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HILBERT SQUARES OF K3 SURFACES AND

DEBARRE-VOISIN VARIETIES

by Olivier Debarre, Frédéric Han, Kieran O’Grady
& Claire Voisin

Abstract. — Debarre-Voisin hyperkähler fourfolds are built from alternating 3-forms on a
10-dimensional complex vector space, which we call trivectors. They are analogous to the
Beauville-Donagi fourfolds associated with cubic fourfolds. In this article, we study several
trivectors whose associated Debarre-Voisin variety is degenerate in the sense that it is either re-
ducible or has excessive dimension. We show that the Debarre-Voisin varieties specialize, along
general 1-parameter degenerations to these trivectors, to varieties isomorphic or birationally
isomorphic to the Hilbert square of a K3 surface.

Résumé (Schémas de Hilbert ponctuels de surfaces K3 et variétés de Debarre-Voisin)
Les variétés hyper-kählériennes de Debarre-Voisin sont construites à l’aide de 3-formes alter-

nées sur un espace vectoriel complexe de dimension 10, que nous appelons des trivecteurs. Elles
présentent de nombreuses analogies avec les variétés de Beauville-Donagi qui sont construites
en partant d’une cubique de dimension 4. Nous étudions dans cet article différents trivecteurs
dont la variété de Debarre-Voisin associée est dégénérée au sens où elle est soit réductible, soit
de dimension excessive. Nous montrons que, sous une spécialisation d’un trivecteur général en
de tels trivecteurs, les variétés de Debarre-Voisin correspondantes se spécialisent en des varié-
tés hyper-kählériennes lisses, birationnellement isomorphes au schéma de Hilbert des paires de
points sur une surface K3.
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1. Introduction

Throughout this article, the notation Um, Vm, or Wm means an m-dimensional
complex vector space. Let σ ∈ Λ3

V ∨10 be a nonzero alternating 3-form (which we call
a trivector). The Debarre-Voisin variety associated with σ is the scheme

(1) Kσ := {[W6] ∈ Gr(6, V10) | σ|W6
= 0}

whose points are the 6-dimensional vector subspaces of V10 on which σ vanishes iden-
tically.

It was proved in [DV10] that for σ general, the schemes Kσ, equipped with the
polarization OKσ (1) (of square 22 and divisibility 2; see Section 2.1) induced by the
Plücker polarization on Gr(6, V10), form a locally complete family of smooth polar-
ized hyperkähler fourfolds which are deformation equivalent to Hilbert squares of K3
surfaces (one says that Kσ is of K3[2]-type). This was done by proving that when σ
specializes to a general element of the discriminant hypersurface in Λ3

V ∨10 where the
Plücker hyperplane section

(2) Xσ := {[U3] ∈ Gr(3, V10) | σ|U3
= 0}

becomes singular (we call that a singular degeneration of σ), the scheme Kσ becomes
singular along a surface but birationally isomorphic to the Hilbert square of a K3
surface (the fact that Kσ is of K3[2]-type was reproved in [KLSV18] by a different
argument still based on the same specialization of σ).

The projective 20-dimensional irreducible GIT quotient

MDV = P(Λ3
V ∨10)//SL(V10)

is a coarse moduli space for trivectors σ. Let F be the quasi-projective 20-dimensional
irreducible period domain for smooth polarized hyperkähler varieties that are defor-
mations of (Kσ,OKσ (1)). The corresponding period map

q : MDV
//F

is regular on the open subset of MDV corresponding to points [σ] such that Kσ is a
smooth fourfold. It is known to be dominant (hence generically finite) and was recently
shown to be birational ([O’G19]). Consider the Baily-Borel projective compactification
F ⊂ F (whose boundary has dimension 1) and a resolution

(3)
M̃DV

ε
��

q
// // F

MDV

q
// F
?�

OO

of the indeterminacies of q, where ε is birational. We define an HLS divisor (for
Hassett-Looijenga-Shah) to be an irreducible hypersurface in F which is the image
by q of an exceptional divisor of ε (that is, whose image in MDV has codimension > 1).
These divisors reflect some difference between the GIT and the Baily-Borel compact-
ifications and there are obviously only finitely many of them.
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Hilbert squares of K3 surfaces and Debarre-Voisin varieties 655

The main result of this article is the following (for the definition of the Heegner
divisors D2e ⊂ F , see Section 2.1).

Theorem 1.1. — The Heegner divisors D2, D6, D10, and D18 in F are HLS divisors.

This statement puts together the more detailed conclusions of Theorems 1.2, 1.3,
1.4, and 1.5. These results are in fact more precise: we identify these divisors D2, D6,
D10, and D18 with the periods of Hilbert squares of K3 surfaces with a suitable polar-
ization (see Section 1.1 for more details). The singular degenerations of σ discussed
above correspond to a hypersurface in M̃DV mapped by q onto the Heegner divisor
D22, which is therefore not an HLS divisor.

The study of this kind of problems has a long history that started with the work
of Horikawa and Shah on polarized K3 surfaces of degree 2 ([Hor77, Sha80]) and
continued with the work of Hassett, Looijenga, and Laza on cubic fourfolds ([Has00,
Loo03, Loo09, Laz10, Laz09]) and O’Grady on double EPW sextics ([O’G15, O’G16]),
which are hyperkähler fourfolds of K3[2]-type with a polarization of square 2 and
divisibility 1, associated with Lagrangian subspaces in Λ3

V6.
Let us describe briefly the situation in the cubic fourfold case, which inspired the

present study. One considers hypersurfaces Xf ⊂ P(V6) defined by nonzero cubic
polynomials f ∈ Sym3V ∨6 . When f is general, the variety

Ff = {[W2] ∈ Gr(2, V6) | f |W2 = 0}

of lines contained in Xf was shown by Beauville-Donagi in [BD85] to be a hyperkähler
fourfold of K3[2]-type with a (Plücker) polarization of square 6 and divisibility 2.
There is again a birational surjective period map M̃Cub → G which was completely
described by Laza. The divisor in M̃Cub that corresponds to singular cubics Xf maps
onto the Heegner divisor D6. The only HLS divisor is D2 ([Has00, Loo09, Laz10]):
it is obtained by blowing up, in the GIT moduli space MCub, the semistable point
corresponding to chordal cubics Xf0 ([Laz10, §4.1.1]).

O’Grady also proved that D ′2, D ′′2 , and D4 (in the notation of [DIM15, Cor. 6.3];
S′2, S′′2 , and S4 in the notation of [O’G15]) are HLS divisors in the period domain of
double EPW sextics and conjectures that there are no others (see Section 3.5). They
are also obtained by blowing up points in the GIT moduli space (corresponding to
the semistable Lagrangians denoted by Ak, Ah, and A+ in [O’G16]).

The HLS divisors in Theorem 1.1 are obtained as follows: while general trivectors
in P(Λ3

V ∨10) have finite stabilizers in SL(V10), we consider instead some special trivec-
tors σ0 with positive-dimensional stabilizers and we blow up their SL(V10)-orbits in
P(Λ3

V ∨10). The stabilizers along the exceptional divisors of the resulting blown up
space for the induced SL(V10)-action are generically finite, thus producing divisors in
the quotient (this is a Kirwan blow up).

We describe the corresponding Debarre-Voisin varieties Kσ0
. In the simplest cases

(divisors D6 and D18), they are still smooth but of dimension greater than 4. There
is an excess vector bundle F of rank dim(Kσ0

) − 4 on Kσ0
and the limit of the
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varieties Kσt under a general 1-parameter degeneration (σt)t∈∆ to σ0 is the zero-locus
of a general section of F . In one other case (divisor D2), the variety Kσ0 is reducible
of dimension 4 and the limit of the varieties Kσt is birationally isomorphic to the
Hilbert square of a degree-2 K3 surface; it is also a degree-4 cover of a nonreduced
component of Kσ0

(very much like what happens for chordal cubics Xf0).
As mentioned above, there is a relationship between these constructions and K3

surfaces; we actually discovered some of these special trivectors and their stabilizers
starting from K3 surfaces. As explained in Theorem 3.1, Hilbert squares of general
polarized K3 surfaces of fixed degree 2e appear as limits of Debarre-Voisin varieties for
infinitely many values of e, and they form a hypersurface in M̃DV that maps onto the
Heegner divisor D2e. Among these values, the only ones for which there exist explicit
geometric descriptions (Mukai models for polarized K3 surfaces) are 1, 3, 5, 9, 11,
and 15 ([Muk88, Muk16, Muk06]). This is how we obtain the divisors in Theorem 1.1
(the case e = 11 corresponds to the singular degenerations of the trivector σ mentioned
above and does not produce an HLS divisor; our analysis of the case e = 15 is still
incomplete (see Section 1.1.5) and we do not know whether D30 is an HLS divisor).

At this point, one may make a couple of general remarks:
– all known HLS divisors are obtained from blowing up single points in the moduli

space;
– all known HLS divisors are Heegner divisors.

We have no general explanation for these remarkable facts.
Additionally, note that HLS divisors are by definition uniruled (since they are

obtained as images of exceptional divisors of blow ups). They may correspond to
periods of Hilbert squares of K3 surfaces of degree 2e only if the corresponding moduli
space of polarized K3 surfaces is uniruled, which, by [GHS07], may only happen
for e 6 61 (many thanks to an anonymous referee for making this very interesting
remark). Adding in the restrictions on e explained in Section 3, one finds that only
7 other Heegner divisors can be HLS divisors coming from K3 surfaces (Remark 3.5).
Actually, we expect D2, D6, D10, D18, and D30 to be the only HLS divisors (see
Section 3.5).

We now describe the geometric situations encountered for e ∈ {1, 3, 5, 9, 15}.

1.1. Stabilizers and K3 surfaces. — We list here the various special trivectors [σ0] ∈
P(Λ3

V ∨10) that we consider, their (positive-dimensional) stabilizers for the SL(V10)-
action, and the corresponding limits of Debarre-Voisin varieties (which are all bi-
rationally isomorphic to Hilbert squares of K3 surfaces with suitable polarizations)
along general 1-parameter degenerations to σ0. In most cases, the associated Plücker
hypersurface Xσ0

is singular and the singular locus of Xσ0
gives rise to a component

of Kσ0
, as explained in Proposition 4.4(b).

1.1.1. The group SL(3) and K3 surfaces of degree 2 (Section 7). — A general degree-2
K3 surface (S,L) is a double cover of P2 branched along a smooth sextic curve.
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The Hilbert square S[2] is birationally isomorphic to the moduli space MS(0, L, 1) of
sheaves on S defined in Remark 3.6.

We take V10 := Sym3W3, so that Λ3
V ∨10 is an SL(W3)-representation, and we let

σ0 ∈ Λ3
V ∨10 be a generator of the 1-dimensional space of SL(W3)-invariants.

The Debarre-Voisin variety Kσ0
is described in Proposition 7.8: it has two 4-dimen-

sional irreducible components KL and KM and is nonreduced along KL. The Plücker
hypersurface Xσ0 is singular along a surface (Proposition 7.2) and the component KL

of Kσ0
is obtained from this surface by the procedure described in Proposition 4.4(b)

(see Proposition 7.7(a)).
Our main result is the following (Theorem 7.20).

Theorem 1.2. — Under a general 1-parameter deformation (σt)t∈∆, the Debarre-
Voisin fourfolds Kσt specialize, after a finite base change, to a scheme which is iso-
morphic to MS(0, L, 1), where S is a general K3 surface of degree 2.

This case is the most difficult: the limit fourfold MS(0, L, 1) does not sit naturally
in the Grassmannian Gr(6, V10) but maps 4-to-1 to it.

The limit on MS(0, L, 1) of the Plücker line bundles on Kσt is the ample line
bundle of square 22 and divisibility 2 described in Table 1. We show that it is globally
generated for a general degree-2 K3 surface S, but not very ample (Remark 3.6).

1.1.2. The group Sp(4) and K3 surfaces of degree 6 (Section 5.1). — Let V4 be a
4-dimensional vector space equipped with a nondegenerate skew-symmetric form ω.
The hyperplane V5 ⊂ Λ2

V4 defined by ω is endowed with the nondegenerate qua-
dratic form q defined by wedge product, and SO(V5, q) ' Sp(V4, ω). The form q

defines a smooth quadric Q3 ⊂ P(V5) and general degree-6 K3 surfaces are complete
intersections of Q3 and a cubic in P(V5).

There is a natural trivector σ0 on the vector space V10 := Λ2
V5: view elements of V10

as endomorphisms of V5 which are skew-symmetric with respect to q and define

(4) σ0(a, b, c) = Tr(a ◦ b ◦ c).
The associated Debarre-Voisin variety Kσ0

⊂ Gr(6, V10) was described by Hivert in
[Hiv11]: it is isomorphic to Q

[2]
3 . In fact, the Plücker hypersurface Xσ0 is singular

along a copy of Q3 (Lemma 5.1) and the whole of Kσ0
is obtained from Q3 by the

procedure described in Proposition 4.4(b) (see Theorem 5.2).
The excess bundle analysis shows the following (Theorem 5.5).

Theorem 1.3. — Under a general 1-parameter deformation (σt)t∈∆, the Debarre-
Voisin fourfolds Kσt specialize to a smooth subscheme of Kσ0

' Q
[2]
3 which is iso-

morphic to S[2], where S ⊂ Q3 is a general degree-6 K3 surface.

The restriction of the Plücker line bundle to S[2] ⊂ Q
[2]
3 ' Kσ0

⊂ Gr(6, V10) is the
ample line bundle of square 22 and divisibility 2 (see Section 2.1 for the definition of
divisibility) described in Table 1. It is therefore very ample for a general degree-6 K3
surface S.
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1.1.3. The group SL(2) and K3 surfaces of degree 10 (Section 6). — The subvarietyX ⊂
Gr(2, V ∨5 ) ⊂ P(Λ2

V ∨5 ) defined by a general 3-dimensional space W3 ⊂ Λ2
V5 of linear

Plücker equations is a degree-5 Fano threefold. General degree-10 K3 surfaces are
quadratic sections of X ([Muk88]).

The spaces V5 andW3 and the variety X carry SL(2)-actions and there is an SL(2)-
invariant decomposition V10 := Λ2

V5 = V7⊕W3. Among the SL(2)-invariant trivectors,
there is a natural one, σ0, defined in Proposition 6.3, and the neutral component of
its stabilizer is SL(2).

The Debarre-Voisin Kσ0
has one component K1 which is generically smooth and

birationally isomorphic to X [2]. In fact, the Plücker hypersurface Xσ0 is singular along
a copy of the threefold X and K1 is obtained from X by the procedure described in
Proposition 4.4(b) (see Proposition 6.5).

We obtain the following (Proposition 6.8 and Theorem 6.14).

Theorem 1.4. — Under a general 1-parameter deformation (σt)t∈∆, the Debarre-
Voisin fourfolds Kσt specialize, after finite base change, to a smooth subscheme of
Kσ0

which is isomorphic to S[2], where S ⊂ X is a general K3 surface of degree 10.

The limit on S[2] of the Plücker line bundles on Kσt is the ample line bundle of
square 22 and divisibility 2 described in Table 1. We show that it is not globally
generated.

1.1.4. The group G2 × SL(3) and K3 surfaces of degree 18 (Section 5.2)

The group G2 is the subgroup of GL(V7) leaving a general 3-form α invariant.
There is a G2-invariant Fano 5-fold X ⊂ Gr(2, V7) which has index 3, and general
K3 surfaces of degree 18 are obtained by intersecting X with a general 3-dimensional
space W3 ⊂ Λ2

V ∨7 of linear Plücker equations ([Muk88]).
The vector space V10 := V7⊕W3 is acted on diagonally by the group G2×SL(W3)

and we consider G2 × SL(W3)-invariant trivectors σ0 = α+ β, where β spans Λ3
W∨3 .

The corresponding points [σ0] of P(Λ3
V ∨10) are all in the same SL(V10)-orbit and the

corresponding Debarre-Voisin variety Kσ0 splits as a product of a smooth variety of
dimension 8 and of P(W∨3 ) (Corollary 5.12).

The excess bundle analysis shows the following (Theorem 5.15).

Theorem 1.5. — Under a general 1-parameter deformation (σt)t∈∆, the Debarre-
Voisin fourfolds Kσt specialize to a smooth subscheme of Kσ0 isomorphic to S[2],
where S ⊂ X is a general K3 surface of degree 18.

The limit on S[2] of the Plücker line bundles on Kσt is the ample line bundle of
square 22 and divisibility 2 described in Table 1. It is therefore very ample for a
general K3 surface S of degree 18 (Lemma 5.10).

1.1.5. K3 surfaces of degree 30 (Section 8). — This is the last case allowed by the
numerical conditions of Section 3.3 where a projective model of a general K3 surface S
is known. It corresponds to the last column of Table 1. However, the current geometric
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knowledge for those K3 surfaces (see [Muk16]) is not as thorough as in the previous
cases and we were not able to map (nontrivially) S[2] to a Debarre-Voisin variety nor
to decide whether D30 is an HLS divisor.

In some cases (divisors D6 and D18), we first constructed a rank-4 vector bundle
on S[2] that defined a rational map S[2]−→ Gr(6, 10) and then found a (nonzero) trivec-
tor vanishing on the image. In Section 8.1, we complete the first step by constructing,
for a general K3 surface S of degree 30, a canonical rank-4 vector bundle on S[2] with
the same numerical invariants as the restriction of the tautological quotient bundle
of Gr(6, 10) to a Debarre-Voisin variety. We also obtain a geometric interpretation of
the image of the rational map S[2]−→ Gr(6, 10) that it defines. Such a vector bundle
is expected to be unique; it is modular in the sense of [O’G19].

2. Moduli spaces and period map

2.1. Polarized hyperkähler fourfolds of degree 22 and divisibility 2 and their
period map. — Let X be a hyperkähler fourfold of K3[2]-type. The abelian group
H2(X,Z) is free abelian of rank 23 and it carries a nondegenerate integral-valued
quadratic form qX (the Beauville-Bogomolov-Fujiki form) that satisfies

∀α ∈ H2(X,Z)

∫
X

α4 = 3qX(α)2.

The lattice (H2(X,Z), qX) is isomorphic to the lattice

(Λ, qΛ) := U⊕3 ⊕ E8(−1)⊕2 ⊕ I1(−2),

where U is the hyperbolic plane, E8 the unique positive definite even rank-8 unimod-
ular lattice, and I1(−2) the rank-1 lattice whose generators have square −2.

The divisibility div(α) of a nonzero element α of a lattice (L, qL) is the positive
generator of the subgroup qL(α,L) of Z. There is a unique O(Λ)-orbit of primitive
elements h ∈ Λ such that qΛ(h) = 22 and div(h) = 2 ([GHS10, Cor. 3.7 & Ex. 3.10])
and we fix one of these elements h.

We consider pairs (X,H), where X is a hyperkähler fourfold of K3[2]-type and H
is an ample line bundle on X such that qX(H) = 22 and div(H) = 2. It follows from
Viehweg’s work [Vie90] that there is a quasi-projective 20-dimensional coarse moduli
space M for these pairs and Apostolov proved in [Apo14] that M is irreducible.

The domain

D(h⊥) := {[α] ∈ P(Λ⊗C) | qΛ(α, α) = qΛ(α, h) = 0, qΛ(α, α) > 0}
has two connected components, both isomorphic to the 20-dimensional bounded sym-
metric domain of type IV associated with the lattice h⊥ ⊂ Λ. It is acted on properly
and discontinuously by the isometry group O(h⊥) and the quotient

F := O(h⊥)\D(h⊥)

is, by Baily-Borel’s theory, an irreducible 20-dimensional quasi-projective variety.
The Torelli theorem takes the following form for our hyperkähler fourfolds ([Ver13],

[GHS13, Th. 3.14], [Mar11, Th. 8.4], [Huy12, Th. 1.3]).
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Theorem 2.1 (Verbitsky, Markman, Huybrechts). — The period map

p : M −→ F

is an (algebraic) open embedding.

Let us describe its image. Given an element v ∈ h⊥ of negative square, we define
the associated Heegner divisor as the image by the quotient map D(h⊥)→ F of the
hypersurface

{[α] ∈ D(h⊥) | qΛ(α, v) = 0}.
It is an irreducible algebraic divisor in F that only depends on the even negative
integer−2e := disc(v⊥) ([DM19, Prop. 4.1(2)(c)]). We denote it by D2e; it is nonempty
if and only if e is positive and a square modulo 11 (see the end of the proof of [DM19,
Prop. 4.1]). The following result is [DM19, Th. 6.1].

Proposition 2.2 (Debarre-Macrì). — The image of the period map p : M ↪→ F is the
complement of the irreducible divisor D22.

2.2. Debarre-Voisin varieties. — We now relate this material with the construc-
tions in [DV10]. Let V10 be a 10-dimensional vector space. As in (1), one can asso-
ciate with a nonzero σ ∈ Λ3

V ∨10 a subscheme Kσ ⊂ Gr(6, V10) which, for σ general, is
a hyperkähler fourfold of K3[2]-type; the polarization H induced by this embedding
then satisfies qKσ (H) = 22 and div(H) = 2.

We defined in the introduction the GIT coarse moduli space

MDV = P(Λ3
V ∨10)//SL(V10)

for Debarre-Voisin varieties.

Proposition 2.3. — Let [σ] ∈ P(Λ3
V ∨10). If Kσ is smooth of dimension 4, the point [σ]

is SL(V10)-semistable.

Proof. — Let P(Λ3
V ∨10)sm ⊂ P(Λ3

V ∨10) be the open subset of points [σ] such that Kσ

is smooth of dimension 4. The map

p̃ : P(Λ3
V ∨10)sm −→ F

that sends [σ] to the period of Kσ is regular. Let [σ] ∈ P(Λ3
V ∨10)sm. Let D be a nonzero

effective divisor on the quasi-projective variety F such that p̃([σ]) /∈ D. The closure
of p̃−1(D) in P(Λ3

V ∨10) is the divisor of a SL(V10)-invariant section of some power of
O

P(Λ3V
∨
10)

(1) which does not vanish at [σ], hence [σ] is SL(V10)-semistable. �

There is a modular map

m : MDV
//M , [σ] 7−−−→ [Kσ]

which is regular on the open subset M sm
DV ⊂ MDV corresponding to points [σ] such

that Kσ is a smooth fourfold. In the diagram (3) from the introduction, the map q is
p ◦m.
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3. Hilbert squares of K3 surfaces as specializations of
Debarre-Voisin varieties

In this section, we exhibit, in the period domain F for Debarre-Voisin varieties,
infinitely many Heegner divisors whose general points are periods of polarized hyper-
kähler fourfolds that are birationally isomorphic to Hilbert squares of polarized K3
surfaces. We will prove in the next sections that some of these divisors are HLS divi-
sors. The whole section is devoted to the proof of the following theorem. It is based
on results and techniques from [BM14, DM19, HT09].

Theorem 3.1. — In the moduli space M for hyperkähler fourfolds of K3[2]-type with
a polarization of square 22 and divisibility 2, there are countably many irreducible
hypersurfaces whose general points correspond to polarized hyperkähler fourfolds that
are birationally isomorphic to Hilbert squares of polarized K3 surfaces. Among them,
we have

– fourfolds that are isomorphic to (MS(0, L, 1), $∗(6L − 5δ)), where (S,L) is a
general polarized K3 surface of degree 2;(1)

– fourfolds that are isomorphic to (S[2], 2L− (2m+ 1)δ), where (S,L) is a general
polarized K3 surface of degree 2(m2 +m+ 3) (for any m > 0).
In the first case, the periods dominate the Heegner divisor D2. In the second case, the
periods dominate the Heegner divisor D2(m2+m+3).

3.1. The movable cones of Hilbert squares of very general polarized K3 surfaces

Let (S,L) be a polarized K3 surface with Pic(S) = ZL and L2 = 2e. We have

NS(S[2]) ' ZL⊕ Zδ,

where L is the line bundle on the Hilbert square S[2] induced by L and 2δ is the class
of the exceptional divisor of the Hilbert-Chow morphism S[2] → S(2) (see Section 4.1).
One has

qS[2](L) = 2e, qS[2](δ) = −2, qS[2](L, δ) = 0.

Let (X,H) correspond to an element of M . If there is a birational isomorphism
$ : S[2]−→X, one can write $∗H = 2bL − aδ, where a and b are positive integers
(the coefficient of L is even because H has divisibility 2). Since qX(H) = 22, they
satisfy the quadratic equation

(5) a2 − 4eb2 = −11.

Moreover, the class 2bL− aδ is movable.
The closed movable cone Mov(S[2]) was determined in [BM14] (see also [DM19,

Ex. 5.3]): one extremal ray is spanned by L and the other by L − µeδ, where the
rational number µe is determined as follows:

– if e is a perfect square, µe =
√
e;

(1)See Remark 3.6 for the notation.
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– if e is not a perfect square, µe = eb1/a1, where (a1, b1) is the minimal positive
(integral) solution of the Pell equation x2 − ey2 = 1.

The next proposition explains for which integers e there is a movable class of
square 22 and divisibility 2 on S[2].

Proposition 3.2. — Let e be a positive integer such that the equation (5) has a solution
and let (a2, b2) be the minimal positive solution. The numbers e, a, b such that the class
2bL− aδ is movable on S[2] and of square 22 are precisely the following:

– e = 1 and (a, b) = (5, 3);
– e = 9 and (a, b) = (5, 1);
– e is not a perfect square, b1 is even, and (a, b) is

either (a2, b2) or (2eb1b2 − a1a2, a1b2 −
1

2
a2b1)

(these pairs are equal if and only if 11 | e);
– e is not a perfect square, b1 is odd, and (a, b) = (a2, b2).

Proof. — Assume first that m :=
√
e is an integer. The equation (5) is then

(a− 2bm)(a+ 2bm) = −11,

with a + 2bm > |a − 2bm|, hence a + 2bm = 11 and a − 2bm = −1, so that a = 5

and bm = 3. The only two possibilities are e = 1 and (a, b) = (5, 3), and e = 9 and
(a, b) = (5, 1). In both cases, one has indeed a/2b <

√
e, hence the class 2bL − aδ is

movable.
Assume that e is not a perfect square. Set x2 := a2 + b2

√
e ∈ Z[

√
e] and x2 :=

a2 − b2
√
e, so that x2x2 = −11 and 0 < −x2 <

√
11 < x2.

We also set x1 := a1 + b1
√
e and x1 := a1 − b1

√
e, so that x1x1 = 1 and 0 < x1 <

1 < x1.
Let (a′1, b

′
1) be the minimal positive solution of the Pell equation x2−4ey2 = 1 and

set x′1 := a′1 + b′1
√

4e. If b1 is even, we have x′1 = x1 and b′1 = b1/2. If b1 is odd, we
have x′1 = x2

1 and b′1 = a1b1.
By [Nag64, Th. 110], all the solutions of the equation (5) are given by ±x2x

′n
1 and

±x2x
′n
1 , for n ∈ Z. Since x′1 > 1, we have 0 < x2x

′−1
1 < x2. Since x2 corresponds

to a minimal solution, this implies x2x
′−1
1 <

√
11, hence −x2x

′
1 >

√
11. By mini-

mality of x2 again, we get −x2x
′
1 > x2. It follows that the positive solutions of the

equation (5) correspond to the following increasing sequence of elements of Z[
√
e]:

(6)
√

11 < x2 6 −x2x
′
1 < x2x

′
1 6 −x2x

′2
1 < x2x

′2
1 < · · ·

By [Nag64, Th. 110] again, we have x2 = −x2x
′
1 if and only if 11 | e.

Since the function x 7→ x− 11/x is increasing on the interval (
√

11,+∞), the cor-
responding positive solutions (a, b) have increasing a and b, hence increasing “slopes”
a/2b =

√
e/(1 + 11/a2).

We want to know for which of these positive solutions a+ b
√

4e the corresponding
class 2bL− aδ is movable, that is, satisfies a/2b 6 µe = eb1/a1.
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Assume first that b1 is even, so that x′1 = x1. The inequality x2 6 −x2x
′
1 translates

into a2 6 −a2a1 + 2eb2b1, hence

(7) a2

2b2
6

eb1
a1 + 1

.

The class corresponding to the solution −x2x
′
1 = 2eb1b2 − a1a2 + (2a1b2 − a2b1)

√
e is

movable if and only if we have

2eb1b2 − a1a2

2a1b2 − a2b1
6
eb1
a1

⇐⇒ a1(2eb1b2 − a1a2) 6 eb1(2a1b2 − a2b1)

⇐⇒ a2(eb21 − a2
1) 6 0,

which holds since eb21 − a2
1 = −1. This class is therefore movable and so is the class

corresponding to the minimal solution since it has smaller slope.
The class corresponding to the next solution x2x1 = a1a2+2eb2b1+(a2b1+2a1b2)

√
e

is movable if and only if we have

a1a2 + 2eb2b1
a2b1 + 2a1b2

6
eb1
a1

⇐⇒ a1(a1a2 + 2eb2b1) 6 eb1(a2b1 + 2a1b2)

⇐⇒ a2(a2
1 − eb21) 6 0,

which does not hold since a2
1 − eb21 = 1. This class is therefore not movable.

Assume now that b1 is odd, so that x′1 = x2
1 = 2a2

1 − 1 + 2a1b1
√
e. The inequality

x2 6 −x2x
′
1 translates into a2 6 4ea1b1b2 − a2(2a2

1 − 1), hence

(8) a2

2b2
6
eb1
a1
,

which means exactly that the class corresponding to the minimal solution x2 = a2 +

2b2
√
e is movable (and it is on the boundary of the movable cone if and only if 11 | e).

The class corresponding to the next solution

−x2x
′
1 = (−a2 + 2b2

√
e)(2a2

1 − 1 + 2a1b1
√
e)

= −a2(2a2
1 − 1) + 4ea1b1b2 + (2b2(2a2

1 − 1)− 2a1a2b1)
√
e

is movable if and only if

−a2(2a2
1 − 1) + 4ea1b1b2

2b2(2a2
1 − 1)− 2a1a2b1

6
eb1
a1

⇐⇒ −a1a2(2a2
1 − 1) + 4ea2

1b1b2 6 2eb1b2(2a2
1 − 1)− 2ea1a2b

2
1

⇐⇒ 2eb1b2 6 a1a2.

It follows that the class is not movable unless there is equality in (8), which happens
exactly when −x2x

′
1 = x2. Finally, one checks that the next solution x2x

′
1 never

corresponds to a movable class. �

J.É.P. — M., 2020, tome 7



664 O. Debarre, F. Han, K. O’Grady & C. Voisin

3.2. The nef cones of Hilbert squares of very general polarized K3 surfaces

Let again (S,L) be a polarized K3 surface with Pic(S) = ZL and L2 = 2e. The
nef cone Nef(S[2]) was determined in [BM14] (see also [DM19, Ex. 5.3]): one extremal
ray is spanned by L, and Nef(S[2]) = Mov(S[2]), unless the equation x2 − 4ey2 = 5

has integral solutions; if the minimal positive solution of that equation is (a5, b5), the
other extremal ray of Nef(S[2]) is then spanned by L− νeδ, where νe = 2eb5/a5 < µe.

Furthermore, in the latter case, in the decomposition ([HT09, Th. 7])

(9) Mov(S[2]) =
⋃

$ : S[2]
∼−→X

Xhyperkähler

$∗(Nef(X))

into cones which are either equal or have disjoint interiors, there are only two cones
(this means that there is a unique nontrivial birational map $ : S[2]

∼−→X), unless b1
is even and 5 - e, in which case there are three cones ([Deb18, Ex. 3.18]).

3.3. Movable and nef classes of square 22 and divisibility 2. — We put together
the results of Sections 3.1 and 3.2 and determine all positive integers e 6 22 for which
there exist movable or ample classes of square 22 and divisibility 2 on the Hilbert
square of a very general polarized K3 surface of degree 2e.

For that, the quadratic equation (5) needs to have solutions (and we denote
by (a2, b2) its minimal positive solution). Table 1 also indicates the minimal posi-
tive solution (a1, b1) of the Pell equation x2 − ey2 = 1 (which is used to compute the
slope µe of the nef cone) and the slope νe of the ample cone (computed as explained
in Section 3.2).

e 1 3 5 9 11 15

(a1, b1) − (2, 1) (9, 4) − (10, 3) (4, 1)

µe

(slope of movable cone)
1 3/2 20/9 3 33/10 15/4

(a2, b2) (5, 3) (1, 1) (3, 1) (5, 1) (33, 5) (7, 1)

movable classes of

square 22 and div. 2
6L− 5δ 2L− δ

2L− 3δ

6L− 13δ
2L− 5δ 10L− 33δ 2L− 7δ

νe

(slope of ample cone)
2/3 3/2 2 3 22/7 15/4

ample classes of

square 22 and div. 2
− 2L− δ 2L− 3δ 2L− 5δ − 2L− 7δ

Table 1. Movable and nef classes of square 22 and divisibility 2 in S[2]

for e 6 22
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Remark 3.3. — When e = 5, the decomposition (9) has two cones and S[2] has a
unique nontrivial birational automorphism. It is an involution $ which was described
geometrically in [Deb18, Prop. 4.15, Ex. 4.16]. One has$∗(2L−3δ) = 6L−13δ and S[2]

has no nontrivial hyperkähler birational models.

Remark 3.4. — A consequence of Proposition 3.2 is that there are always one or
two movable classes of square 22 and divisibility 2 as soon as the equation (5) has a
solution. As Table 1 shows, it can happen that some of these classes are not ample.
It can also happen that both of these classes are ample (this is the case when e = 45).

Remark 3.5. — We mentioned in the introduction that HLS divisors coming
from polarized K3 surfaces of degree 2e may only occur if the corresponding
moduli space of polarized K3 surfaces is uniruled. This may only happen for
e ∈ {1, 2, . . . , 45, 47, 48, 49, 51, 53, 55, 56, 59, 61} by [GHS07]. One can continue Ta-
ble 1 for those values of e and find that only D46, D54, D66, D90, D94, D106, and D118

may be HLS divisors coming from polarized K3 surfaces.

3.4. Proof of Theorem 3.1. — Let again (S,L) be a polarized K3 surface with
Pic(S) = ZL and L2 = 2e.

When e = 1, the decomposition (9) has two cones and S[2] has a unique nontrivial
hyperkähler birational model; it is the moduli spaceXS := MS(0, L, 1) of L-semistable
pure sheaves on S with Mukai vector (0, L, 1). As we see from Table 1, the square-22

class H := 6L− 5δ is ample on XS . The pair (XS , H) therefore defines an element of
the moduli space M and this proves the first item of the theorem.

Assume now e = m2 +m+ 3, where m is a nonnegative integer, so that (a2, b2) =

(2m + 1, 1). By Proposition 3.2, the class 2L − (2m + 1)δ is always movable. One
checks that its slope (2m + 1)/2 is always smaller than the slope νe of the nef cone,
hence this class is in fact always ample. This proves the second item of the theorem.

Finally, in the general case, the orthogonal of NS(S[2]) in the lattice Λ is isomorphic
to the orthogonal of L in the (unimodular) K3 lattice H2(S,Z). Its discriminant is
therefore −2e and, whenever H is an ample class of of square 22 and divisibility 2,
the period of (S[2], H) is a general point of the Heegner divisor D2e. Note also that
although we only worked with very general polarized K3 surfaces, ampleness being
an open condition still holds when S is a general polarized K3 surface. This finishes
the proof of the theorem.

Remark 3.6. — Going back to the case e = 1 with the notation introduced in the
proof above, a general element of XS corresponds to a sheaf ι∗ξ, where C ∈ |L|, the
map ι : C ↪→ S is the inclusion, and ξ is a degree-2 invertible sheaf on C ([Muk84,
Ex. 0.6]). The birational map $ : S[2]

∼−→XS takes a general Z ∈ S[2] to the sheaf
ι∗OC(Z), where C is the unique element of |L| that contains Z. It is the Mukai flop
of S[2] along the image of the map P2 ↪→ S[2] induced by the canonical double cover
π : S → P2.
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The line bundle L−δ is base-point free on XS and defines the Lagrangian fibration
f : XS → P2∨ that takes the class inXS of a sheaf on S to its support. The line bundle
3L − 2δ is base-point free and not ample on both S[2] and XS ([Deb18, Exer. 3.13],
[vdD12, Lem. 2.1.12]). The ample line bundle H = 6L−5δ is therefore also base-point
free on XS . It restricts to a general fiber F = Pic2(C) of f (where C ∈ |L|) as L|F , and
this is twice the canonical principal polarization on F . In particular, the morphism
that H defines factors through the involution of XS induced by the involution of S
attached to π and H is not very ample.

Remark 3.7. — When σ ∈ Λ3
V ∨10 is a general trivector such that the hypersurface Xσ

is singular, the variety Kσ becomes singular, but, with its Plücker line bundle, bira-
tionally isomorphic to (S[2], 10L − 33δ), where (S,L) is a general polarized K3 sur-
face of degree 22 ([DV10, Prop. 3.4]). As indicated in Table 1 above, the line bundle
10L−33δ is on the boundary of the movable cone of S[2]; it defines the birational map
S[2]−→Kσ ⊂ Gr(6, V10) ⊂ P(Λ6

V10). The corresponding “periods” cover the Heegner
divisor D22.

3.5. Vectors of minimal norm and HLS divisors. — The Heegner divisor D2e was
defined in Section 2.1 starting from a primitive v ∈ h⊥ of negative square. The relation
between e and v was worked out at the end of the proof of [DM19, Prop. 4.1]:

– either 11 | e, v2 = −2e/11, and v has divisibility 1 in h⊥;
– or 11 - e, v2 = −22e, and v has divisibility 11 in h⊥.

The discriminant group D(h⊥) is isomorphic to Z/11Z. In the first case, one has
v∗ := v/div(v) = 0 in D(h⊥); in the second case, v∗ is a ∈ Z/11Z, where a2 ≡ e

(mod 11) (recall that v and −v define the same Heegner divisor).
Let us say that a vector v ∈ h⊥ with divisibility > 1 (that is, such that v∗ 6= 0) and

negative square has minimal norm if −w2 > −v2 for all vectors w ∈ h⊥ with v∗ = w∗
and w2 < 0. For each nonzero class a ∈ Z/11Z, one can work out the vectors v with
minimal norm such that v∗ = a (by Eichler’s lemma, they form a single O(h⊥)-orbit,
characterized by a and v2). We obtain the following table (if v has minimal norm and
v∗ = a, then −v has minimal norm and (−v)∗ = −a).

a ±1 ±2 ±3 ±4 ±5

e = −v2/22 1 15 9 5 3

Table 2.

The values of e that appear in this table are exactly those for which we prove that
the Heegner divisor D2e is an HLS divisor. They are also the five smallest values of e
for which a general element of D2e comes from the Hilbert square of a K3 surface (see
Table 1). Of course, there might be other HLS divisors which we have not found, but,
as mentioned in the introduction, in the case of cubic fourfolds, there is a unique HLS
divisor and it corresponds to the unique pair of orbits of vectors with minimal norm
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(the discriminant group is Z/3Z in this case); in the case of double EPW sextics,
there are three known HLS divisors and they correspond to the three orbits of vectors
with minimal norm (the discriminant group is (Z/2Z)2 in this case).

4. Preliminary results

We collect in this section a few results that will be used repeatedly in the rest of
the article.

4.1. Tautological bundles on Hilbert squares. — Let X be a smooth projective
variety. Consider the blow up τ : X̃ ×X → X ×X of the diagonal and its restriction
τE : E → X to its exceptional divisor E. The (smooth projective) Hilbert square of X
is the quotient

p : X̃ ×X −→ X [2]

by the lift ι of the involution that exchanges the two factors. It is simply ramified
along E and there is a divisor class δ ∈ Pic(X [2]) such that p∗δ = E. We will use the
composed maps qi : X̃ ×X τ−→ X ×X pri−→ X.

Let F be a vector bundle of rank r on X. We write F �F := q∗1F ⊕ q∗2F and
F � F := q∗1F ⊗ q∗2F ; these are vector bundles on X̃ ×X of respective ranks 2r

and r2. If L is an invertible sheaf on X, the invertible sheaf L �L is ι-invariant
and descends to an invertible sheaf on X [2] that we still denote by L . This gives an
injective group morphism

(10) Pic(X)⊕ Z −→ Pic(X [2]), (L ,m) 7−→ L +mδ.

The tautological bundle
TF := p∗(q

∗
1F )

is locally free of rank 2r on X [2] and there is an exact sequence ([Dan01, Prop. 2.3],
[Wan14, (3)])

0 −→ p∗TF −→ F �F −→ τ∗EF −→ 0

of sheaves on X̃ ×X. In the notation of (10), we have

(11) det(TF ) = det(F )− rδ
and there is an isomorphism

H0(X [2],TF ) ∼−→ H0(X,F ).

Remark 4.1. — When X ⊂ P(V ), there is a morphism f : X [2] → Gr(2, V ) that sends
a length-2 subscheme of X to the projective line that it spans in P(V ). The rank-2
vector bundle TOX(1) is then the pullback by f of the tautological subbundle S2 on
Gr(2, V ). It is in particular generated by global sections.

We now present an analogous construction that will be used in Section 6. There is
a surjective morphism

ev+ : F �F −→ τ∗E Sym2F
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obtained by evaluating along the exceptional divisor E and then projecting onto the
symmetric part of (F �F )|E = τ∗E(F ⊗F ).

Lemma 4.2. — There is a locally free sheaf KF or rank r2 on X [2] and an exact
sequence

(12) 0 −→ p∗KF −→ F �F
ev+

−−−−→ τ∗E Sym2F −→ 0.

Moreover, det(KF ) = r det(F )− 1
2r(r + 1)δ and H0(X [2],KF ) ' Λ2

H0(X,F ).

Proof. — Let K̃F be the kernel of ev+. It is locally free on X̃ ×X and we need to
show that it descends to a vector bundle on X [2]. For that, it is enough to prove that
the involution ι on X̃ ×X lifts to an involution ι̃ on K̃F that acts by − Id on K̃F |E .

The statement is local over the diagonal of X. We can thus assume that F is
trivial on X with basis (s1, . . . , sr) and that we have local coordinates x1, . . . , xn
on X near O ∈ X. On X × X, we have coordinates x1, . . . , xn, y1, . . . , yn and the
bundle F � F has basis (si ⊗ sj)16i,j6r, where (si ⊗ sj)(x1, . . . , xn, y1, . . . , yn) =

si(x1, . . . , xn)sj(y1, . . . , yn). The involution ι̃ on F �F maps si ⊗ sj to sj ⊗ si.
Consider a point in X [2] over (O,O). Without loss of generality, we can assume

that it corresponds to the tangent vector ∂/∂x1. At the corresponding point of the
blow up X̃ ×X, there are then local coordinates x̃1, . . . , x̃n, ỹ1, u2, . . . , un in which
the morphism τ is given by

τ∗xi = x̃i, τ∗y1 = ỹ1, τ∗(yi − xi) = ui(ỹ1 − x̃1) for i > 2.

The equation of the exceptional divisor E is then e := ỹ1 − x̃1 and the involution on
X̃ ×X is given by

ι∗x̃1 = ỹ1, ι∗x̃i = x̃i + ui(ỹ1 − x̃1), ι∗ui = ui for i > 2,

and satisfies ι∗e = −e. The bundle K̃F is thus locally generated by the sections

si ⊗ sj − sj ⊗ si, e(si ⊗ sj + sj ⊗ si),
for all i 6 j. This shows that ι̃ acts by − Id on K̃F |E .

The vector bundle K̃F therefore descends to a vector bundle KF on X [2] whose
determinant can be computed from the exact sequence (12).

Going back to the global situation, we see that the space of ι̃-antiinvariant sections
of F�F on X̃ ×X that are sections of K̃F is Λ2

H0(X,F ). These sections correspond
exactly to the sections of KF on X [2]. This proves the lemma. �

4.2. Zero-loci of excessive dimensions and excess formula. — We describe in
a general context an excess computation that we will use in the proofs of Theo-
rems 5.5, 5.15, and 6.14. Let M be a smooth variety of dimension n, let E be a
vector bundle of rank r on M , and let σ0 be a section of E , with zero-locus Z ⊂ M .
The differential of σ0 defines a morphism dσ0 : TM |Z → E |Z . If Z is smooth, of
codimension s 6 r inM , the kernel of dσ0 is TZ and we define the excess bundle F to
be its cokernel. It has rank r − s on Z and is isomorphic to the quotient E |Z/NZ/M .
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Assume now that E is generated by global sections and let (σt)t∈∆ be a general
1-parameter deformation of σ0. For t ∈ ∆ general, the zero-locus Zt of the section σt
is smooth of pure codimension r or empty. The bundle F , as a quotient of E |Z , is
also generated by its sections and the zero-locus of the section σ′ defined as the image
of ∂σt/∂t

∣∣
t=0
∈ H0(M,E ) in H0(Z,F ) is smooth of pure codimension r − s in Z or

empty.
Consider the closed subset

(13) W = {(x, t) ∈M ×∆ | σt(x) = 0}.
The general fibers of the second projection π : W → ∆ are smooth of pure dimension
n − r or empty, and the central fiber is Z. Let W 0 be the union of the components
of W that dominate ∆ and assume that it is nonempty, hence of pure dimension
n+ 1− r. The central fiber of the restricted map π0 : W 0 → ∆ is contained in Z.

Proposition 4.3. — For a general 1-parameter deformation (σt)t∈∆, the map

π0 : W 0 −→ ∆

is smooth and its central fiber is the zero-locus of σ′ in Z.

Proof. — We view the family (σt)t∈∆ of sections of E as a section σ̃ of the vector
bundle Ẽ := pr∗ME onM×∆ whose zero-locus isW . We can write σ̃ = σ̃0+tσ̃′+O(t2)

as sections of Ẽ , where σ̃0 = pr∗Mσ0 and

(14) σ̃′|M×0 =
∂σt
∂t

∣∣∣
t=0

.

Along Z × {0} ⊂W , we have

(15) dσ̃ = dσ0 + σ̃′dt : TM×∆|Z×{0} −→ Ẽ |Z×{0}.
Let z ∈ Z be a point where σ′ does not vanish. We deduce from (14) and (15) that
Z×{0} andW coincide schematically around (z, 0). Indeed, as Z×{0} is smooth and
contained inW , this is equivalent to saying that their Zariski tangent spaces coincide.
If they do not, since Z ×{0} is the fiber of W at 0, some tangent vector at W at 0 is
of the type (v, ∂/∂t). By (15), we have dσ0,z(v) + σ̃′(z) = 0, so that σ̃′(z) belongs to
Im(dσ0,z). By (14), this means that the image σ′(z) of ∂σt/∂t

∣∣
t=0

(z) vanishes in F ,
contradiction.

We thus proved that the central fiber of W 0 → ∆ is contained set-theoretically in
the zero-locus Z0 of σ′. To prove that the inclusion is scheme-theoretic, we proceed
as follows. Since Z ⊂ M is smooth of codimension s, we can trivialize E locally
along Z in such a way that in the corresponding decomposition σ = (σ1, . . . , σr), the
first s functions have independent differentials, hence define Z ⊂ M . We can write
σ̃ = (σ̃1, . . . , σ̃r) and replace M ×∆ by the vanishing locus M ′ of (σ̃1, . . . , σ̃s) which
is smooth of codimension s in M × ∆ and smooth over ∆. The central fiber of the
restricted map π′ : M ′ → ∆ is Z (or rather the relevant open set of Z), which means
that the section σ̃|M ′ vanishes along its central fiber. We then have

(16) σ̃|M ′ = tσ̃′|M ′ ,
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where σ̃′|M ′ is the projection of σ̃′|M ′ onto the r− s remaining components of E . The
decomposition of W into irreducible components is (near the given point of Z)

W = M ′0 ∪ {σ̃′|M ′ = 0},
so that W 0 is locally the zero-locus of the section σ̃′|M ′ . Finally, we observe that
the restriction to Z ⊂ M ′ of the locally defined section σ̃′|M ′ is nothing but σ′. As
we assumed that σ′ is general, hence transverse, it follows that W 0 is smooth of
codimension r − s in M ′, with central fiber the zero-locus of σ′. �

4.3. Geometry of singular trivectors. — Given a nonzero trivector σ ∈ Λ3
V ∨10, we

relate singular points on the hypersurface Xσ to points on the Debarre-Voisin vari-
ety Kσ (see (2) and (1) for definitions). This geometric observation will allow us to
describe, for the degenerate trivectors σ0 considered in the next sections, the Debarre-
Voisin varieties (or one of their irreducible components), as Hilbert squares of subva-
rieties of Sing(Xσ0).

Proposition 4.4. — Let σ ∈ Λ3
V ∨10 be a nonzero trivector and let [U3] be a singular

point of the hypersurface Xσ ⊂ Gr(3, V10).
(a) The variety ΣU3 := {[W6] ∈ Kσ | W6 ⊃ U3} is nonempty of dimension every-

where at least 2 and for all [W6] ∈ ΣU3
, one has dim(TKσ,[W6]) > 4. In particular, if

Kσ has (expected) dimension 4 at [W6], it is singular at that point.
(b) If [U ′3] is another singular point of Xσ such thatW6 := U3+U ′3 has dimension 6,

the point [W6] is in Kσ.

Proof. — Let us prove (a). Let [U3] ∈ Sing(Xσ) and let [W6] ∈ ΣU3 . We will show
that the differential dσ̃ of the section σ̃ of Λ3E6 defining Kσ does not have maximal
rank at [W6].

As explained in the proof of [DV10, Prop. 3.1], this differential

dσ̃ : TGr(6,V10),[W6] = Hom(W6, V10/W6) −→ Λ3
W∨6

maps u ∈ Hom(W6, V10/W6) to the 3-form

dσ̃(u)(w1, w2, w3) = σ(u(w1), w2, w3) + σ(w1, u(w2), w3) + σ(w1, w2, u(w3)).

Since [U3] is singular on Xσ, the trivector σ vanishes on Λ2
U3∧V10 ([DV10, Prop. 3.1]),

hence dσ̃(u) vanishes on Λ3
U3. The composite

(17) Hom(W6, V10/W6)
dσ̃−−−→ Λ3

W∨6 −→ Λ3
U∨3

is therefore zero, hence dσ̃ does not have maximal rank.
It remains to prove that the variety ΣU3 is nonempty of dimension everywhere > 2.

This follows from the fact that it is defined in the smooth 12-dimensional variety

{[W6] ∈ Gr(6, V10) |W6 ⊃ U3} ' Gr(3, V10/U3)

as the zero-locus of a section of the rank-10 vector bundle (U∨3 ⊗Λ2E3)⊕Λ3E3, whose
top Chern class is nonzero.
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Let us prove (b). Since [U3] and [U ′3] are singular points of Xσ, the trivector σ
vanishes on Λ2

U3 ∧ V10 and Λ2
U ′3 ∧ V10, hence also on Λ3

(U3 + U ′3). In particular, if
U3 + U ′3 has dimension 6, it defines a point of Kσ. �

The proof above also gives the following information which will be useful when we
compute the excess bundles of Section 4.2 in our specific situations.

Lemma 4.5. — In Proposition 4.4(a), the restriction map Λ3
W∨6 →→ Λ3

U∨3 vanishes
on Im(dσ̃).

In Proposition 4.4(b), the restriction map Λ3
W∨6 →→ Λ3

U∨3 ⊕ Λ3
U ′∨3 vanishes on

Im(dσ̃).

Remark 4.6. — In Sections 5.1 and 6.2, we will work with a generically smooth
component K0 of a Debarre-Voisin variety Kσ0

of excessive dimension 6, so that the
image of dσ̃0 has codimension 2 along its smooth locus. In each case, we will see
that a general point of K0 is of the form [U3 ⊕ U ′3], with [U3], [U ′3] in some smooth
subvariety W of Sing(Xσ0), so that there is a rational dominant map

f : W [2] // K0

([U3], [U ′3]) 7−−−→ [U3 + U ′3]

(see Proposition 4.4(b)). Lemma 4.5 then tells us that the image of dσ̃0 vanishes in
the two-dimensional space Λ3

U∨3 ⊕ Λ3
U ′∨3 . This identifies, on a Zariski open subset

of W [2], the pullback by f of the excess bundle on K0 with the tautological bundle
TOW (1), where OW (1) is the Plücker line bundle on W ⊂ Gr(3, V10). By Remark 4.1,
it is generated by its global sections.

5. The HLS divisors D6 and D18

We describe in this section two polystable (semistable with closed orbit in the
semistable locus) trivectors in the moduli space MDV = P(Λ3

V ∨10)//SL(V10) whose
total images(2) by the moduli map

m : MDV
//M

are the hypersurfaces in M whose general points are pairs (S[2], 2L− δ), where (S,L)

is a general polarized K3 surface of degree 6 (resp. pairs (S[2], 2L−5δ), where (S,L) is
a general polarized K3 surface of degree 18) (see Table 1). As explained in Section 3,
their total images by the composition

p ◦m : MDV
//F

are therefore the Heegner divisors D6 (resp. D18). A common feature of these two
specific trivectors σ0, which makes the specialization analysis quite easy, is that the
corresponding Debarre-Voisin varieties Kσ0

are smooth but of larger-than-expected
dimension. The limit of the Debarre-Voisin varieties along a 1-parameter degeneration

(2)The total image of a point p ∈ X by a rational map f : X−→Y is the projection in Y of the
inverse image of p in Γ, where Γ ⊂ X × Y is the (closure) of the graph of f .
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to σ0 is then a smooth fourfold obtained as the zero-locus of a general section of the
excess bundle on Kσ0 associated with this situation (see Section 4.2).

5.1. The HLS divisor D6. — We construct a trivector σ0 whose Debarre-Voisin vari-
ety Kσ0

is smooth but has excessive dimension 6. The neutral component of the stabi-
lizer of σ0 is Sp(4) and the point [σ0] of P(Λ3

V ∨10) is polystable for the SL(V10)-action
(Proposition 5.3). The total image in F of the point [σ0] is the Heegner divisor D6.
The main result of this section is Theorem 5.5.

5.1.1. The Sp(4)-invariant trivector. — Let V4 be a 4-dimensional vector space
equipped with a symplectic form ω and let V5 ⊂ Λ2

V4 be the hyperplane defined by ω,
endowed with the nondegenerate quadratic form q defined by q(x, y) = (ω∧ω)(x∧y).
The form q defines a smooth quadric Q3 ⊂ P(V5).

The 10-dimensional vector space V10 := Λ2
V5 ' Sym2V4 can be identified with the

space of endomorphisms of V5 which are skew-symmetric with respect to q and we
define a trivector σ0 on V10 as in (4) by σ0(a, b, c) = Tr(a ◦ b ◦ c). It is invariant for
the canonical action of the group Sp(V4, ω) = SO(V5, q) on Λ3

V ∨10.
This is a particular case of a general situation studied by Hivert, who proved in

particular that the Debarre-Voisin variety Kσ0 is smooth of dimension 6 ([Hiv11,
Def. 1.2 & Th. 4.1]). He moreover gave a very concrete description of this variety. We
will use the hypersurface Xσ0

⊂ Gr(3, V10) defined in (2).

Proposition 5.1
(a) The image of the morphism

j : Q3 −→ Gr(3, V10)

x 7−→ [x ∧ x⊥q ]

is contained in the singular locus of the hypersurface Xσ0
⊂ Gr(3, V10).

(b) The morphism j is an embedding and j∗OGr(3,V10)(1) ' OQ3
(3).

Proof. — Let x ∈ Q3. If z ∈ x⊥q , the skew-symmetric endomorphism az of V5 asso-
ciated with x ∧ z is defined by

∀u ∈ V5 az(u) = q(x, u)z − q(z, u)x,

and thus, if z, z′ ∈ x⊥q , we have

az′ ◦ az(u) = q(x, u)q(x, z)z′ − q(z, u)q(x, x)z′ − q(x, u)q(z′, z)x+ q(z, u)q(z′, x)x

= −q(x, u)q(z′, z)x,

which is symmetric in z and z′, proving that az and az′ commute. The endomor-
phism az′ ◦ az is then symmetric, hence Tr(az′ ◦ az ◦ c) = 0 for any skew-symmetric
endomorphism c ∈ V10. By [DV10, Prop. 3.1], this implies item (a).

We now prove (b). The morphism j is injective because x⊥q is the tangent space
to Q3 at [x] and this hyperplane is tangent only at [x]. Since j is O(V5, q)-equivariant,
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it is an embedding. Consider now the exact sequence

0 −→ K −→ V5 ⊗ OQ3

q−−→ OQ3
(1) −→ 0

defining the rank-4 vector bundle K ' ΩP(V5)(1)|Q3
with fiber x⊥q at [x] and the

exact sequence

0 −→ OQ3
(−2) −→ K ⊗ OQ3

(−1)
∧−−→ j∗S3 −→ 0,

which implies j∗S3 ' ΩQ3
. We obtain the desired isomorphism j∗OGr(3,V10)(1) '

OQ3(3) by taking determinants. �

By Propositions 4.4 and 5.1, we have a rational map f : Q
[2]
3 −→Kσ0 which is Sp(4)-

equivariant. The following result is [Hiv11, Th. 6.3].

Theorem 5.2 (Hivert). — The map f : Q
[2]
3 → Kσ0 is an isomorphism.

Proof. — Any point in Q
[2]
3 spans a line in P(V5), hence defines an element of

Gr(2, V5). The corresponding morphism ε : Q
[2]
3 → Gr(2, V5) has a rational inverse:

the intersection of a line in P(V5) with Q3 is a subscheme of length 2 of Q3, except
when the line is contained in Q3. The morphism ε is therefore the blow up of the
scheme of lines contained in Q3 (which is the image of the Veronese embedding
v2 : P(V4) ↪→ P(Sym2V4) = P(Λ2

V5); see [Hiv11, §6.2]).
Hivert moreover proved that the linear system |Iv2(P(V4))(3)| embeds Q[2]

3 into the
linear span of Kσ0

in the Plücker embedding of Gr(6, V10) and that its image coincides
with Kσ0 . �

5.1.2. Orbit and stabilizer. — The decomposition of Λ3
V ∨10 into irreducible Sp(4)-

representations is

(18) Λ3
V ∨10 = V4ω1

⊕ V3ω2
⊕ V2ω1+ω2

⊕ V2ω2
⊕ Vω2

⊕C,

where Va1ω1+a2ω2 denotes the irreducible representation of Sp(4) with highest weight
a1ω1 + a2ω2, where ω1 and ω2 are the fundamental weights ([Hiv11, §6.2], [Bou90]).
The last term is the space of Sp(4)-invariants; it is generated by our trivector σ0

defined in (4). The first term is Sym4V4 and the second term is H0(Q3,OQ3
(3)).

Since sp(4) = Sym2V4 = V2ω1 and

End(V10) = V4ω1 ⊕ V2ω1 ⊕ V2ω1+ω2 ⊕ V2ω2 ⊕ Vω2 ⊕C,

there is an exact sequence

0 −→ sp(4) −→ End(V10) −→ Λ3
V ∨10 −→ H0(Q3,OQ3

(3)) −→ 0.

We prove that the tangent space to the stabilizer of σ0 is sp(4), hence the normal
space to the GL(V10)-orbit of σ0 is H0(Q3,OQ3(3)).

Proposition 5.3. — The neutral component of the stabilizer of σ0 for the SL(V10)-
action is Sp(V4) = SO(V5) and the point [σ0] of P(Λ3

V ∨10) is polystable for the SL(V10)-
action.
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Proof. — The neutral component of the stabilizer acts on the Debarre-Voisin variety
Kσ0

, which is isomorphic to Q[2]
3 . Since it is connected, it acts trivially on the Néron-

Severi group, hence preserves the exceptional divisor of the Hilbert-Chow morphism
Q

[2]
3 → Q

(2)
3 . It therefore acts on Q(2)

3 , hence on Q3. It is therefore in SO(V5).
To show that [σ0] is polystable, we will use a result of Luna. By Proposition 5.4

below, the stabilizer SO(V5) has finite index in its normalizer in SL(V10). By [Lun75,
Cor. 3] (applied to the group SL(V10) acting on Λ3

V ∨10), the orbit of σ0 is closed in
Λ3
V ∨10, hence [σ0] is polystable. �

We prove the classical result used in the proof above.

Proposition 5.4. — Let G be a semisimple algebraic group with a faithful irreducible
representation G ↪→ SL(V ). The group G has finite index in its normalizer in SL(V ).

Proof. — According to the discussion after [Spr09, Lem. 16.3.8], the group of outer
automorphisms of G is finite. The kernel of the action N := NSL(V )(G) → Aut(G)

of the normalizer by conjugation is contained in the centralizer C := CSL(V )(G) and
the kernel of the induced morphism N/G→ Out(G) is contained in the image of C in
N/G. It is therefore sufficient to show that C is a finite group. But this follows from
Schur’s lemma: any eigenspace of an element of C is stable by G, hence equal to V .
Therefore, C consists of homotheties, hence is finite. �

5.1.3. Degenerations and excess bundles. — Consider a general 1-parameter deforma-
tion (σt)t∈∆. The derivative ∂σt/∂t

∣∣
t=0

provides, by the discussion in Section 5.1.2,
a general section of OQ3(3) which defines a general K3 surface S ⊂ Q3 ⊂ P(V5) of
degree 6.

Theorem 5.5. — Let (σt)t∈∆ be a general 1-parameter deformation. Let K → ∆

be the associated family of Debarre-Voisin varieties and let K 0 be the irreducible
component of K that dominates ∆. Then K 0 → ∆ is smooth and it central fiber is
isomorphic to S[2], embedded in Gr(6, 10) as S[2] ⊂ Q[2]

3 ' Kσ0
⊂ Gr(6, V10), where S

is a general K3 surface of degree 6.

The proof of the theorem will be based on the excess computation presented in
Section 4.2: we want to apply Proposition 4.3 with M = Gr(6,Λ2

V5) and E = Λ3E6,
where E6 is the dual of the tautological rank-6 subbundle on Gr(6,Λ2

V5). For this, we
need to identify the rank-2 excess bundle F on Kσ0

' Q
[2]
3 . We use the notation of

Section 4.1.

Proposition 5.6. — The excess bundle F on Q
[2]
3 is isomorphic to the tautological

bundle TOQ3
(3).

Proof. — By definition, F is a rank 2-quotient bundle of Λ3E6|Q[2]
3
, hence of

Λ3
V ∨10 ⊗ O

Q
[2]
3
.

Since j is an embedding (Proposition 5.1), the rank-2 vector bundle TOQ3
(3) is

generated by the space Λ3
V ∨10 of global sections by Remark 4.6. More precisely, on the
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dense open set U ⊂ Q
[2]
3 of pairs {x, y} such that (x ∧ x⊥q ) ∩ (y ∧ y⊥q ) = {0}, the

evaluation map

(19) Λ3
V ∨10 ⊗ O

Q
[2]
3
−→ TL⊗3

factors through the composite map

(20) Λ3
V ∨10 ⊗ O

Q
[2]
3
−→ Λ3E6|Q[2]

3
−→ F .

The bundles F and TL⊗3 therefore coincide as quotients of Λ3
V ∨10 ⊗ O

Q
[2]
3
: the mor-

phisms Q[2]
3 → Gr(2,Λ3

V ∨10) that they define coincide on the dense set U , hence they
are the same. �

Proof of Theorem 5.5. — We apply Proposition 4.3: by Theorem 5.2, the locus
Z = Kσ0 is smooth of codimension 18 in M , isomorphic to Q

[2]
3 , and, by Propo-

sition 5.6, the rank-2 excess bundle F on Q
[2]
3 is isomorphic to TOQ3

(3). The
5-dimensional variety K 0 is therefore smooth with fiber over 0 the smooth zero-locus
of the section σ′ of F .

More precisely, the proof of Proposition 5.6 shows that the composite map (20)
can be identified with the map (19) induced by the (composed) evaluation map

Λ3
V ∨10 ⊗ OQ3

a−−→ H0(Q3,OQ3
(3))⊗ OQ3

−→ OQ3
(3).

The derivative ∂σt/∂t
∣∣
t=0

provides via the surjective map a a section of OQ3
(3) that

defines a general K3 surface S ⊂ Q3 of degree 10 and the zero-locus of σ′ can be
identified with S[2] ⊂ Q[2]

3 . �

5.2. The HLS divisor D18. — We now construct a trivector σ0 whose Debarre-Voisin
variety Kσ0 is smooth but has excessive dimension 10 (Corollary 5.12). The space V10

decomposes as V7 ⊕W3 and σ0 as α + β, with α ∈ Λ3
V ∨7 and β ∈ Λ3

W∨3 . For the
SL(V10)-action, the point [σ0] of P(Λ3

V ∨10) has stabilizer G2× SL(3) and is polystable
(Corollary 5.13). The main result of this section is Theorem 5.15.

5.2.1. K3 surfaces of degree 18. — A general polarized K3 surface (S,L) of degree
18 carries a unique rank-2 Lazarsfeld-Mukai bundle E2 (that is, stable and rigid)
that satisfies det(E2) = L and c2(E2) = 6. The vector space V7 := H0(S,E2)∨ has
dimension 7, the sections of E2 embed S into Gr(2, V7), and via this embedding, S can
be described as follows ([Muk88]).

Let α ∈ Λ3
V ∨7 be general. The 7-dimensional space IX ⊂ Λ2

V ∨7 of Plücker linear
sections given by u yα, for u ∈ V7, cuts out a smooth fivefold X ⊂ Gr(2, V7). We have
KX = OX(−3) and one gets a general K3 surface S of degree 18 by intersecting X
with a projective space P(W⊥3 ) cut out by three extra general Plücker linear sections.
The subspace IS = IX ⊕W3 ⊂ Λ2

V ∨7 of Plücker linear sections vanishing on S has
dimension 10.

Recall from Section 3 that we are looking for a rank-6 vector bundle S6 with
determinant −2L + 5δ on S[2], in order to embed S[2] in a Debarre-Voisin variety
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in Gr(6, 10). We will construct it as a direct sum

S6 = S4 ⊕S2.

We first construct the vector bundle S4 as follows. The surjective evaluation map
V ∨7 ⊗OS →→ E2 induces, with the notation of Section 4.1, a surjective evaluation map

ev : V ∨7 ⊗ OS[2] −→−→ TE2
.

Indeed, the nonsurjectivity of ev at a point ([V2], [V ′2 ]) of S[2] means that the subspace
V3 := 〈V2, V

′
2〉 of V7 has dimension 3. Then, S ∩ Gr(2, V3) contains a subscheme of

length 2. Since S is defined by linear Plücker equations in Gr(2, 7), it contains a line,
which contradicts the fact that it is general.

Set

(21) S4 := T ∨E2
⊂ V7 ⊗ OS[2] .

The following lemma will be used later on.

Lemma 5.7. — The morphism S[2] → Gr(4, V7) associated with the bundle S4 takes
values in the set of 4-dimensional vector subspaces that are totally isotropic for the
3-form α on V7.

Proof. — It is enough to check the conclusion at a general point ([V2], [V ′2 ]) of S[2].
Then V2 and V ′2 are transverse vector subspaces of V7 which belong to X, hence satisfy
(Λ2

V2)yα = (Λ2
V ′2)yα = 0 in V ∨7 . The space V4 := 〈V2, V

′
2〉 ⊂ V7 is the fiber of S4 at

([V2], [V ′2 ]). The restriction α′ := α|V4
is a 3-form which is either decomposable with

one-dimensional kernel or 0. If it is nonzero, all the elements [U2] ∈ Gr(2, V4) that
satisfy U2 yα′ = 0 must contain the kernel of α′ and this contradicts the equality
V2 ∩ V ′2 = {0}. �

Turning to the construction of S2, we now show the following.

Lemma 5.8. — Let z be a point of S[2] and set V4 := S4,z ⊂ V7. Consider the compo-
sition

rz : IS ↪−→ Λ2
V ∨7 −→ Λ2

V ∨4 .

Then,
(a) the kernel of rz intersects IX along a 4-dimensional vector space;
(b) the map rz has rank 4;
(c) the cokernel of rz can be identified with the fiber TL,z.

Proof. — We know from the proof of Lemma 5.7 that α|V4 = 0, which implies that
the 2-forms u yα, for u ∈ V4, vanish on V4. They all belong to IX , so we have
dim(Ker(rz)∩IX) > 4. If the inequality is strict, there is a 5-dimensional subspace V5

of V7, containing V4 such that u yα vanishes on V4 for u ∈ V5. But α then vanishes
identically on V5, which contradicts the fact that α ∈ Λ3

V ∨7 is general so has no
5-dimensional totally isotropic subspace. This proves (a).

Turning to the proof of (b) and (c), the image of rz is contained in the space of
sections of the Plücker line bundle on Gr(2, V4) vanishing on the length-2 subscheme z,
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and this space is 4-dimensional. It remains to see that the rank of rz is at least 4.
By (a), the restriction of rz to IX ⊂ IS has rank 3. The image rz(IX) defines a conic
in Gr(2, V4) ⊂ Gr(2, V7) which is contained in X by definition. If rz has rank only 3,
this conic is contained in S, which contradicts the fact that S is general. �

By Lemma 5.8, we have an exact sequence

(22) 0 −→ S ′6 −→ IS ⊗ OS[2]
r−−→ Λ2S ∨4 −→ TL −→ 0

of vector bundles on S[2]. The rank-6 vector bundle S ′6 that it defines contains the
rank-4 bundle S4 ⊂ IX ⊗ OS[2] (see (21)) and we thus get a rank-2 bundle

S2 := S ′6/S4 ⊂W3 ⊗ OS[2] .

Lemma 5.9. — The vector bundle S2 has determinant −L+ 3δ, the vector bundle S4

has determinant −L+ 2δ, and the vector bundle S ′6 has determinant −2L+ 5δ.

Proof. — By (11), the determinant of S ∨4 = TE2
equals L− 2δ, hence det(Λ2S ∨4 ) =

3L− 6δ, while det(TL) = L− δ. Together with the exact sequence (22), this implies

(23) det(S ′6) = L− δ − (3L− 6δ) = −2L+ 5δ.

We then get

det(S2) = det(S ′6)− det(S4) = −2L+ 5δ − (−L+ 2δ) = −L+ 3δ,

which proves the lemma. �

Set S6 := S4 ⊕S2. It is a subbundle of the trivial rank-10 bundle on S[2] with
fiber IX ⊕W3, and this defines a morphism

(24) ϕ = (ϕ1, ϕ2) : S[2] −→ Gr(4, V7)× Gr(2,W3) ⊂ Gr(6, V7 ⊕W3).

Lemma 5.10. — If the surface S is general, the morphism ϕ is injective and the
Plücker line bundle restricts to 2L− 5δ on S[2].

Proof. — It suffices to show that the first component ϕ1 of ϕ is injective. Let z ∈ S[2]

and let [V4] := ϕ1(z) = S4,z ⊂ V7. As we saw in the proof of Lemma 5.8, the data
V4 ⊂ V7 determine a (possibly singular) conic C in Gr(2, V4) ⊂ X and the image of
the map IS → H0(C,OC(2)) has rank at least 1, as otherwise the rank of the map
IS → Λ2

V ∨4 would be only 3. A nonzero linear form on a conic vanishes on a line
contained in the conic or along a subscheme of length 2. Since a general S contains
no lines, there is at most one length-2 subscheme of S on this conic.

The pullback of the Plücker line bundle to S[2] was computed in Lemma 5.9. �

We will see in Proposition 5.16 that ϕ is actually an embedding.
The tautological quotient bundle on the Grassmannian Gr(6, V7 ⊕W3) pulls back

via ϕ to a rank-4 vector bundle on S[2] generated by 10 sections and with determinant
2L− 5δ (Lemma 5.9).
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5.2.2. The G2 × SL(3)-invariant trivector. — We let V10 := V7 ⊕W3 and we take as
before α ∈ Λ3

V ∨7 general. If β is a generator of Λ3
W∨3 , we let σ0 := α+ β.

If S is a K3 surface as above, the image ϕ(S[2]) (see (24)) is, by Lemma 5.7 and
the fact that any 2-dimensional subspace of W3 is totally isotropic for β, contained
in the Debarre-Voisin variety Kσ0

. We first determine this variety.

Proposition 5.11. — Let V10 and σ0 = α+β be as above. Any 6-dimensional subspace
W6 ⊂ V10 which is totally isotropic for σ0 is of the form W4 ⊕W2, where W4 ⊂ V7 is
totally isotropic for α and W2 ⊂W3 is of dimension 2 (hence totally isotropic for β).

Conversely, any such space is totally isotropic for σ0.

Proof. — Denote by p1 : W6 → V7 and p2 : W6 → W3 the two projections. We first
claim that rank(p1) 6 5. Indeed, onW6, we have p∗1α = p∗2β and, as β is decomposable,
p∗2β vanishes on a hyperplane of W6. But α does not vanish on any 5-dimensional
subspace of V7, which shows that p1 must have a nontrivial kernel.

We next claim that p1 cannot have rank 5. Indeed, if it does, p∗1α is nonzero,
so p∗2β is nonzero. But the kernel of p∗2β is then Ker(p2) and it must be equal to
the kernel of p∗1α, that is, p−1

1 (Ker(α|Im(p1))). As p1 has rank 6 5, it follows that
there is a nonzero u in Ker(p1) ∩Ker(p2), which is absurd. From these two facts, we
conclude that p1 has rank at most 4. A similar argument shows that p2 has rank
at most 2, that is, p∗2β = 0, and thus p∗1α = 0, that is, α|Im(p1) = 0. Finally, as
W6 ⊂ p1(W6) + p2(W6), we conclude that we must have equality. �

Corollary 5.12. — The Debarre-Voisin variety Kσ0 is smooth of dimension 10 and
splits as a product K ′α ×P(W∨3 ).

Proof. — Let K ′α ⊂ Gr(4, V7) be the variety of subspaces V4 ⊂ V7 that are totally
isotropic for α. It is the zero-locus of a general section of the globally generated,
rank-4, bundle Λ3E4, hence it is smooth of dimension 8. Finally, Proposition 5.11
implies Kσ0

' K ′α ×P(W∨3 ). �

5.2.3. Stabilizer. — The computation of the stabilizer of our trivector σ0 is a conse-
quence of Proposition 5.11.

Corollary 5.13. — The stabilizer of the trivector σ0 = α+β in SL(V10) is G2×SL(3),
where G2 is the stabilizer of α and SL(3) is the stabilizer of β, and the point [σ0] of
P(Λ3

V ∨10) is polystable for the SL(V10)-action.

Proof. — The stabilizer Gσ0
of [σ0] obviously contains G2 × SL(3). For the reverse

inclusion, it suffices to show that Gσ0
preserves the decomposition

(25) V10 = V7 ⊕W3.

Now Gσ0
acts on Gr(6, V10) preserving the Debarre-Voisin variety Kσ0

, which is a
product K ′α ×P(W∨3 ) by Proposition 5.11. But the connected component of the auto-
morphism group of a product of projective varieties is the product of the connected
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components of its factors. Thus Gσ0
acts on both factors K ′α and P(W∨3 ). This implies

that it preserves the direct sum decomposition (25).
To prove the polystability of [σ0], we invoke as before Luna’s results. By [Lun75,

Cor. 1], the SL(V10)-orbit of σ0 in Λ3
V ∨10 is closed if and only if its orbit under the

normalizer in SL(V10) of its stabilizer Gσ0
= G2×SL(3) is closed. Any element of this

normalizer must preserve the direct sum decomposition V10 = V7 ⊕W3, hence can be
written as λg · λ′g′, with g ∈ NSL(V7)(G2), g′ ∈ SL(3), and λ7λ′3 = 1. The group G2

having finite index in its normalizer NSL(V7)(G2) (Proposition 5.4), the closedness
of the SL(V10)-orbit is equivalent to the closedness of the orbit for the C?-action
t · (α + β) = t3α + t−7β. This holds because neither α nor β is 0. This proves that
[σ0] is polystable. �

5.2.4. Degenerations and excess bundles. — The Debarre-Voisin variety Kσ0 is, by
Corollary 5.12, smooth of codimension 14 in Gr(6, V10) and isomorphic toK ′α×P(W∨3 ).
It is the zero-locus of a section of the rank-20 vector bundle Λ3E6 on Gr(6, V10), hence
it carries an excess bundle F of rank 6, described in the following proposition.

Proposition 5.14. — One has an isomorphism F ' Q2⊗((Λ2E4)/Q3) between vector
bundles on Kσ0 ' K ′α ×P(W∨3 ), where

– the bundle Q2 is the pullback of the rank-2 quotient bundle on P(W∨3 ),
– the bundle E4 is the pullback of the dual of the tautological rank-4 subbundle on

K ′α ⊂ Gr(4, V7),
– the bundle Q3 is the pullback of the rank-3 quotient bundle on K ′α ⊂ Gr(4, V7),
– the injective map Q3 ↪→ Λ2E4 is induced by the composite map

V7 ⊗ OKσ0
α y−−−→ Λ2

V ∨7 ⊗ OKσ0 −→ Λ2E4.

Proof. — The excess bundle F is by definition the cokernel of

dσ0 : TGr(6,V10) −→ Λ3E6.

Along Kσ0 , Proposition 5.11 tells us that E6 = E4 ⊕Q2, so that

(26) Λ3E6 = Λ3E4 ⊕ (Λ2E4 ⊗Q2)⊕ (E4 ⊗ Λ2Q2).

On the other hand, the tangent bundle TGr(6,V10) is isomorphic to E6 ⊗ E4 and dσ0 is
the composition

(27) E6 ⊗ E4 −→ E6 ⊗ Λ2E6 −→ Λ3E6,

where the second map is the wedge product map and the first map is induced by the
factorization

E4 −→ Λ2E6

of (σ0) y : V10 ⊗ OKσ0 → Λ2E6. We now decompose TGr(6,V10) = E6 ⊗ E4 along Kσ0
as

(28) TGr(6,V10) = (E4⊕Q2)⊗(Q3⊕E1) = (E4⊗Q3)⊕(Q2⊗Q3)⊕(E4⊗E1)⊕(Q2⊗E1).
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The composite map (27) maps (28) to (26) preserving the decompositions and it is
easy to see that the only piece with a nontrivial quotient is

Q2 ⊗Q3 −→ Λ2E4 ⊗Q2,

where the map is induced by α y . This completes the proof. �

The following theorem is the main result of this section.

Theorem 5.15. — Let (σt)t∈∆ be a general 1-parameter deformation. Let K → ∆

be the associated family of Debarre-Voisin varieties and let K 0 be the irreducible
component of K that dominates ∆. Then K 0 → ∆ is smooth and its central fiber is
isomorphic to S[2], embedded in Gr(6, 10) as in Lemma 5.10, where S is a general K3
surface of degree 18.

Proof. — The proof follows the same line as the proof of Theorem 5.5. We apply
Proposition 4.3 and conclude that the central fiber is the zero-locus of a general
section of the excess bundle F on Kσ0

. It is in particular smooth since the excess
bundle is generated by its sections. The proof is completed using Proposition 5.14
and the following proposition. �

Proposition 5.16. — Let S ⊂ X ⊂ Gr(2, V7) be a general K3 surface of degree 18.
The morphism ϕ from Lemma 5.10 induces an isomorphism between S[2] and the
zero-locus in Kσ0

of a general section of the excess bundle F = Q2 ⊗ ((Λ2E4)/Q3).

Proof. — The space of global sections of F is equal to W∨3 ⊗ (Λ2
V ∨7 /V7). We iden-

tify V7 with IX . Choosing a general section s of F , we thus get a K3 surface S ⊂ X
defined by the three-dimensional space of sections Im(W3 → H0(X,OX(1))).

Lemma 5.10 and the lemma below imply that ϕ is a bijective morphism between S[2]

and the smooth zero-locus of s. By Zariski’s Main Theorem, it is an isomorphism,
which proves the proposition. �

Lemma 5.17. — The zero-locus of s coincides with the image ϕ(S[2]) ⊂ Kσ0 .

Proof. — Let [V4] ∈ K ′α and let W2 ⊂ W3 be of dimension 2. Assume that the
section s of F vanishes at ([V4], [W2]). Lifting s to an element of Hom(W3,Λ

2
V ∨7 ),

this means by the description of F given in Proposition 5.14 that the image of the
two-dimensional space s(W2) ⊂ Λ2

V ∨7 in Λ2
V ∨4 is contained in the image V3 ⊂ Λ2

V ∨4
of the natural map α y • : V7/V4 → Λ2

V ∨4 .
The intersection of X with the Grassmannian Gr(2, V4) is defined by the three

Plücker equations given by V3. The existence of W2 as above is equivalent to saying
that V3 andW3 span only a subspace of dimension 4 of Λ2

V ∨4 , or, equivalently, that the
length of the subscheme of Gr(2, V4) defined by V3 andW3 is at least 2. This subscheme
is equal to S∩Gr(2, V4). Furthermore, the spaceW2 is contained in the subspace ofW3

vanishing on the conic defined by X ∩ Gr(2, V4). Looking at the construction of the
injective morphism ϕ : S[2] → Kσ0

given in Lemma 5.10, we conclude that ϕ(S[2]) is
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contained in the vanishing locus of s. As both are fourfolds of the same degree, they
must agree. This proves the lemma. �

6. The HLS divisor D10

Let (S,L) be a general K3 surface of degree 10. As we saw in Section 3, the Hilbert
square S[2] with the polarization 2L − 3δ is a limit of Debarre-Voisin varieties. We
will first construct a rank-4 vector bundle on S[2] mapping it to Gr(6, 10) and then
construct a trivector σ0 vanishing on the image. It turns out that σ0 is SL(2)-invariant
and that the Debarre-Voisin variety Kσ0 only depends on a certain SL(2)-invariant
Fano threefold X ⊂ Gr(2, 5) in which S naturally sits. The rank-4 vector bundle is
not globally generated and Kσ0

is not irreducible in this case, but we nevertheless
conclude in Theorem 6.14 that a 1-parameter degeneration to σ0 expresses a general
pair (S[2], 2L− 3δ) as a limit of Debarre-Voisin varieties.

6.1. The Fano threefold X and K3 surfaces of degree 10. — Let V5 be a 5-dim-
ensional vector space and let W3 ⊂ Λ2

V5 be a general 3-dimensional vector subspace.
Let X ⊂ Gr(2, V ∨5 ) be the Fano threefold of index 2 and degree 5 defined by the
Plücker equations in W3. It has no moduli, the variety of lines contained in X is a
smooth surface isomorphic to P2 ([Isk77, Cor. (6.6)(ii)]), and the automorphism group
of X is PGL(2). In fact, if U2 is the standard self-dual irreducible representation of
SL(2) and V5 := Sym4U2, there is a direct sum decomposition

(29) V10 := Λ2
V5 = V7 ⊕W3

into irreducible representations, with V7 = Sym6U2 and W3 = Sym2U2, so that X is
the unique SL(2)-invariant section of Gr(2, V ∨5 ) by a linear subspace of codimension 3

([CS16, §7.1]).
A general polarized K3 surface (S,L) of degree 10 is obtained as a quadratic section

ofX ([Muk88]). Let E2 be the restriction toX of the dual of the tautological subbundle
on Gr(2, V ∨5 ) (it is stable and rigid). Lemma 4.2 gives us a rank-4 vector bundle KE2

on X [2] whose restriction Q4 to S[2] satisfies H0(S[2],Q4) ' Λ2
V5 and det(Q4) =

2L− 3δ.

Remark 6.1. — Using the package Schubert2 of Macaulay2 ([GS]; the code can be
found in [Han]), one checks that the vector bundle Q4 has the same Segre numbers

s4
1 = 1452, s2

1s2 = 825, s1s3 = 330, s2
2 = 477, s4 = 105

as the rank-4 tautological quotient bundle on Debarre-Voisin varieties Kσ ⊂ Gr(6, 10),
computed in [DV10, (11)]. The pair (S[2],Q4) is therefore a candidate to be a limit
of Debarre-Voisin varieties (as a subvariety of Gr(6, 10)). One difficulty in the present
case is that the vector bundle Q4 is not generated by its sections (Proposition 6.2(b)).
This explains why in Theorem 1.4, the central fiber is only birationally isomorphic
to S[2].
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Since W3 has no rank-2 elements, for all [x] ∈ P(V5), the subspace

x ∧W3 ⊂ Λ3
V5 ' Λ2

V ∨5

has dimension 3. Set
V4,[x] := x ∧ V5 ⊂ Λ2

V5.

We have 〈V4,[x], x ∧W3〉 = 0. Setting

V7,[x] := (x ∧W3)⊥ ⊂ Λ2
V5,

we thus have V4,[x] ⊂ V7,[x] ⊂ Λ2
V5. Finally, we set

(30) K1 := {[W6] ∈ Gr(6,Λ2
V5) | ∃ [x] ∈ P(V5) V4,[x] ⊂W6 ⊂ V7,[x]}.

We observe that K1 is smooth of dimension 6.

Proposition 6.2
(a) The space Λ2

V5 of global sections of the rank-4 vector bundle KE2
on X [2]

induces a birational map

ϕ : X [2] // K1 ⊂ Gr(6,Λ2
V5)

which is regular outside the 4-dimensional locus in X [2] consisting of length-2 sub-
schemes contained in a line contained in X.

(b) If S is general, the restriction of ϕ to S[2] is the map induced by the global
sections of Q4 and it is regular outside a smooth surface isomorphic to the surface of
lines in X.

Proof. — At a point of X [2] corresponding to different vector subspaces V2, V
′
2 ⊂ V ∨5 ,

the evaluation map of KE2 is the restriction

Λ2
V5 −→ V ∨2 ⊗ V ′∨2 .

It is surjective if and only if V2 ∩ V ′2 = {0}, which means exactly that the line join-
ing [V2] and [V ′2 ] is not contained in Gr(2, V ∨5 ) or, equivalently, in X.

At a nonreduced point z = ([V2], u), where u ∈ Hom(V2, V
∨
5 /V2), the fiber KE2,z

appears in an extension

0 −→ Sym2V ∨2 −→ KE2,z
a−−→ Λ2

V ∨2 −→ 0.

The composition r : Λ2
V5 → Λ2

V ∨2 of the evaluation map Λ2
V5 → KE2,z at z with a

is given by restriction, hence is surjective, and its kernel maps to Sym2V ∨2 via the
composite map

Ker(r) −→ (V ∨5 /V2)∨ ⊗ V ∨2
u∨ ⊗ Id−−−−−−−→ V ∨2 ⊗ V ∨2 −→ Sym2V ∨2 .

This composite map (hence also the evaluation map at z) is surjective if and only if u
has (maximal) rank 2, which means exactly that the line spanned by z is contained in
Gr(2, V ∨5 ) or, equivalently, in X. This proves the first part of (a), and also (b), since
a general S contains no lines.

It remains to prove that ϕ is birational onto K1. Let [W6] = ϕ([V2], [V ′2 ]). If V2

and V ′2 are complementary, they span a subspace V ∨4 ⊂ V ∨5 of dimension 4. Denoting
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by x ∈ V5 a linear form defining V ∨4 , one has V4,[x] ⊂ W6. Next, W3|V ∨4 vanishes on
Λ2
V2 and Λ2

V ′2 , hence
W3|V ∨4 ⊂ V

∨
2 ⊗ V ′∨2 .

The vanishing of W6 in V ∨2 ⊗V ′∨2 thus implies that W6|V ∨4 is orthogonal to W3|V ∨4 for
the natural pairing on Λ2

V4. Equivalently, W6 is orthogonal to x∧W3 for the pairing
between Λ2

V5 and Λ3
V5. This shows that Im(ϕ) is contained in K1.

Conversely, let [W6] be a general element of K1. Then

V4,[x] ⊂W6 ⊂ V7,[x]

for some [x] ∈ P(V5), so that W6|V ∨4 has dimension 2, where V ∨4 is defined by x.
SinceW6 is orthogonal to x∧W3, it follows thatW6|V ∨4 is orthogonal toW3|V ∨4 . The

3-dimensional spaceW3|V ∨4 ⊂ Λ2
V4 defines a conic X∩Gr(2, V ∨4 ) in the Grassmannian

Gr(2, V ∨4 ) and it is easy to check that a 2-dimensional subspace W ′2 ⊂ Λ2
V4 cuts out

two points on this conic if and only W ′2 ⊥W3|V ∨4 . This shows that K1 is contained in
Im(ϕ).

The proof that ϕ is birational follows from the last argument. Indeed, pairs of points
in the conic above correspond bijectively to two-dimensional subspaces of W3|V ∨4 , at
least if the conic is nonsingular. �

6.2. The SL(2)-invariant trivector. — We now construct a trivector σ0 on V10 =

Λ2
V5 such that K1 is a generically smooth component of the Debarre-Voisin vari-

ety Kσ0
.

Proposition 6.3. — There exists a unique trivector σ0 ∈ Λ3
V ∨10 such that, for any

[x]∈P(V5), the restriction σ0|V7,[x]
comes from a nonzero element of Λ3

(V7,[x]/V4,[x])
∨.

This trivector is invariant under the SL(2)-action described in Section 6.1.

Proof. — Let V4 be the rank-4 vector bundle on P(V5) image of the bundle map
V5 ⊗OP(V5)(−1)→ Λ2

V5 ⊗OP(V5) given by wedge product. We define another vector
bundle V7 on P(V5) by the exact sequence

(31) 0 −→ V7 −→ Λ2
V5 ⊗ OP(V5)

a−−→W∨3 ⊗ OP(V5)(1) −→ 0,

where the map a at the point [x] is the wedge product map with x with value in
Λ3
V5, followed by the natural map Λ3

V5 ' Λ2
V ∨5 → W∨3 . The fibers of V4 and V7 at

[x] ∈ P(V5) are the vector subspaces

V4,[x] ⊂ V7,[x] ⊂ Λ2
V5

defined previously. There is an exact sequence

0 −→ OP(V5)(−2) −→ V5 ⊗ OP(V5)(−1) −→ V4 −→ 0

from which, together with (31), we deduce det(V4) ' det(V7) ' OP(V5)(−3), hence

det(V7/V4) = OP(V5).

The line bundle Λ3
(V7/V4)∨ thus has a nowhere vanishing section ω.
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We set E7 := V ∨7 . Via the inclusion Λ3
(V7/V4)∨ ⊂ Λ3E7, the section ω provides a

section of Λ3E7. By Lemma 6.4 below, this section defines a unique trivector σ0 with
the desired properties, which proves the proposition. �

Lemma 6.4. — The restriction map

Λ3
(Λ2

V ∨5 )⊗ OP(V5) −→ Λ3E7

induces an isomorphism on global sections.

Proof. — The dual

(32) 0 −→W3 ⊗ OP(V5)(−1) −→ Λ2
V ∨5 ⊗ OP(V5) −→ E7 −→ 0

of the exact sequence (31) implies that the bundle G defined by the exact sequence

0 −→ G −→ Λ3
(Λ2

V ∨5 )⊗ OP(V5) −→ Λ3E7 −→ 0

has a filtration with graded pieces

W3 ⊗ Λ2E7(−1), Λ2
W3 ⊗ E7(−1), Λ3

W3 ⊗ OP(V5)(−3).

It thus suffices to show that these three bundles have vanishing H0 and H1.
This is obvious for the last bundle. For the second bundle, this follows from (32).

For the first bundle, we take the second exterior power of (32) tensored by OP(V5)(−1)

and get
0 −→ G ′ −→ Λ2

(Λ2
V ∨5 )⊗ OP(V5)(−1) −→ (Λ2E7)(−1) −→ 0,

where the bundle G ′ is an extension

(33) 0 −→ Λ2
W3 ⊗ OP(V5)(−3) −→ G ′ −→W3 ⊗ E7(−2) −→ 0.

We then get the desired vanishing

H0(P(V5),Λ2E7(−1)) = 0 = H1(P(V5),Λ2E7(−1))

from the vanishings H1(P(V5),G ′) = H2(P(V5),G ′) = 0 which follow from (33) and
the similar vanishings for E7(−2). �

The threefold X discussed in Section 6.1 embeds in Gr(3,Λ2
V5) as follows: a point

[V2] ∈ X parametrizes a vector subspace V2 ⊂ V ∨5 of dimension 2. Let V3 ⊂ V5 be the
kernel of the restriction map V5 → V ∨2 . Then U3 := Λ2

V3 ⊂ Λ2
V5 has dimension 3 and

it determines V2.

Proposition 6.5

(a) The threefold X ⊂ Gr(3,Λ2
V5) is contained in the singular locus of the Plücker

hypersurface Xσ0
.

(b) The rational map ϕ : X [2]−→ Gr(6,Λ2
V5) defined in Proposition 6.2 sends a

general pair ([V2], [V ′2 ]) to the subspace 〈U3, U
′
3〉 ⊂ Λ2

V5.
(c) The variety K1 is contained in the Debarre-Voisin variety Kσ0

.
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Proof. — We first observe the following.

Lemma 6.6. — Let [V2]∈X and let V3 and U3 =Λ2
V3 be as above. For any [x]∈P(V3),

we have U3 ⊂ V7,[x] and dim(U3 ∩ V4,[x]) = 2.

Proof. — We want to show that x ∧W3 is orthogonal to U3, which means that for
any w ∈ W3 and any u ∈ U3, one has x ∧ w ∧ u = 0 in Λ5

V5. This is clear, since
x ∧ u ∈ Λ3

V3 and w vanishes on V2, hence belongs to V3 ∧ V5. The second statement
is obvious because U3 ∩ V4,[x] = x ∧ V3. �

We now show item (a) of the proposition. Let again [V2] ∈ X, let V3 and U3 be as
above, and let [x] ∈ P(V3). As shown in the proof of [DV10, Prop. 3.1], the intersection
Xσ0
∩Gr(3, V7,[x]) is singular at a point U ′3 ⊂ V7,[x] if σ0 vanishes on Λ2

U ′3∧V7,[x]. This
happens if dim(U ′3 ∩ V4,[x]) > 2 because, by construction, the 3-form σ0|V7,[x]

is the
wedge product of 3 linear forms that vanish on V4,[x]. Lemma 6.6 says that U3 ⊂ V7,[x]

satisfies this condition.
We thus proved that Xσ0

∩ Gr(3, V7,[x]) is singular at the point [U3], for any [x] ∈
P(V3). This means that the Zariski tangent space TXσ0 ,[U3] contains TGr(3,V7,[x]),[U3]

for any [x] ∈ P(V3). We then use the following fact to conclude that X is contained
in the singular locus of Xσ0 .

Lemma 6.7. — The vector subspaces TGr(3,V7,[x]),[U3] ⊂ TGr(3,Λ2V 5),[U3], for [x] ∈ P(V3),
span the tangent space TGr(3,Λ2V 5),[U3].

Proof. — We have

TGr(3,V7,[x]),[U3] = Hom(U3, V7,[x]/U3) and TGr(3,Λ2V 5),[U3] = Hom(U3,Λ
2
V5/U3),

so the lemma is equivalent to the fact that the V7,[x], for [x] ∈ P(V3), span Λ2
V5.

As V7,[x] = x ∧ W⊥3 , the statement is equivalent to
⋂
x∈V3

(x ∧ W3) = 0, which is
obvious. �

By Proposition 4.4(b), there is a rational map f : X [2]−→Kσ0
. Let us compare ϕ

and f . The map ϕ sends ([V2], [V ′2 ]) to the kernel of the map Λ2
V5 → V ∨2 ⊗ V ′∨2 .

Since V3 vanishes in V ∨2 , the image of U3 = Λ2
V3 vanishes in V ∨2 ⊗ V ′∨2 and similarly

for U ′3. It follows that

U3 + U ′3 = Ker(Λ2
V5 −→ V ∨2 ⊗ V ′∨2 )

when both spaces have the same expected dimension 6. This proves items (b) and (c).
�

6.3. Stabilizer, degenerations, and excess bundles. — Recall that X ⊂ Gr(2, V ∨5 )

is a Fano threefold of index 2 and degree 5. We have defined a trivector σ0 on
V10 = Λ2

V5 such that the smooth sixfold K1 defined in (30) is contained in Kσ0

(Proposition 6.5(c)).
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The birational map ϕ : X [2]−→K1 defined in Proposition 6.2 induces an isomor-
phism between a dense open subset U ⊂ X [2] and its open image. We identify U

with ϕ(U).

Proposition 6.8
(a) The Debarre-Voisin variety Kσ0

is smooth of dimension 6 along U , hence K1

is a generically smooth irreducible component of Kσ0
.

(b) On U , the excess bundle F and the tautological bundle TOX(2) coincide as
quotients of Λ3

V ∨10 ⊗ OU .

Before giving the proof, let us note the following consequence.

Corollary 6.9. — The neutral component of the stabilizer of σ0 for the SL(V10)-
action is the group SL(2).

We do not prove that the point [σ0] is polystable.

Proof. — An element g of this stabilizer acts on the Debarre-Voisin variety Kσ0

and the neutral component acts preserving the irreducible components. By Propo-
sition 6.8, it acts on K1. But K1 is a P2-bundle over P(V5), so g (via its action on
Gr(6,Λ2

V5)) has to act on the base P(V5) and this action lifts to the projective bun-
dle K1. One easily concludes that g defines an automorphism of P(V5) whose induced
action on Gr(2, V ∨5 ) preserves X. �

The proof of Proposition 6.8 will use a few more preparatory steps. We start with
the following easy lemma.

Lemma 6.10. — For any [W6] ∈ Kσ0
and any [x] ∈ P(V5), the vector spaceW6 ⊂ Λ2

V5

intersects V4,[x] nontrivially; it follows that dim(P(W6) ∩ Gr(2,Λ2
V5)) > 3.

Proof. — The assumption is that σ0 vanishes on W6. The space V := W6 ∩ V7,[x]

is of dimension at least 3. By construction (see Proposition 6.3), the restriction
of σ0 to V7,[x] is a generator of Λ3

(V7,[x]/V4,[x])
∨, hence the vanishing of σ0|V means

V ∩ V4,[x] 6= {0}. Hence W6 ∩V4,[x] 6= {0}. For the second statement, observe that the
set of [x] ∈ P(V5) such that W6∩V4,[x] 6={0} is the image in P(V5) of the universal
P1-bundle over P(W6) ∩ Gr(2,Λ2

V5). Since all [x] ∈ P(V5) have this property, the
dimension of this bundle must be at least 4. �

Let us show the following consequence.

Corollary 6.11. — Let K ′1 be an irreducible component of Kσ0
containing K1. For

any [W6] ∈ K ′1, there is a unique [x] ∈ P(V5) such that V4,[x] is contained in W6.

Proof. — The uniqueness is clear, as x∧V5+y∧V5 has dimension 7 for nonproportional
x, y. For the existence, we observe that for a general [V6] ∈ K1, the intersection
P(V6)∩Gr(2,Λ2

V5) is equal to P(V4,[x]) with its reduced structure. We now deform [V6]

to a general element [W6] of the component K ′1, say along a family (V6,t)t∈∆ ⊂ Λ2
V5

of 6-dimensional vector subspaces. By Lemma 6.10, we know that for any t ∈ ∆,
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the intersection P(V6,t) ∩ Gr(2,Λ2
V5) remains of dimension > 3. Since for t = 0 it is

reduced, of dimension 3 and degree 1, the same holds for t ∈ ∆ general. As the only
3-dimensional projective subspaces of Gr(2,Λ2

V5) are of the form P(V4,[x]), we obtain
that W6 = V6,t, for t general, contains a space V4,[x]. �

Proof of Proposition 6.8(a). — Let as above K ′1 be an irreducible component of Kσ0

containing K1 and let [W6] ∈ K ′1. By Corollary 6.11, there exists [x] ∈ P(V5) such
that V4,[x] is contained in W6. We also note from the proof of Corollary 6.11 that the
point [x] ∈ P(V5) is general. There is a short exact sequence

(34) 0 −→ V4,[x] −→ Λ2
V5 −→ Λ2

V4,[x] −→ 0.

Here, V4,[x] = x ∧ V5 is seen on the left as a subspace of Λ2
V5 and on the right as the

quotient V5/Cx.
The trivector σ0 ∈ Λ3

(Λ2
V5)∨ vanishes in the first quotient Λ3

V ∨4,[x], hence it has
an image σ0,x in the next step of the filtration on Λ3

(Λ2
V5)∨ associated with (34),

namely Λ2
V ∨4,[x] ⊗ Λ2

V ∨4,[x]. From the construction of σ0, we know that σ0|V7,[x]
comes

from Λ3
(V7,[x]/V4,[x])

∨, which implies that σ0,[x] vanishes in (V7,[x]/V4,[x])
∨ ⊗ Λ2

V ∨4,[x],
or equivalently belongs to (x ∧ W3) ⊗ Λ2

V ∨4,[x], where we consider x ∧ W3 ⊂ Λ2
V ∨5

as defining V7,[x] (so that its image in Λ2
V ∨4,[x] defines V7,[x]/V4,[x])). Let us examine

σ0,x ∈ (x ∧W3)⊗ Λ2
V ∨4,[x]. We claim the following.

Lemma 6.12. — For [x] ∈ P(V5) general, the rank of σ0,x is 3.

Proof. — Recall that V5 andW3 are irreducible representations of SL(2) (Section 6.1).
The trivector σ0 is invariant under the induced SL(2)-action on Λ3

V ∨10 = Λ3
(Λ2

V5)∨.
From (31), we see that V4,[x], seen as a quotient of V5, is the fiber at [x] of the

vector bundle V ′4 := V4(1). Since H0(P(V5),Λ2V ′4 ) ' Λ2
V5 and W3 ⊂ Λ2

V5 is general,
there is an injection

W3 ⊗ OP(V5) ↪−→ Λ2V ′4

whose dual is a surjection Λ2V ′∨4 → W∨3 ⊗ OP(V5). The tensors σ0,x globalize to a
section σ0 of the bundle W3⊗Λ2V ′∨4 ⊗OP(V5)(1). Since det(V ′4 ) = OP(V5)(1), we have

Λ2V ′∨4 ⊗ OP(V5)(1) ' Λ2
(V4(1)),

hence σ0 is a section of the bundle W3 ⊗ Λ2V ′4 . We also have

H0(P(V5),W3 ⊗ Λ2V ′4 = W3 ⊗H0(P(V5),Λ2V ′4 ) = W3 ⊗ Λ2
V5.

It follows that σ0 provides an element of W3 ⊗ Λ2
V5 which must be SL(2)-invariant.

The decomposition (29) tells us that there is exactly one such element, IdW3
(we use

the isomorphismW3 'W∨3 given by the SL(2)-action). The conclusion of this analysis
is that either σ0 is 0 or the rank of σ0,x is 3.

To finish the proof of the lemma, we just have to exclude the case σ0 = 0. If this
vanishing holds, σ0 vanishes on any 3-dimensional subspace of Λ2

V5 that intersects
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one x ∧ V5 along a 2-dimensional space. It is easy to exclude this possibility: the
condition says that σ0 ∈ Λ3

(Λ2
V ∨5 ) vanishes on all elements of the form

(35) (x ∧ y) ∧ (x ∧ z) ∧ (v ∧ w) ∈ Λ3
(Λ2

V5)

for x, y, z, v, w ∈ V5. But this would force σ0 = 0, because these elements span
Λ3

(Λ2
V5). Indeed, this space is generated by general decomposable elements of the

form m = (x∧y)∧ (t∧ z)∧ (v∧w). By generality, we have v = αx+βy+γt+ δz+ εw

and expanding m, we get a sum of terms of type (35). �

Let us go back to the point [W6] of K ′1, where W6 contains V4,[x] for some general
[x] ∈ P(V5). Since σ0|W6 = 0, the tensor σ0,x vanishes in (W6/V4,[x])

∨ ⊗ Λ2
V ∨4,[x].

By Lemma 6.12, we conclude that x ∧W3 has to vanish on W6, that is W6 ⊂ V7,[x].
Thus [W6] ∈ K1 and we proved that K1 is an irreducible component of Kσ0

.
In order to prove that K1 and Kσ0

are equal as schemes generically along K1,
we observe that the argument just given is of an infinitesimal nature, hence proves
that K1 and Kσ0 ∩ Gr(6, x,Λ2

V5) are equal as schemes generically along K1, where
Gr(6, x,Λ2

V5) ⊂ Gr(6,Λ2
V5) is the set of W6 ⊂ Λ2

V5 such that x ∧ V5 = V4,x ⊂ W6

for some x ∈ P(V5). In order to conclude, we thus just need to show that Kσ0
is

schematically contained in Gr(6, x,Λ2
V5) generically along K1. This is a consequence

of the following infinitesimal version of Corollary 6.11. �

Lemma 6.13. — Let [W6]∈K1 be general and let x∈P(V5) be such that V4,x⊂W6. For
any first order deformation [W6,ε] of [W6] in Kσ0

, there exists a first order deforma-
tion xε of x such that, at first order, V4,xε = xε ∧ V5 ⊂W6,ε.

Proof. — Let x ∧ y ∈ P(V4,x) be such that

(36) W6 ∩ (y ∧ V5) = 〈x ∧ y〉.
The proof of Lemma 6.10 shows that there exists a unique first order deformation
yε ∈ P(V4,y) ⊂ Gr(2, V5) such that W6,ε ∩ (y ∧ V5) = 〈y ∧ yε〉. Since [W6] is a general
point of K1, the set of points y satisfying (36) is the complement of a closed algebraic
subset of codimension > 2 in P(V4,x). The collection of yε thus extends to a first order
deformation of P(V4,x) in Gr(2, V5). But the latter are in bijection with the first order
deformations of x ∈ P(V5). �

Proof of Proposition 6.8(b). — We are exactly in the setting of Lemma 4.5 and
Remark 4.6: by Proposition 6.5(a), there is an embedding j : X ↪→ Sing(Xσ0

) ⊂
Gr(3, V10); it induces a map ϕ : X [2]−→K1, where K1 is a generically reduced
6-dimensional component of Kσ0 (Proposition 6.8(a)). The map ϕ is birational by
Proposition 6.2 and j∗OGr(3,V10)(1) = OX(2).

On U , the vector bundles Tj∗OGr(3,V10)(1) = TOX(2) and F both have rank 2 and
are quotients of Λ3

V ∨10 ⊗ OU ; furthermore, Lemma 4.5 says that the evaluation map

ev : Λ3
V ∨10 ⊗ OU −→ TOX(2)

factors through F . This proves that they are the same. �
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We finally prove our main result.

Theorem 6.14. — Let (σt)t∈∆ be a very general 1-parameter deformation. Over a fi-
nite cover ∆′→∆, there is a family of smooth polarized hyperkähler fourfolds K ′→∆′

such that a general fiber K ′
t′ is isomorphic to Kσt and the central fiber is isomorphic

to S[2], where (S,L) is a general K3 surface of degree 10, with the polarization 2L−3δ.

Proof. — Let K → ∆ be the associated family of Debarre-Voisin varieties, let K 0

be the irreducible component of K that dominates ∆, and let U ⊂ Kσ0
= K0 be the

Zariski open set of Proposition 6.8. Then K0 is smooth of dimension 6 along U , so
that the analysis of Section 4.2 applies.

By Proposition 6.8(b), on U , the excess bundle F can be identified with TOX(2) as
quotients of Λ3

V ∨10. The element σ′0 thus gives a section f of OX(2) and we conclude
that if σ′0 is general enough, the zero-locus of σ′0 is equal to S[2] ∩U , where S ⊂ X is
the K3 surface defined by f .

Moreover, the open subset S[2] ∩ U is then dense in S[2] and we thus proved that
the central fiber of K 0 has one reduced component which is birationally isomorphic
to S[2]. By [KLSV18], it follows that after base change ∆′ → ∆ and shrinking, there
exists a family π′ : K ′ → ∆′ that is fiberwise birationally isomorphic to K 0 ×∆ ∆′,
all of whose fibers are smooth hyperkähler fourfolds, with (smooth) central fiber
birationally isomorphic to S[2]. Since S[2] has no nontrivial hyperkähler birational
models (Section 3.3), the central fiber is in fact isomorphic to S[2].

The varieties Kt, for t very general, have Picard number 1, hence no nontrivial
smooth hyperkähler birational models. It follows that K ′

t ' Kt and this holds for all
t 6= 0. �

Remark 6.15. — From the viewpoint of subvarieties of Gr(6, V10), the situation is not
completely explained. The varieties Kt are smooth subvarieties of Gr(6, V10) of degree
1452. The variety S[2] is mapped to Gr(6, V10) via the rational map ϕ described in
Proposition 6.2, but since this map is not regular, its image ϕ(S[2]) ⊂ Gr(6, V10) has
degree < 1452. The limit (in the Hilbert scheme) of the subvarieties Kt ⊂ Gr(6, V10)

must therefore have another irreducible component.

7. The HLS divisor D2

We describe a polystable point in the moduli space MDV = P(Λ3
V ∨10)//SL(V10)

whose total image by the moduli map

m : MDV
//M

is the divisor whose general points are the fourfolds MS(0, L, 1) described in Re-
mark 3.6, where (S,L) is a general polarized K3 surface of degree 2. As explained in
Section 3, this divisor is therefore the Heegner divisor D2.
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7.1. The SL(3)-invariant trivector. — We take V10 := Sym3W3. The SL(W3)-rep-
resentation Λ3

V ∨10 decomposes as

(37) Λ3
V ∨10 = Λ3

(Sym3W∨3 ) = Γ0,6 ⊕ Γ3,3 ⊕ Γ2,2 ⊕ Γ0,0,

where Γa,b is the irreducible representation given by the kernel of the contrac-
tion map SymaW3 ⊗ SymbW∨3 → Syma−1W3 ⊗ Symb−1W∨3 .(3) The first term is
Sym6W∨3 = H0(P(W3),OP(W3)(6)). The last term is the (1-dimensional) space of
SL(W3)-invariants and we pick a generator σ0.

This trivector σ0 can be constructed via the “symbolic method” as follows (thanks
to Claudio Procesi). Choose a generator η for Λ3

W3 and write a∧ b∧ c =: det(a, b, c)η

for all a, b, c ∈W3. Then σ0 is the unique trivector on V10 such that

∀x, y, z ∈W3 σ0(x3, y3, z3) = det(x, y, z)3

(it is alternating and SL(W3)-invariant because it is so when the entries are cubes).
Let (x, y, z) be a basis for W3 and write α ∈ Sym3W3 as

(38) α = α300x
3 + α030y

3 + α003z
3

+ 3(α210x
2y + α102xz

2 + α021y
2z + α120xy

2 + α201x
2z + α012yz

2) + 6α111xyz.

A straightforward computation (umbral calculus) shows that

σ0(α, β, γ) =
∑
τ∈P

ε(τ)ατ(3,0,0)βτ(0,3,0)γτ(0,0,3) − 3
∑
τ∈P

ε(τ)ατ(3,0,0)βτ(0,2,1)γτ(0,1,2)

− 3
∑
τ∈P

ε(τ)ατ(0,3,0)βτ(1,0,2)γτ(2,0,1) − 3
∑
τ∈P

ε(τ)ατ(0,0,3)βτ(2,1,0)γτ(1,2,0)

− 3
∑
τ∈P

ε(τ)ατ(2,1,0)βτ(1,0,2)γτ(0,2,1) − 3
∑
τ∈P

ε(τ)ατ(1,2,0)βτ(2,0,1)γτ(0,1,2)(39)

− 6
∑
τ∈P

ε(τ)ατ(2,1,0)βτ(0,1,2)γτ(1,1,1) − 6
∑
τ∈P

ε(τ)ατ(1,0,2)βτ(1,2,0)γτ(1,1,1)

− 6
∑
τ∈P

ε(τ)ατ(0,2,1)βτ(2,0,1)γτ(1,1,1).

In each sum above, P denotes the permutation group of the relevant subset of the
family of indices. In particular, we get the following.

Lemma 7.1. — For each r ∈ {1, 2, 3}, let xiryjrzkr be a degree-3 monomial. Then

σ0(xi1yj1zk1 , xi2yj2zk2 , xi3yj3zk3) 6= 0

if and only if i1 + i2 + i3 = j1 + j2 + j3 = k1 + k2 + k3 = 3 and not all monomials are
equal to xyz.

(3)In the standard notation of [Bou90] explained in Section 5.1.2, the representation Γa,b is
Vaω1+bω2

.
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7.2. The hypersurface Xσ0
. — The equation of the hypersurface

Xσ0
⊂ Gr(3,Sym3W3)

defined in (2) is given by (39). More precisely, order the multiindices as in Table 3
and denote the corresponding Plücker coordinates on Λ3

(Sym3W3) by q012, . . . , q789;

3, 0, 0 0, 3, 0 0, 0, 3 2, 1, 0 1, 0, 2 0, 2, 1 1, 2, 0 2, 0, 1 0, 1, 2 1, 1, 1

0 1 2 3 4 5 6 7 8 9

Table 3. Ordering of multiindices

then Xσ0 is the intersection of Gr(3,Sym3W3) with the hyperplane

(40) q012 − 3(q058 + q147 + q236 + q345 + q678)− 6(q389 + q469 + q579) = 0.

7.2.1. The singular locus ofXσ0
. — We show in this section that the hypersurface Xσ0

is singular along a surface which we first describe. Let

v3 : P(W3) ↪−→ P(Sym3W3)

[x] 7−→ [x3]

be the Veronese embedding and let V ⊂ P(Sym3W3) be its image. The projective
tangent space to V at [x3] is P(x2 ·W3), hence the Gauss map of V is

g : V ↪−→ Gr(3,Sym3W3)

[x3] 7−→ [x2 ·W3].
(41)

We have g∗OGr(1) ' OP(W3)(6) and g induces an isomorphism

(42) H0(Gr(3,Sym3W3),OGr(1)) ∼−→ H0(P(W3),OP(W3)(6)),

because the left side is a nonzero SL(W3)-invariant linear subspace of the right side.

Proposition 7.2. — The singular locus of Xσ0
is equal to the surface g(V).

Proof. — We first prove one inclusion.

Lemma 7.3. — Let (x, y, z) be a basis of W3 and let U3 ⊂ Sym3W3 be a 3-dimensional
subspace spanned by monomials in x, y, z. Then [U3] is a singular point of Xσ0 if and
only if, after possibly renaming x, y, z, we have U3 =〈x3, x2y, x2z〉, that is, [U3]∈g(V).

In particular, the surface g(V) is contained in the singular locus of Xσ0
.

Proof. — Let U3 = 〈m1,m2,m3〉, where m1,m2,m3 are monomials in x, y, z. By
[DV10, Prop. 3.1], the point [U3] is singular on Xσ0

if and only if σ0(mr∧ms∧m) = 0

for every distinct r, s ∈ {1, 2, 3} and every monomial m in x, y, z. Since m is arbitrary,
it follows from Lemma 7.1 that at least one of the following inequalities holds

ir + is > 3, jr + js > 3, kr + ks > 3.

The above is true for any choice of distinct r, s ∈ {1, 2, 3}. It follows that, after
possibly renaming x, y, z, we have U3 = 〈x3, x2y, x2z〉. �
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We identify P(V10) = P(Sym3W3) with |OP(W∨3 )(3)|, the linear system of cubic
curves in P(W∨3 ). Given [ϕ] ∈ P(Sym3W3), we denote by V (ϕ) ⊂ P(W∨3 ) its zero-
locus and, given a vector subspace U ⊂ Sym3W3, we let

(43) L(U) := {V (ϕ) | [ϕ] ∈ P(U)} ⊂ |OP(W∨3 )(3)|
be the associated linear system.

Lemma 7.4. — Let U3 ⊂ Sym3W3 be a 3-dimensional subspace. Suppose that one of
the following holds:

(a) there exists [ϕ] ∈ P(U3) such that V (ϕ) is singular at a point p ∈ P(W∨3 ) not
contained in the base-locus of L(U3);

(b) there exists an element of L(U3) with an ordinary node.
Then [U3] is not a singular point of Xσ0

.

Proof. — Assume that [U3] is a singular point of Xσ0
. We will reach a contradiction in

both cases. Suppose that (a) holds. Let (x, y, z) be a basis ofW3 such that p = (0, 0, 1).
Then ϕ = f2(x, y)z + f3(x, y), where f2, f3 are homogeneous of respective degrees 2

and 3, not both zero. By assumption, there exists [ψ] ∈ P(U3) such that p /∈ V (ψ).
Thus ψ = z3 + f1(x, y)z2 + f2(x, y)z + f3(x, y). Let λ be the 1-parameter subgroup
of GL(W3) given (in the chosen basis) by

(44) λ(t) = diag(tn+1, tn, 1), n > 3.

Let U3 := limt→0 λ(t)U3. The hypersurface Xσ0
is mapped to itself by SL(W3), hence

it is singular at λ(t)U3 for all t ∈ C?, hence also at U3. A simple computation shows
that if f2 6= 0, then limt→0 λ(t)[ϕ] = [xiyjz], where xiyj is the monomial with highest
power of y appearing in f2, and that if f2 = 0, then limt→0 λ(t)[ϕ] = [xiyj ], where
xiyj is the monomial with highest power of y appearing in f3.

On the other hand, limt→0 λ(t)[ψ] = [z3]. The subspace U3 is generated by mono-
mials in x, y, z, because the weights of the action of λ on Sym3W3 are pairwise distinct.
Thus U3 is generated by monomials in x, y, z and contains z3 and one of xiyjz, xiyj .
By Lemma 7.3, U3 is not contained in Sing(Xσ0

). This is a contradiction.
Suppose now that (b) holds. By assumption, there exist a basis (x, y, z) of W3 and

[ϕ] ∈ P(U3) such that ϕ = xyz+ f3(x, y). Let λ be the 1-parameter subgroup in (44)
and set U3 := limt→0 λ(t)U3. Arguing as above, we get that Xσ0

is singular at U3.
A simple computation shows that limt→0 λ(t)[xyz + f3(x, y)] = [xyz]. Since U3 is
generated by monomials in x, y, z, this contradicts Lemma 7.3. �

We now prove the reverse inclusion Sing(Xσ0) ⊂ g(V). Let [U3] ∈ Sing(Xσ0). One
of the following holds:

(a) there exists [ϕ] ∈ P(U3) such that V (ϕ) is singular at a point not contained in
the base-locus of L(U3);

(b) the base-locus of L(U3) is zero-dimensional and all curves in L(U3) are smooth
outside the base-locus;
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(c) the base-locus of L(U3) is one-dimensional and all curves in L(U3) are smooth
outside the base-locus.

If (a) holds, [U3] is not a singular point of Xσ0
by Lemma 7.4. This is a contradic-

tion.
Suppose that (b) holds. We claim that there exists p ∈ P(W∨3 ) such that all

elements of L(U3) are singular at p. The set

Σ := {(p, [ϕ]) ∈ P(W∨3 )× L(U3) | p is a singular point of V (ϕ)}
is the intersection of 3 divisors in |OP(W∨3 )(2)�OL(U3)(1)|. If Σ has (pure) dimension 1,
its projection toP(W∨3 ) is a sextic curve, which contradicts (b). Hence dim(Σ) > 1 and
there exists a point p such that all curves in L(U3) are singular at p. By Lemma 7.4(b),
no element of L(U3) has an ordinary node at p. It follows that there are linearly
independent [ϕ1], [ϕ2] ∈ P(U3) such that V (ϕ1) and V (ϕ2) have multiplicity 3 at p.
Thus, there exists a nonzero linear combination c1ϕ1 +c2ϕ2 such that V (c1ϕ1 +c2ϕ2)

is singular along a line. This contradicts our assumption (b).
Lastly, suppose that (c) holds. The base-locus of L(U3) is either a line or a conic

(possibly degenerate). Assume that it is a line R. By Lemma 7.4(b), no element of
L(U3) has an ordinary node. This forces L(U3) to be R+ L0, where L0 ⊂ |OP(W∨3 )(2)|
is one of the following:

(α) the linear system of conics tangent to R at a fixed p ∈ R and containing a
fixed q ∈ P(W∨3 ) rR;

(β) the linear system of conics with multiplicity of intersection at least 3 with a
fixed smooth conic tangent to R at a fixed p ∈ R;

(γ) the linear system of conics singular at a fixed p ∈ R.
If (α) holds, there exists a basis (x, y, z) of W3 such that U3 = 〈x2y, xy2, y2z〉. This
contradicts Lemma 7.3.

If (β) holds, there exists a basis (x, y, z) of W3 such that U3 = 〈x3 + y2z, xy2, y3〉.
Let λ be the 1-parameter subgroup of GL(W3) given by λ(t) = diag(t−1, t−3, 1). Then
limt→0 λ(t)U3 = 〈x3, xy2, y3〉, which contradicts Lemma 7.3.

If (γ) holds, there exists a basis (x, y, z) of W3 such that U3 = 〈x2y, xy2, y3〉 and
this contradicts Lemma 7.3.

This proves that the base-locus of L(U3) is not a line, hence it is a conic. If the
conic has rank at least 2, there are elements of L(U3) with an ordinary node and
this contradicts Lemma 7.4. Hence the base-locus of L(U3) is a double line, that
is, [U3] ∈ g(V). �

7.2.2. The germ of Xσ0 at its singular points. — The local structure of Xσ0 at its sin-
gular points will be needed in the proof of Theorem 7.20.

Lemma 7.5. — Let p be a singular point of Xσ0 . The (analytic) germ (Xσ0 , p) is
isomorphic to the germ

(
∆2 ×

(∑19
i=1 ξ

2
i = 0

)
, 0
)
.

Proof. — Let p := [U3] and let (x, y, z) be a basis ofW3 such that U3 = 〈x3, x2y, x2z〉.
We write a local equation of Xσ0

in a neighborhood of p, adopting the notation in
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Sections 7.1 and 7.2. In particular, coordinates on Sym3W3 are defined by (38) and
we order them as in Table 3. Now p has coordinates q037 = 1 and qijk = 0 for
{i, j, k} 6= {0, 3, 7}. Affine coordinates on the open subset

Gr(3,Sym3W3)q037 ⊂ Gr(3,Sym3W3)

defined by q037 6= 0 are given by q′ijk := qijk/q037 for all 0 6 i < j < k 6 9 such that
exactly two of the indices i, j, k belong to {0, 3, 7}. By (40), Xσ0

∩Gr(3,Sym3W3)Q037

has equation

0 = q′013q
′
027 − q′017q

′
023 − 3(q′035q

′
078 − q′038q

′
057 + q′017q

′
347 + q′047q

′
137 − q′023q

′
367)

+ 3(q′036q
′
237 − q′034q

′
357 + q′035q

′
347 + q′067q

′
378 − q′078q

′
367) + cubic term.

The tangent cone of Xσ0 at p is defined by the vanishing (in C21) of this quadratic
term. A computation gives

Tg(V),p =
〈 ∂

∂q′039

+ 2
∂

∂q′067

, 2
∂

∂q′034

+
∂

∂q′079

〉
.

Another computation shows
Tg(V),p = Ker(ϕ).

This proves the lemma. �

7.3. The variety Kσ0 . — We describe in Proposition 7.8 the Debarre-Voisin vari-
ety Kσ0

associated with the trivector σ0 on V10 = Sym3W3 defined in Section 7.1.

7.3.1. Two distinguished subvarieties of Kσ0

Definition 7.6
(a) Given [a] ∈ P(W∨3 ) and a codimension 1 suspace H ⊂ Sym2(a⊥), let

I(a,H) := image of H via the inclusion (Sym2(a⊥) ↪−→ Sym2W3),

L(a,H) := (a · I(a,H)⊥)⊥ ⊂ Sym3W3.

Note that dim(I(a,H)) = 2 and dim(L(a,H)) = 6.
(b) Given [a] ∈ P(W∨3 ) and [x] ∈ P(W3), let

J(a, x) := x ·Ker(a) ⊂ Sym2W3,

M(a, x) := (a · J(a, x)⊥)⊥ ⊂ Sym3W3.

Note that dim(J(a, x)) = 2 and dim(M(a, x)) = 6.
(c) Finally, define two irreducible subvarieties of Gr(6, V10) by setting

KL := {[L(a,H)] | [a] ∈ P(W∨3 ), H ⊂ Sym2(a⊥) hyperplane},
KM := {[M(a, x)] | [a] ∈ P(W∨3 ), [x] ∈ P(W3)}.

We list the subspaces a · I(a,H)⊥ and a · J(a, x)⊥ up to isomorphism. First notice
that there exist linearly independent x, y∈W3 such that H=〈x2, y2〉 or H=〈x2, xy〉.
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As is easily checked, there exists a basis (a, b, c) of W∨3 such that

(45)

a · I(a,H)⊥ =

{
a · 〈a2, ab, ac, bc〉 if H = 〈x2, y2〉,
a · 〈a2, ab, ac, c2〉 if H = 〈x2, xy〉,

a · J(a,H)⊥ =

{
a · 〈a2, b2, bc, c2〉 if a(x) 6= 0,
a · 〈a2, ab, ac, c2〉 if a(x) = 0.

We now show that the varieties KL and KM are both contained in Kσ0 .

Proposition 7.7
(a) The subvariety of Kσ0

obtained from the surface g(V) ⊂ Sing(Xσ0
) by the

procedure described in Proposition 4.4(b) is KL.
(b) The variety KM is contained in Kσ0 .

Proof. — By Proposition 4.4(b), for x, y ∈ W3 not collinear, the 6-dimensional sub-
space x2 ·W3 + y2 ·W3 ⊂ Sym3W3 corresponds to a point of Kσ0

. This is exactly
L(a,H), where a⊥ = 〈x, y〉 and H = 〈x2, y2〉. Since KL is irreducible of dimension at
most 4, this proves (a).

By (45), if a(x) 6= 0, then M(a, x) = 〈x2y, x2z, y3, y2z, yz2, z3〉 in a suitable basis
(x, y, z) of W3. By Lemma 7.1, this is a point of Kσ0

, which proves (b). �

The rest of Section 7.3 will be devoted to the proof of the following result.

Proposition 7.8. — One has (Kσ0
)red = KL ∪KM .

We also mention as an addition to this statement that Kσ0 is nonreduced along its
component KL: this follows from Propositions 7.7(a) and 4.4(a).

The following remark (which complements the description of KL in Proposi-
tion 7.7(a)) will be useful in the proof of Theorem 7.20.

Remark 7.9. — If [U6] ∈ Kσ0 , one of the following holds:

(a) either [U6] ∈ KL rKM and the scheme-theoretic intersection Gr(3, U6) ∩ g(V)

is the union of two reduced (distinct) points;
(b) or [U6] ∈ KM rKL and Gr(3, U6) ∩ g(V) = ∅;
(c) or [U6] ∈ KL ∩KM and the scheme-theoretic intersection Gr(3, U6) ∩ g(V) has

length 2.

Remark 7.10. — Let FI ⊂ Gr(2,Sym2W3) be the set of all I(a,H) and let FJ ⊂
Gr(2,Sym2W3) be the set of all J(a, x). The variety of lines on the chordal cubic in
P(Sym2W3) is equal to FI ∪FJ , both FI and FJ are smooth of dimension 4, and their
intersection is smooth of dimension 3 ([vdD12, Prop. 3.2.4]). Thus, by Proposition 7.8,
Kσ0

is isomorphic to the variety of lines on the chordal cubic.
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7.3.2. Elements of Kσ0
and 2-jets. — Considering the definition of KL and KM , we

must, in order to prove Proposition 7.8, examine U⊥6 when [U6] ∈ Kσ0 . We prove
in Proposition 7.12 that U⊥6 satisfies a very strong condition.

Lemma 7.11. — Let U3 ⊂ Sym3W3 = H0(P(W∨3 ),OP(W∨3 )(3)) be a 3-dimensional
subspace. Suppose that there exists p ∈ P(W∨3 ) such that U3 ⊂ H0(P(W∨3 ),m2

p(3))

and the natural map U3 → (m2
p/m

3
p)⊗OP(W∨3 )(3) is an isomorphism. Then [U3] /∈ Xσ0 .

Proof. — We proceed by contradiction. Assume [U3] ∈ Xσ0 and let (x, y, z) be a basis
of W3 such that the coordinates of p are (0, 0, 1). Let r and s be integers such that
3
2s > r > s > 0 and let λ be the 1-parameter subgroup of GL(W3) given (in the
chosen basis) by

λ(t) = diag(tr, ts, 1).

Let U3 := limt→0 λ(t)U3. Then Xσ0
contains [U3], because it is mapped to itself

by GL(W3). The representation Sym3λ : C? → Sym3W3 has isotypic components of
dimension 1. Generators of the isotypic components, ordered in increasing order, are

z3, yz2, xz2, y2z, xyz, x2z, y3, xy2, x2y, x3.

It follows that U3 = 〈x2z, xyz, y2z〉. By Lemma 7.1, one gets [U3] /∈ Xσ0 , a contra-
diction. �

Proposition 7.12. — Let [U6] ∈ Kσ0
. For every [a] ∈ P(W∨3 ), we have

(46) (a · Sym2W∨3 ) ∩ U⊥6 6= {0}.

Proof. — We view U6 as a subspace of H0(P(W∨3 ),OP(W∨3 )(3)). Let p ∈ P(W∨3 ). If
the natural map

(47) U6 −→ (OP(W∨3 ),p/m
3
p)⊗ OP(W∨3 )(3)

is surjective, or equivalently bijective since both spaces have dimension 6, the kernel
of the map U6 → (OP(W∨3 ),p/m

2
p) ⊗ OP(W∨3 )(3) is a 3-dimensional subspace U3 ⊂

U6 ∩ H0(P(W∨3 ),m2
p(3)) such that the natural map U3 → (m2

p/m
3
p) ⊗ OP(W∨3 )(3) is

an isomorphism. By Lemma 7.11, [U3] /∈ Xσ0
, but this is absurd because [U6] ∈ Kσ0

.
The map (47) is therefore not surjective.

Assume first that p = [a] is not in the base-locus of the linear system P(U6). The
map P(W∨3 )−→P(U∨6 ) defined by P(U6) is the composition

P(W∨3 )
v3−−−→ P(Sym3W∨3 ) // P(U∨6 )

of the Veronese map v3 and the projection with center P(U⊥6 ). If (46) does not hold,
the second-order osculating plane P(a ·Sym2W∨3 ) to the Veronese surface v3(P(W∨3 ))

does not meet the center of projection P(U⊥6 ), hence (47) is bijective, which we just
prove does not hold. It follows that (46) holds if [a] is not in the base-locus of P(U6).
Since the property (46) is closed, it holds for all [a] ∈ P(W∨3 ). �
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7.3.3. Three-dimensional linear system of plane cubics containing many reducible cubics

Let [U6] ∈ Kσ0 . Then P(U⊥6 ) ⊂ P(Sym3W∨3 ) is a 3-dimensional linear systems of
cubics in P(W3). By Proposition 7.12, given any line R ⊂ P(W3), there exists a cubic
in P(U⊥6 ) containing R. We prove here the following result.

Proposition 7.13. — Let Λ ⊂ |OP2(3)| be a 3-dimensional linear system such that,
for each line R ⊂ P2, there exists a cubic in Λ containing R. One of the following
holds:

(a) the base-locus of Λ contains a line,
(b) there exists a (possibly degenerate) conic C ⊂ P2 such that Λ contains C +

|OP2(1)|,
(c) in a suitable basis (x, y, z) of H0(P2,OP2(1)), one of the following holds:

(1) Λ = P(〈x3, y3, z3, xyz〉),
(2) Λ ⊂ P(〈xz2, yz2, x3, x2y, xy2, y3〉),
(3) Λ = P(〈xyz, x2y + yz2, x2z + y2z, xy2 + xz2〉),
(4) Λ ⊂ P(〈xyz, x2y + xz2, xy2 + yz2, x2z, y2z〉),
(5) Λ ⊂ P(〈x2z, xyz, xy2 + xz2, y2z, y3 + yz2〉),
(6) Λ ⊂ P(〈x2z − xy2, y3, y2z, yz2, z3〉).

Here is the corollary of interest to us.

Corollary 7.14. — Let [U6] ∈ Kσ0
. One of the following holds:

(α) U⊥6 = f1 ·U4, where f1 ∈W∨3 and U4 ⊂ Sym2W∨3 is a 4-dimensional subspace;
(β) U⊥6 ⊇ f2 ·W∨3 , where f2 ∈ Sym2W∨3 .

Proof. — As noted above, Λ := P(U⊥6 ) is a 3-dimensional linear system of cubics
satisfying the hypothesis of Proposition 7.13. Hence one of items (a), (b), (c) of
that proposition holds. If (a) holds, then (α) holds; if (b) holds, then (β) holds.
One checks that if (c) holds, [U6] is not in Kσ0

. For example, suppose that (c6)
holds and let (a, b, c) be the basis of W3 dual to the basis (x, y, z) of W∨3 . Then
U6 ⊃ 〈a2c+ab2, a3, a2b, abc, ac2〉 and this is absurd, because σ0(a2c+ab2, abc, ac2) 6= 0

by Lemma 7.1. �

Before proving Proposition 7.13, we go through two preliminary results. The first
is an easy exercise which we leave to the reader.

Lemma 7.15. — Let Λ ⊂ |OP2(3)| be a linear system all of whose elements are re-
ducible. Then, either Λ has a 1-dimensional base-locus or all cubics in Λ have multi-
plicity 3 at a fixed point.

Proposition 7.16. — Let Λ ⊂ |OP2(3)| be a 2-dimensional linear system. Suppose
that, given an arbitrary line R ⊂ P2, there exists a cubic in Λ containing R. Then,
there exists a conic C such that Λ = C + |OP2(1)|.
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Proof. — By our hypothesis, the variety of reducible cubics in Λ has dimension 2,
hence every cubic in Λ is reducible. Since all cubics in Λ cannot have multiplicity 3

at a fixed point, Lemma 7.15 implies that the base-locus of Λ contains a line R or
a conic C. If the latter holds, we are done because dim(Λ) = 2. If the former holds,
Λ = R+ Λ′, where Λ′ is a 2-dimensional linear system of conics such that, given any
line R ⊂ P2, there exists a conic in Λ′ containing R. In particular, all conics in Λ′ are
reducible. It follows that there exists a line R′ such that Λ′ = R′ + |OP2(1)|. Thus
Λ = (R+R′) + |OP2(1)|. �

Proof of Proposition 7.13. — If the base-locus of Λ has dimension 1, item (a) holds.
From now on, we assume that the base-locus of Λ is finite. Let f : P2−→Λ∨ ' P3 be
the natural map. Let B ⊂ P2 be the (schematic) base-locus of Λ, so that Λ ⊂ |IB(3)|.
Let fB : P2−→ |IB(3)|∨ be the natural rational map. Then f is the composition π◦fB ,
where π : |IB(3)|∨−→Λ∨ is a projection whose center does not intersect the (closed)
image fB(P2).

The (closed) image f(P2) is either a curve or a surface. If it is a curve, Λ is the linear
system of cubics in P2 which have multiplicity 3 at a fixed point. This contradicts
our hypothesis. Hence f has finite positive degree onto the surface Σ := f(P2). As
one easily checks,

(i) either B is the complete intersection of a (possibly degenerate) conic C and a
cubic,

(ii) or the restriction of fB to a subscheme Z ⊂ P2 rB of length 2 is not injective
if and only if the schematic intersection 〈Z〉 ∩B has length 3.

If (i) holds, Λ = |IB(3)|, hence Λ ⊃ C+|OP2(1)|. Thus item (b) of Proposition 7.13
holds. From now on, we assume that (ii) holds.

Assume first that f has degree 1 onto its image. If R ⊂ P2 rB is a line, fB(R) is
a twisted cubic by item (ii). A dimension count shows that

(α) either f(R) is also a twisted cubic for a general line R ⊂ P2 rB,
(β) or the projection π : |IB(3)|∨−→Λ∨ maps to the same point fB(R1 rB) and

fB(R2 rB), where R1, R2 ⊂ P2 are distinct lines such that length(Ri ∩B) = 3,
(γ) or the differential of f vanishes at all points of RrB, where R ⊂ P2 is a line

such that length(R ∩B) = 3.
If (α) holds, no cubics in Λ contain a general line R ⊂ P2, because f(R) ⊂ Λ∨

is a twisted cubic, and this contradicts the hypothesis of Proposition 7.13. If (β)
holds, dim(Λ) = 4, length(B) = 5, and B is a subscheme of R1 ∪ R2. It follows
that Λ ⊃ R1 + R2 + |OP2(1)|, hence item (b) of Proposition 7.13 holds. If (γ) holds,
Λ ⊃ 2R+ |OP2(1)| and item (b) holds again.

Assume now that f has degree greater than 1 onto its image. Suppose that the
surface Σ ⊂ Λ∨ has degree 2. Let P̂2 → P2 be a smooth blow up such that f̂ : P̂2 →
P2

f−→ Σ is a morphism. Let V ⊂ Σ be the union of the set of singular points of the
branch divisor of f̂ (this includes the points over which the fiber is not finite) and the
vertex of Σ if Σ is a cone.
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The linear system Λ contains a 2-dimensional family of reducible cubics that contain
a general line and these cubics correspond to planes in Λ∨ ' P3 that either meet V
or are tangent to Σ at a smooth point of Σ. If these planes all pass through a point
of V , we can apply Proposition 7.16 and item (b) holds. Otherwise, given a general
line R ⊂ P2, there exists a plane tangent to Σ at a smooth point such that the
corresponding cubic contains R. If Σ is smooth, the cubics corresponding to tangent
planes are of the form C1 +C2, where C1 and C2 belong to two fixed pencils of curves
corresponding to the two pencils of lines on Σ and this is absurd because they do not
contain a general line. If Σ is a cone, the set of tangent planes is the linear system of
planes through the vertex and we are reduced to the first case.

We may therefore assume deg(Σ) > 3. We claim that the (schematic) base-locus B
of Λ is curvilinear. It is not, there is a (single) point p in the support of B such that,
in a neighborhood of p, we have IB = m2

p. This implies deg(f) deg(Σ) 6 5, hence
deg(Σ) = 2, which is absurd.

Since B is curvilinear, it is locally a complete intersection; therefore,
deg(f) deg(Σ) + length(OB) = 9.

Since deg(f) > 2 and deg(Σ) > 3, one of the following holds:
(I) B is empty and deg(f) = deg(Σ) = 3;
(II) B is a single reduced point and deg(f) = 2;
(III) B has length 3 and deg(f) = 2.

Suppose that (I) holds. In particular, f : P2 → Σ is regular. Let us show that item (c1)
of Proposition 7.13 holds. First, we claim that Σ has isolated singularities. In fact, if Σ

is a cone, one gets a contradiction arguing as in the proof that Σ cannot be a quadric.
If Σ is a nonnormal cubic (and not a cone), its normalization Σ̃ is the Hirzebruch
surface F1 and we get a contradiction because the dominant map P2 → Σ lifts to a
dominant map P2 → F1, and ρ(F1) > ρ(P2). We have proved that Σ has isolated
singularities.

The map f : P2 → Σ is finite and f∗ωΣ ≡ ωP2 , hence f is unramified in codi-
mension 1. Hence, if C ∈ Λ is general, the map C → f(C) is the quotient map for
the action of a subgroup of Pic0(C) of order 3. This action is the restriction of an
automorphism ϕC of P2 of order 3. We prove that ϕC does not depend on C. Let
C ′ ∈ Λ be another general cubic and let H,H ′ ⊂ Λ∨ be the planes corresponding
to C,C ′. The 9 points in C ∩ C ′ are partitioned into the union of the three fibers
(each of cardinality 3) of the three points of intersection of the line H ∩H ′ with Σ. It
follows that ϕC and ϕC′ agree on the 9 points in C ∩C ′, hence are equal. The upshot
is that there exists an order 3 automorphism ϕ of P2 such that f : P2 → Σ is the
corresponding quotient map and f∗OΣ(1) ' OP2(3). It follows that (c1) holds.

Suppose that (II) holds. Let P̂2 → P2 be the blow up of the base-point of Λ.
Then f induces a regular finite map f̂ : P̂2 → Σ of degree 2. Since the exceptional
divisor of P̂2 → P2 is the unique (−1)-curve of P̂, the covering involution of f̂
descends to an involution ι : P2 → P2 leaving invariant the cubics in Λ. In suitable
coordinates, we have ι(x, y, z) = (x, y,−z). Since the cubics in Λ are ι-invariant, we
have Λ ⊂ P(〈xz2, yz2, x3, x2y, xy2, y3〉) and (c2) holds.
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Suppose that (III) holds. The blow up BlB P2 of B is a weak Del Pezzo surface
(the anticanonical bundle is big and nef) with Du Val singularities. The anticanonical
system |IB(3)| defines a map BlB P2 → |IB(3)|∨ ' P6 whose image is a Del Pezzo
surface S with DuVal singularities. The rational map f : P2−→Λ∨ is the composi-
tion of the natural rational map P2−→S and the restriction to S of a projection
|IB(3)|∨−→Λ∨ with center disjoint from S. The latter is a map f̂ : S → Σ which
is finite, of degree 2. If ι̂ : S → S is its covering involution, Λ is contained in the
projectivization of the ι̂-invariant subspace of H0(S, ω−1

S ).
If the involution ι̂ descends to a regular involution of P2, item (c2) holds by the

argument given above. Thus we assume that ι̂ is a birational nonregular involution
of P2; in particular, B is not contained in a line and there exist coordinates x, y, z
such that

(a) either
|IB(3)| = P(〈x2y, x2z, xy2, xyz, xz2, y2z, yz2〉)

B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)},and

(b) or |IB(3)| = P(〈x2z, xy2, xyz, xz2, y3, y2z, yz2〉) and B is supported at (1, 0, 0)

and (0, 0, 1), and has length 2 at (1, 0, 0) with tangent line z = 0,
(c) or |IB(3)| = P(〈x2z−xy2, xyz, xz2, y3, y2z, yz2, z3〉) and B is curvilinear (non-

linear) supported at (1, 0, 0) with tangent line z = 0.
The standard Cremona quadratic map and the first and second standard degenerate

quadratic maps (see [Dol12, Ex. 7.1.9]) provide examples of such an involution in each
of these cases
τa(x, y, z) = (yz, xz, yz), τb(x, y, z) = (xz, yz, y2), τc(x, y, z) = (−xz + y2, yz, z2).

Suppose that (a) holds. Every involution τ of S that does not descend to P2 is given
by τa ◦ h, where h ∈ PGL(3) permutes the points of B. If h fixes the points of B,
we get τ = τa (after rescaling x, y, z), while if h defines a transposition of B, we
have τ([x, y, z]) = [xz, yz, xy] in suitable coordinates. The τ -invariant subspace of
H0(S, ω−1

S ) is equal to 〈xyz, x2y + yz2, x2z + y2z, xy2 + xz2〉 if the former holds,
and to 〈xyz, x2y + xz2, xy2 + yz2, x2z, y2z〉 if the latter holds. Hence if the former
holds, (c3) holds; if the latter holds, (c4) holds.

Suppose that (b) holds. The relevant birational involutions of P2 are given by
τb ◦ h, where h ∈ PGL(3) is given by h(x, y, z) = (αx + βy,−αy,−α−2z) or by
h(x, y, z) = (αx, αy, α−2z) with α ∈ C? and β ∈ C. In a suitable coordinate system,
τ is τb. The τb-invariant subspace of H0(S, ω−1

S ) is 〈x2z, xyz, xy2 +xz2, y2z, y3 +yz2〉,
hence (c5) holds.

Lastly, suppose that (c) holds. The relevant birational involutions of P2 are
τc ◦ h, where h([x, y, z]) = [x + βy + γz, y, z]. In a suitable coordinate system, such
a birational involution is equal to τc. The τc-invariant subspace of H0(S, ω−1

S ) is
〈x2z − xy2, y3, y2z, yz2, z3〉, hence (c6) holds. �

7.3.4. Description of Kσ0
. — Let [U6] ∈ Kσ0

and let T4 := U⊥6 . By Corollary 7.14,
either T4 = f1 ·U4, where U4 ⊂ Sym2W∨3 is a 4-dimensional subspace, or T4 ⊃ f2 ·W∨3 ,
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where f2 ∈ Sym2W∨3 . Hence, by (45), Propositions 7.17 and 7.18 below finish the proof
of Proposition 7.8.

Proposition 7.17. — Let T4 ⊂ Sym3W∨3 be a 4-dimensional subspace such that T4 =

f1 · U4, where 0 6= f1 ∈ W∨3 and U4 ⊂ Sym2W∨3 is a 4-dimensional subspace. Then
T⊥4 ∈ Kσ0 if and only if there exists a basis (a, b, c) of W∨3 such that

T4 =


a · 〈a2, ab, ac, bc〉, or
a · 〈a2, ab, ac, c2〉, or
a · 〈a2, b2, bc, c2〉.

Proof. — Let R2 := U⊥4 ⊂ Sym2W3. Up to the action of GL(W3), there are 8 pos-
sibilities for R2, described as follows in a basis (x, y, z) of W3. In the case where
the general conic (in P(W∨3 )) defined by P(R2) is smooth, hence the base-locus is a
0-dimensional curvilinear scheme, we have

(1) R2 = 〈xy, (x + y + z)z〉, that is, the base-locus of the pencil of conics defined
by P(R2) consists of 4 distinct points;

(2) R2 = 〈xy, (x + z)z〉, that is, the base-locus of the pencil of conics defined by
P(R2) consists of two reduced points and a point of multiplicity 2;

(3) R2 = 〈xy, z2〉, that is, the base-locus of the pencil of conics defined by P(R2)

consists of two points of multiplicity 2;
(4) R2 = 〈xy, x2 + yz〉, that is, the base-locus of the pencil of conics defined by

P(R2) consists of one point of multiplicity 3 and a reduced point;
(5) R2 = 〈y2, x2 + yz〉, that is, the base-locus of the pencil of conics defined by

P(R2) consists of one point of multiplicity 4.
The remaining R2 are those for which all the conics parametrized by P(R2) are
singular:

(a) R2 = 〈y2, z2〉;
(b) R2 = 〈y2, yz〉;
(c) R2 = 〈xy, xz〉.

Correspondingly, we get the following lists of 4-dimensional subspaces U4 ⊂ Sym2W∨3 :

(48) U4 =



〈a2, b2, ac− c2, bc− c2〉,
〈a2, b2, ac− c2, bc〉,
〈a2, b2, ac, bc〉,
〈ac, b2, c2, a2 − bc〉,
〈ab, ac, c2, a2 − bc〉,

and (49) U4 =


〈a2, ab, ac, bc〉,
〈a2, ab, ac, c2〉,
〈a2, b2, bc, c2〉.

Every 4-dimensional U4 ⊂ Sym2W∨3 is equivalent modulo GL(W3) to one and only
one of the spaces U4 given above. Let f1 ∈ W∨3 be nonzero and let U4 be one of the
subspaces in (48).

We claim that (f1 · U4)⊥ does not belong to Kσ0
. To see this, first note that there

exists a 1-parameter subgroup of GL(W3) such that limt→0 λ(t)U4 is equal to the
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subspace in the last line of (48) (this is clear since U4 = R⊥2 ). Hence it suffices to
prove that for U4 as in the last line of (48), (f1 ·U4)⊥ does not belong to Kσ0 . Next, by
acting with a 1-parameter subgroup of GL(W3) given by diag(tq, tr, ts) (in the given
basis), with 2q = r + s, we may assume f1 ∈ {a, b, c}. An explicit computation then
gives

(a · 〈ab, ac, c2, a2 − bc〉)⊥ = 〈ab2, b3, b2c, bc2, c3, a3 + abc〉,
(b · 〈ab, ac, c2, a2 − bc〉)⊥ = 〈a3, a2c, ac2, b3, c3, a2b+ b2c〉,
(c · 〈ab, ac, c2, a2 − bc〉)⊥ = 〈a3, a2b, ab2, b3, b2c, a2c+ bc2〉.

By Lemma 7.1, we have

σ0(b3, c3, a3 + abc) 6= 0, σ0(a3, b3, c3) 6= 0, and σ0(a3, b2c, ac2 + bc2) 6= 0.

It follows that the first, second, and third spaces are not in Kσ0
.

We are left with U4 as in (49). We know that (a ·U4)⊥ ∈ Kσ0
. It remains to prove

that if f1 /∈ 〈x〉, then (f1 · U4)⊥ /∈ Kσ0 . Acting with a suitable 1-parameter subgroup
of GL(W3), we may assume f1 ∈ {b, c}. An explicit computation similar to the one
presented above finishes the proof. �

Proposition 7.18. — Let T4 ⊂ Sym3W∨3 be a 4-dimensional subspace. Suppose that
there exists a nonzero f2 ∈ Sym2W∨3 such that T4 ⊃ (f2 ·W∨3 ). Then [T⊥4 ] ∈ Kσ0

if
and only if there exists a basis (a, b, c) of W∨3 such that

(50) T4 =

{
a · 〈a2, ab, ac, bc〉, or
a · 〈a2, ab, ac, c2〉.

Proof. — There exists a basis (a, b, c) of W∨3 and g ∈ Sym3W∨3 such that (according
to the rank of f2)

(51) T4 =


〈a2b+ ac2, ab2 + bc2, abc+ c3, g〉, or
〈a2b, ab2, abc, g〉, or
〈a3, a2b, a2c, g〉.

Suppose that T4 is as in the first line. Let λ be the 1-parameter subgroup, diagonal in
the basis (a, b, c), given by diag(1, tr, ts). Then limt→0 λ(t)T4 is as in the second line.
We show that for T4 as in the second line, the orthogonal T⊥4 is not in Kσ0

. Let λ be
any 1-parameter subgroup diagonal in the basis (a, b, c), with pairwise distinct weights
of the action on Sym3W∨3 . Then T 4 := limt→0 λ(t)T4 is monomial and it contains a2b,
ab2, and abc. Hence the orthogonal T⊥4 is monomial, of dimension 6, contained in

〈a3, a2c, ac2, b3, b2c, bc2, c3〉.
A direct check shows that the above subspace contains no monomial subspaces of
dimension 6 on which σ0 vanishes. It follows that [T⊥4 ] is not in Kσ0 .

Suppose now that T4 is as in the third line. We prove by contradiction that a | g
(once that is known, we might need to rename b, c). Let λ be a 1-parameter sub-
group, diagonal in the basis (a, b, c), given by diag(1, tr, ts), where r > 3s. Then
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T 4 := limt→0 λ(t)T4 is monomial and by our assumption a - g, there exist i, j such
that T 4 = 〈a3, a2b, a2c, bicj〉. Hence T⊥4 contains 〈ab2, abc, ac2〉 and is therefore not
in Kσ0

. It follows that [T⊥4 ] is not in Kσ0
. �

7.4. Orbit and stabilizer. — Recall that V10 = Sym3W3. Since sl(3) = Γ1,1 and

End(V10) = Γ3,3 ⊕ Γ2,2 ⊕ Γ1,1 ⊕ Γ0,0,

it follows from the decomposition (37) that there is an exact sequence

(52) 0 −→ sl(3) −→ End(V10) −→ Λ3
V ∨10

a−−→ Γ0,6 −→ 0.

We prove below that the stabilizer of [σ0] is SL(3). The normal space at [σ0] to the
SL(V10)-orbit of [σ0] is therefore Γ0,6 = H0(P(W3),OP(W3)(6)). The map a was given
a geometric interpretation in (42).

Proposition 7.19. — The stabilizer of [σ0] in SL(V10) is equal to the image of
SL(W3) → SL(V10) and the point [σ0] ∈ P(Λ3

V ∨10) is polystable for the SL(V10)-
action.

Proof. — The stabilizer contains SL(W3) by choice of σ0. Conversely, if g ∈ SL(V10)

stabilizes [σ0], it mapsXσ0
to itself, hence the singular locus ofXσ0

to itself. By Propo-
sition 7.2, this singular locus is equal to g(V) ⊂ P(Sym3W3). Thus g maps to itself
the subvariety of P(Sym3W3) swept out by projective tangent planes to the Veronese
surface V. Since the singular locus of this subvariety is V, the automorphism g maps V

to itself, hence belongs to SL(W3).
It follows from Proposition 5.4 that this stabilizer has finite index in its normalizer,

hence [σ0] is polystable by [Lun75, Cor. 3]. �

7.5. Degenerations. — The following theorem is the main result of Section 7. We
consider a general 1-parameter deformation (σt)t∈∆ of our trivector σ0. By the exact
sequence (52), we obtain a general element of H0(P(W3),OP(W3)(6)), hence a double
cover S → P(W3) branched along the sextic curve that it defines, where S is a K3
surface of degree 2. The moduli space MS(0, L, 1), a hyperkähler fourfold birationally
isomorphic to S[2], was defined in Remark 3.6.

Theorem 7.20. — Let (σt)t∈∆ be a general 1-parameter deformation. Over a finite
cover ∆′ → ∆, there is a family of smooth polarized hyperkähler fourfolds K ′ → ∆′

such that a general fiber K ′
t′ is isomorphic to Kσt and the central fiber is isomorphic

to MS(0, L, 1), where S is a general K3 surface of degree 2, with the polarization
6L− 5δ.

The proof will be given at the very end of this section. Set G := Gr(3, V10)×∆ and
consider the blow up

ϕ : G̃ := Blg(V)×{0} G −→ G

(see (41) for the definition of the surface g(V)) . The exceptional divisor E → g(V) is
a bundle of 19-dimensional projective spaces. We view G̃ → ∆ as a degeneration of
Gr(3, V10) with central fiber Blg(V) Gr(3, V10) ∪ E.
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Write the deformation in Theorem 7.20 as σt = σ0 + tσ + O(t2), where, by the
analysis of Section 7.4, we may assume that σ is very general in Sym6W∨3 ⊂ Λ3

V ∨10.
Consider the strict transform X̃ ⊂ G̃ of

(53) {([U3], t) ∈ G | σt2 |U3
≡ 0},

with projection π : X̃ → ∆. By (42), the hypersurface Xσ intersects transversely g(V)

and div(σ) is identified with C := Xσ ∩ g(V). Hence

X̃t := π−1(t) '
{
Xσt2

if t 6= 0,
Blg(V)Xσ0

∪Q if t = 0,

where Q ⊂ E is a bundle of 18-dimensional quadrics over g(V), with smooth fibers
over g(V) r C and fibers of corank 1 over C (this follows from Lemma 7.5 and holds
because we performed a degree-2 base change in (53)).

We identify Kσ with the closed subset of the Hilbert scheme of Xσ defined by

{[U6] ∈ Gr(6, V10) | Gr(3, U6) ⊂ Xσ}.

This defines a subscheme K → ∆? of the relative Hilbert scheme Hilb(X̃ /∆), with
fiber Kσ0+t2σ at t, and we take its schematic closure ρ : K̃ → ∆.

Proposition 7.21. — There exists an irreducible component K ′L of K̃0 which is bira-
tionally isomorphic to S[2], where S is the degree-2 K3 surface of Theorem 7.20.

Proof. — Let [U6] ∈ KL r KM . By Remark 7.9, the scheme-theoretic intersection
Gr(3, U6)∩g(V) is two reduced points p1, p2. Let G̃r(3, U6) ⊂ X̃0 be the strict transform
of Gr(3, U6), that is, the blow up of Gr(3, U6) at p1, p2. We have G̃r(3, U6) ∩ Q =

{A1, A2}, where Ai, for i ∈ {1, 2}, is an 8-dimensional linear subspace of the fiber Epi
of E over pi, contained in the fiber Qpi of Q over pi. Every subscheme of X̃0 given by

(54) G̃r(3, U6) ∪R1 ∪R2, Ai ⊂ Ri ⊂ Qpi , [Ri] ∈ Gr(9, Epi)

corresponds to a point of K̃0. Moreover, by Proposition 7.8, these subschemes
are parametrized by an open subset of the fiber Hilb(X̃ /∆)0, whose closure in
Hilb(X̃ /∆) (equivalently, in K̃ ) is therefore an irreducible component of K̃0; we de-
note it by K ′L. Now Qpi is an 18-dimensional quadric, either smooth or of corank 1,
which is smooth at each point of Ai (Lemma 7.5). It follows that there are exactly
two 9-dimensional linear subspaces of Qpi containing Ai if Qpi is smooth (that is,
if pi /∈ C) and one such linear subspace if Qpi is singular (that is, if pi ∈ C).

By construction, an open dense subset K ′0L of K ′L parametrizes subschemes as
in (54), where [U6] ∈ KL is such that Gr(3, U6) ∩ g(V) is reduced (of length 2). The
set of such [U6] is exactly KL rKM . We have a forgetful map

(55)
K ′0L −→ KL rKM

G̃r(3, U6) ∪R1 ∪R2 7−→ [U6].
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Let ρ : S(2) → P(W3)(2) be the map induced by the double cover S → P(W3). By def-
inition of R1, R2, the map in (55) can be identified with the map

S(2) r {ρ−1(2x) | x ∈ P(W3)} −→ P(W3)(2) r {2x | x ∈ P(W3)}
obtained by restricting ρ. In particular, K ′L is birationally isomorphic to S[2] and the
forgetful map K ′L → KL has degree 4. �

Proposition 7.22. — The irreducible component K ′L has multiplicity one in K̃0.

Proof. — A point x of K ′0L (notation as in the proof of Proposition 7.21) parametrizes
a scheme Z := G̃r(3, U6)∪R1 ∪R2 as in (54), where the scheme-theoretic intersection
Gr(3, U6)∩g(V) is the union of two reduced points p1 = [U3,1] and p2 = [U3,2], neither
of which is contained in Xσ.

The scheme Z is locally a complete intersection in Y0. Hence there is a well-defined
normal bundle NZ/Y0

and it suffices to prove H1(Z,NZ/Y0
) = 0 (because K ′L is an

open neighborhood of x in the fiber HilbP (X̃ /∆)0). In order to simplify notation, set
X0 := Xσ0 and X̃0 := Blg(V)X0. We have

NZ/Y0
|G̃r(3,U6) ' NG̃r(3,U6)/X̃0

, NZ/Y0
|Ri ' NRi/Qpi .

One easily checks H1(Ri, NRi/Qpi (−1)) = 0. In order to prove H1(Z,NZ/Y0
) = 0,

it therefore suffices to show
(56) H1(G̃r(3, U6), NG̃r(3,U6)/X̃0

) = 0.

Let G̃r(3, V10) := Blg(V) Gr(3, V10). We have the normal exact sequence
(57) 0 −→ NG̃r(3,U6)/X̃0

−→ NG̃r(3,U6)/G̃r(3,V10) −→ OG̃r(3,V10)(X̃0)|G̃r(3,U6) −→ 0.

We claim that
(58) H0(G̃r(3, U6),OG̃r(3,V10)(X̃0)|G̃r(3,U6)) = 0.

In fact, the natural map ψ : G̃r(3, V10) → Gr(3, V10) is the blow up of the points p1

and p2. Let A = A1 +A2 be the exceptional divisor of ψ and let OGr(1) be the Plücker
line bundle on Gr(3, V10). Since X0 is a divisor in |OGr(1)| with multiplicity 2 along
g(V), we have
(59) OG̃r(3,V10)(X̃0)|G̃r(3,U6) ' OG̃r(3,U6)(ψ

∗OGr(1)− 2A).

Let x be a general point in G̃r(3, U6) and set [U3] := ψ(x) ∈ Gr(3, U6). We may
assume that U3 is transverse to U3,1 and U3,2, hence there exists a Segre embedding
Φ: P1 ×P2 ↪→ P(U6) such that

Φ({(0, 1)} ×P2) = P(U3,1), Φ({(1, 0)} ×P2) = P(U3,2),

Φ({(1, 1)} ×P2) = P(U3).

Let ϕ : P1 → Gr(3, U6) be the map defined by Φ and let Γ ⊂ G̃r(3, U6) be the strict
transform of ϕ(P1). Then Γ·ψ∗OGr(1)=3 and Γ·A=2, hence Γ · (ψ∗OGr(1)−2A)=−1.
It follows that any section of the right side of (59) vanishes at general points of
G̃r(3, U6) hence is the zero section. This proves (58).
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By (58) and (57), it suffices, in order to prove (56), to prove
H1(G̃r(3, U6), NG̃r(3,U6)/G̃r(3,V10)) = 0.

The differential of ψ defines an exact sequence
0 −→ NG̃r(3,U6)/G̃r(3,V10) −→ ψ∗NGr(3,U6)/Gr(3,V10)

a−−→ O⊕10
A1
⊕ O⊕10

A2
−→ 0.

The map induced by a on global sections is surjective, because the subspaces of U6

corresponding to p1, p2 are transverse. Since H1(Gr(3, U6), NGr(3,U6)/Gr(3,V10)) = 0,
the desired vanishing follows from the long exact sequence associated with this exact
sequence. �

Proof of Theorem 7.20. — By Propositions 7.21 and 7.22, and by (the proof of)
[KLSV18, Th. (0.1)], we obtain, as in the proof of Theorem 6.14, after a suitable
finite base change, a smooth family of polarized hyperkähler fourfolds with (smooth)
central fiber birationally isomorphic to S[2] with the polarization 6L − 5δ. It follows
from Remark 3.6 that this central fiber is isomorphic to (MS(0, L, 1), 6L− 5δ). �

8. The divisor D30

Let (S,L) be a general polarized K3 surface of degree 30. Unfortunately, little
geometric information on S is available and we were not able to find a trivector on
some 10-dimensional vector space V10 to relate S[2] to Debarre-Voisin varieties, nor
were we able to decide whether D30 is an HLS divisor. We will however construct
on S[2] a canonical rank 4-vector bundle with the same numerical invariants as the
restriction of the tautological quotient bundle of Gr(6, V10) to a Debarre-Voisin variety.

8.1. The rank-4 vector bundle Q4 over S[2]. — By Mukai’s work ([Muk16]), there
is a simple and rigid rank-2 vector bundle F on S with c1(F ) = L and Euler char-
acteristic χ(S,F ) = 10. Moreover, F is globally generated and the vector space
W10 := H0(S,F ) has dimension 10.

With the notation of Section 4.1, we let TF be the tautological rank-4 vector bundle
on S[2] associated with F . We have c1(TF ) = L− 2δ and H0(S[2],TF ) = W10.

Consider now the tautological rank-6 vector bundle TSym2F constructed on S[2]

from the rank-3 vector bundle Sym2F over S.

Lemma 8.1. — The natural evaluation map
ev+ : Sym2TF −→ TSym2F

is surjective. Its kernel Q4 is a rank-4 vector bundle over S[2] with c1(Q4) = 2L− 7δ.

Proof. — Consider as in Section 4.1 the double cover p : S̃ × S → S[2] defined by
the blow up S̃ × S of S × S along its diagonal. Let q1 be the first projection to S,
so that TF = p∗(q

∗
1F ). Tensor the canonical surjection p∗TF → q∗1F by the vector

bundle q∗1F to obtain the exact sequence

(p∗TF )⊗ q∗1F −→ q∗1(F ⊗F ) −→ 0.
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Its pushforward by the finite morphism p gives with the projection formula a surjection

ev : TF ⊗TF −→−→ TF⊗F .

The map ev+ being the invariant part of ev, it is also surjective. Its kernel Q4 is
therefore a vector bundle of rank 4 and we have c1(Sym2TF ) = 5c1(TF ) = 5L− 10δ

and c1(TSym2F ) = 3L− 3δ, so c1(Q4) = 2L− 7δ. �

Remark 8.2. — If we replace in this construction F by the Mukai bundle E2 over
a K3-surface of degree 18, the antiinvariant part ev− : Λ2TE2

→→ TΛ2E2
of ev is the

surjection in sequence (22). So, in the degree-18 case, Q4 was defined as the kernel
of ev−.

Lemma 8.3. — The vector space H0(S[2],Q4) has dimension at least 10 and is canon-
ically isomorphic to the kernel

V10 := Ker(Sym2W10 −→ H0(S, Sym2F )).

We expect this map to be onto, so that V10 would have dimension 10.

Proof. — By [Dan07, Th. 1] or [Kru14, Th. 6.6], the canonical maps

H0(S,F ) −→ H0(S[2],TF )

H0(S,Sym2F ) −→ H0(S[2],TSym2F )(60)

H0(S,F )⊗H0(S,F ) −→ H0(S[2],TF ⊗TF )(61)

are isomorphisms. By definition of Q4, we have an exact sequence

0 −→ H0(S[2],Q4) −→ H0(S[2],Sym2TF ) −→ H0(S[2],TSym2F ).

Since (61) is bijective, its middle space is isomorphic to Sym2H0(S,F ) = Sym2W10;
since (60) is bijective, the rightmost space is isomorphic to H0(S,Sym2F ). We there-
fore conclude that H0(S[2],Q4) is isomorphic to V10.

We will show that H1(S,F ⊗F ) = H2(S,F ⊗F ) = 0 on a specific K3 surface S
of degree 30 introduced by Mukai in [Muk16, §6], hence on a general K3 surface.
This surface has an elliptic fibration S → P1 with general fiber A1 and Mukai shows
that F fits in an exact sequence

(62) 0 −→ OS(A1)⊕ OS(A1) −→ F −→ OZ(5z) −→ 0,

where Z ⊂ S is a smooth rational curve and z is the class of a point on Z. Ten-
soring (62) by OS(A1), we get H2(S,F (A1)) = 0, and tensoring it by F , we get
H2(S,F ⊗F ) = 0.

Since F is globally generated, we have H1(Z,F ⊗OZ(5z)) = 0 and, tensoring (62)
by F , we get a surjection

(63) H1(S,F (A1))⊕2 −→−→ H1(S,F ⊗F ).

Mukai showed that on this particular surface, one has H1(S,F ) = H2(S,F ) = 0,
hence

(64) H1(S,F (A1)) ' H1(S,F |A1
) ' H2(S,F (−A1)) ' H0(S,F (A1 −H))∨,
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where OS(H) := Λ2F = L is the polarization. Moreover, we have Z ∼
lin
H − 2A1,

A1 ·H = 8, and H2 = 30, and the sequence (62) gives an exact sequence

0 −→ OS(2A1 −H)⊕ OS(2A1 −H) −→ F (A1 −H) −→ OZ(−z) −→ 0.

This implies H0(S,F (A1 −H)) = 0, hence H1(S,F (A1)) = 0 by (64). Finally, the
surjection (63) implies H1(S,F ⊗F ) = 0.

Going back to a general K3 surface S, where the vanishings H1(S,F ⊗ F ) =

H2(S,F ⊗F ) = 0 still hold, we get

h0(S, Sym2F ) = χ(S, Sym2F ) = 45

and, by definition of V10,

dim(V10) > dim(Sym2W10)− h0(S,Sym2F ) = 10.

This finishes the proof of the lemma. �

From the previous two lemmas, we obtain the following result, where we use, as in
Remark 6.1, the package Schubert2 of Macaulay2 ([GS]) to compute the numerical
invariants of the vector bundle Q4 on S[2] (the code can be found in [Han]).

Proposition 8.4. — Let (S,L) be a general polarized K3 surface of degree 30. The
vector bundle Q4 induces a rational map S[2]−→ Gr(6, V10) which corresponds to the
polarization given in the last column of Table 1. Moreover, the vector bundle Q4 has
the same Segre numbers as the rank-4 tautological quotient bundle on Debarre-Voisin
varieties Kσ ⊂ Gr(6, 10).

8.2. Geometric interpretation. — Let X be the image in P(W∨10) of the scroll
P(F∨) by the projection from S ×P(W∨10) to P(W∨10).

We have V10 = H0(P(W∨10),IX(2)), where IX is the ideal sheaf of X in P(W∨10).
We want to describe, for general points x, y ∈ S, the 6-dimensional vector space
S6,{x,y} defined by the exact sequence

0 −→ S6,{x,y} −→ V10 −→ Q4,{x,y} −→ 0.

Proposition 8.5. — The vector space S6,{x,y} is the space of quadratic forms vanish-
ing on X and on the projective subspace P3 = P(F∨x ⊕F∨y ) of P(W∨10).

Proof. — The fiber over {x, y} of the evaluation map defined in Lemma 8.1 gives an
exact sequence

0 −→ S6,{x,y} −→ V10 −→ Sym2(Fx ⊕Fy) −→ Sym2Fx ⊕ Sym2Fy −→ 0,

hence S6,{x,y} consists of elements of V10 that also vanish on P(F∨x ⊕F∨y ). �
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