 0 Q

P 0

� �
, H b ¼ L2;b lL2;b and p : CðX Þ ! BðH bÞ is the homomorphism

given by pointwise multiplication (for all f A Cy
c ðX �ÞlC, ½pð f Þ;P� has negative order

and vanishing indicial family, thus it is a compact operator on H b [44]; since Cy
c ðX �ÞlC

is dense in CðXÞ, it proves that the commutators ½p;P� are compact and ½P� is well de-
fined).

6.3.2. K-theory of the noncommutative tangent space and symbols. To compute the
Poincaré dual of K-classes given by (6.9), one uses a slightly di¤erent, but KK-equivalent,
definition of T SX :

T SX :¼ T �0; 1½ � L� L t TXþ x X o:ð6:10Þ

The KK-equivalence between both definitions is explicit ([40]) and allows us to translate all
the previous constructions to this variant of the tangent space.

Roughly speaking, a noncommutative symbol on the pseudomanifold X is a pseudo-
di¤erential operator, in the groupoid sense ([48], [57]), on T SX . For technical reasons, one
asks to these objects to be smooth up to h ¼ 0, in other words we define the algebra of non-
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commutative symbols as

S �ðXÞ ¼ C�ðT SXÞð6:11Þ

where T SX ¼ f0g � R� L� LWT SX and the letter C is reserved for the space of pseu-
dodi¤erential operators on the indicated groupoid. See [40] for the precise assumptions on
the Schwartz kernels of the operators in (6.11). Considering the closed saturated subspace

L ¼ qX � of the space of units X � of T SX , we get a restriction homomorphism:

S �ðX Þ ¼ C�ðT SX Þ !r C�ðR� L� LÞFC�suspðLÞð6:12Þ

where C�suspðLÞ denotes the space of suspended pseudodi¤erential operators of R. Melrose
[46]. A noncommutative symbol a A S mðX Þ is fully elliptic if there exists b A S�mðXÞ
such that ab and ba are equal to 1 modulo S�1ðXÞX ker r ¼: J. Fully elliptic symbols
a A S0ðX Þ give canonically K-classes of the tangent space T SX :

½a� ¼ ½E; a� A KK
�
C;C �ðT SX Þ

�
¼ K 0ðT SXÞð6:13Þ

where a ¼ 0 b

a 0

� �
, b any inverse of a modulo J and E ¼ C �ðT SXÞlC �ðT SXÞ.

6.3.3. IndS
a as a Fredholm index. The main result of [40] is:

Theorem 6.9. There exists a surjective linear map sX : C�b ! S � such that:

� P A C�b is fully elliptic if and only if sX ðPÞ is fully elliptic.

� For all zero order fully elliptic operators P,

SX ð½P�Þ ¼ ½sX ðPÞ�:ð6:14Þ

See also [38] for a thorough study of the property of full ellipticity in b-calculus in the
framework of groupoids.

Remarks 6.10. Allowing vector bundles E over X � and defining the algebra of b-
operators C�b ðEÞ and the algebra of noncommutative symbols S �ðX ;EÞ accordingly, we
get a full description of K0ðXÞ in terms of b-operators and of K 0ðT SXÞ in terms of non-
commutative symbols. This is also proved in [40]. Thus, for any x A K 0ðT SXÞ, we have

IndX
a ðxÞ ¼ Fredholm-indexðPxÞ

where Px is any b-operator such that ½sX ðPxÞ� ¼ x.

The reader should not be surprised by our definition of (noncommutative) symbols: if
V is a smooth manifold, the algebra of ordinary symbols is isomorphic to the algebra of
pseudodi¤erential operators, for a suitable choice of regularizing operators imposed by
the use of the Fourier transform, on the groupoid TV .

6.3.4. The unbounded case and geometric operators. The symbol map sX constructed
in [40] makes sense on di¤erential b-operators. It turns out that natural geometric operators
on X , when provided with a conical metric, can be written as b-di¤erential operators with
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singular coe‰cients at h ¼ 0, or, in the terminology of [39], Fuchs type operators. We ex-
plain in this paragraph how to relate the analysis of these operators ([18], [15], [19], [39]) to
our K-theoretic constructions, for the case of a Dirac operator on X even dimensional with
one conical point s.

Let g be a riemannian metric on X � which is conical on OX ¼ �0; 1½ � L, that is:
g ¼ dh2 þ h2gL. We assume to simplify the computations that the riemannian metric gL

on L is independant of h when he 1. We denote by dvolX the corresponding volume form.

Let E ¼ EþlE� be a Cli¤ord module and c the corresponding Cli¤ord multiplica-
tion ([8]).

If X � has a spin structure, then there exists a (Z2-graded) vector bundle W such that
EFWnS where S ¼SþlS� is the spinor bundle.

In the case of a spin structure, using the canonical metric structure and Cli¤ord con-
nection ‘S of the spinor bundle, and using on W a metric structure of product type on Ox

and a compatible connection ‘W, we get on E a metric structure, such that Eþ ? E� and
cðvÞ� ¼ �cðvÞ for unitary tangent vectors v A TX �, and a Cli¤ord connection ‘E such that
the corresponding Dirac operator D is symmetric, when considered as an unbounded oper-
ator on L2ðEÞ with domain the space Cy

c ðEÞ of compactly supported sections. Recall that
D is defined locally by the formula:

s A CyðEÞ; Ds ¼
Pn

i¼1

cðeiÞ‘E
ei

s;

where ðe1; . . . ; enÞ is a local basis of TX �.

If X � has no spin structure, then the isomorphism EFWnS remains true locally.
Thus, one can still construct locally on E metrics and connections with the previous proper-
ties and then patch them with a partition of unity ðUi; fiÞ on X (that is ðUiÞ is a finite open
covering of X � by open charts, fi A CyðUiÞXCcðUi W fsgÞ and

P
i

fðxÞ ¼ 1, Ex A X �). The

resulting Dirac operator is again symmetric, and all subsequent computations are exactly
the same with or without spin structure.

Although the Hilbert space L2ðEÞ, whose scalar product is given by

ðs; tÞ ¼
Ð

X �

�
sðxÞ; tðxÞ

�
Ex

dvolXð6:15Þ

is the most natural Hilbert space with respect to the given geometric data, computations are
easier with HbðEÞ which is defined as, if p : X � ! Xþ denotes the obvious retraction map
and ~EE ¼ EjL, the completion of Cy

c

�
p�ðEjXþÞ

�
for the scalar product:

ðs; tÞb ¼
Ð

Xþ

�
sðxÞ; tðxÞ

�
Ex

dvolX þ
Ð

x¼ðh; yÞ AOX

�
sðxÞ; tðxÞ

�
~EE

dh

h
dvolY ðyÞ:ð6:16Þ

One can choose an isometry U : HbðEÞ ! L2ðEÞ such that U : Cy
�
p�ðEjXþÞ

�
! CyðEÞ

is equal to identity on the complement of some open neighborhood of OX and given on
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OX by

UðsÞðh; yÞ ¼ h�
n

2yE
ð1;yÞ!ðh;yÞsðh; yÞ

where yE
ð1;yÞ!ðh;yÞ : Eð1;yÞ ! Eðh;yÞ is the parallel transport associated with the connection

and the canonical identification Cy
�
p�ðEjXþÞjOX

�
FCy

�
�0; 1½;Cyð ~EEÞ

�
has been used.

Then, a straight computation shows that ([11], [19], [41]) the following holds for sec-
tions s supported on OX :

U�1DUs ¼ cðe1Þ �
qs

qh
þ 1

h
~DD� e1

2

� �
sð6:17Þ

where e1 ¼
q

qh
; e2; . . . ; en

� �
is a local orthonormal basis in TOX and ~DD is the di¤erential

operator on L, acting on the sections of ~EE, given by ~DDu ¼
Pn

i¼2

cðeeieiÞ‘
~EEeei
u, where

eeieiðyÞ ¼ eið1; yÞ and ‘
~EE is the connection on ~EE induced by ‘E. Moreover we have

E� ¼ cðe1Þ � Eþ, and the operator U�1DU is given by the matrix, in the decomposition
E ¼ Eþl cðe1Þ � EþFE2

þ,

0 � q

qh
þ 1

h
S þ 1

2

� �
q

qh
þ 1

h
S � 1

2

� �
0

0BBB@
1CCCAð6:18Þ

where S ¼
Pn

i¼2

cðeeiei ee1e1Þ‘
~EEeei

is again a symmetric Dirac operator on the Cli¤ord module fEþEþ
over L.

It is of course equivalent to study D on L2ðEÞ or T ¼ U�1DU on HbðEÞ. If we used

dh instead of
dh

h
in (6.16), which leads to the Hilbert space used in [15], [39] to study Fuchs

type operators, S would appear without the extra termsG
1

2
in (6.18).

The deformation process of [40] used to associate noncommutative symbols to
b-pseudodi¤erential operators, can be applied to T and gives a family ðTtÞ0ete1 where

t > 0, Tt A
1

h
. C1

bðEÞ and T0 A
1

h
:S1ðX ;EÞ have the following expression on OX :

t > 0; Tt ¼
0 �t

q

qh
þ 1

h
S þ t

2

� �
t
q

qh
þ 1

h
S � t

2

� �
0

0BBBB@
1CCCCAð6:19Þ

and

sX ðTÞ :¼ T0 ¼
1

h

0 � q

ql
þ S

q

ql
þ S 0

0BB@
1CCA:ð6:20Þ
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Observe that the family Dt :¼ UTtU
�1 coincides for t > 0 with the one given by the

deformation of the conical metric
dh2

t2
þ h2gL ([11]).

The natural questions are then: Does the noncommutative symbol T0 give canoni-
cally a K-theory element of T SX? Does the operator T give canonically a K-homology
class on X ? Are the corresponding classes Poincaré dual?

The answer to the first two questions is negative in general, but becomes a‰rmative
under some conditions on the spectrum of S and in that case the answer to the last question
is a‰rmative too. Let us explain these phenomena.

Firstly, the noncommutative symbol a :¼ hT0 is fully elliptic if and only if

0 B spec S:ð6:21Þ

We assume in the sequel that this condition is satisfied. Using the ellipticity of a as a
pseudodi¤erential operator on T SX and the invertibility of ajh¼0, we can prove thanks to
[63] that

�
1þ sX ðTÞ2

��1
A h2 � S�2ðX ;EÞHK

�
C �ðT SX ;EÞ

�
. This implies that the closure

of sX ðTÞ as an unbounded operator on the C �ðT SX Þ-Hilbert module C �ðT SX ;EÞ with
domain CyðT SX ;EÞ is selfadjoint, regular and provides an unbounded

�
C;C �ðT SX Þ

�
-

Kasparov bimodule ([5], [63]). We thus get here a well defined, canonical, element
½sX ðTÞ� A K 0ðT SX Þ.

We turn back now to the operators Tt, 1f t > 0. It is well known that they always
have a selfadjoint extension, not unique in general ([15], [19], [39]). Adpating for instance
the computations of [15] to our particular choice of Hilbert space HbðEÞ, we see that Tt,

t > 0, with domain Cy
c ðEÞ is essentially selfadjoint if and only if specðSÞX � t

2
;

t

2

	 �
¼ j.

Otherwise, any choice of an orthogonal decomposition of

Wt ¼
L

�t=2<u<t=2

C:euð6:22Þ

where the eu’s describe an orthonormal system of eigenvectors of S, allows to define a self-
adjoint extension of T ([15]).

Thus, for a small enough, thanks to the assumption (6.21), Ta is essentially self-
adjoint. It is also Fredholm by [15], so Ta gives an unbounded

�
CðXÞ;C

�
-Kasparov bimod-

ule, in other words a K-homology class ½Ta� A K0ðXÞ, and we have

SX ð½Ta�Þ ¼ ½sX ðTÞ�:

To check this, one shows that the Woronowicz transform qðTaÞ ¼ Ta:ð1þ T 2
a Þ
�1=2 ([63],

[5]) of Ta can be represented in K-homology by a zero order b-operator with noncommuta-
tive symbol equal to the Woronowicz transform q

�
sX ðTÞ

�
¼ sX ðTÞ:

�
1þ sX ðTÞ2

��1=2
of

sX ðTÞ, and then the Theorem 6.9 applies.

In particular:
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dim kerðTaÞþ � dim kerðTaÞ� ¼ IndX
a

�
½sX ðTÞ�

�
:

In general, T ¼ T1 has several selfadjoint extensions, but using the splitness of

0! C! K0ðXÞ ! K0ðX �Þ ! 0

one shows that two given selfadjoint extensions of T give the same K-homology class
if and only if their Fredholm index is the same. Thus a selfadjoint extension TZ, given
by a choice of a decomposition Z lZ? of (6.22), produces the same K-homology class
as Ta (and then, is Poincaré dual to its noncommutative symbol) if and only if
2 dim Z ¼ dim W1.

Let us say a word about the case 0 A spec S. For small t, the selfadjoint extensions of
Tt are classified by the orthogonal decompositions of ker S. There is a priori no canonical
choice. On the other hand, the noncommutative symbol sX ðTÞ is not fully elliptic. We con-
jecture that the selfadjoint extensions of sX ðTÞ, as an unbounded operator on the Hilbert
module C �ðT SX ;EÞ, are again classified by the orthogonal decomposition of ker S and
give unbounded Kasparov modules which are in one-to-one correspondence, via Poincaré
duality, with the selfadjoint extensions of Tt.
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