
Chapter 23

Rambling around the Milnor Fiber
François Loeser

To Norbert, as a token of friendship and admiration

In this text we will present the pervading influence of Norbert’s works on monodromy and
the Milnor fiber in current research and their interplay with other topics like non-archimedean
geometry, finite fields or symplectic geometry.

1 Foreword

Around 40 years ago, I was skiing on the main track of Les Grands Montets near
Chamonix when by pure chance I ran into Bernard Teissier, my thesis advisor, who
introduced me to his ski buddy: this was my first encounter with Norbert. During this
first exchange with an unknown young student, Norbert was of course as welcoming
and encouraging as I have always seen him since.

Amongst the many memories coming to my mind, there is one of an early break-
fast in his kitchen (it was no later than 5am) where he was explaining to my half
asleep self the ideas that came to his mind since we left late in the evening.

I am thus very happy to dedicate this small token of friendship and admiration to
Norbert, a forever young1 mathematician. Because of my own limitations, this text
is unfortunately deprived of pictures and does not even mention Dehn twists, which
is certainly a flaw in an homage to Norbert! I nevertheless hope that these ramblings
amongst some of Norbert’s favourite mathematical objects will convince the reader
of the lasting influence of his vision and insight.

2020 Mathematics Subject Classification. Primary 14B05; Secondary 14E18, 53D40, 14J17,
32S25, 32S85.
Keywords. Milnor fiber, monodromy, arc spaces, motivic integration.

1According to the foreword of [5], in his memories of Vladimir Rokhlin, Arnold quotes
from Courant: “a mathematician should be considered young for as long as he is inclined to
discuss math at the most inappropriate times".
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2 Computing the Lefschetz numbers of the monodromy

2.1 Lefschetz numbers of the monodromy

Let us start by recalling the classical definition of the Milnor fiber. LetX be a smooth
complex algebraic variety of dimension d , for instanceX DA

d

C
, and let f WX !A

1

C

be a non-constant morphism to the affine line. Let x be a closed point of f �1.0/.
Fix a distance function ı on some open neighborhood of x induced from a local

embedding of this neighborhood in some complex affine space. For " > 0 small
enough, one may consider the corresponding closed ball B.x; "/ of radius " around x.
For ⌘ > 0 we denote by D⌘ the closed disk of radius ⌘ around the origin in C.

By Milnor’s local fibration Theorem, there exists "0 > 0 such that, for every
0 < " < "0, there exists 0 < ⌘ < " such that the morphism f restricts to a fibration,
called the Milnor fibration,

B.x; "/ \ f �1.D⌘ n π0º/ �! D⌘ n π0º:

Set-theoretically the Milnor fiber at x,

Ff;x D f
�1.⌘/ \ B.x; "/;

depends on ı, ⌘ and ", but its diffeomorphism type does not depend on these choices.
The characteristic mapping of the fibration induces an automorphism on Ff;x , defined
up to homotopy and called the local monodromy Mx at x. In particular the singular
cohomology groups H i .Ff;x;Q/ are endowed with an automorphism Mx , and for
any integer m one can consider the Lefschetz numbers

ƒ.Mm

x
/ D Tr.Mm

x
IH ✏.Ff;x;Q// D

X
i�0

.�1/i Tr.Mm

x
IH i .Ff;x;Q//:

The first result of Norbert on the monodromy is the following:

Theorem 2.1 (A’Campo, [1]). Assume x is a singular point of f �1.0/, that is,
df .x/ D 0. Then

ƒ.Mx/ D 0:

Norbert’s proof used resolution of singularities, but some time later Lê Dũng
Tráng constructed geometrically a representative of the monodromy without fixed
points in [44], providing a proof without resolution of Theorem 2.1. Norbert’s result
was refined a bit later by Deligne in terms of the multiplicity of f at x.

Theorem 2.2 (Deligne, cf. [2]). Let � denote the multiplicity of f at x. Then

ƒ.Mm

x
/ D 0 for 0 < m < �:
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For m � � it turns out that ƒ.Mm

x
/ can be expressed in terms of Euler charac-

teristics of arc spaces. Indeed, for any integer m � 0, let Lm.X/ denote the space of
arcs modulo tmC1 on X : a C-rational point of Lm.X/ corresponds to a CŒt ç=tmC1-
rational point of X , cf. [17]. Consider the locally closed subset Xf;m;x of Lm.X/

defined as

Xf;m;x D π' 2 Lm.X/If .'/ D t
m mod tmC1; '.0/ D xº:

In [20], we proved the following remarkable formula:

Theorem 2.3 (Denef–Loeser, [20]). For every m � 1,

�c.Xf;m;x/ D ƒ.M
m

x
/; (2.1)

with �c the Euler characteristic with compact supports.

Note that Theorem 2.2 follows as a corollary since Xf;m;x is empty for 0<m<�.
We arrived at this statement by an analogy between the use of arcs in motivic

integration and that of symplectic disks in Floer theory that was suggested to us by
Paul Seidel. In particular, as noted by Paul Seidel, there exists a remarkable analogy
between Theorem 2.3 and the fact that, in symplectic Floer homology, the Lefschetz
number of a symplectomorphism is equal to the Euler characteristic of the corres-
ponding Floer homology groups, cf. [22]. We will return to this in Section 6.

2.2 A proof via Norbert’s formula

The proof of Theorem 2.3 in [20] relies in a fundamental way on a result of Norbert
(Theorem 1 in [2]) expressing ƒ.Mm

x
/ in terms of resolution data.

Let hW Y ! X be a log-resolution of .X; f �1.0//, that is, a proper morphism
with Y smooth such that the restriction of hW Y n h�1.f �1.0//! X n f �1.0/ is an
isomorphism, and h�1.f �1.0// is a divisor with simple normal crossings. We denote
by Ei , i in A, the set of irreducible components of the divisor h�1.f �1.0//. Hence,
by definition the Ei ’s are smooth and intersect transversally. We will assume that the
reduced preimage jh�1.x/j is the union of components Ei , i 2 A0. For I ⇢ A, we set
EI WD

T
i2I

Ei and Eı
I
WD EI n

S
j…I

Ej . We write Eı
i

for Eı
πiº

. We denote by Ni
the order of vanishing of f ı h alongEi and we define the log discrepancies ⌫i by the
equality of divisorsKY D h⇤KX C

P
i2A
.⌫i � 1/Ei , withK denoting the canonical

sheaf, so if ! is a top degree non-vanishing holomorphic form at x, ⌫i � 1 is the order
of vanishing along Ei of h⇤.!/.

Theorem 2.4 (A’Campo, [2]). For m � 1, the Lefschetz number ƒ.Mm

x
/ is equal toP

Ni jm;i2A0
Ni�c.E

ı
i
/.
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To evaluate the left hand side of (2.1), we used ideas coming from motivic integ-
ration, using a cyclic Galois cover QEı

I
! Eı

I
that we describe now. For I ⇢ A, set

mI WD gcd.Ni /i2I . Let U be a Zariski open subset of Y , such that, on U f ı h D
uvmI with u a unit. Then the restriction of QEı

I
! Eı

I
above Eı

I
\U is isomorphic to

π.z; y/ 2 A
1 ⇥Eı

I
\ U I zmi D u�1º.

Using the key geometric statement (namely the fibration Lemma 3.4) underlying
the change of variables formula for motivic integration proved in [17], we are able to
compute the class of Xf;m;x in the Grothendieck ring of complex algebraic varieties
(after localization by the class L of the affine line) in terms of the classes of the
covers QEı

I

ŒXf;m;xç D L
md

X
I\A0 6D;

.L � 1/jI j�1ŒeEı
I
ç

 X
ki�1;i2I;

P
I kiNiDm

L
�
P
ki⌫i

!
: (2.2)

After taking �c of both sides, all terms with jI j � 2 cancel out, and one gets

�c.Xf;m;x/ D
X

Ni jm;i2A0

Ni�c.E
0

i
/;

so that one can conclude by using Theorem 2.4.

Of course, such a proof cannot be considered as fully satisfactory, as it con-
sists in computing explicitly both sides of (2.1) and checking both quantities are
equal. In particular one misses a geometric explanation of why it should be true and
whether it is connected with the Lefschetz fixed point formula. In Section 3 we shall
present another approach, based on non-archimedean geometry, that is more concep-
tual, avoids explicit computations on resolutions and allows to see Theorem 2.3 as a
consequence of an honest form of the Lefschetz fixed point formula.

3 Non-archimedean geometry enters the game

3.1 Fields of power series

We shall work over the valued field K D C..t// with ring of integers R D CŒŒt çç.
They should be seen as corresponding respectively to the punctured disk and the
disk around the origin. The algebraic closure of C..t// is the field of Puiseux series
C..t//algD [m�1C..t1=m//, we shall denote by 2

C..t//alg its completion. The Galois

group G D Aut.2C..t//alg=C..t/// D Aut.C..t//alg=C..t/// is canonically isomorphic
to the group O� D lim

 �
�n of roots of unity, namely, .⇣n/n�1 2 O� sends the seriesP

amt
i=m to

P
am⇣

i

m
t i=m. In other words we view O� as the étale fundamental group
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of the punctured formal disk. As a profinite group it is topologically generated by
' D .exp 2⇡ i=n/n�1 which can therefore be viewed as an algebraic version of the
monodromy.

3.2 Motivic integration according to Hrushovski–Kazhdan

We shall now present a quick review of some of the main results of [30], in a sim-
plified form adapted to our needs. For this it is convenient to work in the setting of
valued fields, that is of fields L endowed with a valuation valWL⇥! Ä.L/ with Ä.L/
an ordered abelian group. Setting val.0/D1 one extends val to valWL! Ä1.L/ WD
Ä.L/ [ π1º. We will mostly consider KDC..t// and KDC..t//alg with their stand-
ard valuation satisfying val.t� /D� , thus there is an inclusion Ä.K/DZ⇢Ä.K/DQ.

We define semi-algebraic subsets of K
n

as elements of the Boolean algebra gen-
erated by subsets ofK

n

defined by conditions of the form val.f /� val.g/with f and
g polynomials with coefficients in K. More generally, if X is a K-algebraic variety,
a subset Z of X.K/ is called semi-algebraic if there is a cover by affine K-varieties
Ui , such that Z \ Ui .K/ is semi-algebraic for each i . We define a category VFK
whose objects are semi-algebraic subsets of some K-algebraic variety, morphisms
being functions whose graph are semi-algebraic. In the terminology of [30], VFK is
(equivalent to) the category of K-definable sets in the VF-sort.

Let L be a valued field. Denote by ML the maximal ideal of its valuation ring.
The quotient RV.L/ WD L⇥=1CML plays a central role in the Hrushovski–Kazhdan
approach. It fits in a short exact sequence

1 �! k.L/⇥ �! RV.L/ �! Ä.L/ �! 0

with k.L/ the residue field of L. We denote by rvWL⇥ ! RV.L/, and more gener-
ally rvW .L⇥/n ! RV.L/n, the quotient morphism and by valW RV.L/ ! Ä.L/ the
morphism induced by val.

We will say a subset of Ä.K/n is semi-algebraic if it belongs to the Boolean
algebra generated by subsets of Ä.K/n of the form

P
n

iD1
aixi C b � 0 with ai in Z

and b 2 Ä.K/. Semi-algebraic subsets of Ä.K/n, for variable n, form a category that
we denote by ÄK . For n � 0, we note by ÄK Œnç the subcategory of semi-algebraic
subsets of Ä.K/n.

Similarly, one may define a notion of semi-algebraic subsets of RV.K/n

(K-definable sets in the RV-sort in the terminology of [30]). We will not give a pre-
cise definition here, but here are some properties that should allow to get some feeling
about them.
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(a) If X is a semi-algebraic subset RV.K/n, its projection to Ä.K/n is semi-
algebraic and its intersection with .k.K/⇥/n is the set of C-points of a C-
constructible set.

(b) The image, resp. preimage, under rvW .L⇥/n ! RV.L/n of a semi-algebraic
set is semi-algebraic.

Semi-algebraic subsets of RV.K/n, for variable n, form a category that we denote
by RVK . For n � 0, we denote by RVK Œnç the category of morphisms f W X !
RV.K/n in RVK with finite fibers.

For each of the category VFK , RVK , . . ., one denotes by K.VFK/, K.RVK/, . . .,
the corresponding Grothendieck ring. It is the free abelian group on isomorphism
classes of objects modulo the cut and paste relation.

Given a semi-algebraic subset X of RV.K/n, one may consider its preimage
rv�1.X/ in VF.K/n, which one denotes by L.X/ (L stands for “lifting"). More
generally, given f WX ! RV.K/n in RVK with finite fibers, one may consider the
set L.X/ D π.x; y/ 2 X ⇥ VF.K/nI f .x/ D rv.y/º. With some thought one may
identify L.X/ with an object of VFK well defined up to isomorphism. The assign-
ment X ! L.X/ gives rise to a morphism

LWK.RVK Œnç/ �! K.VFK/:

Setting K.RVK Œ⇤ç/ D ˚nK.RVK Œnç/, one gets a morphism

LWK.RVK Œ⇤ç/ �! K.VFK/: (3.1)

Hrushovski and Kazhdan proved the following remarkable result:

Theorem 3.1 (Hrushovski–Kazhdan, [30]). The morphism (3.1) is surjective.

What is the connexion with motivic integration? Motivic integration is sup-
posed to assign to a object defined over a valued field a “volume” taking place
in a Grothendieck ring of objects defined over the residue ring or the RV-sort.
Hrushovski–Kazhdan strategy is to “invert” the morphism (3.1). This is not pos-
sible directly since the morphism (3.1) is not injective. Indeed, if Œ1çn stands for
the class of a point embedded in RV.K/n, L.Œ1ç0/ is equal to the class of a point,
while L.Œ1ç1/ is equal to the class of the open ball 1 CM

K
. On the other hand, if

ŒRV>0ç1 denotes the class of the subset defined by the condition val.x/ > 0 in RV.K/,
one notices that L.ŒRV>0ç1/ is the class of the punctured open ball M

K
n π0º. Thus

ŒRV>0ç1 C Œ1ç0 � Œ1ç1 belongs to the kernel of L. An important result of Hrushovski
and Kazhdan states that this is the only relation, namely:

Theorem 3.2 (Hrushovski–Kazhdan, [30]). The kernel of the morphism (3.1) is
exactly the ideal I generated by ŒRV>0ç1 C Œ1ç0 � Œ1ç1.
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Putting together Theorem 3.1 and Theorem 3.2 and inverting L, one gets an iso-
morphism Z

WK.VFK/ �! K.RVK Œ⇤ç/=I: (3.2)

3.3 An Euler characteristic

Using the isomorphism (3.2) together with some additional results of Hrushovski and
Kazdhan, we construct in [31] a canonical morphism

EUÄ WK.VFK/ �! K O�.VarC/=.L � 1/K
O�.VarC/;

assigning to a semi-algebraic set over C..t// the class of a constructible set over C

endowed with an automorphism. This is done so to speak by throwing away the Ä-part
in the RV-sort.

Here K O�.VarC/ is an equivariant Grothendieck ring defined as follows. Let us
say a O�-action on a complex quasi-projective variety is good if it factorizes through
some �n-action, for some n � 1. We denote byK O�.VarC/ the quotient of the abelian
group generated by isomorphism classes of complex quasi-projective varieties with
a good O�-action by the standard cut and paste relations and the following additional
relations: for every complex quasi-projective variety X with good O�-action, for every
finite dimensional complex vector space V endowed with two good linear actions %
and %0, the class of X ⇥ .V; %/ is equal to the class of X ⇥ .V; %0/ ; we denote by L

the class of the affine line with trivial O�-action.

3.4 Equivariant Euler characteristics

Let X be a K-algebraic variety of dimension d . We denote by X an its Berkovich
analytification. Now let U be a semi-algebraic subset of X.K/. It is defined Zariski
locally by some finite Boolean combination of inequalities between valuations of
functions, with data defined over K. We denote by U an the subset of X an defined by
the same conditions. We setX

an
DX anb̋2

C..t//alg and we denote by U
an

the preimage
of U an in X

an
under the canonical morphism X

an
! X an.

When U an is locally closed in X an, the theory of germs in [9] allows to define
cohomology groups H i

c
.U

an
; Q`/ endowed with an action of the Galois group

Aut.2C..t//alg=C..t/// D O�. Furthermore, Florent Martin proved in [35] that they are
finite dimension Q`-vector spaces and that they are zero for i > 2d .

Let K. O�-Mod/ be the Grothendieck ring of the category of Q`Œ O�ç-modules that
are finite dimensional as Q`-vector spaces. When U an is locally closed in X an, one
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defines EUét.U / as the class of
X
i

.�1/i ŒH i

c
.U

an
;Q`/ç

in K. O�-Mod/.
Using further results from [35] one proves the existence of a unique morphism

EUétWK.VFK/ �! K. O�-Mod/

extending the previous construction.
Let now Y be a complex quasi-projective variety endowed with a O�-action factor-

ing for some n through a �n-action. The `-adic étale cohomology groups H i

c
.Y;Q`/

are endowed with a O�-action, and we may consider the element

euét.Y / WD
X
i

.�1/i ŒH i

c
.Y;Q`/ç

inK. O�-Mod/. Note that euét.ŒV; %ç/D 1 for any finite dimensional C-vector space V
endowed with a O�-action factoring for some n through a linear �n-action. Thus, euét

factors to give rise to a morphism

euétWK
O�.VarC/=.L � 1/K

O�.VarC/ �! K. O�-Mod/:

We have the following fundamental compatibility property between EUét and euét.

Theorem 3.3 (Hrushovski–Loeser, [31]). The diagram

K.VF/
EUÄ //

EUét
%%

K O�.VarC/=.L � 1/K O�.VarC/

euét
uu

K. O�-Mod/

is commutative.

In other words “étale Euler characteristics commute with motivic integration”.

This result was extended by A. Forey in [26] to “motivic Euler characteristics”
within the framework of Ayoub’s rigid motives. Recall that in [6], Ayoub constructs a
category Rig SH of rigid motives and shows it is equivalent to the category QUSH.C/
of quasi-unipotent motives over C. Forey constructs Euler characteristics morphisms
�RigWK.VF/! K.Rig SH/ and � O�WK O�.VarC/! K.QUSH.C// and shows they are
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compatible with motivic integration in the sense that the diagram

K.VF/
R
//

�Rig

✏✏

K.RVK Œ⇤ç/=I
‚ıEc // K O�.VarC/

� O�

✏✏

K.Rig SH/ ' // K.QUSH.C//

is commutative, with ‚ ı Ec the composition of two canonical morphisms, and the
bottom isomorphism being induced by Ayoub’s equivalence.

3.5 A non-archimedean Milnor fiber

Let X be a smooth complex algebraic variety of dimension d and let f WX ! A
1

C
D

Spec CŒt ç be a non-constant morphism to the affine line. Via f , we can endow X

with an CŒt ç-scheme structure. Let Y be its t -adic completion and Y the correspond-
ing rigid space. For any closed point x of f �1.0/, we can consider the tube çxŒ in Y
consisting of those points in Y mapping to x under the specialization map Y ! X .
This set was first considered by Nicaise and Sebag in [41], where they call it the ana-
lytic Milnor fiber at x and denote it by Ff;x . Let us now explain why it deserves such

a naming. Write Ff;x
an

for F an
f;x
b̋2

C..t//alg and H ✏.Ff;x
an
;Q`/ for the corresponding

`-adic étale cohomology groups in the Berkovich sense. Note that the Galois element
' acts on H ✏.Ff;x

an
;Q`/.

Using a general comparison theorem due to Berkovich, Nicaise and Sebag indeed
show in [41] that, for every i � 0, there is an isomorphism

H i .Ff;x
an
;Q`/ ' H

i .Ff;x;Q/˝Q Q`: (3.3)

such that the action of ' on the left hand side corresponds to the action of the mono-
dromy Mx on the right hand side.

3.6 A fixed point formula

We shall use the following version of the Lefschetz fixed point theorem. It is classical
and follows in particular from [12, Theorem 3.2]

Proposition 3.4. Let Y be a quasi-projective variety over an algebraically closed
field of characteristic zero. Let T be a finite order automorphism of Y . Let Y T be the
fixed point set of T and denote by �c.Y T ;Q`/ its `-adic Euler characteristic with
compact supports. Then

�c.Y
T ;Q`/ D Tr.T IH ✏

c
.Y;Q`//:
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Remark 3.5. In general one cannot expect to have a fixed point theorem for non
proper varieties without a good control of the behaviour of the automorphism at infin-
ity. Thus, in the above the statement the condition that T is of finite order is crucial.

3.7 A proof of Theorem 2.3 using non-archimedean geometry

We are now in position to explain the proof of Theorem 2.3 given in [31].
Fix m � 1. By (3.3), one may write

ƒ.Mm

x
/ D Tr.'mIH ✏.Ff;x

an
;Q`//:

One deduces easily from Poincaré Duality that

Tr.'mIH ✏.Ff;x
an
;Q`// D Tr.'mIH ✏

c
.Ff;x

an
;Q`//:

Let Xf;t;x the semi-algebraic subset of X.OK/ defined by f .'/ D t and '.0/ D x.
By definition, we have

Tr.'mIH ✏
c
.Ff;x

an
;Q`// D Tr.'mIEUét.ŒXf;t;xç//:

On the other hand, by Theorem 3.3,

Tr.'mIEUét.ŒXf;t;xç// D Tr.'mI euét ıEUÄ.ŒXf;t;xç//:

Using the Lefschetz fixed point formula provided by Proposition 3.4, we get

Tr.'mI euét ıEUÄ.ŒXf;t;xç// D �c.EUÄ.ŒXf;t;xç/'
m

/;

where EUÄ.ŒXf;t;xç/'
m denotes the fixed point set of 'm acting on the virtual object

EUÄ.ŒXf;t;xç/. Finally, one proves that EUÄ.ŒXf;t;xç/'
m and Xf;m;x have the same

class in K0.VarC/=.L � 1/K0.VarC/. In particular,

�c.EUÄ.ŒXf;t;xç/'
m

/ D �c.Xf;m;x/;

which finishes the proof of Theorem 2.3.

4 The motivic Milnor fiber

4.1 The motivic zeta function

Since Xf;m;x is endowed with a natural �m-action, we can consider its class ŒXf;m;xç
in the equivariant Grothendieck ringK O�.VarC/ defined in 3.3 and also in its localiza-
tion K O�.VarC/ŒL

�1ç. The motivic zeta function (cf. [16,18]) is defined as the formal
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series
Zmot
f;x
.T / WD

X
n�1

ŒXf;m;xçL
�ndT n

inK O�.VarC/ŒL
�1çŒŒT çç. It follows from the formula (2.2) expressing ŒXf;m;xç in terms

of a log-resolution, that the series Zmot
f;x
.T / is in fact rational.

More precisely, it belongs to the ring K O�.VarC/ŒL
�1çŒT çé, where the subscript é

stands for localization by the multiplicative family .1 � L
aT b/, a 2 Z, b 2 NC. It

follows in particular that one can consider its formal limit as T !1. Guided by the
analogy with Denef’s work in [13], where the limit as s! �1 of p-adic Igusa local
zeta functions was expressed in terms of trace of liftings of the Frobenius acting on
the cohomology of Milnor fibers, the motivic Milnor fiber was defined in [16, 18] as

◆f;x WD � lim
T!1

Zmot
f;x
.T /

in K O�.VarC/ŒL
�1ç. This denomination was justified by the fact that invariants of the

topological Milnor fiber Ff;x such as the monodromy zeta function and the Hodge
spectrum can be recovered from ◆f;x . However the proofs in [16] are not very enlight-
ening since they rely on explicit computations on log-resolutions.

4.2 A more conceptual framework

In section 8 of our work with E. Hrushovski [31] we provided a more conceptual
framework to explain how the motivic Milnor fiber ◆f;x can be recovered from the
non-archimedean Milnor fiber Ff;x using Hrushovski–Kazhdan motivic integration.
In fact, instead of working with Ff;x , it is more convenient to consider its “tubular
neighborhood"

Xf;x WD
°
y 2 x CM d

K
j rv.f .y// D rv.t/

±
;

with the notation of 3.2. Unfortunately, the arguments given in section 8 of [31]
are not fully complete as they overlooked some technical issues. These issues have
now been resolved by Forey and Yin in [27]. To achieve this Forey and Yin con-
struct an integration theory interpolating between the Hrushovski–Kazhdan integralR
WK.VFK/ ! K.RVK Œ⇤ç/=I outlined in 3.2 and its version with volume forms

constructed in [30]. More precisely objects of the categories VF and RVŒ⇤ç can be
equipped with Ä-volume forms, and the resulting categories are denoted by �VF and
�RVŒ⇤ç. It follows from [30] that

R
admits a volume form version in the form of an
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isomorphism Z
�

WK.�VFK Œ⇤ç/ �! K.�RVK Œ⇤ç/=�I

with �I the homogeneous ideal generated by ŒRV>0ç1 � Œ1ç1. The main construction
of [27] is that of a so-called bounded integral

Z ˘
WK.�VF˘

K
Œ⇤ç/ �! K.�RVdb

K
Œ⇤ç/=IÄ

interpolating between
R

and
R
� in the sense that it fits into a commutative diagram

K.VFK/
R
✏✏

K.�VF˘
K
Œ⇤ç/oo //

R ˘

✏✏

K.�VFK Œ⇤ç/
R

�

✏✏

K.RVK Œ⇤ç/=I K.�RVdb
K
Œ⇤ç/=IÄoo // K.�RVK Œ⇤ç/=�I:

Forey and Yin show that
R ˘ restricts to a morphism

Z ˘
WK\.�VF˘

K
Œ⇤ç/ �! K\.�RVdb

K
Œ⇤ç/=IÄ ;

where the exponent \ refers to a certain integrability condition. To each ŒU ç in

K\.�RVdb
K
Œ⇤ç/=IÄ

they assign a power series

Z.ŒU ç/.T / WD
X
m�1

Hm.ŒU ç/T
m

in K O�.VarC/ŒL
�1çŒT çé. Here Hm is lifting a morphism Hm that was originally con-

sidered in [31].

Theorem 4.1 (Forey–Yin). Let ŒU ç be the class of
R ˘
.ŒXf;xç in K\.�RVdb

K
Œ⇤ç/=IÄ .

Then the equality
� lim
T!1

Z.ŒU ç/.T / D ◆f;x

holds in K O�.VarC/ŒL
�1ç.

Remark 4.2. The fact that within this frameworkZ is defined on the whole Grothen-
dieck ring K\.�RVdb

K
Œ⇤ç/=IÄ (and that it is a ring morphism with respect to the

Hadamard product) makes it a quite powerful tool. See also [40] for a related com-
parison result (using explicit computations on a log-resolution).

Remark 4.3. In [24] Fichou and Shiota study a version of the analytic Milnor fiber
over the reals and in [25] Fichou and Yin show its relation with the real version of the
motivic Milnor fiber.
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5 Character sums and the monodromy zeta function of discriminants
of Coxeter groups

5.1 The monodromy zeta function

In [2] Norbert derives from Theorem 2.4 his famous formula for the monodromy zeta
function

Zmono
f;x

.T / WD
Y
q

det.Id � TMx;H
q.Ff;x;C//

.�1/qC1

:

Theorem 5.1 (A’Campo, [2]). A log-resolution being given,

Zmono
f;x

.T / D
Y
m�1

.1 � Tm/��.Sm/;

with Sm the disjoint union of all the sets Eı
i

with Ni D m.

Indeed, this follows from Theorem 2.4 together with the classical linear algebra
formula

det.Id � TA/ D exp
⇣
�
X
i�1

T i

i
TrAi

⌘
:

5.2 Discriminants of finite Coxeter groups

I will now discuss the computation of the monodromy zeta function for discriminants
of finite Coxeter groups, which may not be too inappropriate in view of Norbert’s
work on Coxeter systems [3].

Let V be a complex vector space of finite dimension n and let G be a finite sub-
group of GL.V / generated by pseudo-reflections, that is, endomorphisms of finite
order fixing pointwise a hyperplane. Such a group is called a finite complex reflection
group and pseudo-reflections of order 2 are called reflections. By a theorem of Che-
valley the ring of polynomial invariants CŒV çG is a free algebra on n homogeneous
invariant polynomials, whose degrees d1, . . ., dn only depend on G and are called the
degrees of the group G. For every pseudo-reflection in G with corresponding hyper-
plane H , choose a linear form `H defining H and denote by e.H/ the order of the
subgroup of elements of G fixing H pointwise. When G is a finite Coxeter group
(that is, V D C

n and G is a subgroup of GL.Rn/), the integers eH are all equal to 2.
Set Å WD

Q
`
e.H/

H
. The induced function V=G ! C is the discriminant of G and we

denote by Z.T;G/ its monodromy zeta function at the origin.
In joint work with Denef, we found the following remarkable recursion formula

for Z.T;G/:
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Theorem 5.2. Let G be a finite Coxeter group. We have

Y
Ä

Z.�T;G.Ä//.�1/
jÄj

D
Y
1in

1 � T di

1 � T
;

where the product on the left-hand side runs over all connected subgraphs Ä of the
Coxeter diagram of G, G.Ä/ denotes the Coxeter group with diagram Ä , and jÄj the
number of vertices of Ä .

Our initial proof in [14] was based on some new properties of Springer’s regular
elements in finite complex reflection groups. In fact, we computed in [14] the zeta
function of the local monodromy of the discriminant for all irreducible finite complex
reflection groups. This involved a case by case analysis, already for finite Coxeter
groups.

The motivation for computing the monodromy zeta function of discriminants of
Coxeter groups arose from our study of a finite field analogue of Macdonald’s conjec-
ture. Let us recall the statement of Macdonald’s conjecture. LetG be a finite subgroup
of GL.Rn/ which is generated by reflections and let q be a positive definite quadratic
form which is invariant under G. Macdonald’s conjecture, proved by Opdam in [42],
is the following remarkable identity

Z
Rn

Å.x/se�q.x/dx D .discr q/�1=2⇡n=2s
nY
iD1

Ä.dis C 1/

Ä.s C 1/
(5.1)

with  D
Q
H

q.`H /

4
.

Let us now state its finite field analogue. Let F be a finite field of characteristic
p different from 2. We consider a finite-dimensional F -vector space V , a finite sub-
group G of GL.V / generated by reflections, and q a G-invariant and non degenerate
symmetric bilinear form on V . If p does not divide jGj, one may define the degrees
of G, d1, . . ., dn, as in the complex case. One also definesÅ and  2 F similarly. Fix
a non trivial additive character  WF ! C. The analogue of the integral in (5.1) will
be the character sum

SG.�/ WD
X

x2.U=G/.F /

�.Å.x// .q.x//

where � is a multiplicative character and U denotes the complement of the hypersur-
faceÅD 0 in V . In [15], we proved the following finite field analogue of Macdonald’s
conjecture. Assume that p does not divide jGj. Then, for every multiplicative char-
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acter �WF ⇥ ! C
⇥,

SG.�/ D .�1/
n�.discr q/g.�/n�./�./

nY
iD1

g.��/di

g.��/
: (5.2)

Here the Gauss sum �g.�/ WD
P
x2F ⇥ �.x/ .x/ is the finite field analogue of the

Gamma function and � denotes the unique multiplicative character of order 2. In the
special case when G is the symmetric group Sn, this identity was proved by Evans
in [23].

Our proof of (5.2) is based on the cohomological interpretation of character sums,
using the Grothendieck–Lefschetz trace formula. In this specific situation, the coho-
mology is concentrated in middle dimension and has rank 1, so that we have only to
calculate the determinant of the Frobenius action on the cohomology. To compute this
determinant we use Laumon’s product formula [32]. It is here that the formula for the
monodromy zeta function of the discriminant in Theorem 5.2 plays an essential role,
as a local factor in Laumon’s formula.

Conversely, closing up the loop, we explain in [19] how, using work of Ander-
son [4] and Loeser and Sabbah [33] on determinants of Aomoto complexes and
determinants of integrals, one can derive Theorem 5.2 from Macdonald’s formula
(in fact Theorem 5.2 is equivalent to knowing the precise form of the gamma factors
in Macdonald’s formula).

6 Connections with symplectic geometry

6.1 Symplectic monodromy and Floer cohomology

We assume from now on that X D A
d

C
. Considering the standard (exact) symplectic

form on A
d

C
, X is endowed with a symplectic structure. In particular we can view the

Milnor fiberFf;x D f �1.⌘/\B.x;"/ as an exact symplectic manifold with boundary,
the boundary being endowed with a contact structure. One may choose a represent-
ative Mx of the monodromy which respects this structure. As explained in Section 4
of [43] and section 4 of [36], it is possible to define in this setting Floer cohomology
groups HF ⇤.Mx;C/, the symbol C referring to the way of treating the fixed points
near the boundary.

We consider a log-resolution hW Y ! X as in 2.2, and keep the notation from
therein. Fix an integer m � 1. We shall say that h is m-separating if Ni CNj > m
whenever Ei \ Ej ¤ ; with i; j 2 A0. Set Sm D πi 2 A0INI jmº. Consider a relat-
ively ample divisorW D �

P
i2A

wiEi and set Sm;p WD πi 2 SmImwi C pNi D 0º.
Under the assumption f has an isolated singularity at x, McLean constructed in [36]
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a spectral sequence

0Ep;q
1
D

M
i2Sm;p

Hd�1�2m⌫i=Ni�1�.pCq/
. QE0
i
;Z/ H) HF ⇤.Mm

x
;C/

converging to the Floer cohomology of the m-th iterate of the monodromy on the
Milnor fiber Ff;x .

From this spectral sequence McLean deduces the following theorem:

Theorem 6.1 (McLean, [36]). For each m>0, set ˛mDsupπi WHF i .Mm

x
;C/ ¤ 0º

and�mDinfπm⌫i=Ni W i 2 Smº. Then, ˛mDd�1�2�m. In particularHF ⇤.Mm

x
;C/

vanishes if and only if �m D 1 and the numbers �m are invariants of the link up to
embedded contactomorphism.

This theorem has the following remarkable corollary:

Corollary 6.2. The multiplicity m.f; x/ of f at x is the smallest m > 0 such that
HF ⇤.Mm

x
;C/¤0. The log canonical threshold lctx.f / WDmini2A0

⌫i=Ni is equal to

lim inf
m!1

inf
i

®
�i=2mWHF i .Mm

x
;C/ ¤ 0 or � i=2m D 1

¯
:

In particular both the multiplicity and log canonical threshold of f at x are invariants
of the link of f at x up to embedded contactomorphism.

Note that this is quite striking in terms of the analogy between the use of arcs in
motivic integration and that of symplectic disks in Floer theory which was already
mentioned, since both the multiplicity and the log canonical threshold admit an
expression in terms of arcs: m.f; x/ as the smallest m > 0 such that Xf;m;x is non-
empty and lctx.f / can be expressed in terms of dimensions of jet schemes by a
remarkable result due to Mustaţǎ [39].

Furthermore, one should emphasize that (a generalization of) the McLean spec-
tral sequence for symplectic monodromy has been used by J. Fernández de Bobadilla
and T. Pełka in their spectacular proof of Zariski’s conjecture that families of isol-
ated hypersurface singularities with constant Milnor number have constant multipli-
city [10].

6.2 Connections with arc spaces

In [36] McLean asks what is the relationship between the Xf;m;x considered in Sec-
tion 2 and the groups HF ⇤.Mm

x
;C/ and in particular whether there exists a spec-

tral sequence similar to 0Ep;q
1

converging to the cohomology of Xf;m;x . This was
answered recently in [11] by N. Budur, J. Fernández de Bobadilla, Q. T. Lê, and
H. D. Nguyen as follows.
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For any integer n denote by ⇡nWL.X/! Ln.X/ the morphism sending an arc
'.t/ 2 X.CŒŒt çç/ to its truncation modulo tnC1. Because of the assumption of h being
m-separating, X1

f;m;x
WD ⇡�1

m
.Xf;m;x/ splits as a disjoint union

X1
f;m;x

D
G
i2Sm

X1
f;m;i

where
X1
f;m;i

D π� 2 X1
f;m;x
I Q�.0/ 2 Eı

i
º;

with Q� the lift of � to Y . In fact, for `� 0, each X1
f;m;i

D ⇡�1
`
.X`

f;m;i
/ with X`

f;m;i

constructible in L`.X/, and we have a decomposition

X`

f;m;x
D

G
i2Sm

X`

f;m;i

of X`

f;m;x
D ⇡`.X1f;m;x/, cf. [11].

The authors of [11] consider the filtration FpX`

f;m;x
D
F
i2Sm;mwiCpNi�0

X1
f;m;i

and they show that for `� 0, X`

f;m;i
is homotopy equivalent to QEı

i
. This allows them

to prove the existence of a spectral sequence

E
p;q

1
D

M
i2Sm;p

H2.d.mC1/�m⌫i=Ni�1/�.pCq/
. QE0
i
;Z/ H) H⇤

c
.Xf;m;x;Z/

converging to the cohomology with compact supports of Xf;m;x .
This is extremely suggestive in view of McLean’s result. Indeed, E1 differs from

0E1 by a .2dmC d � 1/-shift in the total degree p C q, hence up to relabelling, the
two pages are the same. This led the authors of [11] to conjecture that for X D A

d

C

and f having an isolated singularity at x, the two spectral sequences .Er ; dr/ and
.0Er ;

0 dr/ are isomorphic, and that for m � 1, HF ⇤.Mm

x
;C/ is isomorphic to

H⇤C2dmCd�1
c

.Xf;m;x;Z/:

6.3 Some speculation

This provides more substance to the still mysterious analogy between formal arcs
and motivic integration on one side and symplectic disks and symplectic homology
on the other side. The story does not stop here in view of some further recent results
by McLean and collaborators.

Indeed, McLean proves in [37] that birational projective Calabi–Yau manifolds
have isomorphic small quantum cohomology algebras after a certain change of
Novikov rings. The key tool used is a version of an algebra called symplectic coho-
mology, which is constructed using Hamiltonian Floer cohomology. In particular it
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follows that they have the same Betti numbers. This is quite striking if one keeps
in mind that Batyrev’s proof of birational invariance of Betti numbers for birational
Calabi–Yau manifolds [7] was the starting point for the introduction of motivic integ-
ration by Kontsevich!

Recently McLean and Ritter proved a version of McKay correspondence for isol-
ated singularities using Floer theory [38]. Recall McKay correspondence was first
proved by Batyrev in [8] and then, using a different method, by Denef and me in [21].
Both proofs relied on motivic integration. By the work of Yasuda [45, 46] we know
it is indeed an instance of motivic integration on Deligne–Mumford stacks and it
plays an important role in recent developments regarding Mirror symmetry for mod-
uli spaces of Higgs bundles and the Fundamental Lemma [28, 29, 34], but that is
another story!

All these results suggest that there might exist some kind of non-archimedean
analogues of McLean’s constructions in symplectic geometry. This would be a way
to start to understand the mysterious analogy between formal arcs and symplectic
disks. A possible approach could be provided by the work of Tony Yue Yu [47,
48] who developed a theory of counting non-archimedean holomorphic cylinders
in log Calabi–Yau surfaces in the Berkovich setting, in which heuristically, non-
archimedean holomorphic cylinders are to be understood as “limits” of complex
holomorphic disks in SYZ fibrations. It is unclear to us whether developing a variant
of Yu’s constructions relatively to maps f WA2

C
!A

1

C
(curve singularities) could help

to shed some light in this case. A key issue is that in the Berkovich setting we don’t
have a geometric monodromy acting on the Milnor fiber at our disposal, we only have
a Galois action on cohomology, which is much weaker.
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