
Chapter 1
Tempered fundamental group and graph of the
stable reduction

Emmanuel Lepage

Abstract The tempered fundamental group of a hyperbolic curve over an alge-
braically closed nonarchimedean field is an invariant that does not depend only on
the genus of the curve. In this paper we review some results about what can be re-
covered of a hyperbolic curve from its tempered fundamental group. S. Mochizuki
proved that, for a curve over Qp, one can recover the graph of the stable reduction of
the curve. For Mumford curves, one can also recover a natural metric on this graph.

1.1 Introduction

In characteristic 0, one cannot recover much of a proper curve over an algebraically
closed field from the geometric fundamental group: it only depends on the genus. In
p-adic analytic geometry, the homotopy type of a curve cannot be described in terms
of the genus of the curve. Here we will be interested in what one can recover of a
p-adic curve from a category of geometric analytic coverings, including finite étale
coverings and infinite coverings from analytic geometry. More precisely, we will be
interested in tempered coverings, i.e., coverings that become topological coverings
after pullback by some finite étale covering. These coverings are classified by a
topological group called the tempered fundamental group.

This paper reviews what can be recovered of a curve from its geometric tempered
fundamental group of a hyperbolic curve. Mochizuki proved in [9] that one can
recover the graph of its stable reduction:

Theorem 1 ([9, Cor 3.11]) If Xα and Xβ are two hyperbolic Qp-curves, every
(outer) isomorphism φ : π

temp
1 (Xα,Cp) ' π

temp
1 (Xβ ,Cp) determines, functorially in

φ , an isomorphism of graphs of the stable reductions φ̄ : GXα
'GXβ

.
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Université Pierre et Marie Curie, 4 place Jussieu, 75005 PARIS, FRANCE
e-mail: lepage@math.jussieu.fr

1



More precisely, one can recover from the tempered fundamental group a (p′)-
version of the fundamental group (which classifies coverings that become topolog-
ical after pullback by some finite Galois covering of order prime to p), and one
can describe the graph of the stable reduction from this (p′)-tempered fundamental
group in the following way:

• vertices correspond to conjugacy class of maximal compact subgroups of the
(p′)-tempered fundamental group,

• edges correspond to conjugacy class of nontrivial intersection of two different
maximal compact subgroups.

In [8], we were interested in recovering a natural metric of the graph of the stable
reduction from the tempered fundamental group. The metric is defined so that the
length of an edge is the width of the annulus which is the generic fiber of the formal
completion of the node corresponding to this edge. We proved the following:

Theorem 2 ([8, Thm 4.13]) If X1 and X2 are hyperbolic Mumford Qp-curves (i.e.,
with totally degenerate stable reduction) and φ : π

temp
1 (X1,Cp)' π

temp
1 (X2,Cp) is an

isomorphism, then the induced φ̄ : GX1 →GX2 is an isomorphism of metric graphs.

In this paper, we will explain the proof of this result. In contrast to the previous
result, one cannot recover this metric from the (p′)-tempered fundamental group:
we will also have to study the topological behavior of wildly ramified coverings.

We will mainly focus on wildly ramified abelian torsors on a Mumford curve X
and follow the study made in [11] and [10]. The abelian torsors on Mumford curves
can be described in terms of currents on the graph of the stable reduction. Indeed,
the pullback of a µpn -torsor of X to the universal covering Ω of X can be obtained by
pulling back the canonical µpn -torsor on Gm along some theta function Ω →Gan

m .
Theta functions can be described in terms of currents on the graph of the sta-

ble reduction: given a theta function f : Ω → Gan
m , the potential associated to the

corresponding current is the function x 7→ | f (x)|. This gives a surjective map

Hom(π temp
1 (X),µn)→C(GX ,Z/nZ)

from the set of µn-torsors on X to the set of currents on X with value in Z/nZ. We
will show in Proposition 13 that these morphisms for X1 and X2 are compatible with
φ and φ̄ up to a scalar. For the canonical µph -torsor on Gm, the splitting of the torsor
at a Berkovich point depends on the distance of this point to the skeleton of Gan

m
(i.e., the line linking 0 to ∞). For a given theta function Ω →Gm, one can then get
information about the splitting of the torsor in a point in terms of the distance of the
point to the support of the corresponding current.

In §1 we first give a brief description of the Berkovich space of an algebraic
variety and, for a curve, we recall that it is naturally homotopy equivalent to the
graph of the stable reduction. Then we define the tempered fundamental group. In
§2 we explain Theorem 1, and in §3 we study abelian coverings of Mumford curves.
In §4 we give a proof Theorem 2.
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1.2 Tempered fundamental group

1.2.1 Berkovich analytification of algebraic varieties and curves

Let K be a complete nonarchimedean field. We will mostly be interested lateron in
the case where K = Cp. The norm will be chosen so that |p|= p−1 and the valuation
so that v(p) = 1. All valued fields will have valuations with values in R.

If X is an algebraic variety over K, one can associate to X a topological set
Xan with a continuous map φ : Xan → X defined in the following way. A point of
Xan is an equivalence class of morphisms SpecK′ → X over SpecK where K′ is a
complete valued extension of K. Two morphisms SpecK′ → X and SpecK′′ → X
are equivalent if there exists a common valued extension L of K′ and K′′ such that

SpecL //

��

SpecK′′

��
SpecK′ // X

commutes. In fact, for any point x ∈ Xan, there is a unique smallest such complete
valued field defining x denoted by H (x) and called the completed residue field of x.
Forgetting the valuation, one gets points Spec(K)→ X from the same equivalence
class of points: this defines a point of X , hence the map Xan → X . If U = SpecA
is an affine open subset of X , every x ∈ φ−1(U) defines a seminorm | |x on A. The
topology on φ−1(U) is defined to be the coarsest such that x 7→ | f |x is continuous
for every f ∈ A.

The space Xan is locally compact, and even compact if X is proper. In fact Xan is
more than just a topological space: it can be enriched into a K-analytic space, in the
sense of and as defined by Berkovich in [2].

Let us assume for simplicity that X is irreducible and reduced. One can describe
the sheaf O of analytic functions on Xan as follows (but recall that an analytic space
in the sense of Berkovich is not just given by a locally ringed space, thus more data
should be given to get a well defined analytic space). If U is an open subset of Xan,
then O(U) is the ring of functions f : U →

⊔
x H (x) such that f (x) ∈H (x) and

f is locally a uniform limit of rational functions: for every x ∈U , there is an open
neighborhood V of x and a sequence (gn) of rational functions on X with no poles
in U such that supx∈V | f (x)− gn(x)| → 0. The sheaf M of meromorphic functions
on X is the sheaf associated to the presheaf mapping an open subset U of Xan to the
total ring of fractions of O(U).

For a hyperbolic curve X over an algebraically closed complete nonarchimedean
field K, the homotopy type of Xan can be described in terms of the stable model
X of X , see [6, def. 1.1] for the definition of stable curves in the non-proper case.
Indeed, consider the graph GX of the stable reduction of X : the vertices correspond
to the irreducible component of the stable reduction and the edges correspond to
the nodes of the stable reduction. There is a canonical embedding GX ↪→ Xan which
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admits a canonical strong deformation retraction Φ . In particular, it is a homotopy
equivalence. The image of GX is called the skeleton of X .

Let e be an edge corresponding to a double point of the special fiber Xs
of the stable model of X . Locally for the étale topology, X is isomorphic to
SpecOK [x,y]/(xy−a) with a ∈ K and |a|< 1. If e̊ is an open edge of GX , its preim-
age Φ−1(e̊) is isomorphic to the open annulus {z | |a|< |z|< 1}. One can define a
metric on GX by setting the length of e to be

lg(e) = v(a).

A metric graph GX ′ can also be defined for any semistable model X ′ of X , and
there is also a natural embedding GX ′ ↪→ Xan. Those metrics are compatible under
blow-up.

Let us assume K = Cp. Points of A1,an are of four different types and are de-
scribed in the following way:

• A closed ball B = B(a,r) ⊂ Cp of center a and radius r defines a point b = ba,r
of A1,an by

| f |b = sup
x∈B
| f (x)|.

The point ba,r is said to be of type 1 if r = 0, of type 2 if r ∈ pQ and of type
3 otherwise. The pairs (a,r) and (a′,r′) define the same point if and only if
B(a,r) = B(a′,r′), i.e., r = r′ and |a−a′| ≤ r.

• A decreasing family of balls E = (Bi) with empty intersection defines a point by

| f |E = inf | f |bi .

Such a point is said to be of type 4.

The analytic projective line P1,an is obtained from A1,an by adding a point at
infinity. There is a natural metric on the set of points of type 2 and 3 of P1,an defined
by the following formula:

d(ba,r,ba′,r′) =
{

logp(|a−a′|/r)+ logp(|a−a′|/r′) if |a−a′| ≥max(r,r′)
| logp(r

′/r)| if |a−a′| ≤max(r,r′)

This metric is compatible with the metrics of the graphs of the semistable reductions.
It is invariant under automorphisms of P1,an. The metric topology defined on the set
of points of type 2 and 3 is much finer than the Berkovich topology.

If x 6= y ∈ P1,an, there is a unique smallest connected subset of P1,an that contains
x and y. It is homeomorphic to a closed interval and is denoted [x,y]. We also set
]x,y[= [x,y]\{x,y}, it consists of points of type 2 and 3. The topology induced by
the restriction of the metric d to ]x,y[ is the topology induced by the topology of
P1,an. For example, if x,y ∈ A1(Cp),

]x,y[= {bx,r}0<r≤|x−y|∪{by,r}0<r≤|x−y|.
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1.2.2 Definition of the tempered fundamental group

Let K be a complete nonarchimedean field, and let X be a connected smooth alge-
braic variety over K.

The usual definition of tempered fundamental groups, as given in [1, def. 2.1.1],
uses a notion of étale topology on Berkovich spaces defined in [3]. However, we
will start with a description of the tempered fundamental group that only uses the
topology of the analytifications of the finite étale coverings of X . This description
will be enough for our purposes.

Let x : SpecK′ → X be a geometric point of X and assume that K′ is provided
with a complete valuation extending the valuation of K so that x also defines a point
of Xan.

Let (Y,y)→ (X ,x) be a pointed Galois finite étale covering of (X ,x). Then y
also defines a point of the Berkovich space Y an. Let φ : (Y ∞,y∞)→ (Y an,y) be the
pointed universal covering of (Y an,y). Let us consider the following group:

HY := {(g,h) ∈ Gal(Y/X)×AutXan(Y ∞)|φh = gan
φ}.

Heuristically, HY can be thought of as the Galois group of Y ∞ over X . There is a
natural homomorphism π

top
1 (Y an,y)→ HY that maps h ∈Gal(Y ∞/Y ) to (idY ,h) and

a natural homomorphism HY → Gal(Y/X) mapping (g,h) to g. One thus get an
exact sequence

1→ π
top
1 (Y an,y)→ HY → Gal(Y/X)→ 1.

Tthe surjectivity of the morphism on the right comes from the extension property of
universal topological coverings.

By the strong deformation retraction recalled above, the group π
top
1 (Y an) is iso-

morphic to π
top
1 (GY ) and the extension of Gal(Y/X) by π

top
1 (GY ) can also be di-

rectly described in terms of the action of Gal(Y/X) on GY .
For a morphism ψ : (Y1,y1)→ (Y2,y2) of pointed Galois finite étale coverings, let

ψ∞ : (Y ∞
1 ,y∞

1 )→ (Y ∞
2 ,y∞

2 ) be the morphism of pointed topological spaces extending
ψ . One defines a morphism HY1 →HY2 by mapping (g,h) to (g′,h′) such that h′ψ =
ψh and g′ψ∞ = ψ∞g.

The tempered fundamental group of X , pointed at x, is the topological group

π
temp
1 (X ,x) = lim←−

(Y,y)∈C0

HY ,

where C0 is the filtered category of pointed Galois finite étale coverings. Thanks to
a result of J. de Jong, the group π

temp
1 (X ,x)→ HY is surjective for any (Y,y) and

π
temp
1 (X ,x) does not depend on x up to inner automorphism.

The tempered fundamental group is functorial: if (Y,y)→ (X ,x) is a morphism of
geometrically pointed smooth varieties, one gets a morphism of topological groups
π

temp
1 (X ,x)→ π

temp
1 (Y,y). If we forget base points, one gets a functor π

temp
1 from

smooth K-varieties to topological groups with outer morphisms.
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We will be mainly interested in curves over Qp in this paper. If X is a curve over
Qp, then Xan will be an abbreviation for Xan

Cp
and π

temp
1 (X) will be an abbreviation

for π
temp
1 (XCp).

As stated before, the tempered fundamental group classifies a category of ana-
lytic coverings. A morphism of K-analytic spaces f : S→ Xan is said to be an étale
covering if Xan is covered by open subsets U such that f−1(U) =

⊔
Vj and Vj→U

is finite étale, see [5]. For example, finite étale coverings, also called algebraic cov-
erings, and coverings in the usual topological sense for the Berkovich topology, also
called topological coverings, are tempered coverings. Then, André defines tempered
coverings as follows:

Definition 3 ([1, def. 2.1.1]) An étale covering S→ Xan is tempered if it is a quo-
tient of the composition of a topological covering T ′→ T with a finite étale covering
T → X.

Here are two properties of the category of tempered coverings.

Proposition 4 If X is a proper curve, then the category of tempered coverings of
X is equivalent to the category of locally constant sheaves for the Berkovich étale
topology on Xan.

Proposition 5 There is an equivalence between the category of sets endowed with
an action of π

temp
1 (X ,x) that goes through a discrete quotient and the category of

tempered coverings of Xan.

1.3 Mochizuki’s results on the pro-(p′) tempered group of a
curve

Mochizuki proves in [9] the folllowing theorem.

Theorem 6 ([9, cor. 3.11]) If Xα and Xβ are two hyperbolic Qp-curves, every
(outer) isomorphism γ : π

temp
1 (Xα,Cp)' π

temp
1 (Xβ ,Cp) determines, functorially in γ ,

an isomorphism of graphs γ̄ : GXα
'GXβ

.

Let us explain this result. In fact, the graph of the stable reduction of the curve
can even be recovered from a prime-to-p version of the fundamental group. Let

π
temp
1 (X ,x)(p′) = lim←−

(Y,y)∈C
HY

where C is the category of pointed Galois finite étale coverings (Y,y) of (X ,x) such
that the order of Gal(Y/X) is prime to p. Any morphism π

temp
1 (X1)→ π

temp
1 (X2)

induces a morphism
π

temp
1 (X1)(p′)→ π

temp
1 (X2)(p′).
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Indeed, (HY )p∧]Gal(Y/X)=1 is cofinal among discrete quotients of π
temp
1 (X) that are

extensions of a finite prime-to-p group by a torsionfree group. Hence, if C is the
class of discrete groups that have a normal torsionfree subgroup of finite prime-to-p
index, then π

temp
1 (X)(p′) is the pro-C completion of π

temp
1 (X).

A finite prime-to-p covering Y → X extends as a Kummer covering Y →X ,
where Y and X are the stable models of Y and X . The map Y →X induces a
morphism of graphs GY →GX and a commutative diagram

GY
� � //

��

Y an

��
GX

� � // Xan.

Let z be a vertex (resp. an edge) of GX . Let us consider a compatible family
(z∞

Y )Y∈C where z∞
Y is a vertex (resp. an edge) of G∞

Y over z. Then π
temp
1 (X ,x)(p′) acts

on G∞
Y for every Y . Let Dz be the subgroup of π

temp
1 (X ,x)(p′) that stabilizes zY for

every Y . Changing the family (z∞
Y )Y would replace Dz by a conjugate subgroup, so

that Dz only depends on z up to conjugacy. The group Dz is called the decomposi-
tion subgroup of z. It is a profinite subgroup of π

temp
1 (X)(p′), and in fact it can be

identified with the decomposition group of z in π
alg
1 (X)(p′), which is the prime-to-p

completion of π
temp
1 (X)(p′).

If e is an edge that ends at the vertex v, then De is a subgroup of Dv. This gives
a natural structure of a graph of profinite groups on GX The important facts for
Theorem 6 are that (1) every compact subgroup of π

temp
1 (X)(p′) is contained in some

decomposition group of some vertex of Gx, and that (2) if the intersection of two
different decomposition subgroups of a vertex is non trivial, then this intersection is
the decomposition subgroup of a unique edge, and that (3) the intersection of three
different decomposition subgroups of a vertex is trivial. Hence GX can be recovered
from π

temp
1 (X)(p′) together with the structure of graph of profinite groups on it in

the following way.

• The vertices of GX correspond to conjugacy classes of maximal compact sub-
groups of π

temp
1 (X)(p′). Such a maximal compact subgroup is called a vertical

subgroup of π
temp
1 (X)(p′).

• The edges of GX correspond to conjugacy classes of nontrivial intersections of
two different maximal compact subgroups. Such an intersection is called an edge-
like subgroup of π

temp
1 (X)(p′).

A connected finite étale covering f : Y → X induces a morphism of stable mod-
els Y →X . One can recover GX from π

temp
1 (X) and GY from π

temp
1 (Y ). We are

now interested in the combinatorial data of the morphism Ys →Xs which can be
recovered from the embedding ι : π

temp
1 (Y ) ↪→ π

temp
1 (X). If H is a vertical subgroup

of π
temp
1 (Y )(p′) corresponding to an irreducible component y of Ys, then ι(p′)(H) is
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• either a finite index subgroup of a unique vertical subgroup H ′ of π
temp
1 (X)(p′)

if y maps onto an irreducible component x of Xs, and then H ′ is the vertical
subgroup corresponding to x,

• or a commutative group and hence not a finite index subgroup of any vertical
subgroup.

Thus, for a given irreducible component x of Xs, one can recover from ι the set
of irreducible components of Ys that map onto x. Translated into Berkovich spaces,
one gets:

Proposition 7 One can recover from ι the preimage of any vertex of the skeleton of
Xan. In particular, one can know if the covering is split at this vertex.

1.4 Abelian coverings of Mumford curves

1.4.1 Definition of Mumford curves

A proper curve X over Qp is a Mumford curve if the following equivalent properties
are satisfied:

• all normalized irreducible components of its stable reduction are isomorphic to
P1,

• Xan is locally isomorphic to P1,an,
• its Jacobian variety J has multiplicative reduction,
• the universal topological covering of Jan is a torus J̃.

The universal topological covering Ω of Xan for a Mumford curve X is an open
subset of P1,an. More precisely there is a Shottky subgroup Γ of PGL2(Cp), i.e.,
a free finitely generated discrete subgroup of PGL2(Cp), such that Ω = P1,an\L
where L is the closure of the set of Cp-points stabilized by some nontrivial element
of Γ . The points of L are of type 1, i.e., are Cp-points. Then X is p-adic analytically
uniformized as

Xan = Ω/Γ

and Γ = π
top
1 (X).

Let GX be the graph of the stable reduction of X and TX be its universal topo-
logical covering. The graph TX embeds in Ω and can be described as the smallest
subset of Ω such that TX ∪L is connected, i.e., T = ∪(x,y)∈L 2 ]x,y[.

1.4.2 Abelian torsors and invertible functions on Ω

Let X be a Mumford curve of genus g ≥ 2 over Qp, let Ω ⊂ P1 be the universal
topological covering of Xan, and Γ = Gal(Ω/X), so that Xan = Ω/Γ . All the co-
homology groups will be cohomology groups for étale cohomology in the sense of
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algebraic geometry or in the sense of Berkovich. One can replace étale cohomology
of Xan by étale cohomology of X thanks to [4, thm. 3.1]. Kummer theory gives us
the following diagram with exact lower row (see [3, prop. 4.1.7] for the Kummer
exact sequence in Berkovich étale topology):

H1(X ,µn) //

��

H1(X ,O∗)

��
1 // O(Ω)∗/(O(Ω)∗)n // H1(Ω ,µn) // H1(Ω ,O∗)

The map H1(X ,O∗)→ H1(Ω ,O∗) is zero, and thus H1(X ,µn)→ H1(Ω ,µn) goes
through O(Ω)∗/(O(Ω)∗)n. Let us explain why H1(X ,O∗)→ H1(Ω ,O∗) is zero.
There is a commutative diagram with exact lines:

Cp(X)∗ //

��

Div(X) //

��

H1(X ,O∗)

��
M (Ω)∗ // Div(Ω) // H1(Ω ,O∗)

where M (Ω)∗ is the group of nonzero meromorphic functions on Ω and Div(Ω) is
the group of divisors on Ω(CP) with discrete support, i.e.,

Div(Ω) = { f : Ω(Cp)→ Z | the support {x ∈Ω(Cp) | f (x) 6= 0} is discrete }.

Since Div(X)→ H1(X ,O∗) is surjective, the next proposition tells us that the map
H1(X ,O∗)→ H1(Ω ,O∗) is zero.

Proposition 8 ([11, prop. 1.3]) M (Ω)∗→ Div(Ω) is surjective.

Proof. Assume ∞ ∈ Ω . Let D = ∑i∈I nixi ∈ Div(Ω). Let us choose yi ∈ L such
that |yi− xi| = minz∈L |z− xi|. Then the infinite product ∏i∈I(

z−xi
z−yi

)ni is uniformly
convergent on every compact of Ω and thus defines a meromorphic function f such
that div( f ) = D. ut

Combining the above, we find morphisms for every n ∈ N

H1(X ,µn)→ O(Ω)∗/(O(Ω)∗)n ↪→ H1(Ω ,µn).

Moreover, H1(X ,µn) is mapped into the set of Γ -equivariant elements of H1(Ω ,µn).
There is a spectral sequence

H p(Γ ,Hq(Ω ,µn))⇒ Hn(Xan,µn) = Hn(X ,µn)

associated to the Galois étale covering Ω → Xan. It gives a five-term exact sequence

0→ H1(Γ ,µn)→ H1(X ,µn)→ H1(Ω ,µn)Γ → H2(Γ ,µn).
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Since Γ is free, H2(Γ ,µn) = 0, and thus H1(X ,µn)→ H1(Ω ,µn)Γ is surjective,
which in turn implies that

(O(Ω)∗/(O(Ω)∗)n)Γ → H1(Ω ,µn)Γ

is an isomorphism. The kernel of H1(X ,µn)→H1(Ω ,µn) is denoted by H1
top(X ,µn)

and consists of µn-torsors that are already locally constant for the topology of Xan.

1.4.3 Invertible functions on Ω and currents on T

We recall the combinatorial description of O(Ω)∗ in terms of currents of the graph
is given in [11].

If G0 is a locally finite graph and A is an abelian group, a current C on G0 with
coefficients in A is a function C : {oriented edges of G0}→ A such that

• C (e) =−C (e′) if e and e′ are the same edge but with reversed orientation,
• if v is a vertex of G0, ∑e ending at v C (e) = 0.

The group of currents on G0 with coefficients in A will be denoted C(G0,A). We
will simply write C(G0) for C(G0,Z).

Proposition 9 ([11, prop. 1.1]) There is an exact sequence

1→ C∗p→ O(Ω)∗→C(T)→ 0.

Proof (sketch). The morphism O(Ω)∗ → C(T) assigns to an f ∈ O(Ω ∗) a current
C f on T as follows.

For any oriented open edge e̊, the preimage Φ−1(e̊) is isomorphic to an open
annulus {z ∈ P1|1 < |z|< r} where the beginning of the edge tends to 1 and the end
tends to r. Let i : {z ∈ P1|1 < |z|< r} → Φ−1(e̊) be such an isomorphism. Then f i
can be written in a unique way as z 7→ zmg(z) with m ∈ Z and |g| is constant. Then
we set C f (e) = m, which does not depend on the choice of i.

For x,y ∈L , let fx,y : P1→ P1 be an automorphism of P1 that maps x to 0 and
y to ∞. It restricts to a map Ω →Gm, i.e., an element fx,y ∈ O(Ω)∗ that depends on
the choice of the homography only up to multiplication by a scalar. Let us choose
x0 ∈ Ω(Cp) and fix fx,y by imposing fx,y(x0) = 1. The corresponding current is
denoted by c]x,y[. We find c]x,y[(e) = ±1 for every edge that belongs to ]x,y[ and
c]x,y[(e) = 0 for any other edge.

Every current c ∈ C(T) can be written as a locally finite sum c = ∑i∈I nic]xi,yi[.
Then f = ∏ fxi,yi is a locally uniformly convergent product and defines a preimage
of c in O(Ω)∗. The exactness in the middle comes from the fact that every bounded
analytic function on Ω is constant. ut

The Kummer exact sequence of Ω gives a map

C(T,Z/nZ) = C(T)/nC(T)' O(Ω)∗/(O(Ω)∗)n→ H1(Ω ,µn),
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that combined with (O(Ω)∗/(O(Ω)∗)n)Γ = C(T,Z/nZ)Γ = C(G,Z/nZ) yields an
exact sequence

0→ H1
top(X ,µn)→ H1(X ,µn)→C(G,Z/nZ)→ 0. (1.1)

1.4.4 Splitting of abelian torsors

We now assume n = ph for some positive integer h. Let c be a current on T with
coefficients in Z/phZ. The subtree ∪e|c(e)6=0 of T is called the support of c and
is denoted by suppc. It can also be viewed as a subset of Ω . We show that the
corresponding µph -torsor of Ω is split at some point if this point is far enough from
the support of c.

Let us begin with the simplest case, the torsor corresponding to the current c]x,y[.

Lemma 10 Let z ∈ Ω be of type 2 or 3, and let h be a positive integer. The µph -
torsor corresponding to the current c]x,y[ is split over z if and only if

d(z, ]x,y[) > h+1/(p−1)

where d is the metric defined in §1.2.1.

Proof. Up to changing the embedding Ω → P1, one can assume x = 0 and y = ∞.
Then the µph -torsor is just f : Gm→Gm, with f (t) = t ph

.
We first assume that h = 1. Let ba,r be a preimage of z. Then f (ba,r) = bap,r′ = z

with r′ = sup|x−a|≤r | f (x)−ap|. If a = 0, then r′ = ph. Otherwise we compute

f (y+a)−ap =
p

∑
k=1

(
p
k

)
ap−kyk

and r′ = supk=1...p |
(p

k

)
| · |a|p−krk with |

(p
k

)
| = p−1 if 1 ≤ k ≤ p− 1 and |

(p
p

)
| = 1.

Thus

r′ =

{
rp if r ≤ |a|p−

1
p−1

|a|p−1r if r ≥ |a|p−
1

p−1

Let ζ be a generator of µp. The torsor is split over z if and only if the orbit of ba,r
under the action of µp is not reduced to one point, if and only if bζ a,r 6= ba,r, if and

only if |ζ a− a| > r, i.e., a 6= 0 and |ζ − 1| > r/|a|. But |ζ − 1| = p−
1

p−1 . If a = 0,
z ∈]0,∞[ and the torsor is not split. Otherwise, one can assume r′ < |ap|. The torsor
is split over z = bap,r′ if and only if r′/|ap|< p−

p
p−1 . But

d(bap,r′ , ]0,∞[) = inf
r′′

d(bap,r′ ,b0,r′′) = logp |ap|/r′.

The result follows for any h by induction. ut
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Every current c on T can be decomposed as a locally finite sum c = ∑i∈I nic]xi,yi[.
For any point z of type 2 or 3, the set

Iz = {i | d(z, ]xi,yi[)≤ h+1/(p−1)}

is finite, and locally around z, the µph torsor Yc → Ω defined by c is isomorphic
to the µph -torsor defined by c′ = ∑i∈Iz nic]xi,yi[. One can moreover choose the de-
composition c = ∑i∈I nic]xi,yi[ such that suppc = ∪]xi,yi[. This proves the folowing
proposition.

Proposition 11 If z is a point of type 2 or 3 of Ω such that d(z,suppc) > h + 1
p−1 ,

then the µph -torsor of Ω defined by c is split over z.

1.5 Metric graph and tempered fundamental group

We consider now two Mumford curves X1 and X2 over Qp of genus g ≥ 2, and an
isomorphism

φ : π
temp
1 (X1)

∼→ π
temp
1 (X2),

together with the induced isomorphism of graphs

φ̄ : G1
∼→G2,

hence an isomorphism φ̄ : T(Ω1)
∼→ T(Ω2).

Theorem 12 The isomorphism φ̄ : G1→G2 is an isomorphism of metric graphs.

We will sketch the proof of this result. The metric di on Ti obtained by pullback of
the metric on Gi is equal to the one induced by the natural metric of P1,an. Consider
the diagram

H1(X2,µn) //

��

H1(X1,µn)

��
C(G2,Z/nZ) // C(G1,Z/nZ)

(1.2)

where the vertical arrows are given by equation (1.1), the upper arrow is Hom(φ ,µn)
after identifying H1(Xi,µn) = Hom(π temp

1 (Xi),µn). The lower arrow is C(φ̄ ,Z/nZ).

Proposition 13 The diagram (1.2) above commutes up to multiplication by a scalar
λ ∈ (Z/nZ)∗.

Proof. For i = 1,2, a µn-torsor on Xi is in H1
top(Xi,µn) if and only if it is dominated

by a Galois tempered covering with torsion free Galois group. Thus the isomorphism
H1(X2,µn)→ H1(X1,µn) is compatible with a unique isomorphism

φ̃ : C(G2,Z/nZ)→C(G1,Z/nZ).

12



We have to show that there exists λ ∈ (Z/nZ)∗ such that for every c∈C(G2,Z/nZ)
and every edge e of G1, we have φ̃(c)(e) = λc(φ̄(e)).

Let e1 be an edge of G1 such that G1\e1 is connected, and let e2 = φ̄(e1). By
contracting Gi\ei to a point, one gets a map Gi → S1 to the circle S1. There is
a unique connected Galois covering S1 → S1 of order n and Galois group G =
Z/nZ, the pullback of which to Gi we denote by ψi : G(n)

i → Gi. Let X (n)
i be the

corresponding topological covering of Xi. We will use the following lemma, where
for sake of clarity we have omitted the indices i = 1,2.

Lemma 14 For a current c ∈ C(G,Z/nZ) we have c(e) = 0 if and only if there
exists c′ ∈C(G(n),Z/nZ) such that ψ∗c = ∑g∈G g∗c′.

Proof. Assume there is such a current c′. Then, the fact that c′ is a current implies
that c′(e′) is the same for every preimage e′ of e. Thus if e′ is such a preimage of e,
then

c(e) = ψ
∗c(e′) = ∑

e′′∈ψ−1(e)

c′(e′′) = n · c′(e′) = 0.

If c(e) = 0, then c induces a current on G\e. Let A be a connected component of
ψ−1(G\e). Since ψ is a trivial covering above G\e, the component A is isomorphic
to G\e and c thus induces a current on A. One extends this current by 0 on G(n)\A
to get a current c′ on G(n) for which ψ∗c = ∑g∈Γ g∗c′. ut

Let us come back to the proof of Proposition 13. The map φ induces a commutative
diagram:

π
temp
1 (X (n)

1 )
φ (n)

//
� _

��

π
temp
1 (X (n)

2 )
� _

��

π
temp
1 (X1)

φ // π
temp
1 (X2).

It induces a commutative diagram compatible with the actions of G

C(G2,Z/nZ)
φ̃ //

ψ∗2
��

C(G1,Z/nZ)

ψ∗1
��

C(G(n)
2 ,Z/nZ)

φ̃ (n)
// C(G(n)

1 ,Z/nZ).

Lemma 14 shows that φ̃(c)(e1) = 0 if and only if ψ∗1 φ̃(c) is a norm in C(G(n)
1 ,Z/nZ)

for the G-action. This holds if and only if ψ∗2 (c) is a norm in C(G(n)
2 ,Z/nZ) for the

G-action, or again by Lemma 14 if and only if c(e2) = 0.
An edge e of a graph G is said to be unconnecting if π0(G\{e})→ π0(G) is

injective. If the evaluation map eve : C(G1,Z/nZ)→ Z/nZ is nonzero, then e is
unconnecting and eve is surjective.
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Let e be an unconnecting edge of G1. Since φ̃ maps Ker(evφ̄(e)) to Ker(eve) one
gets an isomorphism

Z/nZ = C(G2,Z/nZ)/Ker(evφ̄(e))→C(G1,Z/nZ)/Ker(eve) = Z/nZ

induced by φ̃ , that is multiplication by a unique λe ∈ (Z/nZ)∗. This means that for
every c ∈ C(G1,Z/nZ), we have φ̃(c)(e) = λec(φ̄(e)). One has now to prove that
λe does not depend of e.

Let π2 : G′2 → G2 be a finite topological covering, let X ′2 → X2 be the corre-
sponding finite topological covering of X2, let π1 : G′1 = φ̄ ∗G′2→ G1 and let X ′1 be
the corresponding finite topological covering of X1. Let φ ′ : π

temp
1 (X1)→ π

temp
1 (X2)

be the induced isomorphism. Let e′ be a preimage of e which is also unconnecting.
The scalar λe′ ∈ Z/nZ induced by φ ′ turns out to be equal to λe because for every
current c ∈C(G2,Z/nZ) we have

λe · φ̃ ′(π∗2 c)(e′) = λeλe′ ·π∗2 c(φ̄ ′(e′)) = λeλe′ · c(φ̄(e))

= λe′ · φ̃(c)(e) = λe′ ·π∗1 φ̃(c)(e′) = λe′ · φ̃ ′(π∗2 c)(e′).

If ea and eb are two unconnecting edges of G1, there exists a finite topological
covering G′1→ G1, a preimage e′a (resp. e′b) of ea (resp. eb) and a cycle of G′1 that
goes through e′a and e′b. Let c be the Z/nZ-current on G′2 which follows this cycle
and is zero everywhere else. Since φ̃ ′(c) must also be a current, one gets that λ must
be constant on the cycle and thus λea = λe′a = λe′b

= λeb . Therefore the scalar λ := λe

does not depend of e and, for every c ∈ C(G2,Z/nZ) and every edge e of G1, we
have φ̃(c)(e) = λc(φ̄(e)). ut

We continue the proof of Theorem 12. Let L1 be an oriented loop in G1, and set
L2 = φ̄(L1). Let L̃1 be an oriented path lifting L1 in T1 and set L̃2 = φ̄(L̃1). Then
L̃i =]xi,yi[ for some points xi,yi ∈ Ωi. Let z1 be a vertex of T1 and set z2 = φ̄(z1).
The stabilizer H ⊂ Γ1 of L̃1 is the image of π1(L1)→ π1(G1) = Γ1.

We fix an integer h′ > 0. Let Γ ′ be a finite index subgroup of Γ1 such that, for
every g ∈ Γ ′\H,

min{d1(L̃1,gL̃1),d2(L̃2, φ̄(gL̃1)}> h′.

The current c1 = ∑g∈Γ ′/(H∩Γ ′) g∗c]x1,y1[ is Γ ′-equivariant, and we set c2 = (φ̄−1)∗c1.
We consider the finite topological covering X ′1 = Ω1/Γ ′→ X1, and set X ′2 = φ ∗X ′1 =
Ω2/φ(Γ ′).

Let Y1 be a µph -torsor of X ′1, whose pullback S1 to Ω1 is induced by c1. Let
Y2 = (φ−1)∗Y1 and let S2 be its pullback to Ω2. According to Proposition 13, S2 is
the µph -torsor induced by λc2 for some λ ∈ Z/phZ.

For h′ chosen big enough, locally around z1 (resp. z2), S1 (resp. S2) is isomorphic
to the µph -torsor induced by c]x1,y1[ (resp. λc]x2,y2[), hence is split at z1 (resp. z2) if
and only if d1(]x1,y1[,z1) > h+ 1

p−1 (resp. d2(]x2,y2[,z2) > h+ 1
p−1 ). According to

Proposition 7, those two conditions must be equivalent for any z1 and h. In particular,∣∣ d1(]x1,y1[,z1)−d2(]x2,y2[,z2)
∣∣≤ 2. (1.3)
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Let L′1 be a loop in G1 and L̃′1 be a lifting of the universal covering of L′1 to T1 such
that L̃′1 6= L̃1. This is possible since X1 is hyperbolic and thus L̃1 6= T1. Let lg1(L

′
1)

be the length of this loop and lg2(φ̄(L′1)) be the length of φ̄(L′1).
Let (zn

1)n∈Z be the family of preimages in L̃′1 of a vertex of L′1, numbered com-
patibly with an orientation of L̃′1. Let zn

2 be the image of zn
1 in T2. Then there ex-

ists constants c1 and c2 such that, for n� 0, d1(]x1,y1[,zn
1) = n lg1(L

′
1) + c1 and

d2(]x2,y2[,zn
2) = n lg2(φ̄(L′1))+ c2. Thus, for n� 0,

n| lg1(L
′
1)−lg2(φ̄(L′1))|= |d1(]x1,y1[,z1)−d2(]x2,y2[,z2)+c1−c2| ≤ 2+|c1|+|c2|.

Since the sequence (n| lg1(L
′
1)− lg2(φ̄(L′1))|)n∈N is bounded, lg1(L

′
1) = lg2(φ̄(L′1)).

Theorem 12 is thus a consequence of the following purely combinatorial statement
applied to G = G1 and f = lg1− lg2 ◦φ̄ :

Proposition 15 ([8, prop. A.1]) Let G be finite graph such that the valency of every
vertex is at least 3. Let f : {edges of G}→R be any function. Let us denote also by
f the induced function on the set of edges of a topological covering of G. Let us set
f (C) = ∑x∈{edges of C} f (x) for C a loop of a covering of G.

If f (C) = 0 for every loop C of every covering of G, then f = 0.

Remark 1. Theorem 12 is also true for open Mumford curves, see [7, cor. 3.4.7].

References
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