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Strange Attractors’

David Ruelle

Introduction: Deterministic S8ystems with a Touch of
Fantasy

Systems with an irregular, non periodic, *chaotic” time
evelution are frequently encountered in physics, chem-
istry, and biology. Think for example of the smoke rising
in still air from a cigarette. Oscillations appear at a certain
height in the smoke column, and they are so compiicated
as to apparently defy understanding. Although the time
evolution obeys strict deterministic laws, the system
seems to behave according to its own free will, Physicists,
chemists, biologists, and also mathematicians have tried
to understand this situation. We shall see how they have
been helped by the concept of strange artractor, and by
the use of modern computers.

A strange attractor consists of a infinity of points, in
the plane as shown on Figure 1A, or in m-dimensional
space. These points correspond to the states of a chaotic
system. Strange attractors are relatively abstract mathe-
matical objects, but computers give them some life, and
draw pictures of them. (See the illustrations, and note
that the computer may mark only a finite number of
points.) It may well be that the reader has access to a
computer, and can reproduce some of the “experiments”
described below.

The Description of Time Evolution: Dynamical Systems

We specify the state of a physical, chemical, or biological
system by parameters x;.x,, ..., x,,. A chemical system
for example would be described by the concentrations of
various reactants. The parameters vary with time, and we
denote by

x1(8), x5(8), - . ., %, {0)

their values at time ¢. For simplicity we shall consider first
only integer values of ¢ (time expressed in secoads, or in
years). We shall come back later to the case of continu-
ously varying time.

* Transiated by the author from his French article published in
La Recherche N® 108, Février 1980, with kind permission of
La Recherche.

How do we determine the time evolution of the system,
in other words its dynamics? We shall admit that the
parameters specifying the system at time £ + 1 are given
functions of the parameters at time f. We may thus write

xp g+ 1} = Flxeg (0, x20), . . 0 (0)
X2(f + 1) = FQ(xl(r)!x2(t)) A 3xm(t)) (I)

X+ 1) = Fp(xy(2), x5(1), .. 5 Xm(2)

We assume that the functions #,, F,, . . ., F,,, are contin-
uous and have continuous derivatives. This “technical™
differentiability condition will be satisfied in our examples.
We shall see later why it is important.

Given initial values x(0), x,(0), . . ., x,,,(0) for the
parameters we can, using (1), compute x(t), x,(r), . . .,
%, (£) successively for all positive integer times £. Thus,
knowing the state of the system at time zero one may
compute its state at time f. We say that the functions
FF,, .. . F, determine a discrete time dynamical sys-
tem. It is a differentiable dynamical system because we
have assumed that the functions |, F,, . . ., F,,; have
continuous derivatives.

An Example: The Hénon Attractor

Let us now examine a concrete case. Let m = 2, and write
x, ¥ instead of x,, x,. We are given

Fi(x,yy=y+1 —ax?
Fy(x, y) =bx

witha = 1.4 and b = 0.3. The relations (1) thus take the
form

x(t+ 1) =y + 1 — ax(f)?

(2)
»(E+ 1y=bx(n)
Given x(0), ¥{0) we may compute x(t) and ¥{¢) for
=1, 2,..., 10,000 for instance, keeping everywhere
sixteen significant figures. Done by hand this calculation
would take many months and, since its interest is not ob-
vious, nobody undertook it. For a digital computer on
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Figure 1. The Hénon atiractor. A computer has been asked to
mark points of coordinates x{#), ¥(¢} for ¢ going from 1 to 10,000.
The point (x{0), ¥{0)) is given, and the following points are deter-
mined by

@+ L=pO)+ 1 —ax(h?,  yie) =bxit)

withz = 1.4 and b = (.3. Figure 1A shows the result. The 10,000
points distribute themselves on a complex system of Hnes: the
Hénon attractor. 1t is an example of a strange attractor. Mognifica-
tion of the little square in Figure 1A yields 1B, and magnification
of the little square in 1B would again yield a similar picture. Each
new magnification resolves lines into more lines. The Hénon attrac-
tor is associated with a map of the plane which sends the point

1D

(¢, ¥} to (Fy(x, ¥), Fa(x, y)), with Fy (x,y) =y + 1 —ax?,

Fa(x, ¥} = bx. In particular, the quadrilaterat ABCD of Figure 1C
is mapped inside itseif into 418, Cy D, . Notice that Fy, F are
polynomizals, and therefere have continuous derivatives

— 2ax

aFlfax aF1/8y=l

8Fy/ax =bh aFyfay =0

One can see that the surface of 4{8,C; D is equal to three tenths
of the surface of ABCD (the factor b = 0.3 is given, up to sign, by
the determinant of the above derivatives). In Figure 11 one has
kept & = 0.3 but taken & = 1.3. The strange attractor disappears,
and is replaced by the seven points of a periodic attractor.
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the other hand, this boring and repetitive fask isnota
problem. Michel Hénon, of the observatory in Nice, did
the first calculations with an HP-65 programmable pocket
computer. He then went on to a more powerful machine
(IBM 7040). That computer had a ploiter, which marked
on a sheet of paper the points with coordinates x{z), y(r},
for ¢ ranging from 1 to 10,000. Figure 1A shows the pic-
ture obtained. Unexpectedly, the ten thousand points lie
on a system of lines with complex structure. If the little
squate of Figure 1A is magnified, Figure 1B is obtained.
If the square of Figure [B were magnified, one would
obtain again a similar picture, and so on, each magnifica-
tion revealing lines which were not previously visible [1].

What happens if the initial point (x(0), »(0)) is changed?
Well, for a “bad” choice (x(f), ¥(¢)) will go to infinity (and
in particular, leave the sheet of paper). For a “good”
choice, (x{13, ¥(1)), (x(2), ¥(2)), . . ., will rapidiy get close
to the “noodle” of Figure 1A, and the general aspect of
this picture will be reproduced after a few thousand points
have been marked.

Qur “noodle” is the Hénon attractor. Tt is an example
of a strange attractor. Let me mention, among other curi-
osities, that the attractor may suddenly disappear when
the parameters 4, b in (2) are changed. Taking for instance

a=1.3 and b = 0.3 one sees the points (x(#), ¥(¢}) approach-
ing, when f increases, a set of seven points £, . . ., Py
(Figure 1D). Instead of a strange attractor we now have a
periodic attractor (of period 7).

In trying to understand the Hénon attractor, it is help-
ful to consider the map F of the plane to itself defined by
(2). If X has coordinates x and y, F(X) has coordinates

Fl(x:y):y-l-i*axz: F2(x1y):bx

Call X, the point with coordinates x{¢), ¥(¢}. Then X,
=F(Xy), X; = F(F(Xy)), ete .. ., X; is obtained from X
by applying f times the map F. Figure 1C shows a quadsri-
lateral ABCD, and its image A, B, C, D by F. This image
is by definition the set of points F(X) with X in the quadri-
lateral ABCD. Hénon has chosen the quadrilateral ABCD
in such a manner that it contains the image 4,8,C; P;.
Figure 1C shows that the quadrilateral is “folded in two”
by the map £ If the initial point X is in ABCD, then X,
isin the image A, B, C; Dy, and thus again in ABCD. All the
points Xy, X5, ... X, ... are therefore in the quadri-
lateral ABCD, and the Hénon attractor is also contained
in that quadrilateral.

Smoke tising from a cigarette, — The atmosphere of Jupiter. Two of the many examples of systems whose evolution through time invoives

osciliations which can be described by strange attractors.

(Clichés E. Rousseau & iPS)




Another Example: The Solenoid

We shall now examine an atiractor in three dimensions,
i.e., we shall take 7 = 3 in the formulae (1). Instead of
writing explicit expressions for the functions F, F, Fs,
we describe geometrically the map F of thres-dimensional
space to itself which they define. (This map # sends the
point with coordinates x;, x,, x5 to the point with coor-
dinates Fy(xy, x5, x3), Faly, x0,x3), Falxy, x5, x3))
We suppose that £ takes a ring 4 (the solid torus of
Figure 2A), stretches it, makes it thinner, folds it, and
places it in the manner drawn in Figure 2B. TFhis figure
shows both 4, and its image F(4) by the map F. The
image F{A ) winds twice around the central hole of the
ring 4.

Starting from a point X, in the ring 4, we write X}
=I{Xy), Xo =FX,), ... Figure 2C shows the five thou-
sand points X1, X540, . . ., X5050 (together with the set
F(4)). A new strange attractor appears. Since the point
X isarbitrary in A, it is not in general on the attractor,
but X, X,, X3, ... get progressively closer to it. This is
why we have marked the points starting at X5, . It is fas-
cinating to observe the plotter (of the HP 9830A) draw
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the picture. About once per second a click is produced and
a point is marked, in an apparently random manner. kIt
takes a fairly long time before one can guess the final form
of the attractor.

The attractor of Figure 2C has been cailed a solenoid.
Indeed the picture is suggestive of electric wires around an
axis. To understand this structure, note that the solenoid
is contained not only in the ring A of Figure 2A, but also
in its image F{A} drawn in Figure 2C, and also in F{F{A)),
FUF(F(A))), .. . The image F(A) is the inside of a tube
which winds twice around the central hole of 4, F{F(4))
is in a thinner tube which winds four times around the
hole, FIF(F(A))) is still thinner and winds around eight
times, efc. . . . The solenoid is thus contained in very thin
tubes winding around many times, and this explains how
it looks.

Sensitive Dependence with Respect to Initial Conditions:
How Errors Grow with Time

Remember that the parameters x, (1), x5(2), . . ., x,,(f) are
supposed to describe a physical, chemical, or biological

Figure 2. The solenoid. Figure 24 is a perspective view of 4 ring 4
in three dimensional space. A map F stretches 4, makes it thinner,
folds it, and places the image #{4} inside A so that F(4) turns

twice around the central hole of A, as shown in Figure 2B. Figure

2C shows F(4) again, and also 5,000 points successively defined

by X4y = F(X,) starting from soms initial point X. The 5,000
points produce a wiry structure. It is a new strange attractor, called
solenoid.
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system at time £. We assume that the system has a deter-
ministic time-evolution defined by the equations (1). With
what precision can we predict the evolution if the choice
of the initial values x, {0), x,(0), . . ., x,,(0) is slightly in
error, as is always the case for experimental data? How
will the error increase (or decrease) with increasing ¢7
The answer will of course depend on the given functions
Fi,Fy, ..., F,,,and on the initial values x (0), x,(0),
.. X, (0). For the two strange attractors which we have
examined (the Hénon atiractor and the solenoid) a small
error (or uncertainty) on the initial values gives an error
{or uncertainty) at time ¢, which increases rapidly with 7.
Let us verify this assertion for the Hénon attractor. We
know that there is, around the atiractor, a quadrilateral
ABCD such that the map & folds the quadrilateral in two.
As Figure 1C shows, the folding in two is accompanied by
stretching, Thus if X, and X7 correspond to initial data X
and Xy close to each other, the distance d(X,, X;) gener-
ally increases with ¢. At least this is the case as long as this
distance remains small; when the distance from X, to X ;
becomes of the order of the total size of the attractor it
cannot increase any more. Numerically one finds

d(X 1, X))~ d(Xo, Xo).a' (3)

with 2 & 1.52. Since a > 1, the factor ' increases rapidly
(exponentially) with z. Therefore the error d(X,, X})
increases exponentially with time. The rate of exponential
increase is determined by a (or by its logarithm A = In g
called characteristic exponent, here X = (.42).

We may argue simiiarly for the solenoid. The map F
stretches 2 tube containing the solenoid and, because of
this streiching, formula (3) remains valid, with a different
choice of a > 1.

The exponential increase of errors described by formula
(3) is expressed by saying that the dynamical system under

consideration has sensitive dependence on initial condition.

Notice that to give a precise meaning to (3) we have to
take d(X,, X) “infinitesimal”. The assumption that Fy,
F,, ..., F,, have continuous derivatives is used here.
Notice also that, for given X, there may be exceptional
X for which the error does not grow as indicated by (3}
(it may for instance decrease).

A Little Bit of Mathematics: A Definition of Strange
Attractors

Let us come back to the general dynamical system de-
scribed by the equations (1). We call ¥ the map of m
dimensional space to itself which sends X with coordinates
X1y ... Xy to F(X) with coordinates 'y (xy, . .., Xp,),

e Fo(xy, .. X, ). We shall say that a bounded set A4

in m-dimensional space is a strange attractor for the map
F if there is a set U with the following properties:
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{a} I/ is an m-dimensional neighborhood of 4, i.e., for
each point X of 4, there is a little ball centered at X and
entirely contained in U/. In particular 4 is contained in U/,

(b} For every initial point X in U/, the point X; with
coordinates x(2). . . ., X, {f} remains in U for positive #;
it becomes and stays as close as one wants to 4 for  large
enough. This means that 4 is attracting.

{c) There is sensitive dependence on initial condition when
X, isin U. This makes 4 a strange attractor.

In the case of the Hénon attractor one can take for U
the quadrilateral ABCD (Figure 1C), in the case of the
solenoid one can take for U/ the solid torus 4 (Figure 2).

The above definition allows the practical determination
of sirange attractors in computer studies, but it is not
quite complete mathematically. It is desirable also to
impose the following condition.

(d) One can choose 2 point X in A such that, arbitrarily
ciose to each other point Y in A, there is a point X, for
same positive . This indecomposability condition implies
that 4 cannot be split into two different attractors.

It would aiso be necessary to make the notion of sen-
sitive dependence on initial condition more precise. This
however, ieads to questions which are not too well under-
stood. It must be said that the mathematical theory of
strange attractors is difficult and, in part, still in its infarcy.
The solenoid is well understood, thanks to the work of
Sieve Smale [ 2] of Berkeley. By contrast, it has not been
proved that Figures 1A and 1B do not just show a periodic
orbit of very long period. The fact that the Hénon attrac-
tor exists as a strange attractor is for the time being a
belief based on computer calculations! Perhaps our defini-
tion of strange attractors will have to be changed to adapt
to more general situations. Do not take it too seriousty,

It seems that the phrase “strange attractor” first
appeared in print in a paper by Flozis Takens (of Gronin-
gen) and myself [3]. I asked Floris Takens if he had creat-
ed this remarkably successful expression. Here is his ans-
wer: “Did you ever ask God whether he created this
darmned universe? . . . I don’t remember anything . . .1
often create without remembering it . . .~ The creation
of strange attractors thus seems to be surrounded by
clouds and thunder. Anyway, the name is beautiful, and
well suited to these astonishing objects, of which we
understand so litde.

Besides strange attractors, we should remember that
there are also non strange attractors. For instance affract-
ing fixed points. The point 4 is an attracting fixed point
if X, gets arbitrarity close to 4 when ¢ increases, provided
X, isin a neighborhood U of A. In that case of course
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errors decrease when ¢ increases, and there is no sensitive
dependence on initial conditions. Atiracting fixed points
belong to the periodic artractors, which we have already
met (Figure 1D). A periodic attractor has a finite number
of points.

Attracting fixed points have been known for a long
time. They describe an asymptotically stationary situation,
i.e., for large ¢, X, practically no Tonger depends on ¢. In
the same manner the periodic attractors describe an
asymptaotically periodic sttuation. Scientists had got used
to the notion that the asymptotic behavior of natural phe-
nomena should be stationary, or perhaps periodic. Only
recently did interest arise in the ““chaotic” behavior, with
sensitive dependence on initial condition, which occurs
in many natural phenomena.

Strange Attractors in Nature

To describe the systems which they encounter, physicists,
chemists, and biologists use equations of the type (1), or
differential equations in the case of continuous time. One
should not underestimate the amount of idealization im-
plied by such a description. Certain parameters are selected
as variables xy, . . ., x,,, others are ignored, and various
simplifications are made. Idealization is a basic ingredient
of all natural sciences, and a serious scientist must show
that the natural system which he considers obeys deter-
ministic laws of the type (1) with a good approximation.
He may then look for strange attractors, either by the
direct study of experimental results, or by computer
simulation. In this manner, the “chaos” which occurs in
certain phenomena becomes understandabie, and it may
be hoped that this understanding will lead to practical
applications.

The study of “chaotic” or “turbulent” time evolutions
in natural phenomena is now only at its begirnings. Pro-
gress is slow, due in part to experimental difficulties, in
part to the insufficient development of the theory. In the
absence of a satisfactory mathematical theory, computers
play an important role in the interpretation of data.

We shall now discuss some examples of chaotic phe-
nomena, and in particular the problem of fluid turbulence.
In order to do this we shall have to use a continuous time
t rather than a discrete time.

The Lorenz Attractor, and Meteorological Predictions

In order to define differentiable dynamical systems with
continuous time we replace the equations (1) by differen-
tial equations

2B O=6,0,0, - x(1)
@

ngm(z) = Gty (B - o X ()

Gy, ..., Gy, satisfy certain conditions (existence of
continuous derivatives, etc.) the equations (4) uniquely
determine the functions x,(#), . . ., x,,,(#) of tine # when
the initiat data x,(0), . . ., x,,,(0) are known. The equa-
tions {4) thus define a deterministic evolution with con-
tinuous time, just as the equations (1) defined a determin-
istic evolution with discrete time.

Let us take for example m = 3, and write x, (1) = x,
x5{2) =y, x3(2) =z. We consider the differential equations

~

D oxva
dt 7
Ve xyrx— > 5
5wy )
3§=xy—bz

P

with o = 10, b = 8/3, and r = 28, Figure 3 shows the tra-
jectory of the peoint (x, v, z) corresponding to the solution
of these equations with initial condition (0, 0, 0). It ap-
pears that we have here again a strange attractor, and one
can show that there is indeed sensitive dependence on
inittal condition.

The attractor of Figure 3 is the Lorenz attractor, named
after Edward Lorenz, professor in the Meteorology depart-
ment of the Massachusetts Institute of Technology. The
equations (5) were indeed first written and studied by
Lorenz [4]. These equations give an approximate descrip-
tion of a horizontal fluid layer heated from below. The
warmer fluid formed at the bottom is lighter. It tends to
rise, creating convection currents. If the heating is suffi-
clently intense, the convection takes place in an irregular,
turbulent manner. This phenomenon takes place for in-
stance in the earth atmosphere, and since it has sensitive
dependence on initial condition, it is understandable that
meteorologists cannot predict the state of the atmosphere
with precision a long time in advance. The work of Ed
Lorenz thus gives some theoretical excuse fo the well-
known unreliability of weather forecasts.

Fluid Turbulence: One of the Great Unsolved Problems
of Theoretical Physics

Turbulence is a phenomenon easily produced by opening
the tap over the bath tub or the kitchen sink. The nature
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Figure 3. The Lorenz attractor. This beau tiful figure has been ob-
tained by Oscar Lanford, of Berkeley. It illustrates a new strange
attractor, the Lorenz attraetor, which is approached by the soly-
tions of the Lorenz system of equations;

dx a’y dz
~Z = +10 —~ = - + — — = — gz
" 10x + 10y, : xz+ 28x — y, ar Xy 32

Lanford has chosen the solution which starts from the origin
(0, G, 0) at time ¢ = 0. It makes one loop to the right, then a few
loops to the left, then to the right, and so on in irregular manner.

of turbulence remains however rather mysterious and
controversial.

One may in principle describe the time evolution of a
viscous fluid by equations of the form (4). The number
m will have to be taken infinite, because the state of the
fluid at a given instant of time requires an infinite number
of variables for its description. We admit that there are
no further problems, and write X(t) and & instead of
X1(1), %2(7), . . ,and G, G,, . .. . The equations (4)
can then be written in compact form as

d
3 X0 =G0y (©)

One follows the solution here for fifty loops. The part below the
plane z = 27 is drawn as a dotted line. If one would tuke, instead
of (0, 0, 0, a nearby initial condition, the new salution would
soon deviate from the old one, and the numbers of loops to the
ieft and to the right would no longer be the same. There is sensi-
tive dependence with respect to initial conditions. The Lorenz
equations are suggested by a problem of atmospheric convection,
Edward Lorenz has used the sensitive dependence on initial con-
dition observed with the above equations 1o justify the imprecision
of weather forecasting,

We have introduced a parameter u in (6) to indicate the
intensity of external action on the fluid. (If there is no
external action, viscosity brings the fluid to rest, and there
is no turbulence). In the example of the tap, u might give
the degree of opening of the tap. In the convection equa-
tions (5) of Lorenz, u is replaced by r, which is propor-
tional to the temperature difference between the top and
the bottom of the fluid layer. In many hydrodynamical
problems, the role of u is taken by a parameter called
Reynolds number.

If =0, ie., if there is no external action, the fluid
tends to a state of rest X{(r) = X ,. This state corresponds
to an attracting fixed point X, for our dynamical system.
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For small i one observes again a steady state X(7} = X,.
As g is further increased, one often sees periodic oscilla-
tions in the fluid. This means that asymptotically

X(t)=f(wr)

where { is a function. of pericd 2w and w the frequency of
the oscillations. This situation corresponds to a periodic

limit cycle”. For sufficiently large p, the fluid motion be-
comes irregular, chaotic: turbulence has set in.

When [ became interested in turbulence, around 1970,
Lorenz’ paper of 1963 was not known to physicists and
mathematicians. The most popular theory of turbulence
was that of Lev D. Landau of Moscow [5]. According to
this theory, the time evolution of a turbulent fluid is
asymptotically given by

attractor for continuous time, i.e., a circle or “attracting X(0) = fileat, wqt, . o, g t) ' {7)
10 Couette flow : 10 £ convection
10° 1074
10° % 1orsd

104

requency

0

1071

g reauentY  5os 0.10 0.15]

Figure 4, Frequency spectra. A frequency analysis of the time
dependence of a phenomenon is possible, whether this dependence
is periedic or not. One obtains thus & “frequency spectrum” giving
the square of the amplitude associated with each frequency. The
spectra on the left of the figure have been measured by R. Fenster-
macher for the Couette flow (the interval between two coaxial
circular cylinders is filled with fluid, and the inner cylinder is
rotated at constant speed). The spectra on the right have been
measured by 8. Benson for a convective flow (a liquid layer is
heated from below, the hot liquid formed below is lighter and

rises, producing convection currents).

The different spectra shown correspond to different speeds of
rotation (Couette) or different intensitics of heating (convection).
The spectra at the top contain isolated peaks corresponding toa
certain frequency and its harmonics: the system is periodic. The
spectra in the middle row exhibit several independent frequencies:
the system is quasf periodic. The spectra at the bottom show some
wide peaks on a background of confinuous spectrum, this suggests
that a strange attractor is present. Notice that the frequency spec-
ira are shown with a logarithmic vertical scale.




where f; is a periodic furction of period 2# in each of iis
arguments, and wy, Wy, .. ., wy are independent frequen-

cies. A function of ¢ of the form (7) is called quasipericdic.

{One can see that the corresponding quasiperiodic attrac-
tor is a k-@imensional torus). A quasiperiodic function has
a non periodic, irregular aspect, suggestive of turbulence.
However a small change in initial conditions simply re-
places wi i, .. . Wt by wiftay,. .., wgt+ o with
small @, . . ., ag. There is thus no sensitive dependence
on initial conditions.

It was tempting to appeal to strange attractors rather
than quasiperiodic attractors to interpret turbulence. A
mathematical argument against quasiperiodic attractors is
their fragility. My attention had been drawn on this fragil-
ity, or absence of “structural stability™ by the seminars of
René Thom at the Institut des Hautes Etudes Scientifiques
{Bures-sur-Yvette). By a small perturbation of (6} one can
destroy a quasiperiodic attractor and, if £ 2 3, obtain a
strange attractor. I had published this result with Floris
Takens [3]in 1971, and we had on this occasion proposed
the idea that turbulence is described by strange attractors.
While structural stability may not be as important an
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aspect of things as we thought at the time, the connec-
tion between strange attractors and turbulence was a
lucky idea.

It remained to be seen if strange attractors would give
a better description of turbulence than quasiperiodic
attractors. There is no direct experimental test of sensitive
dependence on initial condition in hydrodynamics. One
may however do a frequency analysis of the fluid velocity
at a point, considered as a function of time. The function
giving the square of the amplitude versus the frequency is
called frequency spectrum (see Figure 4). For a quasi-
periodic function the frequency spectrum is formed of
discrete peaks at the frequencies w,, . . ., wy and their
linear combinations with integer coefficients. By contrast
if the time evolution is govemned by a strange attractor
one may obtain a continuous frequency spectrum.

It was known that the frequency spectrum of a turbu-
lent fluid is continuous, but this fact was attributed to the
accumulation of a large number of independent frequen-
cies simulating, in the Hmit, a continuous spectrum. Re-
cently {1974-75), delicate experiments performed by
Guenter Ahlers at Bell Labs (Murray Hill, NJ), Jerry Gollub

Yigure 5. A Jupanese aitractor. This picture
shows a strange attractor invented by
Yoshisuke Ueda, of Kyoto University, It is
obtained by solving the differential equation

dx
etk = +x3 =P cost

fork=90.1 and B = 12, and marking the
d

points with coordinates x(2nw}, d_ x(2nm)
4

for integer i (discrete time r = 2nw). Depend-
ing on the initial conditions one obtains
either the zbove attractor, ora single point
{attracting fixed point), Y. Ueda has studied
strange attractors numerically for a number
of years on analog and digital computers,
Estheticalty, his pictures are probably the
finest obtained to this date.
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and Harry Swinney at City College (New York) {6], and
others, have shown that things happen differently. When
one increases the parameter 4 describing the system, the
transition to the continuous spectrum characteristic of
turbulence is rapid. There is no progressive accumulation
of many independent discrete frequencies. So it seems
that the onset of turbulence may well correspond to the
appearance of strange attractors.

Other Chaotic Phenomena: Turbulence Everywhere

I should here be mentioned that frictionless mechanical
systems (conservative systems) give rise neither to strange
attractors, nor in fact to attractors at all. Actually, a theo-
rem of mechanics, Liouville’s theorem, asserts that time
evolution preserves volumes in phase space. This prevents -
the volume contraction which occurs near an attractor.

On the other hand, conservative systems often show sen-
sitive dependence on initial condition.

The physico-chemical systems which give rise to strange
attractors are the dissipative systems, i.e., those for which
a “noble” form of energy (for instance mechanical, elec-
trical, or chemical energy) is changed into heat {7]. These
systems actually exhibit an interesting behavior only if
they are constantly fed some noble energy, otherwise they
g0 to rest.

One knows chemical reactions which are periodic in
time (see inset). | asked in 1971 a chemis¢, specialist of
these periodic reactions, if he thought that one would
find chemical reactions with chaotic timeé dependence. e
answered that if an experimentalist obtained a chaotic
record in the study of a chemical reaction, he would
throw away the record, saying that the experiment was
unsuccessful. Things, fortunately, have changed, and we
now have several examples of non periodic chemical reac-
tions.

The magnetism of the earth perhaps gives an example
of a strange attractor. It is known that the earth magnetic
field reverses itseif at irregular intervals. This phenomenon
occurred at least sixteen times in the last four million
years. Geophysicists have written “dynamo equations”
with chaotic solutions which describe irregular changes of
direction of a magnetic field. There is however as yet no
quantitatively satisfactory theory.

Eeologists have studied non periodic models in popula-
tion dynamics. If m species have, in the year ¢ + 1, popula-
tions x ¢ {f + 1), .. ., x,,(f + 1} determined by the equa-
tions (1) in terms of the populations in the year z, one
may expect strange atiractors to occur. In fact, already
for m = 1, the equation

x(r+ 1)=Rx(r) (1 - x(1))

gives rise to nonperiodic behavior [8].

One imagines easily that strange attractors may play a
role in economics, where periodic processes (economic
cycles) are well-known. In fact, let us suppose that the
macroeconomical evolution equations contain a parameter
i describing, say, the level of technological development.
By analogy with hydrodynamics we would guess that for
small 4 the economy is in a steady state and that, as g in-
creases, periodic or quasiperiodic cycles may develop. For
high 1 chaotic behavior with sensitive dependence on inj-
tial condition would be present. This discussion is some

A Periodic Chemical Phenomenon: The Belousov-
Zhabotinski Reaction

For about twenty years now, an oscillating reaction has
been known to chemists. The oscillations have a period of
the order of one minute, and continue for perhaps an hour
untif the reagents are exhausted. If reagents are added con-
tinuously, while reaction products are removed, the oscil-
lations proceed periodically forever. The reaction is,
roughly speaking, the oxydization of malonate by bromate,
catalyzed by Cerium. The experiment is fairly easy to
realize: here is the recipe.

3

Malonic acid 0.3M

Cerous nitrate 0.005--0.01 M
Sulfuric acid 3.0M

Sodium bromate 0.05-0.01 M
Ferroin a little

M means “molar”, for instance sulfuric acid occurs at the
concentration of 3 moles per liter. Ferroin is an oxidation
reduction indicator (obtained by mixing in water a smail
amount of o-phenanthroline and ferrous sulfate). In prac-
tice one prepares one solution with part of the reagents
(in water}, and another solution with the rest of the re-
agents. The oscillating reaction starts when the two solu-
tions are mixed. Perhaps the mathematical reader should
be warned that diluting sulfuric acid produces heat and
requires caution (see a chemistry text). The sulfuric solu-
tion should be allowed to cool before being mixed with
the other solution, otherwise the oscillations will not be
seent. During the reaction, the ferroin turns from blue to
purple to red, making the oscillations visible. At the same
time the Cerium ion changes from pale yellow to colorless,
so that all kinds of hues are produced.

The Belousov-Zhabotinski reaction, which we just
described, caused astonishment and some disbelief among
chemists when it was discovered. Other periodic chemical
reactions have now been discovered, in particular in sys-
tems of biological origin. One speculates on the physiologi-
cal significance of these reactions, but little is really known
with certainty.




what metaphorical, but its conclusions are suggestive, and
a more detailed analysis may be useful.

To conclude this list of examples, let me mention a
dynamical system of vital interest to everyone of us: the
heart. The normal cardiac regime is periodic, but there are
mzny nonperiodic pathologies (like ventricular fibrillation)
which lead to the steady state of death. It seems that great
medical benefit might be derived from computer studied
of a realistic mathematical model which would reproduce
the varicus cardiac dynamical regimes.

The application of the ideas which we have discussed
often poses serious methodological problems. How does one
maintain constant experimental conditions, and how does
one make precise measurements? In any case, the recogni-
tion of the role of strange attractors in many problems is
a great conceptual progress. The nonperiodic fluctuations
of a dynamical system do not necessarity indicate an ex-
periment spoilt by mysterious random forces; they often
point to a strange attractor, which one may try to under-
stand [9].

I have not spoken of the esthetic appeal of strange
attractors. These systems of curves, these clouds of points
suggest sometimes fireworks or galaxies, sometimes strange
and disquieting vegetal profiferations. A realm lies there
of forms to explore, and harmonies to discover.
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