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Abstract Weprove that the general quartic double solidwith k ≤ 7 nodes does
not admit a Chow theoretic decomposition of the diagonal, (or equivalently
has a nontrivial universal CH0 group,) and the same holds if we replace in
this statement “Chow theoretic” by “cohomological”. In particular, it is not
stably rational. We also deduce that the general quartic double solid with
seven nodes does not admit a universal codimension 2 cycle parameterized
by its intermediate Jacobian, and even does not admit a parametrization with
rationally connected fibers of its Jacobian by a family of 1-cycles. This finally
implies that its third unramified cohomology group is not universally trivial.

1 Introduction

Let X be a smooth connected complex projective variety. If CH0(X) = Z

(or equivalently the subgroup CH0(X)0 ⊂ CH0(X) of 0-cycles of degree 0 is
0), we have the Bloch-Srinivas decomposition of the diagonal (see [5]) which
says that for some integer N �= 0,

N�X = Z1 + Z2 in CHn(X × X), n = dim X, (1)

where Z2 = N (X × x) for some point x ∈ X (C) and Z1 is supported on
D × X , for some proper closed algebraic subset D � X . Note that conversely,
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208 C. Voisin

if we have a decomposition as in (1), then CH0(X) = Z because the left hand
side acts as N times the identity on CH0(X)0 while the right hand side acts as 0
on CH0(X)0, so that N CH0(X)0 = 0 and finally CH0(X)0 = 0 by Roitman’s
theorem [25] on torsion.

Denoting K = C(X), (1) is equivalent by the localization exact sequence to
the fact that the diagonal point δK of X K , that is, the restriction to Spec(K ) ×
X ⊂ X × X of �X , satisfies

NδK = N xK in CHn(X K ) = CH0(X K ).

When there exists a decomposition as in (1) with N = 1, we will say that X
admits a Chow theoretic decomposition of the diagonal. As explained in [2,
Lemma 1.3], this is equivalent to saying that CH0(X) is universally trivial, in
the sense that for any field L containing C, CH0(X L)0 = 0.

By taking cohomology classes in (1), one gets as well a decomposition

N [�X ] = [Z1] + [Z2] in H2n(X × X, Z), n = dim X, (2)

where Z1, Z2, D are as above, from which Bloch and Srinivas [5] deduce a
number of interesting consequences. When there exists a decomposition as in
(2) with N = 1, that is

[�X ] = [Z1] + [X × x] in H2n(X × X, Z), (3)

where Z1 is supported on D × X , for some proper closed algebraic subset
D ⊂ X , we will say that X admits a cohomological decomposition of the
diagonal. We started the study of this property in [28], mainly in the case of
rationally connected threefolds.

In either of its forms (Chow-theoretic or cohomological), the existence of
a decomposition of the diagonal is an important criterion for rationality, as
noticed in [2,28]. This property is in fact invariant under stable birational

equivalence, where we say that X and Y are stably birational if X × P
r

birat∼=
Y × P

s for some integers r and s. As this property is obviously satisfied by
projective space, an X not satisfying this criterion is not stably rational.

We compare these two properties (the existence of a Chow-theoretic and
cohomological decompositions of the diagonal) in [29], showing in particular
that they are equivalent for cubic fourfolds and odd dimensional smooth cubic
hypersurfaces.

It is a basic fact, proved in [28], that a smooth complex projective variety X
with nontrivial Artin-Mumford invariant (the torsion subgroup of H3(X, Z))
does not admit a cohomological decomposition (and a fortiori aChow-theoretic
decomposition) of the diagonal. This is the starting point of this paper and com-
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Unirational threefolds with no universal codimension 2 cycle 209

bined with a degeneration (or specialization) argument (see Theorem 2.1), this
will provide us with simple examples of smooth projective unirational three-
foldswith trivialArtin-Mumford invariantwhich do not admit a decomposition
of the diagonal, hence are not stably rational. Note that these varieties also have
trivial higher degree unramified cohomology groups by [12].

Let us now discuss a little more precisely the results in this paper, distin-
guishing the Chow-theoretic and cohomological cases.

1.1 Chow-theoretic decomposition of the diagonal and application to stable
rationality

The first examples of unirational threefolds with nontrivial torsion in their
degree 3 integral Betti cohomology were constructed by Artin and Mumford
[1]. These varieties are desingularizations of certain special 10-nodal quartic
double solids (that is, double covers Y → P

3 ramified along a quartic sur-
face with 10 nodes in special position). The examples we consider are smooth
quartic double solids, for which the quartic surface is smooth, or desingular-
izations of k-nodal quartic double solids, for which the quartic surface has k
ordinary quadratic singularities, but unlike the Artin-Mumford examples, the
nodes of the quartic surface will be in general position. They are unirational
(see [3]), a fact which in the nodal case is immediate to prove by considering
the preimages in Y of lines in P

3 passing through the node : these curves are
rational and the family of these curves endows Y with a conic bundle struc-
ture, which furthermore contains a multisection which is a rational surface,
giving unirationality. If the quartic surface has at most seven nodes in general
position, then X has no torsion in its integral cohomology. We will prove by a
degeneration argument (cf. Theorem 2.1, (i)) the following result.

Theorem 1.1 (Cf. Theorem 2.6) Let X be the desingularization of a very
general quartic double solid with at most seven nodes. Then X does not admit
an integral Chow-theoretic decomposition of the diagonal, hence it is not stably
rational.

Remark 1.2 The family of 6 or 7-nodal quartic double solids, or equivalently
6 or 7-nodal quartic surfaces in P

3, is not irreducible (see [15]). Observe
however that there is an unique irreducible component M of the space M ′ of
nodal quartic surfaces in P

3 with k ≤ 7 nodes dominating (P3)(k) by the map
φ : M → (P3)(k) which to a k-nodal quartic associates its set of nodes. This
is what we mean in the Theorem above by “general quartic double solid X
with k ≤ 7 nodes”. Indeed, given a set z of k ≤ 7 points in general position,
the set Mz of quartics which are singular along z is a projective space. One
easily checks that a generic point in this projective space parameterizes a nodal
quartic surfacewith exactly k nodes. Thus ifU is the Zariski open set of (P3)(k)
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210 C. Voisin

consisting of points z such that the dimension of Mz is minimal (in fact it is
easily proved that this dimension is the expected dimension 34 − 4k), one
finds that φ−1(U ) is a Zariski open set in a projective bundle over U , hence
is irreducible. In fact, we also get results for quartic double solids with 8 or 9
nodes, but their parameter spaces are reducible and we do not know to which
component of their parameter spaces our results apply.

The case of seven nodes is particularly interesting, because the intermediate
Jacobian of X in this case is of dimension 3, hence is as a principally polarized
abelian variety isomorphic to the Jacobian of a curve. Thus the Clemens-
Griffiths criterion for rationality is satisfied in this case, and as a consequence,
even the irrationality of the very general 7-nodal double solid proved above
was unknown. In the case of k ≤ 6, the irrationality of the very general k-nodal
quartic double solid was already known using the Clemens-Griffiths criterion,
(this is proved [31] for all smooth quartic double solids and we refer to [7] for
the nodal case), but its stable irrationality was unknown.

Remark 1.3 De Fernex and Fusi [13] prove that in dimension 3, rationality is
stable under specialization to nodal fibers. Thus, if rationality instead of stable
rationality is considered, the above statement concerning the irrationality of
the very general k-nodal double solidwith k ≤ 7 could be obtained by applying
their argument. Note however that our degeneration theorem (Theorem 2.1)
works in any dimension, while theirs works only in dimension 3.

1.2 Cohomological decomposition of the diagonal and cycle-theoretic
applications

Wewish to describe in more detail in this paragraph which kind of information
can be extracted from the non-existence of a cohomological decomposition of
the diagonal, as this provides more explicit obstructions to stable rationality.
A general reason why it should be more restrictive than the rational decom-
position (2) is the following : If the positive degree cohomology H∗>0(X, Q)

has geometric coniveau ≥ 1, that is, vanishes on the complement of a divisor
D ⊂ X , a property which is implied by the decomposition (2), the same is
true for the positive degree integral cohomology H∗>0(X, Z) (possibly for a
different divisor D′). Indeed, as noted in [12], the Bloch-Ogus sheavesHi (Z)

on X Zar associated to the presheaves U �→ Hi (U, Z) have no Z-torsion, as a
consequence of the Bloch-Kato conjecture proved by Voevodsky [26]. It fol-
lows from this that the class [�X ] − [X × x] vanishes on the Zariski open set
U × X of X , where U := X \ D′. This shows that assuming (2), one gets a
decomposition

[�X ] = α + [X × x] in H2n(X × X, Z)
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Unirational threefolds with no universal codimension 2 cycle 211

where α is an integral cohomology class supported on D′ × X . The decompo-
sition (3) is a much stronger statement since it asks that the class α is the class
of an algebraic cycle supported on D′.

The following example on the other hand shows that in the absence of torsion
in cohomology, we need some transcendental cohomology in order to prove
the non-existence of an integral cohomological decomposition of the diagonal:

Example 1.4 If X is a smooth projective variety such that H∗(X, Z) has no tor-
sion and is algebraic, that is, is generated by classes of algebraic subvarieties,
then X admits an integral cohomological decomposition of the diagonal. This
follows from the Künneth decomposition which expresses the Betti cohomol-
ogy class of the diagonal as a Z-linear combination of classes pr∗

1α � pr∗
2β,

and from the fact that all cohomology classes on X are algebraic.

In the presence of non-trivial odd degree cohomology [necessarily of degree
≥ 3 if we already have a rational decomposition as in (2)], the integral decom-
position (3) becomes restrictive, even when the integral cohomology is torsion
free, as shows our theorem 1.9. The obstruction we find is a sort of secondary
obstruction which we describe now. Recall that if H3(X,OX ) = 0, the inter-
mediate Jacobian of X , defined as the complex torus

J 3(X) = H3(X, C)/(H3(X, Z) ⊕ F2H3(X, C)), (4)

is an abelian variety. Furthermore the generalized Hodge conjecture [17] pre-
dicts that the Griffiths Abel-Jacobi map

AJX : CH2(X)hom → J 3(X)

is surjective. When CH0(X) = Z, this is proved by Bloch and Srinivas [5]
who even prove under this assumption the much stronger result that AJX :
CH2(X)hom → J 3(X) is an isomorphism (see also [23]). The situation is then
similar to the case of divisors, where we have the Abel-Jacobi isomorphism
AJX : Pic0(X) ∼= J 1(X) and where it is well-known that there exists a
universal (or Poincaré) divisor P on J 1(X) × X with the property that the
morphism φP : J 1(X) → J 1(X), which to l ∈ J 1(X) associates AJX (Dl),
is the identity. Our second main result in this paper is that, from this last
viewpoint, codimension ≥ 2 cycles actually behave differently than divisors,
and as we will see, this is related to the cohomological decomposition of the
diagonal. Let us make the following definition:

Definition 1.5 Let X be a smooth projective variety such that AJX :
CH2(X)hom → J 3(X) is an isomorphism (note that J 3(X) is then automati-
cally an abelian variety). We will say that X admits a universal codimension

123

Author's personal copy



212 C. Voisin

2 cycle if there exists a codimension 2 cycle Z ∈ CH2(J 3(X) × X) such that
Z|a×X is homologous to 0 for a ∈ J 3(X) and the morphism induced by the
Abel-Jacobi map

�Z : J 3(X) → J 3(X), a �→ AJX (Za),

is the identity of J 3(X).

Remark 1.6 Note that under the same assumption H3(X,OX ) = 0, there is
an integral Hodge class α of degree 4 on J 3(X) × X which is determined up
to torsion by the property that

α∗ : H1(J 3(X), Z) → H3(X, Z)/torsion

is the canonical isomorphism given by the definition (4) of J 3(X) as a complex
torus and by the fact that α is of type (1, 3) in the Künneth decomposition of
H4(J 3(X) × X, Z).
The rational cohomological decomposition of the diagonal (2) implies that

Nα (modulo torsion) is algebraic (see Lemma 3.5 and [5]). So for a smooth
complex projective variety X with CH0(X) = Z, saying that X admits a
universal codimension 2 cycle is equivalent to saying that this degree 4 integral
Hodge class on J 3(X) × X , which is known to be Q-algebraic, is actually
algebraic [modulo the torsion of H4(J 3(X) × X, Z)].

We proved in [28] that if X has dimension 3, the integral cohomological
decomposition (3) has the following consequences [consequence 1 is due to
Bloch andSrinivas [5] and uses only the rational cohomological decomposition
(2)]:

Theorem 1.7 Assume a smooth projective threefold has an integral cohomo-
logical decomposition of the diagonal. Then

1. Hi (X,OX ) = 0 for i > 0.
2. H∗(X, Z) has no torsion.
3. The even degree integral cohomology of X consists of classes of algebraic

cycles.
4. There exists a universal codimension 2 cycle Z ∈ CH2(J 3(X) × X).

Conversely, if 1–4 hold and furthermore the following property holds:
5. J 3(X) has a 1-cycle z ∈ CHg−1(J 3(X)) whose cohomology class [z] ∈

H2g−2(J 3(X), Z) is the minimal class θg−1

(g−1)! , where g := dim J 3(X),

and θ ∈ H2(J 3(X), Z) is the class of the natural principal polarization
on J 3(X), then X admits an integral cohomological decomposition of the
diagonal.
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Unirational threefolds with no universal codimension 2 cycle 213

Remark 1.8 More recently, we proved in [29] that Property 5 above is also
implied by the existence of a cohomological decomposition of the diagonal,
but we will not need this result here.

Ifwe consider a rationally connected threefold X , 1 and3 are always satisfied
(1 is standard and 3 is proved in [27]). The Artin-Mumford example [1] shows
that 2 does not always hold even for unirational threefolds and this provides by
the theorem above an obstruction to the existence of an integral cohomological
decomposition of the diagonal.

Property 4 is much harder to analyze and it is still unknown if it is satisfied
for the general cubic threefold (this result is claimed in [32] but the proof
is incorrect, as there is a missing term in the formula used for ch(OX (1)) in
the proof of Theorem 2.3 of loc. cit.). We prove in [29] that it is satisfied by
“many” smooth cubic threefolds, (more precisely, there is a countable union
of subvarieties of codimension ≤ 3 in the moduli space of cubic threefolds
parameterizing cubic threefolds satisfying property 4). One of our main results
in this paper is the fact that Property 4 can fail for some unirational threefolds.
In fact, we will exhibit unirational threefolds X for which property 2 (the
Artin-Mumford criterion) and property 5 of Theorem 1.7 are satisfied, but not
admitting an integral cohomological decomposition of the diagonal. Such a
threefold X does not admit a universal codimension 2 cycle by Theorem 1.7.

Theorem 1.9 (Cf. Theorems 2.6, and 2.10) (i) Let X be the desingularization
of a very general quartic double solid with at most seven nodes. Then X does
not admit an integral cohomological decomposition of the diagonal.

(ii) If X is the desingularization of a very general quartic double solid with
exactly seven nodes, then X does not admit a universal codimension 2 cycle
Z ∈ CH2(J 3(X) × X).

Concerning property 5, that is, the question whether J 3(X) has a 1-cycle
in the minimal class θg−1

(g−1)! , this is a very classical completely open question
for most rationally connected threefolds (in particular the cubic threefold, for
which we prove in [29] that a positive answer to this question is equivalent
to the fact that the cubic threefold has universally trivial CH0 group) but also
for very general principally polarized abelian varieties of dimension ≥ 4. The
Clemens-Griffiths criterion for rationality [9] states that if a smooth projective
threefold is rational, its intermediate Jacobian is isomorphic as a principally
polarized abelian variety to a product of Jacobians of smooth curves. By the
Matsusaka characterization of products of Jacobians [22], another way to state
the Clemens-Griffiths criterion is to say that there exists an effective 1-cycle
in J 3(X) (that is, a combination with positive coefficients of curves in J 3(X))
whose cohomology class is the minimal class θg−1

(g−1)! . This condition is much
more restrictive geometrically than Property 5 above. In particular cases, it
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214 C. Voisin

can be solved negatively for a general X by a dimension count for the number
of parameters for Jacobians of curves, or for a specific X by the precise study
of the geometry of the Theta divisor. This cannot be done with the question of
the existence of a 1-cycle in the minimal class that is not necessarily effective.
We will not be concerned by this problem however, since in the examples we
will analyze closely, namely the 7-nodal quartic double solids, we will have
dim J 3(X) = 3 so J 3(X) will automatically satisfy the Clemens-Griffiths
criterion. Together with the triviality of the Artin-Mumford invariant, this
allows us to entirely focus on property 4, which by Theorem 1.7 above is the
only obstruction to the existence of a cohomological decomposition of the
diagonal.

Our next result (Theorem 1.10) will relate the non-existence of a univer-
sal codimension 2 cycle to the vanishing of the universal third unramified
cohomology with torsion coefficients introduced in [2]. Unramified cohomol-
ogy with torsion coefficients has been used by Colliot-Thélène and Ojanguren
[10] as a powerful tool to detect irrationality (see also [24]). In the paper [2],
the authors introduce the notion of “universal triviality of the third unrami-
fied cohomology group of X”. We just sketch here the idea and refer to [2]
for more details. The universal triviality of the third unramified cohomology
group of X with torsion coefficients is equivalent to the fact that for any smooth
quasi-projective variety U and any class α ∈ H3

nr (U × X, Q/Z), there is a
Zariski dense open set U ′ ⊂ U such that α|U ′×X is the pull-back of a class
β ∈ H3(U ′, Q/Z). In the paper [2], the notion is more elegantly formulated
since the authors can use the étale cohomology of the variety X K where K
is the function field of U , but in the context of Betti cohomology, we have to
formulate it by taking the direct limit over Zariski open sets. In any case, the
notion is obviously particularly interesting for those varieties with vanishing
third unramified cohomology group with torsion coefficients, as it is the case
for rationally connected threefolds (see [12]).

Theorem 1.10 (Cf. Theorem 3.1) Let X be a smooth complex projective vari-
ety of dimension n with CH0(X) = Z. Assume

1. H∗(X, Z) has no torsion and the Künneth components of the diagonal are
algebraic.

2. The group H3
nr (X, Q/Z) is trivial (or equivalently by [12], the integral

Hodge classes of degree 4 on X are algebraic).

Then the degree 3 unramified cohomology of X with torsion coefficients is
universally trivial if and only if there is a universal codimension 2 cycle
Z ∈ CH2(J 3(X) × X).

These hypotheses apply to any rationally connected threefoldwith no torsion
in H3 (see Corollary 3.3), and also to cubic fourfolds, proving in particular
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Unirational threefolds with no universal codimension 2 cycle 215

the universal triviality of the third unramified cohomology group with torsion
coefficients of any smooth cubic fourfold (see Example 3.2).

Corollary 1.11 If X is as in Theorem 1.9, (ii), the universal third unramified
cohomology group of X with coefficients in Q/Z is not universally trivial.

1.3 A geometric application

We conclude this paper with a result of a more geometric nature. It concerns
the following weaker version (*) of property 4 of Theorem 1.7, originating in
work of de Jong and Starr (see [14]), which is very natural if one thinks of the
geometry of the Abel map for 0-cycles on curves:

(*) There exist a smooth projective variety B and a codimension 2 cycle
Z ∈ CH2(B × X) inducing a surjective map

�Z : B → J 3(X), b �→ AJX (Zb)

with rationally connected general fibers.
Property (*) is satisfied by cubic threefolds (see [21]). In [28], we observed

that (*) has already very nice consequences on the integral Hodge conjecture
(for instance, if X is rationally connected and H3(X, Z) has no torsion, prop-
erty (*) implies that the integral Hodge conjecture holds for products C × X ,
where C is a smooth curve).

Coming back to Theorem 1.9, (ii), we will even prove a stronger statement
(see Theorem 2.10), namely that in the situation andwith the notation above, X
does not satisfy property (*). This in particular answers negatively the follow-
ing question originally asked by Harris, de Jong and Starr, solved positively
for the intersection of two quadrics [6] and for many degrees for the cubic
threefold [19,21,28]:

Question: Let X be a rationally connected threefold. Is it true that the
Abel-Jacobi map on the main component of the family of rational curves of
sufficiently positive class has rationally connected general fiber?

(Note that the paper [14] exhibits a totally different behaviour for rational
curves on cubic fourfolds. Note also that Castravet [6] gives examples of X
as above, with H2(X, Z) = Z and for which the family of free rational curves
of degree d is reducible for all degrees d, the general point of the “main
component” parameterizing a very free rational curve.)

The method of the proof of Theorems 1.1 and 1.9, (i), is by degeneration
of the general quartic double solid Xt , (or the general k-nodal double solid
Xt ,) to the Artin-Mumford nodal quartic double solid X0. Our general result
proved in Sect. 2 is the general specialization theorem 2.1 implying in our case
that the non-existence of a decomposition of the diagonal (Chow-theoretic or
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216 C. Voisin

cohomological) for a desingularization of X0 implies the non-existence also
for the very general smooth double solid Xt , or for the desingularization ˜Xt of a
very general double solid with k ≤ 7 nodes. The interesting fact in this degen-
eration argument is the following: the desingularization of the Artin-Mumford
double solid does not admit an integral cohomological decomposition of the
diagonal because it has some nontrivial torsion in its integral cohomology. The
desingularization of the general k ≤ 7-nodal double solid then does not admit
an integral cohomological decomposition of the diagonal, but it has no torsion
anymore in its integral cohomology. The non-existence of integral cohomo-
logical decomposition of the diagonal thus implies that another property from
1 to 5 in Theorem 1.7 must be violated, and when k = 7, the only one which
can be violated is the existence of a universal codimension 2 cycle.

Thanks. I thank Jean-Louis Colliot-Thélène for sending me the very inter-
esting paper [2], for inspiring discussions related to it and for his criticism on
the exposition. I also thank the anonymous referee for his very helpful criticism
and suggestions.

2 A degeneration argument

We prove in this section the following degeneration (or specialization) result.

Theorem 2.1 Let π : X → B be a flat projective morphism of relative dimen-
sion n ≥ 2, where B is a smooth curve 1. Assume that the fiber Xt is smooth
for t �= 0, and has at worst ordinary quadratic singularities for t = 0. Then

(i) If for general t ∈ B, Xt admits a Chow theoretic decomposition of the
diagonal (equivalently, C H0(Xt ) is universally trivial), the same is true
for any smooth projective model ˜Xo of Xo.

(ii) If for general t ∈ B, Xt admits a cohomological decomposition of the
diagonal, and the even degree integral homology of a smooth projective
model ˜Xo of Xo is algebraic (i.e. generated over Z by classes of subvari-
eties), ˜Xo also admits a cohomological decomposition of the diagonal.

Remark 2.2 As the proof will show, the assumptions on the singularities of
the central fiber can be weakened as follows: For (i), it suffices to assume
that the central fiber is irreducible and admits a desingularization ˜Xo → Xo
with smooth exceptional divisor E , whose connected components Ei have
universally trivial CH0 group (for example, is rational).2 For (ii), it would

1 I thank J.-L. Colliot-Thélène for bringing tomy attention the fact that the smoothness assump-
tion I had originally put on X was in fact not used in the proof.
2 Pirutka and Colliot-Thélène [11] have indeed applied successfully the same method in the
case of a specialization to more complicated singularities, generalizing our results to quartic
threefolds, instead of quartic double solids.
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Unirational threefolds with no universal codimension 2 cycle 217

suffice to know also that with the same conditions on the desingularization, the
even degree integral homology of ˜Xo is algebraic, the odd degree cohomology
of E is trivial and the even degree integral homology of E iswithout torsion and
generated by classes of algebraic cycles. These properties are clearly satisfied
when E is a disjoint union of smooth quadrics.

Remark 2.3 Theorem 2.1 will be used in applications in the following form:
If the desingularization ˜Xo of the central fiber does not admit an integral
Chow-theoretic or cohomological decomposition of the diagonal, the very
general fiber Xt does not admit an integral Chow-theoretic or cohomological
decomposition of the diagonal. This is because the set of points t ∈ Breg
such that the fiber Xt is smooth and admits an integral Chow-theoretic (resp.
cohomological) decomposition of the diagonal is a countable union of closed
algebraic subsets of Breg, see below.

Before giving the proof of the theorem, let us make one more remark. The
proof is in two steps: The first one consists in proving that the central fiber
Xo admits a decomposition of the diagonal. This follows from a specialization
result due to Fulton [16] which we will reprove below for completeness. One
has to be a little careful here since Xo is singular. The decomposition of the
diagonal for Xo will hold in CHn(Xo × Xo). This first step does not use any
assumption on the singularities of Xo. The second step consists in comparing
what happens forXo and ˜Xo. It is here that the assumption on the singularities is
used in an essential way.Note that Theorem2.1 is not truewithout assumptions
on the singularities of the central fiber, as the simplest example shows:Consider
a family of smooth cubic surfaces specializing to a cubic surfacewhich is a cone
over a smooth elliptic curve. Then the general fiber is rational, hence admits
a Chow-theoretic decomposition of the diagonal, but the desingularization ˜Xo
of the central fiber, being a P

1-bundle over an elliptic curve E , does not admit
one, even with Q-coefficients, since CH0( ˜Xo) = CH0(E)0 is nontrivial.

Proof of Theorem 2.1 (i) For a general t ∈ B, there exist an effective divisor
Dt ⊂ Xt and a cycle Zt supported on Dt ×Xt such that for any point xt ∈ Xt ,
one has

�Xt = Zt + Xt × xt in CHn(Xt × Xt ). (5)

The set of data (Dt , xt , Zt ) above is parameterized by a countable union of
algebraic varieties over B whose image in B contains a Zariski open set. It
follows by a Baire category argument that one of these algebraic varieties
dominates B, so that there is a smooth finite cover B ′ → B and a divisor
D ⊂ X ′ := B ′ ×B X , which we may assume to contain no fiber of X ′ → B ′,
a section σ : B ′ → X ′ and a codimension n (or dimension n + 1) cycle Z in
X ′ ×B′ X ′ supported onD×B′ X ′, with the properties that for general t ∈ B ′,
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�X ′
t
= Zt + X ′

t × σ(t) in CHn(X ′
t × X ′

t ), (6)

where Zt = Z|X ′
t ×X ′

t
∈ CHn(X ′

t × X ′
t ) is well-defined even if X ′ ×B′ X ′ is

singular, because X ′
t × X ′

t is a Cartier divisor in X ′ ×B′ X ′ (see [16, 2.3]).
Now we use the following general fact (we include a proof for completeness).


�
Proposition 2.4 Let π : Y → B be a flat morphism of algebraic varieties,
where B is smooth of dimension r, and let Z ∈ CHN (Y) be a cycle. Then
the set BZ of points t ∈ B such that Zt := Z|Yt vanishes in CHN−r (Yt ) is a
countable union of proper closed algebraic subsets of B.

Proof For any t ∈ B such that Z and Yt intersect properly and Z|Yt = 0 in
CHN−r (Yt ), there exist subvarieties Wi,t ⊂ Yt of dimension N − r + 1 and

nonzero rational functionsφi,t on W̃i,t
ji,t→ Yt such that

∑

i ji,t ∗divφi,t = Z|Yt .
The data (Wi,t , φi,t ) are parameterized by a countable union of quasi-projective

irreducible varieties Ml
αl→ B, whose image in B is exactly the set BZ . We

may assume that the Ml’s are smooth. For each of these varieties Ml , there
exists a closed algebraic subvariety Bl ⊂ B, such that Im αl contains a Zariski
open set B0

l of Bl . Let B0
l = αl(M0

l ). For any point t of B0
l , we haveZ|Yt = 0

in CHN−r (Yt ) and it only remains to show that this remains true for any point
of Bl , since we then have BZ = ∪l Bl . We observe now that we can assume
that the Ml’s carry universal objects, and thus that the cycle Zl := α′

l
∗Z is

rationally equivalent to 0 on Y ′
Ml
, where

Y ′
Ml

:= Ml ×B Y π ′→ Ml,

and α′
l : Y ′

Ml
→ Y is the natural map. Here we use the fact, which will be

used again below, that the morphism

α′
l
∗ : CHN (Y) → CHN ′(Y ′

Ml
), N ′ = N − r + dim Ml

is well-defined, because B is smooth and Y → B is flat. Let now Ml be
a smooth partial completion of Ml on which the morphism αl extends to a
projective morphism αl : Ml → B whose image is equal to Bl by properness.
Denote by Y ′

Ml
the fibered product Ml ×B Y , with natural morphism π ′′ :

Y ′
Ml

→ Ml extending π ′, and by α′
l : Y ′

Ml
→ Y the natural map.

Then Im αl = Bl , and for any s ∈ Ml with image t ∈ Bl , we have

α′
l
∗
(Z)|Y ′

Ml s
= Z|Yt in CHN−r (Yt ).
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As the cycle α′
l
∗
(Z) vanishes on the Zariski open set π ′′−1

(M0
l ) = π ′−1

(M0
l ),

we thus conclude applying to M = Ml , W = Y ′
Ml
, f = π ′′, � = α′

l
∗
(Z) the

following lemma: 
�
Lemma 2.5 Let M be smooth of dimension m and let f : W → M be a flat
morphism. Let � be a N-cycle on W . Assume there is a Zariski dense open set
M0 of M such that �|W 0 = 0 in CHN (W 0), where W 0 := f −1(M0). Then for
any t ∈ M, �|Wt = 0 in CHN−m(Wt ).

Proof Wemayassume that M is a smooth curve. Let D be the divisor M\M0 ⊂
M . By the localization exact sequence, there is a N -cycle z supported on
f −1(D) such that

� = i∗(z) in CHN (W ),

where i is the inclusion of the Cartier divisor f −1(D) in W . The fact that
�|Wt = 0 in CHN−m(Wt ) for any t ∈ D then follows from the fact that
f −1(D)|Wt is the trivial Cartier divisor on Wt , and from Fulton’s definition of
the intersection with a Cartier divisor, which says that for any point of t ∈ D,
i∗(z)|Wt = f −1(D)|Wt · zt , where zt is the part of z lying in the component Wt
of f −1(D). 
�

It follows that for any t ∈ Ml , the restriction of the cycle α′
l
∗
(Z) to the fiber

π ′−1
(t) ⊂ Y ′

Ml
is trivial, and this implies that for any t ∈ Bl , the restriction

of the cycle Z to the fiber π−1(t) ⊂ Yt is trivial. 
�
By Proposition 2.4, the locus of points t ∈ B ′ such that (6) holds is a

countable union of closed algebraic subsets of B ′. As it contains by assumption
a Zariski open set, we conclude that (6) holds for any t ∈ B ′. Choose for t any
point o′ over o ∈ B. Then identifyingX ′

o′ withXo we conclude that there exist
a divisor Do ⊂ Xo, a point xo ∈ Xo and a cycle Zo supported on Do × Xo,
such that

�Xo = Zo + Xo × xo in CHn(Xo × Xo). (7)

Let τ : ˜Xo → Xo be the desingularization obtained by blowing-up the sin-
gular points. It remains to deduce from (7) that ˜Xo satisfies the same property.
Let xi , i = 1, . . . , N be the singular points of Xo, and Ei := τ−1(xi ). By
assumption, Ei is a smooth quadric of dimension ≥ 1, and in particular Ei
is rational and has universally trivial CH0 group. Let E := ∪i Ei . Then (7)
restricted to

(Xo \ {x1, . . . , xN }) × (Xo \ {x1, . . . , xN }) ∼= ( ˜Xo \ E) × ( ˜Xo \ E)
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provides:

�
˜Xo\E = Zo + ( ˜Xo \ E) × xo in CHn(( ˜Xo \ E) × ( ˜Xo \ E)). (8)

where Zo is supported on Do × ( ˜Xo \ E) for a proper closed algebraic subset
Do of ˜Xo \ E . The localization exact sequence allows to rewrite (8) as

�
˜Xo

= Zo + ˜Xo × xo + Z in CHn( ˜Xo × ˜Xo). (9)

where Zo is supported on D′
o× ˜Xo for a proper closed algebraic subset D′

o � ˜Xo
and Z is supported on ˜Xo × E ∪ E × ˜Xo. Writing Z as Z1 + Z2, where Z1
is supported on E × ˜Xo, and Z2 is supported on ˜Xo × E , it is clear that up
to replacing in (9) Zo by Zo + Z1 and D′

o by D′
o ∪ E , we may assume that

Z = Z2 is supported on

˜Xo × E =
⊔

i

˜Xo × Ei .

Let Z2,i be the restriction of Z2 to the connected component ˜Xo × Ei . As
dim Z2 = n = dim ˜Xo and Ei has universally trivial CH0 group, one can
write for each i

Z2,i = Z ′
2,i + μi ˜Xo × xi (10)

in CHn( ˜Xo × Ei ), where xi is a point of Ei , μi ∈ Z and Z ′
2,i is supported on

Di × Ei for some proper closed algebraic subset Di of ˜Xo.
Combining (9) and (10), we finally conclude that

�
˜Xo

= Z ′
o + ˜Xo × xo +

∑

i

μi ˜Xo × xi in CHn( ˜Xo × ˜Xo), (11)

where Z ′
o = Zo + Z1 + ∑

i Z ′
2,i is supported on D′′

o × ˜Xo for a proper closed

algebraic subset D′′
o = D′

o ∪ E ∪ (∪i Di ) of ˜Xo. Formula (11) implies that
∑

i μi = 0 and that CH0( ˜Xo) is generated by the xi , i = o, 1, . . . , N , which
easily implies that CH0( ˜Xo) = Z since the central fiber is irreducible under
our assumptions (this is why we impose the condition that the fiber dimension
is ≥ 2; in fact, Theorem 2.1 is wrong if the fiber dimension is 1, because the
disjoint union of two P

1 does not admit a Chow-theoretic decomposition of
the diagonal). Hence (11) gives

�
˜Xo

= Z ′
o + ˜Xo × xo in CHn( ˜Xo × ˜Xo),

which concludes the proof of (i).
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(ii) The proof of (ii) works very similarly. We first construct as before a
smooth finite cover B ′ → B, a divisor D ⊂ X ′ := B ′ ×B X , which we
may assume to contain no fiber of X ′ → B ′, a section σ : B ′ → X ′ and a
codimension n cycleZ inX ′×B′X ′ supported onD×B′X ′, with the properties
that for general t ∈ B ′ (so in particular X ′

t is smooth), we have the equality of
cycle classes

[�X ′
t
] = [Zt ] + [X ′

t × σ(t)] in H2n(X ′
t × X ′

t , Z) = H2n(X ′
t × X ′

t , Z),

(12)

where Zt = Z|X ′
t ×X ′

t
. We now work in the analytic setting and restrict to X ′

�,
where � is a small disc in B ′ centered at a point o′ of B ′ over o ∈ B, such that
X ′

� retracts continuously for the usual topology on the central fiber X ′
o′ , (the

retraction map being homotopic over � to the identity,) so that X ′
� ×� X ′

�

retracts similarly onX ′
o′ ×X ′

o′ ∼= Xo ×Xo. Then we conclude that (12) implies

[�Xo] = [Zo] + [Xo × xo] in H2n(Xo × Xo, Z), (13)

where the cycle classes are from now on taken in homology. This is because the
topological retraction from X ′

� ×� X ′
� to X ′

o′ ×X ′
o′ induces an isomorphism

H∗(X ′
o′ × X ′

o′, Z) ∼= H∗(X ′
� ×� X ′

�, Z)

and by flatness, the classes

[�X ′
t
], [Zt ] ∈ H2n(X ′

� ×� X ′
�, Z)

are constant (that is, independent of t) in

H2n(X ′
� ×� X ′

�, Z) = H2n(X ′
o′ × X ′

o′, Z).

With the same notation ˜Xo, xi , Ei , E as in the proof of (i), we deduce
from (13) by taking the image in the relative homology of the pair (Xo ×
Xo, (Xo × {x1, . . . xN } ∪ {x1, . . . xN } × Xo)) the following equality in the
relative homology group

H2n(Xo × Xo, (Xo × {x1, . . . xN } ∪ {x1, . . . xN } × Xo), Z)

= H2n( ˜Xo × ˜Xo, ( ˜Xo × E ∪ E × ˜Xo), Z)

[�
˜Xo

]rel = [Zo]rel + [Xo × xo]rel in

H2n( ˜Xo × ˜Xo, ( ˜Xo × E ∪ E × ˜Xo), Z), (14)
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where the subscript “rel” indicates that we consider the homology class in the
relative homology group H2n( ˜Xo × ˜Xo, ( ˜Xo × E ∪ E × ˜Xo), Z). Formula (14)
and the long exact sequence of relative homology imply that the homology
class

[�
˜Xo

] − [Zo] − [ ˜Xo × xo] ∈ H2n( ˜Xo × ˜Xo, Z)

comes from a homology class

β ∈ H2n( ˜Xo × E ∪ E × ˜Xo, Z).

Note now that the closed subset

˜Xo × E ∪ E × ˜Xo ⊂ ˜Xo × ˜Xo

is the union of ˜Xo × E and E × ˜Xo glued along E × E . We thus have a
Mayer-Vietoris exact sequence

. . . H2n( ˜Xo × E, Z) ⊕ H2n(E × ˜Xo, Z) → H2n( ˜Xo × E ∪ E × ˜Xo, Z)

→ H2n−1(E × E, Z) → . . .

As E × E = ⊔

i, j Ei × E j and Ei × E j has trivial homology in odd degree,
we conclude that H2n−1(E × E, Z) = 0, so that β comes from a homology
class

γ = (γ1, γ2) ∈ H2n( ˜Xo × E, Z) ⊕ H2n(E × ˜Xo, Z)

= H2n−2( ˜Xo × E, Z) ⊕ H2n−2(E × ˜Xo, Z).

We now use the assumption made on ˜Xo, namely that its even degree coho-
mology is algebraic. As the cohomology of E has no torsion and is algebraic,
we get by the Künneth decomposition that

H2n−2(E × ˜Xo, Z) = ⊕0≤2i≤2n−2H2i (E, Z) ⊗ H2n−2−2i ( ˜Xo, Z)

is generated by classes of algebraic cycles z j × z′
j ⊂ E × ˜Xo and similarly

for ˜Xo × E .
Putting everything together, we get an equality

[�
˜Xo

] − [Zo] − [Xo × xo] =
∑

j

n j [z j × z′
j ]

+
∑

k

n′
k[z′

k × zk] in H2n( ˜Xo × ˜Xo, Z).
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This provides uswith an integral cohomological decomposition of the diagonal
for ˜Xo since in the term on the right, all the cycle classes of the form [ ˜Xo ×
point] are cohomologous and they have to sum-up to zero, while all the other
terms [z′

k × zk] with dim z′
k < n are supported on D × ˜Xo for some proper

closed algebraic subset D of ˜Xo. 
�
Let us now deduce from Theorem 2.1 the following result:

Theorem 2.6 (cf. Theorem 1.1 and Theorem 1.9, (i)) Let ˜X be the natural
desingularization of a very general quartic double solid X with k ≤ 7 nodes.
Then the integral cohomology of ˜X has no torsion, but ˜X does not admit an
integral cohomological decomposition of the diagonal. A fortiori, ˜X does not
admit a Chow-theoretic decomposition of the diagonal, that is, equivalently,
the group CH0(˜X) is not universally trivial.

Proof The first statement is proved in [15], if we observe in the nodal case
that ˜X admits a unirational parametrization of degree 2 (as all nodal quartic
double solids do, see paragraph 1.1). This indeed implies that the torsion in
H∗(˜X , Z) is of order 2, while Endrass [15] proves that there is no 2-torsion in
H∗(˜X , Z) if ˜X has less than 10 nodes.
We next claim the following: 
�

Lemma 2.7 The general quartic double solid X with k ≤ 7 nodes can be spe-
cialized to the Artin-Mumford double solid Xo constructed in [1]. In particular,
its desingularization obtained by blowing-up its k nodes can be specialized
onto the partial desingularization of Xo obtained by blowing-up the corre-
sponding k nodes.

Postponing the proof of the lemma, we now conclude as follows: First of
all, as ˜Xo has by Artin-Mumford [1] some nontrivial 2-torsion in its integral
cohomology, it does not admit an integral cohomological decomposition of the
diagonal (see [28] or Theorem 1.7).We use now [27] which guarantees that the
even degree integral cohomology of ˜Xo is algebraic, because ˜Xo is uniruled
of dimension 3. It then follows from Lemma 2.7 and Theorem 2.1 that the
very general ˜X as in Corollary 2.6 does not admit an integral cohomological
decomposition of the diagonal. 
�
Proof of Lemma 2.7 The data of a k-nodal quartic double solid is equivalent
to the data of the corresponding quartic ramification surface which is also
k-nodal. Let us consider a general Artin-Mumford quartic surface S. It has
10 nodes P0, . . . , P9, where P0 is the point defined in coordinates X0, . . . , X3
by X0 = X1 = X2 = 0 and the Pi , i ≥ 1 are above 9 points Oi ∈ P

2

via the linear projection P
3 ��� P

2 from P0. The 9 points Oi , i ≥ 1 form
the reduced intersection of two plane cubics. The general deformation theory
of K3 surfaces (see [33]) tells us that the Artin-Mumford surface with 10
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nodes P0, . . . , P9 can have its nodes smoothed independently, keeping the
other nodes. Let us prove this statement in a more algebraic and elementary
way. 
�
Sublemma 2.8 For any k ≤ 10, there exist a smooth quasiprojective variety
B, and a family of quartic surfaces π : S → B, S ⊂ B×P

3 with the following
property: The general fiber of π is k-nodal and there exists a non-empty proper
closed algebraic subset B ′ ⊂ B of codimension 10 − k parameterizing 10-
nodal Artin-Mumford surfaces.3

Proof First of all, we claim that if S ⊂ P
3 is a s + 1-nodal quartic surface

defined by a quartic polynomial f , then the set Z of nodes Pi , i = 0, . . . , s
of S imposes s + 1 independent conditions to quartic polynomials. Indeed,
one easily checks that there exists an irreducible nodal curve in the linear
system |IZ (4)| (since |IZ (3)| contains the partial derivatives of f , this linear
system has no base point on S \ Z and cuts Z schematically, hence it is nef
on the blow-up ˜S of S along Z ; thus |IZ (4)| is nef and big on ˜S). Then
the normalized curve n : ˜C → C contains the set ˜Z = n−1(Z), and we have
K

˜C = n∗(OC (4))(−˜Z); thus, as ˜C is irreducible, we have g(˜C) = g(C)−|Z |,
which provides

h0(˜C, n∗(OC (4))(−˜Z)) = g(˜C) = g(C) − |Z | = h0(OC (4)) − |Z |.

As H0(˜C, n∗(OC (4))(−˜Z)) contains H0(C,OC (4)⊗IZ ), one concludes that

h0(C,OC (4) ⊗ IZ ) ≤ h0(OC(4)) − |Z |

which proves the claim.
This implies classically that in the projective space P

N of all quartic homo-
geneous polynomials on P

3, the hypersurface D consisting of quartic poly-
nomials with one node has s + 1 (in our case, 10) analytic smooth branches
intersecting transversally at f . Concretely, the normalization ˜D ofD is defined
as the subvariety of P

3 × P
N defined by

˜D = {(x, g) ∈ P
3 × P

N , g is singular at x},

and the branchesDi ofD passing through f are in one to one correspondence
with the preimages of ˜D → D over f , that is the nodes Pi of S.

Coming back to our situation, the nodes P1, . . . , Pk being fixed, the inter-
section of the corresponding analytic branches Di , i = 1, . . . , k is smooth

3 One can even show that the total space S is smooth away from the k generic nodes, but this
is not useful here.
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and we can construct a smooth algebraic variety B containing it as an ana-
lytic open set as follows: B will be an adequate Zariski open neighborhood of
(P1, . . . , Pk, f ) in the set

{(x1, . . . , xk, g) ∈ P
3 × P

N , g is singular at xi , for i = 1, . . . , k}.
This variety B maps naturally by the second projection toP

N , and the pull-back
to B of the universal family Suniv ⊂ P

N × P
3 provides us with a family

S → B, S ⊂ P
3 × B,

of quartic K3 surfaces, such that the general fiberSb has k nodes P1,b, . . . , Pk,b,
while the fibers Sb0 for b0 ∈ B ′

� B are Artin-Mumford quartics with 10
nodes, k of them being the specialization of P1,b, . . . , Pk,b. Here, with the
notation just introduced, the image of B ′ in P

N is the Zariski closure of the
intersection∩9

i=0Di of all branches. The argument above shows that the family
is furthermore complete, that is, has 34 − k parameters. 
�

Recall now from Remark 1.2 that there is an unique irreducible component
M of the space M ′ of nodal quartic surfaces inP

3 with k ≤ 7 nodes, dominating
(P3)(k) by the map φ : M → (P3)(k) which to a k-nodal quartic associates its
set of nodes. Denote by ψ : B → M ′ the classifying map, where B is as in
Sublemma 2.8. In order to prove that ψ(B) is Zariski open in M , which is the
content of the lemma, it suffices to show that the map φ ◦ ψ : B → (P3)(k)

is dominating. Let us do it for k = 7, the other cases being similar and easier.
We have the following:

Sublemma 2.9 Let St be a small general deformation of S with 7 nodes
P1,t , . . . , P7,t . Then the set of quartic surfaces which are singular at all the
points Pi,t is of dimension 6.

Proof It suffices to prove the statement when St is very general. First of all
we claim that the Galois group of the cover � → M parameterizing the nine
singular points Oi of the surface Sm , m ∈ M , where M is the parameter space
for Artin-Mumford quartic surfaces, acts on the set of 9 points {O1, . . . , O9} as
the full symmetric group. This fact can be proved by applyingHarris’ principle
in [18]. Namely, one just has to prove the following points:

(1) The Galois group of the function field of M acts bitransitively on the set
{O1, . . . , O9}. Equivalently, the variety � ×M � \ �� is irreducible.

(2) The image contains transpositions, which appear as the local monodromy
of the cover � → M at a point of simple ramification.

The variety M parameterizes the triples (E1, E2, C), where E1 and E2 are
plane cubics, and C is a conic everywhere tangent to E1 and E2 (see [1]). The
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variety � parameterizes the quadruples (O, E1, E2, C) where (E1, E2, C) ∈
M and O is one of the intersection points of E1 and E2. Let us fix C and the
degree 3 divisors D1 such that 2D1 = E1∩C , D2 such that 2D2 = E2∩C ofC .
Then one gets a subvariety MC,D1,D2 ⊂ M and its inverse image �C,D1,D2 ⊂
�. It clearly suffices to proves 1) and 2) for the general cover �C,D1,D2 →
MC,D1,D2 . For the point 1),we project�C,D1,D2×MC,D1,D2

�C,D1,D2\�C,D1,D2

toP
2×P

2 by themap p which to ((O, E1, E2, C), (O ′, E1, E2, C)) associates
(O, O ′). Observe now that MC,D1,D2 is a Zariski open set in A

3 × A
3, the

general element being of the form (e1 + xc, e2 + yc) where c is the equation
of C , e1 is given so that the restriction of e1 to C has divisor 2D1, e2 is given
so that the restriction of e2 to C has divisor 2D2, and x, y are two arbitrary
homogeneous polynomials of degree 1 on P

2. The fiber of p over a general
couple of points (O, O ′) then consists of the set of equations (e1+xc, e2+ yc)
such that e1 + xc and e2 + yc vanish on O and O ′. This gives a system of
four affine equations which has maximal rank except if O or O ′ belongs to
C . But of course, the last situation does not occur generically on �C,D1,D2 ,
hence we conclude that for a dense Zariski open set �0

C,D1,D2
of �C,D1,D2 ,

�0
C,D1,D2

×M �0
C,D1,D2

\ ��0
C,D1,D2

is irreducible.

For the point 2), as the equations above clearly show that�C,D1,D2 is smooth
at a point (O, x, y)where O does not belong toC , it suffices to show that there
exists such a point (O, x, y) ∈ �C,D1,D2 with E1, E2 meeting tangentially
at O and transversally at the other remaining 7 points. For this, we fix the
point O not on C , and fix E1 (with equation e1 + xc) passing through O . We
then look at the set of equations e2 + yc vanishing at O and tangent to E1 at
O . The restriction of these equations provides a linear system of dimension 2
on E1, and one easily checks that for general choice of C, D1, D2, E1, O ,
its base-locus is reduced to the point O with multiplicity 2. By Bertini, the
general intersection E1 ∩ E2 for E2 as above has only the point O for double
point. This proves the claim.

One easily deduces from this that for any choice of P1, . . . , P7, the classes
ei of the corresponding exceptional curves of the minimal desingularization˜S
of S and the class h = c1(OS(1)) generate a primitive sublattice of H2(˜S, Z)

(equivalently, there are no relations with coefficients in Z/2Z between these
classes). Hence for the very general deformation St as above, its Picard group
is freely generated by the classes ei , i = 1, . . . , 7, and h. Let τ : X → P

3

be the blow-up of P
3 at the points P1,t , . . . , P7,t , with exceptional divisors

D1,t , . . . , D7,t intersecting the proper transform ˜St along Ei,t . The surface ˜St
belongs to the linear system |L|, L := τ ∗(OP3(4))(−2

∑

i Di,t ) and we want
to prove that dim |L| = 6. As H1(X,OX ) = 0, this is equivalent to saying
that h0(˜St , L |˜St

) = 6, and also to h1(˜St , L |˜St
) = 0. Let Lt := L |˜St

. As Lt is
big, this last vanishing is satisfied if Lt is numerically effective, hence if the
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linear system |Lt | has no base curve on which Lt has negative degree, which
is equivalent (see [20, Chap. 2, 1.6]) to saying that there is no smooth rational
curve C ⊂ ˜St such that

Lt .C < 0, and C2 = −2 (15)

with Lt (−C) effective. LetC be such a curve, andwrite its class c ∈ H2(˜St , Z)

as

c = λh +
∑

i

ni ei ,

with λ, ni integers. Furthermore ni ≤ 0 as otherwise C has to be one of
the Ei,t , and does not satisfy the condition Lt .C < 0. The two numerical
conditions (15) write

4λ2 − 2
7

∑

i=1

n2
i = −2, 16λ + 4

7
∑

i=1

ni < 0. (16)

Of course one has 4 > λ > 0 because C is effective and Lt (−C) is effective.
In fact, the case λ = 3 is impossible because the linear system |Lt (−C)| has
dimension ≥ 5. So only λ = 1, 2 are possible.

For λ = 1 we get from (16)

2 −
7

∑

i=1

n2
i = −1, 4 +

7
∑

i=1

ni < 0. (17)

and for λ = 2 we get

8 −
7

∑

i=1

n2
i = −1, 8 +

7
∑

i=1

ni < 0. (18)

It is easy to check that neither (17) nor (18) has an integral solution with all
ni ’s ≤ 0. and this concludes the proof of the sublemma. 
�

Sublemma 2.9 tells us that the fibers of φ ◦ ψ are at most 6-dimensional.
Hence

dim (Im φ ◦ ψ) = 21 = dim (P3)(7),

which concludes the proof of Lemma 2.7. 
�
We conclude this section with the following result which concerns property

4 of Theorem 1.7 and more generally property (*):
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Theorem 2.10 (cf. Theorem 1.9, (ii)) Let ˜X be the natural desingularization
of a general quartic double solid X with 7 nodes. Then ˜X admits no universal
codimension 2 cycle Z ∈ C H2(J 3(˜X) × ˜X).

More precisely, there is no smooth connected projective variety B equipped
with a codimension 2 cycle Z ∈ C H2(B × ˜X) which is cohomologous to 0 on
fibers b × X, b ∈ B, and such that the morphism �Z : B → J 3(˜X) induced
by the Abel-Jacobi map of ˜X is surjective with rationally connected general
fibers.

Proof Weuse the following strengthening ofTheorem1.7 (this is [28, Theorem
4.9] combinedwith the result of [27] guaranteeing the algebraicity of H4(Y, Z)

for Y a rationally connected threefold): 
�
Theorem 2.11 Let Y be a rationally connected threefold satisfying the fol-
lowing properties:

(a) H∗(Y, Z) has no torsion;
(b) There is a codimension 2-cycle Z ∈ CH2(B × Y ) inducing a surjective

map �Z : B → J 3(Y ) with rationally connected general fibers;
(c) J 3(Y ) has a 1-cycle in the minimal cohomology class θ g−1/(g − 1)!,

g = dim J 3(Y ).

Then Y admits an integral cohomological decomposition of the diagonal.

Take now for Y the desingularization ˜X of the general double solid X
with 7 nodes. Then property (a) holds as already mentioned. The property
dim J 3(˜X) = 3 is satisfied for any double solid X → P

3 ramified along a
nodal quartic with 7 nodes imposing independent conditions to quadrics in
P
3, see [8, Corollary 2.32]. Property (c) is thus satisfied in our case because

the set z of nodal points is general, so that dim J 3(˜X) = 3, and any ppav of
dimension 3 is a Jacobian. As Theorem 2.6 says that ˜X does not admit an
integral cohomological decomposition of the diagonal, we conclude that (b)
must fail.

3 Application to the universal degree 3 unramified cohomology
with torsion coefficients

Weprove in this sectionCorollary 1.11, thatwewill get as a direct consequence
of the following result (cf. Theorem 1.10):

Theorem 3.1 Let X be a smooth complex projective variety of dimension n
with CH0(X) = Z. Assume

1. H∗(X, Z) has no torsion and the Künneth components δ0, . . . , δ4 of the
diagonal are algebraic.
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2. The group H3
nr (X, Q/Z) is trivial (or equivalently by [12], the integral

Hodge classes of degree 4 on X are algebraic).

Then the degree 3 unramified cohomology of X is universally trivial if and
only if there is a universal codimension 2 cycle Z ∈ CH2(J 3(X) × X).

Here and below, the Künneth components δi act as identity on Hi (X, Z),
and as 0 on H j (X, Z) for i �= j . They are well-defined because H∗(X, Z) is
torsion-free.

Example 3.2 This theorem applies for example to cubic fourfolds. Indeed,
by [30], they satisfy the integral Hodge conjecture in degree 4 and the other
assumptions are easy to check. Obviously, they have trivial CH0 group. The
fact that there is no torsion in the cohomology of a smooth hypersurface in
projective space is a consequence of the Lefschetz theorem on hyperplane
sections. Finally, the Künneth components of their diagonal are algebraic,
because their cohomology groups of degree 6 and 2 are cyclic, generated by
the class γ of a line and the class h of a hyperplane section respectively. Thus
the components δ2 and δ6 which are the projectors on H2 and H6 respectively
are given by δ2 = γ ⊗h and δ6 = h ⊗γ . It follows that the remaining Künneth
component

δ4 = [�X ] − δ0 − δ8 − δ2 − δ6

is algebraic.
As their intermediate Jacobian is trivial, one concludes by Theorem 3.1 that

their third unramified cohomology with torsion coefficients is universally triv-
ial. This generalizes the main result of [2] with a completely different proof.
Auel, Colliot-Thélène and Parimala prove that the unramified cohomology of
degree 3 with torsion coefficients of a very general cubic fourfold X contain-
ing a plane is universally trivial. Their method uses the K -theory of quadric
bundles.

We get similarly

Corollary 3.3 Let X be a rationally connected threefold with no torsion in
H3(X, Z). Then the third unramified cohomology of X with coefficients in
Q/Z is not universally trivial if and only if X does not admit a universal
codimension 2 cycle.

Proof We just have to check the assumptions of Theorem 3.1. As X is ratio-
nally connected, we clearly have CH0(X) = Z and furthermore, the fact
that H3(X, Z) has no torsion implies that the whole integral cohomology
H∗(X, Z) has no torsion. The Künneth components δ2 and δ4 of the diagonal
of X (which act by projection on H2(X, Z) and H4(X, Z) respectively) are
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algebraic because H2(X, Z) and H4(X, Z) are generated by algebraic classes.
(Note that for the cohomology group H4(X, Z), the fact that it is generated by
classes of curves is not obvious and proved in [27].) Thus the last component

δ3 = [�X ] − δ0 − δ2 − δ4 − δ6

is also algebraic. Finally, assumption 2 in Theorem 3.1 reduces again to the
fact already mentioned that H4(X, Z) is algebraic. 
�
Corollary 3.4 (cf. Corollary 1.11) Let X be the natural desingularization of
a very general quartic double solid with 7 nodes. Then the third unramified
cohomology group of X with torsion coefficients is not universally trivial.

Proof Indeed, there is no torsion in H3(X, Z); this has been alreadymentioned
before and is proved by Endrass [15]. As we know by Theorem 2.10 that the
desingularization of the very general double solid X with 7 nodes does not
admit a universal codimension 2 cycle, the corollary is thus a consequence of
Corollary 3.3. 
�
Proof of Theorem 3.1 Let us first show that if X has trivial CH0 group, satisfies
the assumptions 1 and 2 of the theorem and has no universal codimension 2
cycle, then it has a nontrivial universal third unramified cohomology group
with torsion coefficients. We recall from the introduction that the meaning of
this statement is that there exist a smooth quasi-projective variety U , and an
unramified cohomology class α ∈ H3

nr (U × X, Q/Z) with the property that
for any Zariski dense open subset U ′ ⊂ U , α|U ′×X is not the pull-back of a
cohomology class β ∈ H3(U ′, Q/Z).

The fact that H∗(X, Z) has no torsion implies that there is aKünneth decom-
position of cohomology with integral coefficients of U × X for any variety
U . On the other hand, the fact that the Künneth components δi , 0 ≤ i ≤ 4,
of the diagonal of X (which are defined in integral coefficients cohomology)
are algebraic implies that for any U and any algebraic cycle z of codimension
≤ 2 on U × X , the Künneth components of [z] are algebraic, since they are
obtained by applying the correspondences δi , 0 ≤ i ≤ 4, seen as relative
self-correspondences of U × X × X over U , to [z].

According to [12], where the result is stated for smooth projective vari-
eties but works in the smooth quasi-projective case as well, there is an exact
sequence, for any smooth quasi-projective Y :

0 → H3
nr (Y, Z) ⊗ Q/Z → H3

nr (Y, Q/Z)

→ Tors(H4(Y, Z)/H4(Y, Z)alg) → 0, (19)

where H4(Y, Z)alg ⊂ H4(Y, Z) is the subgroup of cycle classes [Z ],
Z ∈ CH2(Y ). Using this exact sequence, in order to prove that the third
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unramified cohomology group of X is not universally trivial, it suffices to
exhibit a smooth projective variety B, and a degree 4 cohomology class α on
B× X , such that Nα is algebraic for some N �= 0, but α|U×X cannot be written
as a sum a + pr∗

1b, with a algebraic on U × X and b ∈ H4(U, Z)tors , for any
dense Zariski open set U ⊂ B. Such a class indeed provides a torsion class α

in H4(B × X, Z)/H4(B × X, Z)alg; by the exactness on the right in (19), there
exists a lift α̃ ∈ H3

nr (B × X, Q/Z); then α̃|U×X is not in pr∗
1 H3(U, Q/Z) for

any U ⊂ B dense Zariski open. Indeed, we have a commutative diagram

H3(U, Q/Z) ��

��

H4(U, Z)tors

��
H3(U × X, Q/Z) ��

��

H4(U × X, Z)tors

��
H3

nr (U × X, Q/Z) �� H4(U × X, Z)/H4(U × X, Z)alg

(20)

where the first two vertical maps are pull-back maps pr∗
1 , and the first two

horizontal ones are induced by the exact sequence

0 → Z → Q → Q/Z → 0.

The third horizontal map is the last map of (19) for Y = U × X . So if α̃|U×X
belonged to pr∗

1 H3(U, Q/Z), its image in H4(U × X, Z)/H4(U × X, Z)alg,
which is also the restriction of α to U × X), would come from a torsion class
in H4(U, Z), which we have excluded.

We now construct B and α: We take B := J 3(X). We first prove:

Lemma 3.5 There is an integer N, and a codimension 2 cycle

Z N ∈ CH2(J 3(X) × X)

such that Z N |t×X is cohomologous to 0 for any t ∈ J 3(X) and

�Z N : J 3(X) → J 3(X), t �→ AJX (Z N ,t )

is equal to N I dJ 3(X).

Proof Indeed, as we know that CH0(X) = Z, the Abel-Jacobi map

�X : CH2(X)hom → J 3(X)

is surjective (see [5]). Hence there exist a variety W and a codimension 2 cycle
Z ∈ CH2(W × X) such that

�Z : W → J 3(X), �Z (t) = AJX (Zt ),
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is a surjectivemorphism of algebraic varieties. Replacing W by a linear section
if necessary, we may assume that �Z : W → J 3(X) is generically finite of
degree N . We now take for Z N the cycle (�Z , I dX ) ∗ (Z). It is immediate to
check that �Z N : J 3(X) → J 3(X) is equal to N I dJ 3(X). Thus the lemma is
proved. 
�

The condition that �Z N : J 3(X) → J 3(X) is equal to N I dJ 3(X) is equiv-
alent to the fact that the Künneth component of type (1, 3) of [Z N ] induces N
times the canonical isomorphism between H1(J 3(X), Z) and H3(X, Z). Fur-
thermore, as explained above, by taking the Künneth component of type (1, 3),
we may assume [Z N ] is of Künneth type (1, 3). Recall now from Remark 1.6
that there is also an integral (Hodge) class α on J 3(X)×X which is of Künneth
type (1, 3) and induces the canonical isomorphism between H1(J 3(X), Z) and
H3(X, Z). We thus have

[Z N ] = Nα in H4(J 3(X) × X, Z).

Hence we constructed the class α and to finish we just have to prove the
following:

Lemma 3.6 For any dense Zariski open set U ⊂ J 3(X), the image of α in

H4(U × X, Z)/H4(U × X, Z)alg

is nonzero modulo pr∗
1 H4(U, Z)tors .

Proof Otherwise α|U×X = a + pr∗
1b, where a is algebraic and b is torsion, for

some dense Zariski open set U ⊂ J 3(X). But α|U×X is of Künneth type (1, 3)
while pr∗

1b is of Künneth type (4, 0). As the Künneth decomposition, which
works as well onU , preserves algebraic classes, we conclude by projection on
the Künneth component of type (1, 3) that α|U×X = a is algebraic on U × X .
(Note that, alternatively, we can restrict to a smaller Zariski open set, where
the torsion class b vanishes.) This means that there is a decomposition

α = α1 + α2

in H4(J 3(X) × X, Z), where α1 is the class of a cycle Z on J 3(X) × X and
α2 is a cohomology class supported on D × X , where D = J 3(X) \ U . But
then the Künneth component of type (1, 3) of α2 must be 0. So the Künneth
component of type (1, 3) of Z is equal to α and Z is a universal codimension
2 cycle on J 3(X) × X , contradicting our assumption. 
�

In the other direction, let us prove that if X satisfies the assumptions of
Theorem 3.1 and has a universal codimension 2 cycle, then its third unramified
cohomology group with torsion coefficients is universally trivial.
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Let thus B be a smooth quasi-projective complex variety and let B be a
smooth projective completion of B. Let α ∈ H3

nr (B × X, Q/Z). We want to
show that up to shrinking B to a Zariski open set B ′, α = pr∗

1β for some class
β ∈ H3(B ′, Q/Z). Note that H3

nr (B × X, Q/Z) contains H3
nr (B × X, Z) ⊗

Q/Z.

Lemma 3.7 If X has trivialCH0 group, the map pr∗
1 : H3

nr (B, Z) → H3
nr (B×

X, Z) is an isomorphism.

Proof Indeed, this map has a left inverse, namely the restriction map rB×x to
B × x for any point x ∈ X (C). Furthermore it follows from the Merkurjev-
Suslin theorem (or the Bloch-Kato conjecture) that the groups H3

nr (B, Z) and
H3

nr (B × X, Z) have no torsion. Thus it suffices to show that the map pr∗
1 :

H3
nr (B, Q) → H3

nr (B × X, Q) is an isomorphism. This is however implied by
the Bloch-Srinivas decomposition of the diagonal (1) for some integer N �= 0,
which is satisfied by X since CH0(X) = Z. This gives as well a decomposition
over B:

N (B × �X ) = Z1 + Z2 in CHn(B × X × X), n = dim X, (21)

where Z2 = N (B × X × x) for some point x ∈ X (C) and Z1 is supported on
B×D×X , for some proper closed algebraic subset D � X . As recalled in [12,
Appendix], the various cycles γ appearing in this equality act on unramified
cohomology of B × X via

η �→ γ ∗η := prB,1∗(pr∗
B,2η · [γ ]BO),

where the class [γ ]BO ∈ Hn((B×X×X)Zar ,Hn(Z)) is theBloch-Ogus cycle
class of γ (see [4]), and prB,1, prB,2 are the two projections from B × X × X
to B × X . As B × �X acts as identity on H3

nr (B × X, Q) and Z∗
1 acts as 0 on

H3
nr (B × X, Q), one gets that

N I dH3
nr (B×X,Q) = Z∗

2 = N (pr∗
1 ◦ rB×x ),

which proves the result. 
�
From Lemma 3.7, we see that it suffices to show that, up to passing to a

dense Zariski open subset of B if necessary, the image of α in the quotient

H3
nr (B × X, Q/Z)

H3
nr (B × X, Z) ⊗ Q/Z

is 0. By the exact sequence (19), this quotient is isomorphic to the torsion of
the group H4(B × X, Z)/H4(B × X, Z)alg. So the result follows from the
following:
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Lemma 3.8 Let X satisfy the assumptions of Theorem 3.1. Then, if X has a
universal codimension 2 cycle, for any B and any degree 4 class α ∈ H4(B ×
X, Z), such that Nα is algebraic for some integer N �= 0, there is a dense
Zariski open subset B ′ ⊂ B, such that the class α is algebraic on B ′ × X.

Proof First of all, as the integral cohomology of X is torsion free, there is a
Künneth decomposition

α =
∑

0≤i≤4

αi,4−i ,

where αi,4−i ∈ Hi (B, Z) ⊗ H4−i (X, Z). Furthermore, this decomposition is
obtained by applying to α the Künneth projectors δi , 0 ≤ i ≤ 4 of X . As
we know that the δi ’s are algebraic for i ≤ 4, each class αi,4−i satisfies the
property that Nαi,4−i is algebraic.

Consider first the term α4,0 ∈ pr∗
1 H4(B, Z) and write it α4,0 = pr∗

1β, β ∈
H4(B, Z). Then Nβ is algebraic on B, so there is a dense Zariski open set
B ′ ⊂ B such that Nα = 0 in H4(B ′, Z). The Bloch-Kato conjecture then
implies that there is a dense Zariski open set B ′′ ⊂ B such that α = 0 in
H4(B ′′, Z) since it implies that the sheaf H4(Z) on BZar has no Z-torsion.
Next consider the class α2,2 ∈ p∗H2(B, Z) ⊗ H2(X, Z) and write it

α2,2 =
∑

i

pr∗
1βi � pr∗

Xαi , βi ∈ H2(B, Z),

where prX : B × X → X is the second projection and the αi ’s form a basis
of the free abelian group H2(X, Z), which is generated by divisors classes
since CH0(X) = Z. The group H2n−2(X, Z) admits a Poincaré dual basis α∗

i ,
with < αi , α

∗
j >= δi j . The Q-vector H2n−2(X, Q) is generated by classes

of curves, since H2(X, Q) is generated by divisor classes and for any ample
line bundle L on X , the topological Chern class l = c1,top(L) ∈ H2(X, Q)

provides a Lefschetz isomorphism

ln−2 �: H2(X, Q) ∼= H2n−2(X, Q).

Thus there exists a nonzero integer N ′ such that N ′α∗
i = [zi ] in H2n−2(X, Z)

for some 1-cycles zi ∈ C Hn−1(X). It thus follows that

βi = pr1∗(α2,2 � pr∗
Xα∗

i ), N ′βi = pr1∗(α2,2 � pr∗
X [zi ]).

As Nα2,2 is algebraic, so are the classes N N ′βi . This implies that the classes
βi themselves are algebraic, by the same argument as before since they restrict
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to torsion classes on some Zariski open set B ′ ⊂ B, and this implies that they
have to vanish identically on a dense Zariski open set B ′′ ⊂ B.

The term α0,4 ∈ pr∗
X H4(X, Z) ∼= H4(X, Z) satisfies the condition that

Nα0,4 is algebraic. The assumption 2 made on X implies that α0,4 itself is
algebraic.

As H1(X, Z) = 0, we are thus left with α1,3 ∈ H1(B, Z) ⊗ H3(X, Z). We
have now:

Lemma 3.9 (i) The class α1,3 is the restriction to B × X of a class α1,3 ∈
H1(B, Z) ⊗ H3(X, Z) which has the property that Nα1,3 is algebraic.

(ii) There is a morphism φ : B → J 3(X) such that (φ, I dX )∗α = α1,3, where
α is the integral Hodge class on J 3(X) × X introduced in Remark 1.6.

Proof (i) The class Nα1,3 extends to an integral cohomology class on B × X
because it is algebraic. As theKünneth components of the diagonal of X are
algebraic, one may even assume that the class Nα1,3 extends to an integral
cohomology class β on B × X which is algebraic and of Künneth type
(1, 3). As H∗(X, Z) has no torsion, this class β can be seen as a morphism

β∗ : H3(X, Z) → H1(B, Z)

which has the property that, denoting by rB : H1(B, Z) → H1(B, Z) the
restriction to B, the composite morphism

rB ◦ β∗ = Nα1,3∗ : H3(X, Z) → H1(B, Z)

is divisible by N . On the other hand, it is quite easy to prove that the
restriction map rB is injective and that its cokernel is torsion free. Thus the
morphism β∗ is also (uniquely) divisible by N , and so is β, which proves
(i).

(ii) The class Nα1,3 being algebraic, it is an integral Hodge class on B × X , so
α1,3 is also an integral Hodge class. But the morphisms from B to J 3(X)

identify (modulo the translations of J 3(X)) to the morphisms of complex
tori betweenAlb B and J 3(X)which themselves identify to themorphisms
of Hodge structures

H1(B, Z)/torsion → H3(X, Z)

because H3(X, Z) has no torsion, and finally these morphisms of Hodge
structures identify to the integral Hodge classes of Künneth type (1, 3) on
B × X .
Hence the class α1,3 provides us with a morphism

φ : B → J 3(X)
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and it is a formal fact to prove following the chain of identifications above that

(φ, I dX )∗(α) = α1,3.


�
The proof is now finished because we assumed that X admits a universal

codimension 2 cycle. This is equivalent to saying that the class α of Remark
1.6 is algebraic because H3(X, Z) has no torsion. Lemma 3.9 thus implies that
α1,3 is algebraic. 
�

The proof of Theorem 3.1 is finished. 
�
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