
NON-ARCHIMEDEAN INTEGRALS AS LIMITS OF
COMPLEX INTEGRALS

ANTOINE DUCROS, EHUD HRUSHOVSKI, and FRANÇOIS LOESER

Abstract
We explain how non-Archimedean integrals considered by Chambert-Loir and Ducros
naturally arise in asymptotics of families of complex integrals. To perform this anal-
ysis, we work over a nonstandard model of the field of complex numbers, which
is endowed at the same time with an Archimedean and a non-Archimedean norm.
Our main result states the existence of a natural morphism between bicomplexes of
Archimedean and non-Archimedean forms which is compatible with integration.
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1. Introduction

1.1
Chambert-Loir and Ducros [6] recently developed a full-fledged theory of real-valued
.p; q/-forms and currents on Berkovich spaces that is an analogue of the theory of
differential forms on complex spaces. Their forms are constructed as pullbacks under
tropicalization maps of the “superforms” introduced by Lagerberg [19]. They are able
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to integrate compactly supported .n;n/-forms for n the dimension of the ambient
space (the output being a real number), and they obtain versions of the Poincaré–
Lelong theorem and Stokes’s theorem in this setting. Their work is guided throughout
by an analogy with complex analytic geometry. The aim of the present work is to con-
vert the analogy into a direct connection, showing how the non-Archimedean theory
appears as an asymptotic limit of one-parameter families of complex (Archimedean)
forms and integrals.

One way to view a family of complex varieties as degenerating to a non-
Archimedean space is to consider the hybrid spaces first introduced by Berkovich [2]
to provide a non-Archimedean interpretation of the weight-0 part of the mixed Hodge
structure on the cohomology of a proper complex variety. For some other recent
applications of hybrid spaces, see [4], [7], and [9].

The approach we follow in this paper is somewhat different. We work over an
algebraically closed field C containing C, which is a degree-2 extension of a real
closed field R containing R and is endowed at the same time with a nonstandard
Archimedean norm j � j W C ! RC and a non-Archimedean norm j � j[ W C ! RC
that essentially encapsulates the “order of magnitude” of j � j with respect to a given
infinitesimal element which should be thought of as a “complex parameter tending to
zero.” This presents the advantage of working on spaces that have both Archimedean
and non-Archimedean features and allows one to directly compare Archimedean con-
structions and their non-Archimedean counterparts. The fields R and C are con-
structed using ultrapowers. The field R was introduced by Robinson in [25], with
the explicit hope that it will be useful for asymptotic analysis (see also [20]). It was
brought to good use in [18] following the fundamental work of van den Dries and
Wilkie [28], who have reformulated Gromov’s theory of asymptotic cones of metric
spaces in [10] using ultrapowers.

A long-term motivation for our work is the famous conjecture by Kontsevich and
Soibelman [16], [17] relating large scale complex geometry and non-Archimedean
geometry. Roughly speaking, the conjecture describes the Gromov–Hausdorff limit
of a family of complex Calabi–Yau varieties with maximal degeneration in terms
of non-Archimedean geometry. (We refer to [11]–[13], [23], [24], and [26] for some
recent results in that direction.) Note that our results involve a renormalization in pow-
ers of log jt j which corresponds to what appears naturally when considering volume
forms on Calabi–Yau varieties with maximal degeneration. From a model-theoretic
perspective, this is related to considering measures on certain definable sets over the
value group, in contrast to [1], where measures are reduced to the residue field.
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1.2
Before going further, it may be useful to provide the flavor of our main results on a
very elementary example. Let ' WR!R be a smooth function with compact support.
Consider the complex .1; 1/-form

!t D�
1

log jt j
'
�
�

log jz.z � t /j

log jt j

�
d log jzj ^

d argz

2�

on P1, depending on the complex parameter t . Fix a real number K > 1. One may
write Z

P1.C/
!t D I1C I2C I3

with

I1 D

Z
jzj�jt j=K

!t ; I2 D

Z
jt j=K�jzj�Kjt j

!t ; and I3 D

Z
jzj�Kjt j

!t :

Using direct explicit computations, one may check that

lim
t!0

I1 D

Z
x��1

'.x � 1/dx; lim
t!0

I2 D 0; and

lim
t!0

I3 D

Z
x��1

'.2x/dx;

from which one deduces the equality

lim
t!0

Z
P1.C/

!t D

Z
x��1

'.x � 1/dxC
Z
x��1

'.2x/dx:

Quite remarkably, the right-hand side of that equality admits a non-Archimedean
interpretation. Indeed, consider the field of Laurent series C..t//, fix � 2 .0; 1/, and
endow C..t// with the t -adic norm jj[ normalized by jt j[ D � . On the Berkovich
analytification Pan

1 of P1 over C..t// one can consider the .1; 1/-form

![ D�
1

log jt j[
'
�
�

log jz.z � t /j[
log jt j[

�
d0 log jzj[ ^ d00 log jzj[

in the sense of Chambert-Loir and Ducros [6]. Furthermore, the integral in the sense
of Chambert-Loir and Ducros of the form ![ on Pan

1 is given byZ
Pan
1

![ D

Z
x��1

'.x � 1/dxC
Z
x��1

'.2x/dx;

since the support of ![ is contained in the standard skeleton .0;1/ of Gan
m , and the

function z is of degree 1 at each point of this skeleton. Therefore, we finally deduce
the equality



316 DUCROS, HRUSHOVSKI, and LOESER

lim
t!0

Z
P1.C/

!t D

Z
Pan
1

![;

a very special case of our Corollary 8.4. We can already see here an instance of a
general feature that will be exploited in our proof of the general case: asymptotically,
the complex integrals we consider concentrate on the support of the corresponding
non-Archimedean forms. This support is piecewise polyhedral, and only the faces of
maximal dimension provide a nonzero contribution to the limit. In general, Chambert-
Loir and Ducros integrals also involve degrees over these faces (see Section 9.1.11
for an explanation of how these relate to the number of sheets of a complex étale
morphism).

1.3
Let us now sketch the construction of the nonstandard “asymptotic” field C . We fix
a nonprincipal ultrafilter U on C containing all the neighborhoods of the origin (oth-
erwise said, U converges to zero) and consider the ultrapowers �C D

Q
t2C� C=U

and �RD
Q
t2C� R=U. We say that an element .at / in �C (resp., �R) is t -bounded if

for some positive integer N , jat j � jt j�N along U (i.e., the set of indices t for which
this inequality holds belongs to U). Similarly, it is said to be t -negligible if for every
positive integer N , jat j � jt jN along U. The set of t -bounded elements in �C (resp.,
�R) is a local ring which we denote by A (resp., Ar), with maximal ideal the subset
of t -negligible elements which we denote by M (resp., Mr). We now set C WDA=M
and R WD Ar=Mr. The field R is a real closed field, and C ' R.i/ is algebraically
closed. The norm j � j W �C! �R�0 induces an R-valued norm j � j W C !R�0.

1.4
Any usual smooth function ' W U !R defined on some semialgebraic open subset U
of Rn formally induces a mapU.�R/! �R which is still denoted by '. Allowing our-
selves to compose these functions (which arise from standard smooth functions) with
polynomial maps (which might have nonstandard coefficients), we define for every
smooth, separated �R-scheme X of finite type a sheaf of so-called smooth functions
for the (Grothendieck) semialgebraic topology on X.�R/, which we denote by C1X .
The natural inclusion map from X.�R/ into the (underlying set of) the scheme X
underlies a morphism of locally ringed sites  W .X.�R/;C1X /! .X;OX /, and we
can define the sheaf of smooth p-forms on X.�R/ by A p

X WD 
��

p

X=�R. One has for

every p a natural differential d W A p
X ! A pC1

X . We now assume that X is of pure
dimension n and that X.�R/ is oriented (the notion of an orientation of a variety
makes sense over an arbitrary real closed field; see Section 3.3). Let ! be a smooth
n-form on some semialgebraic open subset U of X.�R/, and let E be a semialge-
braic subset of U whose closure in U is definably compact. Choosing a description
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of .X;U;!;E/ through a “limited family” .Xt ;Ut ;!t ;Et /t , it is possible to define
the integral

R
E
! as the class of the sequence .

R
Et
!t /t in �R.

1.5
We now move from �R to R, seeking to show that smooth functions, smooth forms,
and their integrals remain well defined on R.

Let ' W U ! R be a usual smooth function defined on some semialgebraic
open subset U of Rn. Under some boundedness assumptions on ' (which are, for
instance, automatically fulfilled if ' is compactly supported, or more generally if all
its derivatives are polynomially bounded), the induced function ' W U.�R/! �R in
turn induces a map U.R/!R, which we again denote by '.

For instance, the map log j � j from C� ' R2 n ¹.0; 0/º is smooth and satisfies
the boundedness conditions alluded to above; it thus induces a map log j � j W C�!R,
which enables us to endow the fieldC with a real-valued non-Archimedean norm j � j[ W
C ! R�0 as follows. For any z belonging to C�, one checks that the norm of log jzj

log jt j
is bounded by some positive real number in R. One can thus consider its standard
part ˛D std. log jzj

log jt j / 2R. Fixing � 2 .0; 1/�R, one sets jzj[ WD �˛ so that jzj[ D jt j˛[ .
With this non-Archimedean norm the field C is complete (even spherically complete;
cf. [21]).

We repeat the procedure used in Section 1.4. Allowing ourselves to compose the
functions defined at the beginning of Section 1.5 (which arise from standard smooth
functions) with polynomial maps (which might have nonstandard coefficients), we
define for every smooth, separated R-scheme X of finite type a sheaf of so-called
smooth functions for the (Grothendieck) semialgebraic topology on X.R/, which we
denote by C1X . There is a natural morphism of locally ringed sites W .X.R/;C1X /!
.X;OX /. One then sets A p

X WD  
��

p

X=R
, and one has for every p a natural differen-

tial d W A p
X !A pC1

X .
Assume now that X is of pure dimension n and oriented. A substantial part of

Section 3 is devoted to the construction of an R-valued integration theory on X.R/.

1.6 PROPOSITION

Integration theory on X.Ar/ descends to X.R/.

Namely, to a semialgebraic subset K of X.R/, with definably compact definable
closure, and a smooth n-form ! on a semialgebraic neighborhood of K in X.R/, we
assign an integral

R
K
! which is an element of R. This is achieved in Section 5.10

by reducing to the case when X is liftable. Independence from the lifting follows
from the fact, proved in Proposition 5.3, that the integrals obtained from two different
liftings coincide up to a t -negligible element. A preliminary key statement in that
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direction is provided by Proposition 3.9, which states that if D is a semialgebraic
subset of .�R/n contained in Anr , then the volume of D is t -negligible if and only if
the image of D in Rn through the reduction map is of dimension at most n� 1.

Assume that X is a smooth C -scheme of finite type and pure dimension n. One
defines similarly the integral

R
K
! of a complex-valued .n;n/-form ! defined in a

semialgebraic neighborhood of a semialgebraic subset K of X.C/, assuming that
there exists a semialgebraic subset K 0 of K with definably compact closure such that
! vanishes on K nK 0.

1.7 Remark
Note that for an arbitrary real closed field S one cannot hope for a reasonable inte-
gration theory with values in S . Indeed, let, for instance, S be the algebraic clo-
sure of Q in R. Then there is no such reasonable integration theory on S , otherwise
� D

R
x2Cy2�1 dx ^ dy would belong to S .

1.8
Fix a smooth C -scheme X of finite type and pure dimension n, and set � WD � log jt j.
In this text, we define two Dolbeault-like complexes Ap;q and Bp;q . Informally, Ap;q

and Bp;q should be thought of as living on X.C/ and X an, respectively. But since
we want to be able to compare them in some sense, we need them to be defined on
the same site; this is the reason that we have chosen to define them as complexes of
sheaves on the Zariski site of X .

1.8.1. The nonstandard Archimedean complex
Let us start with Ap;q . We will explain what would be the most natural definition, why
it is not convenient for our purpose, and what the actual definition is.

1.8.1.1. Basically, we would like a section of Ap;q on a given Zariski-open subset U
ofX to be a differential form on U.C/which is locally for the semialgebraic topology
on X.C/ of the form

! D
1

�p

X
I;J

'I;J

� log jf1j

�
; : : : ;

log jfmj

�

�
d log jfI j ^ d ArgfJ ;

where I (resp., J ) runs through the set of subsets of ¹1; : : : ;mº of cardinality p (resp.,
q), where the fi are regular invertible functions, d log jfI j stands for the wedge prod-
uct d log jfi1 j^� � �^d log jfip j if i1 < i2 < � � �< ip are the elements of I , and d ArgfJ
stands for the wedge product d arg

2�
fj1 ^ � � � ^

d arg
2�
fjq if j1 < j2 < � � �< jq are the ele-

ments of J .
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1.8.1.2. But it would be difficult to use the definition suggested in Section 1.8.1.1,
because the general forms described therein do not have non-Archimedean counter-
parts, since there is no natural way to turn the implicit semialgebraic covering of
U.C/ in their definition into an open covering of U an; hence we will take a slightly
more restrictive definition, albeit flexible enough for our purpose.

We thus define a section of Ap;q on a Zariski-open subset U ofX as a differential
form on U.C/ that is locally for the Zariski topology of U of the form

! D
1

�p

X
I;J

'I;J

� log jf1j

�
; : : : ;

log jfmj

�

�
d log jfI j ^ d ArgfJ ;

where .f1; : : : ; fm/ are regular functions (but they are not assumed to be invertible),
where I (resp., J ) is running through the set of subsets of ¹1; : : : ; nº of cardinality
p (resp., q), and where each function 'I;J is defined on a suitable subset of .R [
¹�1º/m and satisfies some technical conditions which we explain now. Let x D
.x1; : : : ; xm/ be a point of .R[ ¹�1º/m, and let K denote the set of indices i such
that xi D�1. Then:
� around x the function 'I;J depends only on the xi for i …K and is smooth as

a function of the latter;
� the function 'I;J even vanishes around x as soon as K intersects I [ J .
It is clear that sections of Ap;q admit a local description as in Section 1.8.1.1. Note
that if K D ;, then the only requirement is for 'I;J to be smooth around x, and that
our second condition ensures that d log jfi j or d argfi

2�
can actually appear only around

points at which fi is invertible (which is necessary for integrating such a form when
pD q D n).

There exist natural differentials d W Ap;q! ApC1;q and d] W Ap;q! Ap;qC1 map-
ping, respectively, a form

1

�p
'
� log jf1j

�
; : : : ;

log jfmj

�

�
d log jfI j ^ d ArgfJ

to

1

�pC1

X
1�i�m

@'

@xi

� log jf1j

�
; : : : ;

log jfmj

�

�
d log jfi j ^ d log jfI j ^ d ArgfJ

and to

1

�p

X
1�i�m

@'

@xi

� log jf1j

�
; : : : ;

log jfmj

�

�d argfi
2�

^ d log jfI j ^ d ArgfJ :

Here the map d is the usual differential, and d ] is designed to switch modulus and
argument (see Section 4.2.2); it turns out to be analogous to the operator dc of complex
analytic geometry.
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1.8.2. The non-Archimedean complex
We are now going to describe Bp;q . Set �[ WD � log jt j[.

1.8.2.1. Basically, we would like a section of Bp;q on a given Zariski-open subset
U of X to be a differential form on U an in the sense of [6] which is locally on U an of
the form

1

�
p

[

X
I;J

'I;J

� log jf1j[
�[

; : : : ;
log jfmj[
�[

�
d0 log jfI j[ ^ d00 log jfJ j[;

where I (resp., J ) runs through the set of subsets of ¹1; : : : ;mº of cardinality p (resp.,
q), where the fi are regular invertible functions, and where d0 log jfI j[ standing for
the wedge product d0 log jfi1 j[^ � � �^d0 log jfip j if i1 < i2 < � � �< ip are the elements
of I , and similarly for d00 log.

1.8.2.2. But by analogy with Ap;q , we shall rather define a section of Bp;q on a
Zariski-open subset U ofX as a differential form on U an that is locally for the Zariski
topology of U of the form

1

�
p

[

X
I;J

'I;J

�
log

log jf1j[
�[

; : : : ;
log jfmj[
�[

�
d0 log jfI j[ ^ d00 log jfJ j[;

where .f1; : : : ; fm/ are regular functions, where I (resp., J ) is running through the
set of subsets of ¹1; : : : ; nº of cardinality p (resp., q) (with d0 log jfI j[ standing for the
wedge product d0 log jfi1 j[^ � � �^d0 log jfip j[ if i1 < i2 < � � �< ip are the elements of
I , and similarly for d00 log jfJ j[), and where each 'I;J satisfies the same conditions
as those in the definition of Ap;q .

It is clear that sections of Bp;q are locally of the form described in Section 1.8.2.1,
and that B�;� is stable under the two differential operators d0 and d00.

1.9
Our main result, Theorem 8.1, states that the two sheaves of bigraded differential
R-algebras A�;� and B�;� on the site XZar, consisting, respectively, of nonstandard
Archimedean and non-Archimedean forms, are compatible in the following sense.

1.10 THEOREM

There exists a unique morphism of sheaves of bigraded differential R-algebras
A�;�! B�;�, sending a nonstandard Archimedean form ! to the non-Archimedean
form ![, such that if ! is of the form

! D
1

�jI j
'
� log jf1j

�
; : : : ;

log jfmj

�

�
d log jfI j ^ d ArgfJ ;
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with f1; : : : ; fm regular functions on a Zariski-open subset U of X , I , and J subsets
of ¹1; : : : ;mº, and ' a quasismooth function, then

![ D
1

�
jI j

[

'
� log jf1j[

�[
; : : : ;

log jfmj[
�[

�
d0 log jfI j[ ^ d00 log jfJ j[:

Furthermore, we also prove in Theorem 8.1 that the mapping ! 7! ![ is compat-
ible with integration. A special case of that compatibility can be stated as follows.

1.11 PROPOSITION

Assume that ! is an .n;n/-form defined on some Zariski-open subset U ofX and that
its support is contained in a definably compact semialgebraic subset of U.C/. Then
the form ![ on X an is compactly supported,

R
U.C/
j!j is bounded by some positive

real number in R, and

std
�Z
U.C/

!
�
D

Z
U an

![;

with std standing for the standard part.

Compatibility with integration is used in an essential way in proving that the
mapping ! 7! ![ is well defined. Indeed, it allows us to use a result of Chambert-
Loir and Ducros [6, Corollaire 4.3.7] stating that, in the boundaryless case, nonzero
forms define nonzero currents. A key point in the proof of compatibility with inte-
gration is to show that the non-Archimedean degree involved in the construction of
non-Archimedean integrals in [6] actually shows up in the asymptotics of the corre-
sponding Archimedean integrals, which is done in Section 9.1.11.

This main result has very concrete consequences (see our Theorem 8.4, in which
we express limits in the usual sense of complex integrals depending on a parameter
in terms of non-Archimedean integrals).

2. General framework

2.1
We shall use in this paper basic facts and terminology from model theory, which can
be found, for instance, in the books [22] and [27]. We shall make particular use of
the theory DOAG of nontrivial divisible ordered abelian groups, the theory RCF of real
closed fields, and the theory ACVF of algebraically closed nontrivially valued fields.
Both DOAG and RCF are examples of o-minimal theories.
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2.2
We fix a nonprincipal ultrafilter U on the set C of complex numbers; we assume that
it converges to zero, which means that every neighborhood of the origin belongs to U

(for our purpose, it would be sufficient to consider such an ultrafilter U on a sequence
approaching zero). Note that since U is not principal, ¹0º … U ; as a consequence,
every punctured neighborhood of zero also belongs to U . In particular, there exists a
family Xi , i 2 N, of elements of U such that

T
i2NXi D ;; that is, the ultrafilter U

is countably incomplete.

2.3 Convention
Unless otherwise stated, when we introduce a “sequence” .at /t the parameter t is
always understood as running through some set belonging to U (e.g., a small punc-
tured disk centered at the origin), which we shall usually not make explicit. We shall
allow ourselves to shrink this set of parameters when necessary (without mentioning
it), for instance if we work with finitely many sequences and need a common set of
parameters.

If we work with some sequence .Mt /t of sets and then consider a sequence .at /t
with at 2Mt for every t , it will be understood that at is defined for t lying in some
set belonging to U and on which t 7!Mt does make sense; so we do not require that
at be defined for every t such that Mt is.

We say that some specified property P is satisfied by at along U if the set of
indices t such that at satisfies P belongs to U ; for example, jat j < jt j along U

means that the set of indices t such that jat j< jt j belongs to U .

2.4. Ultraproducts
Let .Mt /t be a sequence of sets. The ultraproduct of the sets Mt along U is the
quotient of the set of all sequences .at /t with at 2Mt for all t by the equivalence
relation for which .at /� .bt / if and only if at D bt along U (we remind the reader
that according to Convention 2.3, at needs not to be defined for all t for which Mt

exists, but only for a subset of such complex numbers t that belongs to U ). If all the
sets Mt are groups (resp., rings, resp., . . . ) the ultraproduct of the sets Mt along U

inherits a natural structure of group (resp., ring, resp., . . . ), which enjoys all the first-
order properties that hold for Mt along U ; for example, if the group Mt is abelian
along U , then the ultraproduct of the groups Mt along U is abelian.

2.5 Remark
One can describe in a perhaps unusual way the ultraproduct of the sets Mt as
colimTMT where T runs through the set of elements of U included in the domain



NON-ARCHIMEDEAN INTEGRALS AS LIMITS OF COMPLEX INTEGRALS 323

of t 7!Mt , where MT WD
Q
t2T Mt , and where the transition maps are the obvious

ones.

2.6. The field �C
We apply the above by taking Mt equal to the field C (resp., R) for all t , and we
denote by �C (resp., �R) the corresponding ultraproduct. The field �R is a real closed
extension of R; the field �C is equal to �R.i/ and is an algebraically closed extension
of C. We still denote by j � j the “absolute value” on �C; this is the map from �C to
�RC that maps a C bi to

p
a2C b2. By (harmless) abuse, the image in �C of the

sequence .t/t will also be denoted by t ; it should be thought of as a nonstandard
complex number with infinitely small (but nonzero!) absolute value.

A sequence .at /t of complex numbers is called:
� bounded if there is some N 2 Z�0 such that jat j �N along U ;
� t -bounded if there is some N 2 Z�0 such that jat j � jt�N j along U ;
� negligible if jat j � 1

N
along U for all N 2 Z>0;

� t -negligible if jat j � jtN j along U for all N 2 Z�0.
An element a of �C is called bounded (resp., t -bounded; resp., negligible; resp.,

t -negligible) if it is the image of some bounded (resp., t -bounded; resp., negligible;
resp., t -negligible) sequence. This amounts to requiring that jaj �N for some integer
N � 0 (resp., jaj � jt�N j for some integer N � 0; resp., jaj � 1

N
for all integers

N > 0; resp., jaj � jt jN for all integers N � 0). (Be aware that the above inequalities
are understood in the huge real closed field �R.)

2.7. The field C
The set A of t -bounded elements of �C is a subring of �C which contains t . This is a
local ring, whose maximal ideal m is the set of t -negligible elements; the intersection
Ar WDA\

�R is also a local ring, whose maximal ideal is mr WDm\ �R. We denote
by C (resp., R) the residue field of A (resp., Ar), and we still denote by t the image of
the element t of A in C . Note that m¤ 0: for instance, the sequence .exp.�1=jt j//t is
t -negligible and not equal to zero along U , so it defines a nonzero element of m. One
can directly describeC as the ring of t -bounded sequences modulo that of t -negligible
sequences. The field R is a real closed extension of R, we have C DR.i/, and C is
an algebraically closed extension of C. We still denote by j � j the “absolute value”
on C ; this is the map from C to RC that maps a C bi to

p
a2C b2. An element

z of C is called bounded (resp., negligible) if it is the image of a bounded (resp.,
negligible) element of A. This amounts to requiring that z is the image of a bounded
(resp., negligible) sequence or that jzj �N for some N 2 Z�0 (resp., jzj< 1

N
for all

N 2 Z>0).
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If z D aC bi is any bounded element of C , then the subset of R consisting of
those real numbers that are at most a is nonempty and bounded above, and hence has
a least upper bound ˛ 2R; we define ˇ analogously. By construction, z� .˛Cˇi/ is
negligible, and ˛ C ˇi is the only complex number having this property; it is called
the standard part of z and it will be denoted by std.z/. If z 2R, then std.z/ 2R.

Any t -bounded complex-valued function f on an element of U (e.g., a small
punctured disk centered at the origin) gives rise to an element of C , which we shall
denote by f if no confusion arises, as we do for t . Let us give some examples.
� For every ˛ 2 R, the sequence .jt j˛/t is t -bounded and is not t -negligible, so

it gives rise to an element jt j˛ of C� (which actually belongs to R�C). Note
that if ˛¤ 0, then .jt j˛�1/t is not t -negligible; hence ˛ 7! jt j˛ is an injective
order-reversing group homomorphism from R into R�C.

� The field M of meromorphic functions around the origin has a natural embed-
ding into C .

� If a is any nonzero element of C arising from a t -bounded and non-t -
negligible sequence .at /t , then the sequence .log jat j/t is t -bounded, so it
gives rise to an element of C . The latter depends only on a, and not on the
specific sequence .at /. To see it, we have to check that if ."t /t is a t -negligible
sequence, then .log jat C "t j � log jat j/ is t -negligible as well. For that pur-
pose, we first notice that if z is a standard complex number with jzj small
enough, then log j1C zj � 2jzj. Now our assumptions imply that the sequence
."ta

�1
t /t is t -negligible and a fortiori negligible, so that

log jat C "t j � log jat j D log
ˇ̌�
1C "t jat j

�1
�ˇ̌
� 2j"ta

�1
t j

holds along U ; using once again the fact that ."ta�1t /t is t -negligible, we
obtain the required result.
The element of C defined by the sequence .log jat j/t depending only on a, we
denote it by log jaj. The sequence . log jat j

log jt j /t is bounded, so log jaj
log jt j is bounded.

Set ƒ D ¹r 2 R�Cjjt j
1=N � r � jt j�1=N for allN 2 Z>0º; this is a convex sub-

group of R�C, and R�C=ƒ thus inherits an ordering such that the quotient map is
order-preserving. The composition

C�
j�j

R�C R�C=ƒ

is a valuation j � j[, and jC�j[ DR�C=ƒ. The valuation ring C ı of j � j[ is the set of the
elements z 2 C such that jzj< jt j�1=N for all integers N > 0, and the maximal ideal
of C ı is the set C ıı of elements z of C such that jzj< jt j1=N for some integer N > 0

(note that C ı contains the ring of bounded elements of C ).
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Let z 2 C�, and set ˛ D std. log jzj
log jt j /. It follows immediately from the defini-

tions that jzj D jt j˛ modulo ƒ and that jt j˛ itself belongs to ƒ if and only if ˛ D
0. Hence ˛ 7! jt j˛ mod ƒ induces an order-reversing isomorphism between the
ordered groups R and jC�j[, which maps 1 to jt j[ D jt j mod ƒ.

We fix once and for all an order-preserving isomorphism between jC�j[ and R�C,
which amounts to choosing the image � of jt j[ in .0; 1/. We will from now on use this
isomorphism to see j � j[ as a real valuation (with value group the whole of R�C). If z
is any element of C�, then we have

jzj[ D jt j
std. log jzj

log jtj /

[
D �

std. log jzj
log jtj /:

The residue field eC WD C ı=C ıı is an algebraically closed extension of C. Let us
give an example of an element of eC that is transcendent over C. For every complex
number � and every integer N > 0, the (complex) inequalities 1 � j log jt j � �j �
jt j�1=N hold along U ; as a consequence, 1 � j log jt j � �j � jt j�1=N in R for all

integers N > 0, so j log jt j � �j[ D 1. Hence j log jt jj[ D 1 and if we denote by ˜log jt j

the image of log jt j in eC , then ˜log jt j � �¤ 0 for all � 2C; as a consequence, ˜log jt j
is transcendent over C.

The non-Archimedean field C is complete, and even spherically complete (cf.
[21]). Indeed, let .Bn/n2Z�0 be a decreasing sequence of closed balls with positive
radius in C . For every n, denote by rn the radius of Bn and choose bn in Bn; we want
to prove that

T
Bn is nonempty. For every n � 1, choose a preimage bn of bn in A,

and a real number sn with rn�1 > sn > rn, and denote by Bn the set of those x 2 �C
such that jx � bnj � jt jlog sn= log� . For each n � 1, the ball Bn contains the preimage
of Bn in A and is contained in the preimage of Bn�1. The fact that every Bn contains
the preimage of Bn in A implies that the intersection of finitely many of the sets Bn
is nonempty. Since, as noted in Section 2.2, the ultrafilter U is countably incomplete,
the ultraproduct �C is @1-saturated by [15, Corollary 2.2], and thus the intersection
of all the sets Bn is nonempty; however, this intersection is contained in the preimage
of the intersection of all the sets Bn, so the latter is nonempty.

3. Smooth functions, smooth forms, and their integrals over �R and �C

3.1. Semialgebraic topology
Let S be an arbitrary real closed field (we will use what follows for S D �R and
S D R). Let X be an algebraic variety over the field S , that is, X is a separated S -
scheme of finite type. The set X.S/ is in a natural way a definable space of RCF. By
quantifier elimination in RCF, the definable subsets of X.S/ are precisely its semi-
algebraic subsets; that is, those subsets that can be defined locally for the Zariski
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topology of X by a Boolean combination of inequalities (strict or nonstrict) between
regular functions.

3.1.1
The order topology on the field S induces a topology of X.S/, which is most of
the time poorly behaved: except if S D R, it is neither locally compact nor locally
connected.

Let U be a semialgebraic subset of X.S/. We shall say that U is open (resp.,
closed) if it is open (resp., closed) for this topology. This amounts to requiring that
U be defined—locally for the Zariski topology of X—by a positive Boolean com-
bination of strict (resp., nonstrict) inequalities between regular functions (see [3,
Théorème 2.7.1]). The topological closure of a semialgebraic subset U of X.S/
is semialgebraic (and so is its topological interior, by considering complements).
Indeed, this can be checked on an affine chart, and hence we reduce to the case where
X D AnS ; now since the topology on Sn has a basis consisting of products of open
intervals, U is definable, so it is semialgebraic.

3.1.2
Since the interval Œ0; 1� of S is not compact except if S D R, naive topological com-
pactness is not a relevant notion in our setting. We use definable compactness instead,
which itself relies on the notion of a definable type (see, e.g., Section 2.3 and Chap-
ter 4 of [14] for more information on these topics). Let us just recall here that a subset
E of X.S/ is called definably compact if every definable type lying on E converges
to a unique point of E . Since X is separated, any definably compact semialgebraic
subset of X.S/ is closed. If E is a definably compact semialgebraic subset of X.S/,
then a semialgebraic subset F of E is closed if and only if it is definably compact.

3.1.3
Assume that X is affine, and let .f1; : : : ; fn/ be a family of regular functions on X
that generate the S -algebra O.X/. If E is a semialgebraic subset of X.S/, then E is
definably compact if and only if it is closed and bounded; that is, there exists r > 0 in
S and such that jfi .x/j � r for all i and all x 2E .

3.2 LEMMA

Let X be a separated S -scheme of finite type, and let E be a definably compact
semialgebraic subset of X.S/. Let .Ui /i2I be a finite family of definable open subsets
of X.S/ such that E �

S
Ui . There exists a family .Ei / with each Ei a definably

compact semialgebraic subset of Ui and E D
S
i Ei .



NON-ARCHIMEDEAN INTEGRALS AS LIMITS OF COMPLEX INTEGRALS 327

Proof
Up to refining the covering .Ui /, we can assume that Ui is for every i contained
in Xi .S/ for some open affine subscheme Xi of X . We argue by induction on jI j.
The statement is clear if jI j D 0. Assume that jI j> 0 and that the statement is true in
cardinality less than jI j. Choose an element i in I , and set F DX.S/n

S
j2I;j¤i Uj .

By definition, F is a closed semialgebraic subset ofX.S/ contained in Ui ; thusE\F
is a definably compact semialgebraic subset of Ui .

Choose a semialgebraic open subset V of Ui that contains E \ F and whose
closure V is definably compact and still contained in Ui (one can use a finite set of
generators of the S -algebra OX .Xi / to build semialgebraic continuous distance func-
tions to E \ F , to the boundary of Ui in Xi .S/, and to .X nXi /.S/, and then define
V by a suitable positive Boolean combination of nonstrict inequalities involving these
functions).

Set G D X.S/ n V . By definition, G is a closed semialgebraic subset of X.S/
and G \E is thus definably compact.

We then have E D .E \ V / [ .G \E/. Since G \E avoids F , it is contained
in
S
j¤i Uj . The conclusion follows by applying the induction hypothesis to the set

G \E .

3.3
Because of the bad properties of the order topology X.S/, we shall not use it except
while speaking of closed or open semialgebraic subsets. Nevertheless, we shall use a
closely related set-theoretic Grothendieck topology, namely the semialgebraic topol-
ogy. The underlying category is that of semialgebraic open subsets of X.S/ with
inclusion maps. A family .Ui /i2I is a cover of U if there is a finite subset J of I such
that U D

S
i2J Ui ; this amounts to requiring that .Ui ! U / induces a usual (open)

cover at the level of type spaces.
If X is smooth, then X.S/ comes equipped with a sheaf of orientations (for the

semialgebraic topology), defined mutatis mutandis as in the standard case. It is locally
isomorphic to the constant sheaf associated with a two-element set; a global section
of this sheaf is called an orientation on X.S/.

3.4. Smooth forms and integrals over the field �R
If U is an semialgebraic open subset of Rn for some n, then every smooth function
(i.e., C1-function) ' W U !R gives rise to a function U.�R/! �R, which sends the
class of a sequence .at /t with at 2 U along U to the class of .'.at //t ; it will still be
denoted by ' if no confusion arises.
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3.4.1. Smooth functions and smooth forms on a variety
Let X be a smooth, separated �R-scheme of finite type. Let F be the assignment that
sends a semialgebraic open subset U of X.�R/ to the set of functions from U to �R
of the form ' ı g, where:
� g is a regular map from a Zariski-open subset of X containing U to Am�R for

some m;
� ' is a smooth function from V to R, where V is a semialgebraic open subset

of Rm such that g.U /� V.�R/.
Then F is a presheaf; its associated sheaf (for the semialgebraic topology) is denoted
by C1 or C1X and called the sheaf of smooth functions on X.�R/. It makes X.�R/ a
locally ringed site.

The natural embedding of X.�R/ into (the underlying set of) the scheme X
underlies a morphism of locally ringed sites  W .X.�R/;C1X /! .X;OX /; hence
 ��

p

X=�R is for every p a well-defined C1X -module on X.�R/, which we denote by

A p or A p
X . The sheaf A 0

X is equal to C1X , and the C1X -module A 1
X is locally free

(of rank n if X is of pure dimension n); for every p, we have A p
X D ƒ

pA 1
X . The

sheaf A p
X is called the sheaf of smooth p-forms on X.�R/. One has for every p a

natural differential d W A p
X ! A pC1

X . The sheaf �C˝�R A p
X is called the sheaf of

complex-valued p-forms on X.�R/. Every complex-valued p-form ! defined on a
semialgebraic open subset U of X.�R/ can be evaluated at any point u of U , giving
rise to an element !.u/ of the �C-vector space �C˝OX;u �

p
X;u.

3.4.2. Integral of an n-form
We still denote by X a smooth, separated �R-scheme of finite type; we assume that
it is of pure dimension n for some n, and that X.�R/ has been given an orientation.
Let ! be a complex-valued smooth n-form on some semialgebraic open subset U of
X.�R/, and let E be a semialgebraic subset of U whose closure in U is definably
compact.

We now choose a description of .X;U;!;E/ through a “limited family”
.Xt ;Ut ;!t ;Et /t , where Xt is for every t a smooth, separated R-scheme of pure
dimension n endowed with an orientation of Xt .R/, Ut is an open subset of Xt .R/,
!t is a complex-valued smooth form on Ut , and Et is a relatively compact semi-
algebraic subset of Ut . The expression “limited family” means that the sequence
.Xt ;Ut ;!t ;Et / can be defined using finitely many smooth functions (defined on real
intervals), a given set T 2U , and finitely many polynomials with coefficients in RT .

For every t , the smooth manifold Xt .R/ is oriented; hence the integral
R
Et
!t

is well defined. The sequence .
R
Et
!t /t defines an element of �C that depends only

on .X;U;!;E/, and the chosen orientation on X.�R/. We denote it by
R
E
!; if ! is

real-valued, then
R
E ! is an element of �R.
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3.4.3. The case of a nonstandard complex variety
Now let X be a smooth quasiprojective scheme over �C, and let Y be the Weil
restriction R�R=�CX ; this is a quasiprojective scheme over �R, equipped by defini-
tion with a canonical bijection Y.5�R/'X.�C/. This allows us to transfer to the set
X�.C/ all notions introduced above. Moreover, for every p, the sheaf A p ˝�R

�C
of complex-valued smooth p-forms on X�.C/ is equipped with a natural decompo-
sition A p ˝�R

�CD
L
iCjDpA i;j , where A i;j is the sheaf of .i; j /-forms; that is,

of complex-valued p-forms generated over C1 by forms of the type

df1 ^ � � � ^ dfi ^ dg1 ^ � � � ^ dgj

for some regular functions f1; : : : ; fi ; g1; : : : ; gj .
Assume that X is of pure dimension n for some n, let U be a semialgebraic

open subset of X.�C/, and let ! be a smooth .n;n/-form on U . Let E be a semial-
gebraic subset of X.�C/ whose closure is definably compact. The .n;n/-form ! can
then be integrated on E , using the canonical orientation of X.�C/. Indeed, choose a
description of .X;U;!;E/ through a “limited family” .Xt ;Ut ;!t ;Et /t , where Xt is
for every t a smooth, separated C-scheme of pure dimension n, Ut is an open semi-
algebraic subset of Xt .C/, !t is a complex-valued smooth .n;n/-form on Ut , and Et
is a relatively compact semialgebraic subset of Ut ; the integral

R
E
! is then given by

the sequence
R
Et
!t .

3.4.4
We have considered so far only differential forms with smooth coefficients. But by
replacing the class of usual smooth functions (on open subsets of Rm) by a broader
class C , we can define in the same way differential forms over �R with coefficients
in C , and integrate those of maximal rank on relatively compact definable subsets
(provided that C consists of locally integrable functions).

For instance, if we consider ! and E as in Sections 3.4.2 or 3.4.3, we can define
j!j, which is a form with continuous piecewise smooth coefficients, and also define
the integral

R
E j!j, which is a nonnegative element of �R.

3.5
We are thus able to integrate smooth forms on the field �R, but what we are actually
seeking is a similar integration theory over R. Our basic strategy is very simple: it
consists of lifting a differential form on the field �R, integrating it, and reducing the
result modulo t -negligible elements. But of course, one has to check that it does not
depend on our lifting. This requires a good understanding of the way our integrals
interact with t -negligibility; this is the purpose of what follows.
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3.6 Notation
Let S be a real closed field, and let D be a nonempty, bounded above convex subset
of S with no least upper bound in S . Then such a least upper bound nevertheless
exists, but as a type on S ; we denote it by d . We shall allow ourselves to say that a
given definable subset I of S contains d (resp., that a given definable formula ˆ is
satisfied by d ) if I (resp., the set of x 2 S satisfying ˆ) contains .�;C1/ \D for
some � 2D.

3.7 LEMMA

Let I be a definable interval of S�0 that contains d , and let f be a definable function
from I to S . Assume that there exists a 2 I with a < d such that f .x/ > d for all x
with a < x < d ; then there exists x > d in I with f .x/ > d .

Proof
Let J be the set of those x 2 I such that f .x/ > x. This is a definable subset of S
which contains all elements y 2 S with a < y < d . By o-minimality, J is a finite
union of intervals with bounds in S [ ¹�1;C1º; thus it contains some interval of
the form .a; b/ for some element b 2 S with b > d . Then for all x 2 S such that
d < x < b, we have f .x/ > x > d .

3.8
Let D be a definable subset of .�R/n with definably compact closure. The integralR
D

dx1 ^ � � � ^ dxn is called the volume of D and is denoted by Vol.D/.
If D is a cube, that is, D is of the form

Q
1�i�nŒai ; bi �, then Vol.D/D

Q
i .bi �

ai /.
We remind the reader that Ar is the set of t -bounded elements of �R, and that

a 7! a denote the reduction modulo the maximal ideal mr of Ar (cf. Section 2.7).

3.9 PROPOSITION

Let D be a definable subset of .�R/n contained in Anr . The following are equivalent:
(i) the volume of D is t -negligible;
(ii) for every n-form ! D ' dx1 ^ � � � ^ dxn with ' a smooth function defined in

a neighborhood of the closure of D and taking only t -bounded values on the
latter, the integral

R
D ! is t -negligible;

(iii) every cube contained in D has t -negligible volume;
(iv) the image D of D in Rn through the reduction map is of dimension at most

n� 1.
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3.10 Remark
It is known that D is a closed definable subset of Rn (no matter whether D is closed
or not; see, e.g., [5]). Thus its dimension is well defined. But the reader could also
rephrase (iv) by simply saying “D contains no n-cube with nonempty interior”; and
this is indeed the rephrasing of (iv) that we shall actually use in the proof.

Proof of Proposition 3.9
We are going to prove (i)) (ii)) (iii)) (i), and then (iv)) (iii) and (i)) (iv).

Assume that (i) is true, and let ! be as in (ii). By definable compactness of the
closure of D, there exists a t -bounded positive element M such that j'j �M on D.
Then j

R
D
!j �M Vol.D/; the volume of D being t -negligible,

R
D
! is t -negligible

as well.
Now if (ii) is true, then in particular Vol.D/ is t -negligible (take ' D 1); this

implies that the volume of every definable subset of D, including any cube contained
in D, is t -negligible.

Assume now that (iii) is true, and let us prove (i). We argue by induction on n.
If n D 0, then there is nothing to prove. So assume that n > 0 and the result holds
in dimension n � 1. Let p W .�R/n ! .�R/n�1 be the projection on the first n � 1
coordinates, and set � D p.D/. If .Di / is any finite covering of D by definable
subsets, then it is sufficient to prove that (i) holds for everyDi (note thatDi obviously
satisfies (iii)).

Hence using cellular decomposition we can assume that we are in one of the
following two cases:
� there exists a continuous definable function f on � such that D is the graph

of f ;
� there exist two continuous definable functions f and g on � with f < g such

that D D ¹.x; y/; f .x/ < y < g.x/º.
In the first case, D is at most .n� 1/-dimensional and its volume is zero. Let us

assume from now on that we are in the second case. Since D �Anr , there is a positive
t -bounded element M such that g � f <M .

Let ' be the function that sends an element a of Œ0;M � to the least upper bound
of the .n� 1/-volumes of all cubes contained in � over which g � f > a.

3.10.1
Let us prove by contradiction that there exists some t -negligible element a such that
'.a/ is t -negligible. We call t -significant an element which is not t -negligible, and
we assume that '.a/ is t -significant for all t -negligible a; we are going to exhibit a
cube inside D with t -significant volume, which will contradict our assumptions.



332 DUCROS, HRUSHOVSKI, and LOESER

By Lemma 3.7 (which we apply by taking for d the least upper bound of the
set D of t -negligible elements), there exists some t -significant a with '.a/ also t -
significant. Therefore, there exists some cube K inside � with t -significant .n� 1/-
volume over which g � f > a. For each family "D ."1; : : : ; "2n�2/ of elements of
¹�1; 1º, letK" be the subset ofK on which @ig 2 "i .�R�0/ and @if 2 "n�1Ci .�R�0/
or all 1� i � n� 1. Then K is the union of the sets K", so one of the sets K" has a
t -significant volume and hence contains a cube K 0 with t -significant volume (by the
induction hypothesis). Replacing � by K 0, we assume from now on that � is a cube
with t -significant volume on which each partial derivative of f and g has constant
sign and on which g � f > a.

Write �D
Q
Œ˛i ; ˇi �. Set M D sup� jf j and K D 4M.ˇ1 � ˛1/�1. Since M is

t -bounded and since ˇ1�˛1 is t -significant (because� has t -significant volume),K
is t -bounded. Let �K D ¹x 2�; j@1f .x/j �Kº. We claim that Vol.�K/�

Vol.�/
2

.
Indeed, fix z D .z2; : : : ; zn�1/ in

Q
i�2Œ˛i ; ˇi �, and set �K;z D ¹y 2 Œ˛1; ˇ1�;

.y; z/ 2�Kº. By o-minimality, �K;z is a finite union of closed intervals; let � be the
1-dimensional volume (or, otherwise said, the total length) of �K;z . If � and ı are
two elements of Œ˛1; ˇ1� such that � � ı and Œ�; ı� ��K;z , then by the mean value
theorem one has jf .ı; z// � f .�; z/j � K.ı � �/. By monotonicity of f .�; z/, this
implies that jf .ˇ1; z/ � f .˛1; z/j � K�. Since jf .ˇ1; z/ � f .˛1; z/j � 2M by the
definition ofM , we see that �� 2M=K D .ˇ1�˛1/=2. Thus, by Fubini, Vol.�K/�
Vol.�/
2

, as announced.
It follows that the complement of �K in � has t -significant volume. By the

induction hypothesis, it contains a cube with t -significant volume. Iterating this argu-
ment (which works for g as well as for f , and for the i th component as well as for
the first one), we can furthermore assume that � is a cube with t -significant volume
on which each partial derivative of f and g has an absolute value bounded above by
some positive t -bounded constant N .

Let x be the point .˛iCˇi
2

/i of �. Set y D g.x/Cf .x/
2

; the point .x; y/ belongs to
D. Set r D .g.x/ � f .x//=4; since g.x/ � f .x/ � a, the number r is t -significant.
Let N 0 be a t -bounded number such that N 0 >

p
n� 1N and r=N 0 < mini .ˇi �

˛i /=4—such N 0 exists since ˇi � ˛i is t -significant for every i . Let 	 be the cube in
.�R/n with center .x; y/ and polyradius .r=N 0; : : : ; r=N 0; r/. If .
; �/ belongs to 	 ,

then 
 2�. By the mean value theorem, jf .
/� f .x/j �
p
n�1rN
2N 0

< r
2

and similarly
jg.
/�g.x/j< r

2
. Thus f .
/ < � < g.
/, and thereforeD contains the cube 	 which

has t -significant volume.

3.10.2
By the above, there exists some t -negligible element a such that '.a/ is t -negligible.
Let �0 be the subset of � consisting of points over which g�f > a. By assumption,
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every cube contained in �0 has t -negligible volume; by our induction hypothesis,
the volume of �0 is t -negligible. Since g � f is uniformly t -bounded, it follows
from Fubini’s theorem that the volume of p�1.�0/ is t -negligible. Let �00 be the
complement of �0 in �. The .n� 1/-volume of �00 is t -bounded, and g � f � a on
�00. Applying Fubini’s theorem again, we see that p�1.�00/ has t -negligible volume.
Hence D D p�1.�0/[ p�1.�00/ has t -negligible volume. This ends the proof of (i)
() (ii) () (iii).

3.10.3. Proof of (iv)) (iii) and (i)) (iv)
It is clear that (iv)) (iii) since the reduction of every cube in Anr with t -significant
volume is a cube with nonempty interior. We are going to prove (i) ) (iv) by
contraposition. So assume that D is n-dimensional. Under this assumption, it con-
tains a cube with nonempty interior; let us write it

Q
Œai ; bi �, where ai and the

bi are t -bounded and bi � ai is t -significant for all i . Let B be the definable setQ
i Œai ; bi � nD.

We claim that every cube contained in the definable subset B has t -negligible
volume. Indeed, let � D

Q
Œ˛i ; ˇi � be such a cube. If x is a point of Anr with x 2Q

.˛i ; ˇi /, then x 2� (and hence x …D), so
Q
.˛i ; ˇi / does not intersect D. On the

other hand, since
Q
.˛i ; ˇi / is contained in

Q
Œai ; bi � (because � �

Q
i Œai ; bi �), and

D contains
Q
i Œai ; bi �, the open cube

Q
.˛i ; ˇi / is contained in D. Thus

Q
.˛i ; ˇi /

is empty, and there is at least one index i such that ˇi � ˛i D 0, which means that
ˇi � ˛i is t -negligible; a fortiori, the volume of � is t -negligible.

Now by what we have already proved, this implies that
RQ
Œai ;bi �nD

dx1^� � �^dxn
is t -negligible. As a consequence,Z

Q
Œai ;bi �\D

dx1 ^ � � � ^ dxn D
Z
Q
Œai ;bi �

dx1 ^ � � � ^ dxn

modulo a t -negligible element, but
RQ
Œai ;bi �

dx1 ^ � � � ^ dxn D
Q
.bi � ai /, which

is t -significant. Thus
RQ
Œai ;bi �\D

dx1 ^ � � � ^ dxn is t -significant as well, and so isR
D

dx1 ^ � � � ^ dxn.

3.11
A definable subset D of .�R/n is called t -bounded if it is contained in Anr ; it is called
t -negligible if it is t -bounded and satisfies the equivalent properties of Proposition 3.9.
We shall say that two t -bounded definable subsetsD andD0 of .�R/n almost coincide
(resp., are almost disjoint) if their symmetric difference (resp., their intersection) is
t -negligible. If D is a t -bounded definable subset of .�R/n, then a finite family .Di /
of t -bounded definable subsets of .�R/n will be called an almost partition of D ifS
Di is almost equal to D and the subsets Di are pairwise almost disjoint.
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A definable subsetD ofRn is called negligible if it is of dimension at most n�1.
We shall say that two definable subsets D and D0 of Rn almost coincide (resp., are
almost disjoint) if their symmetric difference (resp., their intersection) is negligible.
If D is a definable subset of Rn, then a finite family .Di / of definable subsets of Rn

will be called an almost partition of D if
S
Di is almost equal to D and the subsets

Di are pairwise almost disjoint.

3.12 LEMMA

LetD and� be two t -bounded definable subsets of .�R/n. ThenD and� are almost
disjoint if and only if D and � are almost disjoint.

Proof
If D and � are almost disjoint, then D \� � D \ � is negligible, so D \ � is
t -negligible by Proposition 3.9. Conversely, assume that D \� is t -negligible, and
let us prove that D and � are almost disjoint. We argue by contradiction, so we
assume that there exist elements a1; : : : ; an; b1; : : : ; bn in Ar with bi � ai > 0 and
t -significant for all i such that

Q
Œai ; bi � � D \ �. Set P D

Q
Œai ; bi � � A

n
r . The

volume of the cube P is t -significant and the volume of P \D \� is t -negligible,
so the volume of P n .D \ �/ D .P n D/ [ .P n �/ is t -significant. So at least
one of the two definable sets P nD and P n � has t -significant volume. Assume
without loss of generality that P nD has t -significant volume. By Proposition 3.9,
there exists c1; : : : ; cn; d1; : : : ; dn in Ar with di � ci > 0 and t -significant for all i
such that

Q
Œci ; di � � P nD. Set x D . c1Cd1

2
; : : : ; cnCdn

2
/. Then x is a point of P

whose distance to D is t -significant. As a consequence, x …D. But since x 2 P , its
reduction x belongs to

Q
Œai ; bi ��D \�, which is a contradiction.

3.13 PROPOSITION

Let D and � be two t -bounded definable subsets of .�R/n.
(1) The set D is almost equal to � if and only if D is almost equal to �.
(2) The set D \� is almost equal to D \�.

Proof
Set P DD n� and Q D� nD. By Lemma 3.12 above, Q and D \� are almost
disjoint, and so are P and D \� as well as P and Q. Moreover, we have

D D P [D \� and �DQ[D \�:

Hence D is almost equal to � if and only if P and Q are negligible, which amounts
to requiring that P and Q be t -negligible (see Proposition 3.9), that is to say, that D
and � almost coincide, whence (1). Moreover, D \�DD \�[ .P \Q/, and in
view of the negligibility of P \Q this implies (2).
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3.14 COROLLARY

Let K be a definably compact definable subset of Rn. There exists a definable, defin-
ably compact and t -bounded subset E of .�R/n such that E almost coincides withK .

Proof
Choose a1; : : : ; an and b1; : : : ; bn in Ar such that bi > ai for all i and K �Q
Œai ; bi �. By using the description of definably closed subsets of Rn provided

by Théorème 2.7.1 of [3], we can assume that there exist finitely many polynomials
f1; : : : ; fm in RŒT1; : : : ; Tn� such that K is the intersection of

Q
Œai ; bi � with the set

of points x such that fj .x/� 0 for all j . By Proposition 3.13 above, we may assume
that mD 1 and write f instead of f1. If f is constant, then the set K is either empty
or the whole of

Q
Œai ; bi � and the statement is obvious. If f is nonconstant, let g be

a polynomial with t -bounded coefficients that lifts f . Let E be the intersection ofQ
Œai ; bi � and the nonnegative locus of g; it suffices to prove that E is almost equal to

K . By definition, E �K . Now let x be a point on K at which f is positive, and let

 be any preimage of x on

Q
Œai ; bi �. Since f .x/ > 0, we have g.
/ > 0, and hence


 2 E and x 2 E . Thus the difference K n E is contained in the zero locus of f ,
which is at most .n� 1/-dimensional since f is nonconstant.

4. Smooth functions and smooth forms over R and C

4.1. Smooth functions and smooth forms over the field R
Recall that A denotes the ring of t -bounded elements of �C, m denotes its maximal
ideal (i.e., the set of t -negligible elements), and Ar and mr denote the intersections of
A and m with �R. The reduction modulo m will be denoted by a 7! a.

4.1.1
Let U be a semialgebraic open subset of Rm for some m.

4.1.1.1. If x is a point of Rm lying on U.R/ and if 
 is any point of Amr lifting x,
then 
 lies on U.�R/: this comes from the fact that U can be defined by a positive
Boolean combination of strict inequalities (which follows from Théorème 2.7.1 of
[3]). For short, we shall call such a 
 a lifting of x in U.�R/.

4.1.1.2. Let ' be a smooth function from U to R. Let x 2 U.R/. We shall say that
' is tame at x if it satisfies the following condition: for every lifting 
 of x in U.�R/
and every multi-index I , the element @I'.
/ of �R is t -bounded.

If this is the case, then for every 
 and every I as above, the element @I'.
/ of
R does not depend on 
 (since @I' is Lipshitz with t -bounded constant around 
).
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4.1.1.3. If ' is tame at x, then so are all of its partial derivatives; the sum and the
product of two smooth functions on U that are tame at x are themselves tame at x.

4.1.1.4. If ' is tame at x, then we shall denote by '.x/ the element '.
/ for 
 any
lifting of x in U.�R/ (it is well defined in view of Section 4.1.1.2).

4.1.2. Examples
In each of the following examples, the function ' is tame at every point of U.R/:
� U DC� (viewed as a semialgebraic subset of C'R2) and ' D j � j;
� U DR� and ' D z 7! zn for some n 2 Z;
� U DR>0 and ' D log;
� U DR and ' is any trigonometric polynomial.

The function x 7! exp.1=x/ (defined on R�) is not tame at the element t of �R�;
indeed, exp.1=t/ of �R is not t -bounded.

4.1.3. Composition of tame functions
Let U be a semialgebraic open subset of Rm, and let V be a semialgebraic open
subset of Rn. Let ' D .'1; : : : ; 'n/ be smooth functions from U to Rn, and assume
that '.U /� V . Let  be a smooth function on V .

Let x be a point of U such that every 'i is tame at x and such that  is tame at
'.x/. It follows straightforwardly from the definition that  ı ' is tame at x.

Using this together with Examples 4.1.2, we see that

C�!R; z 7! log jzj

is tame at every point of C� and that

C� n
®
z; jzj D 1

¯
!R; z 7! 1= log jzj

is tame at every point of C� n ¹z 2 C�; jzj D 1º.

4.1.4. Smooth functions and smooth forms on a variety
Let X be a smooth, separated R-scheme of finite type.

Let U be a semialgebraic open subset of X.R/, and let g be a regular map from
a Zariski-open subset of X containing U to AmR for some m. A .U;g/-tame smooth
function is a smooth function ' defined on some semialgebraic open subset V of Rm

with g.U /� V.R/ such that ' is tame at g.x/ for every x 2 U .
Let F be the assignment that sends a semialgebraic open subset U of X.R/ to

the set of functions from U to R of the form ' ı g, where g is a regular map from a
Zariski-open subset of X containing U to AmR for some m and where ' is a .U;g/-
tame smooth function.



NON-ARCHIMEDEAN INTEGRALS AS LIMITS OF COMPLEX INTEGRALS 337

Then F is a presheaf; its associated sheaf for the semialgebraic topology is
denoted by C1 or C1X and called the sheaf of smooth functions on X.R/. It makes
X.R/ a locally ringed site.

The natural embedding of X.R/ into the scheme X underlies a morphism of
locally ringed sites  W .X.R/;C1X /! .X;OX /; hence  ��p

X=R
is for every p a

well-defined C1X -module on X.R/, which we denote by A p or A p
X . The sheaf A 0

X

is equal to C1X , and the C1X -module A 1
X is locally free (of rank n if X is of pure

dimension n); for every p, we have A p
X Dƒ

pA 1
X . The sheaf A p

X is called the sheaf of
smooth p-forms onX.R/. One has for every p a natural differential d W A p

X !A pC1
X .

The sheaf C ˝R A p
X is called the sheaf of complex-valued p-forms on X.R/.

4.2. The case of a variety over C
By considering the Weil restriction, we can apply the above to smooth schemes of
finite type over the field C . For such a scheme X and every m, we get a sheaf A m

X

of R-vector spaces on X.C/ (equipped with the semialgebraic topology). This sheaf
comes with a natural decomposition

C ˝R A m
X D

M
pCqDm

A p;q
X ;

where A p;q is the sheaf of .i; j /-forms, that is, of C -valued p-forms generated over
C1 by forms of the type

df1 ^ � � � ^ dfp ^ dg1 ^ � � � ^ dgq

for some regular functions f1; : : : ; fp; g1; : : : ; gq (this is analogous to Section 3.4.3).

4.2.1. Polar coordinates
The usual real functions cos and sin are tame at every point of R; hence � 7! cos� C
i sin� is a well-defined smooth C -valued function on R, which we denote by � 7!
ei� . The map � 7! ei� is a surjective homomorphism from R to ¹z 2 C�; jzj D 1º.
The map � 7! ei� is not injective; its kernel consists of elements of the form 2�n

where n is a (possibly) nonstandard integer; that is, it can be written as the (class
of the) limit of a t -bounded sequence of integers. For every a 2 R, the restriction of
� 7! ei� to Œa; aC 2�/ and .a; aC 2�� is injective.

Every element z of C� can be written as rei� with r 2 R>0 and � 2 R. The
element r is unique (it is equal to jzj), but � is not—we say that � is an argument
of z.

Making z vary, we obtain two “functions” r and � on C� DGm.C /. More pre-
cisely, r is an actual function which is tame at every point and takes its values in R>0,
and dr and d log r D dr

r
are well-defined differential forms on C�. But � is only a
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multivalued function; nevertheless, the differential form d� is also well defined. Let
us quickly explain how. Let z0 2 C�, and let a be any element of R such that z0 has
an argument �0 in .a � �;aC �/ (this always holds for aD 0 or aD �). Then on a
suitable semialgebraic neighborhood U of z0 in C� we have a single-valued smooth
argument function � with values in .a � �;a C �/ (and �.z0/ D �0). The smooth
form d� is well defined on U . From the equality z D rei� we get

dz D ei� dr C riei� d�;

and then

d� D�
i

r
e�i� dz � i

dr

r
:

This last formula does not involve the choice of z0, a, and �0 anymore, and we use it
to define d� on the whole of C�.

If we see z as an invertible function on C�, we shall write d log jzj instead of dr
r

and d argz instead of d� .
From the equality zz D r2 we get

d log jzj D
1

2
�
2dr

r
D
1

2

� dz

z
C

dz

z

�
:

From the equality z
z
D e2i� we get

d argz D
1

2
� 2d� D

1

2i
�

d.e2i� /

e2i�
D
1

2i

� dz

z
�

dz

z

�
:

4.2.2. The definition of d]

Let X be a smooth scheme of finite type over C . Our purpose is to define an operator
d] on complex-valued smooth forms on X.C/ (which is a nonstandard avatar of dc up
to a constant).

Let us denote for short by C1X;C (resp., A p
X;C ) the sheaf C ˝R C1X (resp.,

C ˝R A p
X ). The sheaf A 1

X;C of complex-valued smooth 1-forms on X.C/ admits a
canonical decomposition A 1

X;C DA 1;0 ˚A 0;1. The formula .!;!0/ 7! .�i!; i!0/

defines an order-4 automorphism J of the C1X;C -module A 1
X;C ; we still denote by J

the induced automorphism of A p
X;C . We remark that A 2n

X;C 'A n;0 ˝C1
X;C

A 0;n, so

the operator J on A 2n
X;CC is nothing but .�i/ninIdD Id.

We then define the derivation d] W C1X;C ! A 1
X;C as being equal to .J ı d/=2�

(this is an avatar of the classical operator dc); it extends to a compatible system of
exterior derivations

d] WD
1

2�
J ı d ı J�1 W A p

X;C !A pC1
X;C :
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Let us see how it acts on polar coordinates. We have

d].log r/D
1

2�
J.d log r/

D
1

2�
J
�1
2

� dz

z
C

dz

z

��
D

1

2�

�1
2

�
�i

dz

z
C i

dz

z

��
D

1

2�

� 1
2i

� dz

z
�

dz

z

��
D

d�

2�

and

d].�/D
1

2�
J.d�/

D
1

2�
J
� 1
2i

� dz

z
�

dz

z

��
D

1

2�

� 1
2i

�
�i

dz

z
� i

dz

z

��
D

1

2�

�1
2

�
�

dz

z
�

dz

z

��
D�

d log r

2�
:

Note that since .d]/2 D 0, this implies that d].d log r/D 0 and d].d�/D 0.
More generally, if f is an invertible regular function defined on some Zariski-

open subset U of X , we can define d log jf j and d argf . Those are smooth forms on
U.C/, and we have the following equalities:

d log jf j D
1

2

� df

f
C

df

f

�
;

d argf D
1

2i

� df

f
�

df

f

�
;

d]
�
log jf j

�
D

d argf

2�
;

d].argf /D�
d log jf j

2�
:
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4.3
Now we introduce a particular class of smooth functions and forms on smooth
schemes over C that will play a crucial role in our work. Roughly speaking, these are
the functions and forms that have a natural counterpart in the Berkovich setting—we
will make this rather vague formulation more precise later.

4.4 Definition
Let V be an open subset of .R[ ¹�1º/m which can be defined by a Boolean com-
bination of Q-linear inequalities, and let ' be a function from V to C. We shall say
that ' is a reasonably smooth function if there exists:
� a finite open cover .Vi /i of V , where each Vi is also defined by Q-linear

inequalities;
� for every i , a subset Ji of ¹1; : : : ;mº with �i WD pJi .Vi /�RJi , where pJi is

the projection onto the coordinates belonging to Ji ;
� for every i , a smooth function 'i on �i such that 'jVi D 'i ı pJi jVi .
The data .Vi ; Ji ;�i ; 'i /i will be called a nice description of '.

If J is some subset of ¹1; : : : ;mº, then we shall say that ' is J -vanishing if there
exists an open subset V 0 of V satisfying the following:
� V 0 can be defined by Q-linear inequalities;
� 'jV 0 D 0;
� for every x D .x1; : : : ; xm/ 2 V n V 0 and every i 2 J , the coordinate xi is not

equal to .�1/.
Note that ' is automatically ;-vanishing; indeed, if J D ;, then the above con-

ditions are fulfilled by V 0 D;.

For instance, a reasonably smooth function ' on R [ ¹�1º is nothing but a
smooth function ' on R such that there exists � 2 R with '.x/D � for x� 0 (and
the value of ' at �1 is then set equal to �); it is 1-vanishing if and only if �D 0.

4.5
Let V be an open subset of .R[¹�1º/m which can be defined by a Boolean combi-
nation of Q-linear inequalities. The following facts follow straightforwardly from the
definition.

4.5.1
If ' W V ! R is a reasonably smooth function, then it is continuous, and 'jV\Rm is
smooth.
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4.5.2
For V �Rm, a function from V to R is reasonably smooth if and only if it is smooth.

4.5.3
The set of reasonably smooth functions on V is a subalgebra of the algebra of R-
valued functions on V . It is endowed with partial derivation operators defined in the
obvious way.

Let ' be a reasonably smooth function on V that is J -vanishing for some subset
J of ¹1; : : : ;mº. Let j 2 J . Let us show that @j' is .J [ ¹j º/-vanishing.

Let .Vi ; Ji ;�i ; 'i /i be a nice description of ', and let V 0 be an open subset of
V that witnesses the fact that ' is J -vanishing. Let V 00 be the union of V 0 and of all
the open sets Vi such that j … Ji . We claim that V 00 witnesses the fact that @j' is
.J [ ¹j º/-vanishing. Indeed, @j' is zero on V 0 since so is ', and if i is such that
j … Ji , then 'jVi does not depend on the j th coordinate, so @j' is zero on Vi ; thus
@j' is zero on V 00.

Let x 2 V n V 00; choose i such that x D .x1; : : : ; xm/ 2 Vi . By definition of V 00,
the set Ji contains j . Hence xj ¤ .�1/, whence our claim.

4.6. Smooth functions and smooth forms on a C -scheme: A fundamental example
Let V be an open subset of .R[ ¹�1º/m which can be defined by a Boolean com-
bination of Q-linear inequalities, and let ' be a reasonably smooth function from V

to C.
Let W be the semialgebraic open subset of CmC1 consisting of points .a1; : : : ;

am; b/ such that 0 < jbj< 1 and .� log jai j= log jbj/i 2 V . By construction,

ˆ W .a1; : : : ; am; b/ 7! '
�
� log ja1j= log jbj; : : : ;� log jamj= log jbj

�
is a well-defined C1-map from W to C.

Let X be a smooth C -scheme of finite type, and let U be a semialgebraic open
subset of X.C/. Let g D .g1; : : : ; gm/ be a regular map from a Zariski-open subset
of X containing U to AmC , and assume that .g1; : : : ; gm; t /.U / � W.C/ (here the
element t of C is viewed as a constant regular function).

4.6.1. The smooth function ˆ on W is .U; .g1; : : : ; gm; t //-tame
To see it, fix a nice description .Vi ; Ji ;�i ; 'i /i of '. For every i , denote by Wi the
preimage of Vi in W under the map .a1; : : : ; am; b/ 7! .� log jaj j= log jbj/, and let
Ui denote the preimage of Wi in U under the map .g1; : : : ; gm; t /.

We fix i , and we are going to show that ˆ is .Ui ; .g1; : : : ; gm; t //-tame, which
will imply our claim. In view of Sections 4.1.1.3 and 4.1.3, it suffices to prove that
for every x 2 Ui , the map 'i is tame at the point y WD .� log jgj .x/j= log jt j/j2Ji of
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�i .R/. But the coordinates of y are bounded (as is log r= log jt j for every r 2R>0),
so the coordinates of � are bounded for every lifting � of y, which implies that all
partial derivatives of 'i are bounded, and a fortiori t -bounded, at �; thus 'i is tame
at y.

4.6.2
We can thus compose ˆ and .g1; : : : ; gm; t / to get a smooth map on U , which we can
safely write as

x 7! '
�
� log jg1j= log jt j; : : : ;� log jgmj= log jt j

�
I

its restriction to every Ui can be written as

x 7! 'i
�
� log jgj j= log jt j

�
j2Ji

:

4.6.3
Let I and J be two subsets of ¹1; : : : ;mº of respective cardinalities p and q such that
' is .I [ J /-vanishing.

Let U 0 be the pre-image of V 0 in U under .� log jg1j= log jt j; : : : ;� log jgmj=
log jt j/, and let U 00 be the subset of U consisting of points at which all the functions
gi with i 2 I [ J are invertible. Let ! be the .p; q/-form on U 00 equal to� �1

log jt j

�p
'
�
� log jg1j= log jt j; : : : ;� log jgmj= log jt j

�
d log jgI j ^ d arggJ

(where d log jgI j D d log jgi1 j ^ � � � ^ d log jgip j if i1 < i2 < � � �< ip are the elements
of I , and similarly for d arg jgJ j). Since ' is .I [ J /-vanishing, the restriction of !
to U 0 \ U 00 is zero, so that ! and the zero form on U 0 glue to a .p; q/-form on U
which (obviously) does not depend on V 0; we shall allow ourselves to denote it by� �1

log jt j

�p
'
�
� log jg1j= log jt j; : : : ;� log jgmj= log jt j

�
d log jgI j ^ d arggJ :

5. Integrals of smooth forms over R and C

5.1
The purpose of this section is to integrate forms on a smooth scheme defined over
the field R. The rough idea is quite natural (and unsurprising): lift the situation over
Ar, compute the integral over �R like in Section 3, and then take its class modulo the
ideal mr of t -negligible elements.

First of all, we shall assume that we are given two different liftings of a very
specific form, and we show that the integrals over �R to which they give rise coincide
modulo mr (Proposition 5.3 below); the proof rests in a crucial way on our former
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study of cubes with t -negligible volume and uses the notion of “almost equality”
over �R as well as over R (see Proposition 3.9, Section 3.11, and Proposition 3.13),
together with Hensel’s lemma.

Then we shall handle the general case, the point being that a form on a smooth R-
scheme always admits locally for the Zariski topology a lifting of the kind dealt with
by Proposition 5.3, so this part is somewhat tedious but rather formal once Proposi-
tion 5.3 is taken for granted.

5.2
If X is an affine Ar-scheme of finite type, a definable subset E of X .�R/ will be
called t -bounded if it is contained in X .Ar/. We remark that E is t -bounded if and
only if its topological closure is t -bounded, and if this is the case, then the latter is
even definably compact. Indeed, by embedding X in an affine space and arguing
componentwise we reduce to the case where X DA1Ar

, for which our statement fol-
lows from o-minimality.

5.3 PROPOSITION

Let Z be a smooth R-scheme of finite type and pure dimension n, and let h D
.h1; : : : ; hn/ be an étale map Z!AnR factorizing through an immersion .h; hnC1/ W
Z ,! AnC1R . Let X and Y be two smooth Ar-schemes of finite type and of pure
relative dimension n, equipped with identifications XR ' Z and YR ' Z. Let
f D .f1; : : : ; fn/ W X ! AnAr

and g D .g1; : : : ; gn/ W Y ! AnAr
be two étale maps,

factorizing respectively through a closed immersion .f; fnC1/ W X ,! AnC1Ar
and

.g;gnC1/ W Y ,!AnC1Ar
; assume that for all i one has fi jZ D gi jZ D hi .

LetE (resp., F ) be a t -bounded semialgebraic subset of X .�R/ (resp., Y .�R/);
assume that the subsets E and F of Z.R/ almost coincide.

Let ' be a smooth function defined on a neighborhood of E in X .Ar/, of the
form '0 ı� with '0 a C1-function and � a tuple of regular functions on X ; let  be
a smooth function defined on a neighborhood of F in Y .Ar/, of the form  0 ı with
 0 a C1 function and  a tuple of regular functions on Y . Assume that there exists a
semialgebraic open subset O of Z.R/ containing E and F such that '0 is .O;�jZ/-
tame,  0 is .O;jZ/-tame, and the smooth functions '0 ı .�jO/ and  0 ı .jO/
coincide on some semialgebraic subset of O almost equal to E and F .

Then
R
E
' df1 ^ � � � ^ dfn and

R
F
 dg1 ^ � � � ^ dgn are t -bounded and coincide

up to a t -negligible element.

Proof
We begin with noting that our tameness assumptions on '0 (resp.,  0) imply that '
(resp.,  ) takes only t -bounded values on E (resp., F ); this in turn implies that it is
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uniformly t -bounded on E (resp., F ). The t -boundedness of the integrals involved in
our statement follows immediately.

Throughout the proof, we will use the map fnC1 (resp., gnC1; resp., hnC1) to see
any fiber of f (resp., g; resp., h) as a subset of the affine line over its ground field, and
we will repeatedly use the following fact, which is a consequence of the Henselian
property of the local ring Ar: if w is a point of Anr with image w in Rn, then for every
z 2 Z.R/ lying above w there exists a unique preimage � of w in X .Ar/ (resp.,
Y .Ar/) with � D z.

The subsets E and F of Z.R/ are definable, closed, and bounded (because E
and F are bounded), so they are definably compact. The sets h.E/ and h.F / are
definably compact, and they almost coincide since E and F almost coincide, so they
have the same n-dimensional locus ‚; and the set h.E 4 F / is negligible. It follows
that there exists an almost partition .‚i / of ‚ (and thus of h.E/ as well as of h.F /)
by definably compact definable subsets satisfying the following: for every i , there
exists an integer ni such that the subset ‚0i of ‚i consisting of points having exactly
ni preimages in E \F and no preimage in E 4F is almost equal to ‚i .

Now for every i , there exists a t -bounded definable subset �i of .�R/n such that
�i is almost equal to ‚i (see Corollary 3.14). By Proposition 3.13, the family .�i /
is an almost partition of f .E/ as well as of g.F /. For every i , let �0i be the subset
of �i consisting of points having exactly ni preimages in E under f and exactly ni
preimages in F under g.

5.3.1
Let us fix i , and prove that �0i is almost equal to �i . It is sufficient (since f and g
play exactly the same role) to prove that the set H of points of �i having exactly ni
preimages in E under f is almost equal to �i .

We argue by contradiction, so we assume that the set H consisting of points
x 2�i such that f �1.x/\E has cardinality different from ni has t -significant vol-
ume. Then its image H is a nonnegligible subset of ‚i , which implies that H \‚0i
has dimension n. Let us choose a cube (with nonzero volume) C in H \‚0i having
the following property: there exist an integer N , a subset I of ¹1; : : : ;N º of cardinal-
ity ni , and a t -bounded element A> 1 in �R such that each fiber of h over C consists
of exactly N points z1 < z2 < � � �< zN all contained in Œ1�A;A� 1� and such that
zj 2E if and only if j 2 I .

Let us choose a cube D �Anr lifting C . Since C �H , the intersection D \H is
not t -negligible (see Lemma 3.12), and hence contains a cube D 0 with t -significant
volume. Every point of D 0 has exactly N t -bounded preimages, all contained in
Œ�A;A�; let �1 < � � �< �N denote the corresponding continuous sections of the étale
map f above D 0. If x 2 D 0 and if j 2 ¹1; : : : ;N º n I , then �j .x/ … E , because
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�j .x/ …E by the very definition of I . For each j 2 I , set D 0j D �
�1
j .E/. Let 
 2D 0,

and let j 2 I . The point 
 belongs to C , so its j th preimage � under h belongs
to E , so there exists a point z 2 E such that z D �, which implies that f .z/ D 
 ;
thus z D �j .f .z// and f .z/ belongs to D 0j . As a consequence, D 0j DD 0. In view

of Proposition 3.13, it follows that
T
j2I D 0j is almost equal to D 0. In particular,T

j2I D 0j is nonempty, but for every x 2
T
j2I D 0j the intersection f �1.x/\E has

exactly ni elements, which is a contradiction.

5.3.2
Now we remark that if N is a t -negligible t -bounded definable subset of .�R/n, thenZ

E\f �1.N /

' df1 ^ � � � ^ dfn and
Z
F\g�1.N /

 dg1 ^ � � � ^ dgn

are t -negligible. Indeed, let N be an integer such that the fibers of f jE and of gjF all
have cardinality at most N , and let M be a t -bounded positive element such that j'j
and j j are bounded by M on E and F , respectively.

Then ˇ̌̌Z
E\f �1.N /

' df1 ^ � � � ^ dfn
ˇ̌̌
�NM

Z
N

dT1 ^ � � � ^ dTn

and ˇ̌̌Z
F\g�1.N /

 dg1 ^ � � � ^ dgn
ˇ̌̌
�NM

Z
N

dT1 ^ � � � ^ dTn;

whence our claim.

5.3.3. Conclusion
In view of Sections 5.3.1 and 5.3.2, it is sufficient to prove that for all i the integralsZ

E\f �1.�0
i
/

' df1 ^ � � � ^ dfn and
Z
F\g�1.�0

i
/

 dg1 ^ � � � ^ dgn

agree up to a t -negligible element. So let us fix i . We denote by �1 < �2 < � � �< �ni
the continuous sections of f jE over �0i and by �1 < �2 < � � � < �ni the continuous
sections of gjF over �0i . For all x 2 �0i and all j between 1 and ni , the elements
�j .x/ and �j .x/ coincide: both are the j th preimage of x in E \ F . We have by
constructionZ

E\f �1.�0
i
/

' df1 ^ � � � ^ dfn D
X
j

Z
�0
i

.' ı �j /dT1 ^ : : : dTn

and
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F\g�1.�0

i
/

 dg1 ^ � � � ^ dgn D
X
j

Z
�0
i

. ı �j /dT1 ^ : : : dTn:

The differenceZ
E\f �1.�0

i
/

' df1 ^ � � � ^ dfn �
Z
F\g�1.�0

i
/

 dg1 ^ � � � ^ dgn

is thus equal to X
j

Z
�0
i

.' ı �j � ı �j /dT1 ^ � � � ^ dTn:

By our assumptions on  and  , the difference j' ı �j �  ı �j j is t -negligible for
every j at every point of �0i . Therefore, there exists a positive t -negligible element "
such that j' ı �j � ı �j /j � " for all j at every point of �0i . As a consequence,ˇ̌̌Z

E\f �1.�0
i
/

' df1 ^ � � � ^ dfn �
Z
F\g�1.�0

i
/

 dg1 ^ � � � ^ dgn
ˇ̌̌

� ni"

Z
�0
i

dT1 ^ � � � ^ dTn;

which ends the proof.

5.4 COROLLARY

Let X be a smooth Ar-scheme of finite type and pure relative dimension n. Let
f D .f1; : : : ; fn/ W X ! AnAr

be an étale map factorizing through an immersion

.f; fnC1/ W X ,! AnC1Ar
. Let E be a t -bounded semialgebraic subset of X .�R/; we

remind the reader that E denotes the image of E under the reduction map (and not
its topological closure). The following are equivalent.
(i) The image f .E/ is t -negligible.
(ii) The image f .E/ is of dimension less than n.
(iii) The reduction E is of dimension less than n.
(iv) For every smooth function ' of the form '0 ı � with '0 a C1-function and

� a tuple of regular functions on X such that '0 is .O;�jXR
/-tame on some

semialegbraic open subset O of X .R/ containing E , the integral
R
E
' df1 ^

� � � ^ dfn is t -negligible.
(v) The integral

R
E

df1 ^ � � � ^ dfn is t -negligible.

Proof
Implication (i) ) (ii) comes from the fact that f .E/ D f .E/. Implication (ii) )
(iii) comes from étaleness of f . Implication (iii)) (iv) follows from Proposition 5.3



NON-ARCHIMEDEAN INTEGRALS AS LIMITS OF COMPLEX INTEGRALS 347

(apply it with Y DX , g D g, gnC1 D fnC1, and F D ;). Implication (iv) ) (v)
is obvious. Assume that (v) holds. For every i , let Di denote the subset of f .E/
consisting of points having exactly i preimages on E , and let N be such that Di D;
for i > N . We then haveZ

E

df1 ^ � � � ^ dfn D
NX
iD1

Z
Di

dT1 ^ � � � ^ dTn:

As a consequence,
R
Di

dT1 ^ � � � ^ dTn is t -negligible for every i , so
R
f .E/

dT1 ^
� � � ^ dTn is t -negligible, whence (i).

5.5
Let us keep the notation of Corollary 5.4 above. We shall say that E is t -negligible if
it satisfies the equivalent conditions (i)–(v) (note that condition (iii) does not involve
the functions fi , so the notion of t -negligibility does not depend on the choice of the
functions fi ). We shall say that two t -bounded definable subsets of X .�R/ almost
coincide if their symmetric difference is t -negligible, and that two definable subsets
of X .R/ almost coincide if their symmetric difference is of dimension less than n.

5.6 LEMMA

Let X be a smooth Ar-scheme of finite type and pure relative dimension n. Assume
that there exists an étale map f D .f1; : : : ; fn/ W X ! AnAr

factorizing through an

immersion .f; fnC1/ W X ,!AnC1Ar
. Let E and F be two t -bounded definable subsets

of X .�R/. Then E and F are almost disjoint if and only if E and F are almost
disjoint.

Proof
If dim.E \ F / < n, then dimE \F < n because E \F �E \ F ; thus if E and F
are almost disjoint, so are E and F . Assume now that E and F are almost disjoint.
Set G D f .E [F /. For every triple .i; j; k/, denote by Gi;j;k the subset of points of
G having i preimages in E , j in F , and k in E [ F . By Corollary 3.14, there exists
for every .i; j; k/ a t -bounded definably compact definable subset 	i;j;k of .�R/n

such that 	i;j;k is almost equal to the definable closure of Gi;j;k , hence is also almost
equal to Gi;j;k . By the same reasoning as in Section 5.3.1, the subset of points of
	i;j;k having exactly i preimages in E (resp., j preimages in F ; resp., k preimages
in E [ F ) is almost equal to 	i;j;k ; hence so is the intersection 	 0

i;j;k
of these three

subsets. The family .	 0
i;j;k

/ is an almost partition of G.

Let .i; j; k/ be a triple with k < i C j . Since E \ F has dimension less than n,
the set Gi;j;k is negligible; as a consequence, 	i;j;k and 	 0

i;j;k
are t -negligible. This

implies that f .E \F / is t -negligible, whence the t -negligibility of E \F itself.
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5.7 PROPOSITION

Let X be as in Lemma 5.6 above, and let E and F be two t -bounded definable
subsets of X .�R/.
(1) The set E is almost equal to F if and only if E is almost equal to F .
(2) The set E \F is almost equal to E \F .

Proof
The proof is the same as that of Proposition 3.13, except that one uses Lemma 5.6
instead of Lemma 3.12.

5.8 COROLLARY

Let X be as in Lemma 5.6, and let K be a definably compact definable subset
of X .R/. There exists a definable, definably compact and t -bounded subset E of
X .�R/ such that E almost coincides with K .

Proof
By writing K as the union of its intersections with the Zariski-connected components
of XR, we can assume that it lies on such a component X . By boundedness of K
and the Henselian property of Ar (which ensures that any R-point of X can be lifted
to an Ar-point), we can choose a t -bounded, definably compact definable subset F
of X .�R/ such that K � F �X.R/. By Théorème 2.7.1 of [3], we can assume that
there exist finitely many regular functions f1; : : : ; fm on XR such that K is the inter-
section of F with the set of points x such that fj .x/� 0 for all j . By Proposition 5.7
above, we may assume that m D 1, and write f instead of f1. If f is constant on
X , then the set K is either empty or the whole of F and the statement is obvious. If
f is nonconstant on X , let g be a regular function on X that lifts f . Let E be the
intersection of F and the nonnegative locus of g; it suffices to prove that E is almost
equal to K . By definition, E �K . Now let x be a point on K at which f is positive,
and let 
 be any preimage of x on F . Since f .x/ > 0, we have g.
/ > 0, hence 
 2E
and x 2 E . Thus the difference K n E is contained in the zero locus of f in X.R/
which is at most .n� 1/-dimensional since f jX is nonconstant.

5.9 Definition
Let X be a smooth R-scheme of finite type and pure dimension n. We shall say for
short that X is liftable if there exists a smooth affine Ar-scheme X , an isomorphism
XR ' X , and nC 1 regular functions f1; : : : ; fnC1 on X such that .f1; : : : ; fnC1/
defines an immersion X ,!AnC1Ar

and .f1; : : : ; fn/ W X !AnAr
is étale.
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5.10. Integral of a smooth n-form
LetX be a smoothR-scheme of finite type and pure dimension n, letK be a definable
subset of X.R/ with definably compact definable closure, and let ! be a smooth n-
form on a semialgebraic open neighborhood O of K in X.R/. The purpose of what
follows is to define

R
K
!.

5.10.1
We first assume that X is liftable and ! is of the form '.u1; : : : ; um/!0 almost every-
where on K , with ui regular functions, ' an .O; .u1; : : : ; um//-tame smooth func-
tion, and where !0 is an algebraic n-form. Choose X and f1; : : : ; fnC1 as in Defini-
tion 5.9. The sheaf �X=R is then free with basis .dfi jX /1�i�n; therefore, up to mul-
tiplying ' with a regular function, we might assume that !0 D .df1 ^ � � � ^ dfn/jX .

Choose a t -bounded definable subset E of X .�R/ such that E is almost equal
to the definable closure of K (see Corollary 5.8) and for every i , choose a regular
function vi on X lifting ui .

By Proposition 5.3, the integral
R
E
'.v1; : : : ; vm/df1 ^ : : : dfn does not depend

on our various choices up to a t -negligible element. We can thus setZ
K

! D

Z
E

'.v1; : : : ; vm/df1 ^ : : : dfnI

this is an element of R. Note that ifK 0 is any definable subset almost equal toK , thenR
K0
! D

R
K
! (since the same E can be used for both computations).

The assignment K 7!
R
K
! is finitely additive. Indeed, if K is a finite unionS

j2J Kj of definable subsets, we can choose for every j an almost lifting Ej of

Kj ; now for every subset I of J the sets
T
j2I Ej and

T
j2I Kj almost coincide by

Proposition 5.7, and additivity follows from additivity of integrals over the field �R.

5.10.2
We still assume that X is liftable, but we no longer assume that ! is of the form
'.u1; : : : ; um/!0 on K . By the very definition of an n-form, there exist finitely many
definably open subsets U1; : : : ;Ur of X.R/ that cover K and such that !jUi has the
required form. By Lemma 3.2, we can write the definable closure of K as a finite
union

S
j2J Kj with each Kj definably compact and contained in Uj . By additivity,P

;¤I	J .�1/
jI jC1

RT
j2I Kj

! does not depend on the choice of the sets Uj and Kj ,

and we can use this formula as a definition for
R
K
!. The assignment K 7!

R
K
!

remains additive in this more general setting, and
R
K ! depends only on the class of

K modulo almost equality.
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5.10.3
We still assume that X is liftable. Let s be an algebraic function on X , set X 0 DD.s/
(the invertibility locus of s), and assume that the definable closure ofK is contained in
X 0.R/. We then have a priori two different definitions for

R
K !, the one using X and

the other one using the principal open subset X 0, which is also (obviously) liftable.
Let us show that both integrals coincide. By replacing K by its closure (to which it is
almost equal), we can assume that it is definably compact.

By cutting K into finitely many sufficiently small pieces (see Lemma 3.2) and
using additivity, we can assume that ! is of the form '.u1; : : : ; um/!0 almost every-
where on K , with ui regular functions on X , ' an .O; .u1; : : : ; um//-tame smooth
function, and !0 a section of �n

X=R
(this can be achieved since �X=R is free because

X is liftable). Lift every ui to a regular function vi on X , and lift !0 to a relative
n-form !0 on X .

Let us choose data .X ; f1; : : : ; fnC1/ that witness the liftability of X . Lift every
ui to a regular function vi on X , lift !0 to a relative n-form !0 on X , and lift s to
a regular function � on X . Set X 0 DD.�/. Then .X 0; f1; : : : ; fn; fnC1/ witnesses
the liftability of X 0. Now choose a t -bounded definable subset of X 0.�R/ that almost
lifts K . Then it is definable, t -bounded and an almost lifting of K as a subset of
X .�R/ as well. Therefore, the X and the X 0 version of

R
K ! both are equal to the

class of
R
E
'.v1; : : : ; vm/!

0 modulo the t -negligible elements.

5.10.4
The scheme X is no longer assumed to be liftable, but we assume that there exist two
liftable affine open subsets X 0 and X 00 of X such that the definable closure of K is
contained inX 0.R/\X 00.R/. We then have a priori two different definitions for

R
K
!,

the one using X 0 and the other one using X 00. We want to prove that they coincide.
By replacing K by its closure (to which it is almost equal), we can assume that it is
definably compact.

Let us first note the following. Let x be a point of X 0 \ X 00. Choose an affine
neighborhood Y of x in X 0 \X 00 equal to D.s/ as a subset of X 0, for some regular
function s on X 0. Now choose an affine neighborhood Z of x in Y equal to D.w/
as a subset of X 00, for some regular function w on X 00. The restriction of w to Y is
equal to a=s` for some ` � 0 and some regular function a on X 0; as a consequence,
Z DD.as/ as a subset of X 00.

Hence we can cover X 0\X 00 by finitely many open subschemes Y1; : : : ; Yr , each
of which is principal in both X 0 and X 00. Now write K D

S
Ki with every Ki defin-

able, definably compact and contained in Yi (see Lemma 3.2). For every nonempty
subset I of ¹1; : : : ; rº, it follows from Section 5.10.3 that

RT
i2I Ki

! does not depend
on whether one is working with X 0 or X 00 (because it can be computed working with
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Yj , where j is any element of I ). By additivity, it follows that
R
K
! also does not

depend on whether one is working with X 0 or X 00.

5.10.5
Now let us explain how to define

R
K
! in general. Let K 0 be the closure of K , which

is definably compact. We choose a finite cover .Xi /i2I of X by liftable open sub-
schemes (which is possible since X is smooth). We then write K 0 as a finite unionS
Ki , where every Ki is a definably compact semialgebraic subset of Xi .R/ (see

Lemma 3.2).
We then set Z

K

! D
X
;¤J	I

.�1/jJ jC1
Z
T
i2J Ki

!;

which makes sense because, as it follows straightforwardly from the above, it does
not depend on .Xi / nor on .Ki /.

5.11
Let X be a smooth R-scheme of finite type and pure dimension n. It follows from our
construction that

.K;!/ 7!

Z
K

!

(where K is a semialgebraic subset of X.R/ with definably compact closure and ! is
an n-form defined on a definable neighborhood of K) is R-linear in !, additive in K ,
and that it depends on K only up to almost equality.

We can extend this definition to forms with coefficients in a reasonable class
of functions (like piecewise smooth) by requiring everywhere in the above that '
belongs to the involved class (instead of being smooth) and satisfies some tameness
condition. For instance,

R
K
j!jmakes sense (and is nonnegative; see Section 3.4.4). It

follows from the definition that
R
K
! depends only on !jK ; in particular, it is zero if

! vanishes almost everywhere on K . We can thus extend the definition of
R
K
! when

we only assume that there exists a definable subset K 0 of K with definably compact
closure such that ! vanishes on K nK 0.

And of course, we can also define by linearity the integrals of complex-valued
forms (see Section 4.1.4).

5.12. The complex case
We now consider a smooth C -scheme of finite type X and pure dimension n, and
a complex-valued .n;n/-form ! with coefficients belonging to a reasonable class of
functions defined in a semialgebraic open neighborhood of a semialgebraic subset K
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of X.C/. Assume that there exists a semialgebraic subset K 0 of K with definably
compact closure such that ! vanishes on K nK 0.

Then
R
K ! is well defined. Its computation requires (among other things) to lift

locally RC=RX to a smooth Ar-scheme and ! to a .2n/-form on this scheme, which
can be achieved by lifting locally X to a smooth A-scheme and ! to an .n;n/-form
on this scheme.

6. Archimedean and non-Archimedean complexes of forms

6.1
We denote by � the element � log jt j of R>0, and by Log the normalized logarithm
function a 7! loga=� from R>0 to R.

We recall that C is equipped with a non-Archimedean absolute value j � j[, which

sends a nonzero element z to � std. log jzj
log jtj / where � is an element of .0; 1/ which has been

fixed once and for all, and where std.�/ denotes the standard part (see Section 2.7). We
set �[ D� log � D� log jt j[ 2R>0, and we denote by Log[ the normalized logarithm
function a 7! loga=�[ from R>0 to R.

If a is any element of C�, then it follows from the definitions that

Log[ jaj[ D std
�
Log jaj

�
:

6.2. Analytification of C -schemes
The field C is a complete non-Archimedean field, so Berkovich geometry makes
sense over it.

Let X be a C -scheme of finite type, and let X an denote its Berkovich analytifi-
cation. Let x be a point of X an. In the proof of our main theorem, we shall use the
fact that x has a basis of open (resp., affinoid) neighborhoods V in X an satisfying
the following: there exists an affine open subscheme � of X such that V is an open
subset (resp., a Weierstrass domain) of �an that admits a description by a system of
inequalities of the form

j'1j[ <R1; : : : ; j'nj[ <Rn; resp., j'1j[ �R1; : : : ; j'nj[ �Rn;

where the functions 'i belong to O.�/, and with Ri positive real numbers.
Let us prove it. We first chose an open affine subscheme U of X with x 2 U an,

a family .f1; : : : ; fn/ of regular functions on U that generate O.U / over C , and let
R be a positive real number such that jfi .x/j[ <R for all i ; let W be the Weierstrass
domain of U an defined by the inequalities jfi j[ �R. Now it follows from the general
theory of Berkovich spaces that x has a basis of open (resp., affinoid) neighborhoods
described by a system of inequalities of the form
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jf1j[ <R; : : : ; jfnj[ <R; jg1j[ < r1; : : : ; jgmj[ < rm;

jh1j[ > s1; : : : ; jh`j[ > s`;

resp., jf1j[ �R; : : : ; jfnj[ �R; jg1j[ � r1; : : : ; jgmj[ � rm;

jh1j[ � s1; : : : ; jh`j[ � s`

with gi and hi analytic functions onW , and si and ri positive real numbers. But O.U /

is dense in O.W /, so we can assume by approximation that the functions gi and hi
belong to O.U /. Then the domain described by the above system of inequalities can
also be described as the locus of validity of

jf1j[ <R; : : : ; jfnj[ <R; jg1j[ < r1; : : : ; jgmj[ < rm;

jh�11 j[ < s
�1
1 ; : : : ; jh�1` j[ < s

�1
` ;

resp., jf1j[ �R; : : : ; jfnj[ �R; jg1j[ � r1; : : : ; jgmj[ � rm;

jh�11 j[ � s
�1
1 ; : : : ; jh�1` j[ � s

�1
`

on D.h1h2 : : : h`/an, whence our claim.

6.3. Two complexes of differential forms
We fix a smooth C -scheme of finite type X and pure dimension n.

6.3.1
Let us begin with some notation. Let U be an open subscheme of X , and let f D
.f1; : : : ; fm/ be a family of regular functions on U . Let I and J be two subsets of
¹1; : : : ;mº. We shall denote by S I;J;.fi / the set of pairs .V;'/ where:
(a) V is an open subset of .R [ ¹�1º/m, defined by Q-linear inequalities such

that VR contains .Log jf1j; : : : ;Log jfmj/.U.C //;
(b) ' is a reasonably smooth function on V which is .I [ J /-vanishing.
We identify two pairs .V;'/ and .V 0; '0/ if ' and '0 agree on V \ V 0; therefore, we
shall most of the time omit mentioning V , and elements of S I;J;.fi / will be called
.I [ J /-vanishing reasonably smooth functions.

We denote by S
I;J;.fi /

[
the set of pairs .V;'/ satisfying condition

.a[/ V is an open subset of .R [ ¹�1º/m, defined by Q-linear inequalities and
containing .Log[ jf1j[; : : : ;Log[ jfmj[/.U

an/

and condition (b) above. Here also, we identify two pairs .V;'/ and .V 0; '0/ if ' and
'0 agree on V \V 0 and elements of S

I;J;.fi /

[
will be called .I; J /[-vanishing smooth

functions.
Note that S I;J;.fi / �S

I;J;.fi /

[
.
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6.3.2. The nonstandard Archimedean complex
Let U be a Zariski open subset of X.C/. Let us denote by Ap;qpresh.U / the set of those
.pC q/-smooth forms ! on U.C/ for which there exist:
� a finite family .f1; : : : ; fm/ of regular functions on U ;
� for every pair .I; J / with I and J two subsets of ¹1; : : : ;mº of respective

cardinality p and q, an .I [ J /-vanishing reasonably smooth function 'I;J 2
S I;J;.fi /

such that

! D
X
I;J

'I;J
�
Log jf1j; : : : ;Log jfmj

�
d Log jfI j ^ d ArgfJ ;

where d Log jf jI stands for d Log jfi1 j ^ � � � ^ d Log jfip j if i1 < i2 < � � �< ip are the

elements of I , and d ArgfJ stands for
d argfj1
2�

^ � � � ^
d argfjq
2�

if j1 < j2 < � � � < jq
are the elements of J .

We denote by Ap;q the sheaf on XZar associated to the presheaf Ap;qpresh, and by
A�;� the direct sum

L
p;q Ap;q .

We set for short A0 D A0;0. By construction, A0.X/ is the subsheaf (of C -
algebras) of the pushforward of C ˝R C1X to XZar, whose sections are the smooth
functions that are locally on XZar of the form '.Log jf1j; : : : ;Log jfmj/ for some
finite family .f1; : : : ; fm/ of regular functions and some reasonably smooth function
' on a suitable open subset of .R[ ¹�1º/m.

The sheaf A�;� has a natural structure of bigraded A0-algebra; it follows from
Section 4.5.3 that the differentials d and d] induce two differentials on A�;�, which
are still denoted by d and d]. The differential d is of bidegree .1; 0/ and maps a form

'
�
Log jf1j; : : : ;Log jfmj

�
d Log jfI j ^ d ArgfJ

to X
1�i�m

@'

@xi

�
Log jf1j; : : : ;Log jfmj

�
d Log jfi j ^ d Log jfI j ^ d ArgfJ :

The differential d] is of bidegree .0; 1/ and maps a form

'
�
Log jf1j; : : : ;Log jfmj

�
d Log jfI j ^ d ArgfJ

to X
1�i�m

@'

@xi

�
Log jf1j; : : : ;Log jfmj

� d arg

2�
fi ^ d Log jfI j ^ d ArgfJ :

The operator J also acts on A�;�; it maps a form
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'
�
Log jf1j; : : : ;Log jfmj

�
d Log jfI j ^ d ArgfJ

to

.�1/q.2�/p�q'
�
Log jf1j; : : : ;Log jfmj

�
d ArgfI ^ d Log jfJ j

and acts trivially on An;n.

6.3.3. The non-Archimedean complex
Let U be a Zariski-open subset of X . Let us denote by Bp;qpresh.U / the set of those
.p; q/-smooth forms ! on U an in the sense of [6] for which there exist:
� a finite family .f1; : : : ; fm/ of regular functions on U ;
� for every pair .I; J / with I and J two subsets of ¹1; : : : ;mº of respective

cardinality p and q, an .I; J /[-vanishing reasonably smooth function 'I;J 2
S
I;J;.fi /

[

such that

! D
X
I;J

'I;J
�
Log[ jf1j[; : : : ;Log[ jfmj[

�
d0 Log[ jfI j[ ^ d00 log jfJ j[;

where d0 Log[ jfI j[ stands for d0 Log[ jfi1 j[ ^ � � � ^ d0 Log[ jfip j[ if i1 < i2 < � � �< ip
are the elements of I , and similarly for d00 log jfJ j[.

We denote by Bp;q the sheaf on XZar associated to the presheaf Bp;qpresh. We
denote by B�;� the direct sum

L
p;q Bp;q . We set for short B0 D B0;0. By con-

struction, B0 is the subsheaf (of C -algebras) of the pushforward of C ˝R A0Xan to
XZar, whose sections are the smooth functions that are locally on XZar of the form
'.Log[ jf1j[; : : : ;Log[ jfmj[/ for some finite family .f1; : : : ; fm/ of regular functions
and some reasonably smooth function ' on a suitable open subset of .R[ ¹�1º/m.

The sheaf B�;� is a bigraded B0-algebra which is stable under d0 and d00.

6.4 Remark
Every .p; q/-form in the sense of [6] can be written locally for the Berkovich topology
as a sum X

 I;J
�
log jgi j[; : : : ; log jgmj[

�
d0 log jgI j[ ^ d00 log jgJ j[;

where the  I;J are smooth and with gi invertible analytic functions.
By the very definition of an .I [ J /-vanishing reasonably smooth function, a

section

! D
X
I;J

'I;J
�
Log[ jf1j[; : : : ;Log[ jfmj[

�
d0 Log[ jfI j[ ^ d00 log jfJ j[
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of Bp;qpresh fulfills this condition, because locally for the Berkovich topology, every
nonzero term of the sum can be rewritten by involving only the functions fi which are
invertible. But the reader should be aware that ! cannot in general be written locally
for the Zariski topology as a sumX

 I;J
�
log jgi j[; : : : ; log jgmj[

�
d0 log jgI j[ ^ d00 log jgJ j[

with gi invertible algebraic functions.
(Consider for example a non-zero smooth function ' on R that vanishes on

.�1;A/ for some A, and the section '.Log[ jT j[/d0 Log[ jT j[ ^ d00 log jT j[ of B1;1

on A1;an
C .)

7. Pseudopolyhedra
The purpose of this section is to describe the domains on which we shall integrate
our forms, in both the Archimedean and non-Archimedean settings. These domains
will be the preimages under functions of the form Log jf j (resp., Log[ jf j[) of some
specific subsets of .R[¹�1º/n (resp., .R[¹�1º/n) that we call pseudopolyhedra.

7.1 Definition
Let S be a nontrivial divisible ordered abelian group with additive notation (in prac-
tice we shall consider only cases where S underlies a real closed field). A subset of
.S [ ¹�1º/m is called a pseudopolyhedron if it is a finite union of sets of the form°

.x0; x00/ 2
Y
i2I

Œ�1; bi �	
Y
i2J

Œai ; bi � s.t. '1.x
00/� 0; : : : ; 'r.x

00/� 0
±

where
� I and J are subsets of ¹1; : : : ;mº that partition it;
� for 1� i �m, ai and bi are elements of S ;
� for 1� j � r , 'j is an affine form whose linear part has coefficients in Q.

A subset of Sm is a polyhedron if this is a pseudopolyhedron of .S [ ¹�1º/m.
This amounts to requiring that it be a finite union of sets of the form°

x 2
Y

i2¹1;:::;nº

Œai ; bi � s.t. '1.x/� 0; : : : ; 'r.x/� 0
±
;

with ai , bi , and 'i as above.

7.1.1
Let X be an analytic space over C , and let f1; : : : ; fm be analytic functions on X . Let
P be a pseudopolyhedron of .R[ ¹�1º/m. The set�

Log[ jf1j[; : : : ;Log[ jfmj[
��1

.P /
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is a closed analytic domain of X .

7.1.2
Let P be a pseudopolyhedron of .R[ ¹�1º/m. The subset

jt j�P WD
®
jt j�x ; x 2 P

¯
(with the convention that jt j1 D 0) is an RCF-definable subset of Rm�0; indeed, it is
defined by monomial inequalities. One sees easily that if P depends DOAG-definably
on some set of parameters a1; : : : ; a` 2 R, then jt j�P depends RCF-definably on
jt ja1 ; : : : ; jt ja` .

7.1.3
In practice, we shall encounter pseudopolyhedra over the real closed fields R and R.

7.1.3.1. Let P � .R[¹�1º/m be a pseudopolyhedron over R. It gives rise by base
change to a pseudopolyhedron over PR � .R [ ¹�1º/m over the field R which has
the following properties: it can be written as a finite union of subsets of .R[¹�1º/m

admitting a description like in Definition 7.1 with the additional requirement that all
the elements ai and bi are bounded; we shall say for short that such a pseudopolyhe-
dron is bounded.

7.1.3.2. Let … be a bounded pseudopolyhedron in .R [ ¹�1º/m. For every x in
R[¹�1º which is either negative unbounded or equal to �1, we set std.x/D�1;
with this convention, the definition

std.…/ WD
®�

std.x1/; : : : ; std.xm/
�¯
.x1;:::;xm/2…

makes sense, and std.…/ is a pseudopolyhedron of .R[ ¹�1º/m.
To see this, we can assume that … is of the form°

.x0; x00/ 2
Y
i2I

Œ�1; bi �	
Y
i2J

Œai ; bi � s.t. '1.x
00/� 0; : : : ; 'r.x

00/� 0
±
;

where the notation is as in Definition 7.1 and where the elements ai and bi are all
bounded. Set

‚D
°
x 2

Y
i2J

Œai ; bi � s.t. '1.x/� 0; : : : ; 'r.x/� 0
±
:

This is a bounded polyhedron of RJ and one has

std.…/D
�Y
i2I

�
�1; std.bi /

��
	 std.‚/:
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So it suffices to prove that std.‚/ is a polyhedron. Otherwise said, we can assume
that I D; and J D ¹1; : : : ;mº and it suffices to show that std.…/ is a polyhedron.

In fact we shall prove more generally that std.…/ is a polyhedron when … is any
bounded DOAG-definable subset of Rm. We use induction on m; there is nothing to
prove if m D 0. Assume now that m > 0 and that the result holds for integers less
than m. By cell decomposition for an o-minimal theory, we can assume that … is an
open cell. So there exists an open DOAG-definable subset � of Rm�1 and two DOAG-
definable functions � and  from � to R such that � <  on � and … is equal to the
set of those m-tuples .x1; : : : ; xm/ 2Rm such that

.x1; : : : ; xm�1/ 2� and �.x1; : : : ; xm�1/ < xm <.x1; : : : ; xm�1/º:

Up to refining the original cell decomposition, we can even assume that � and  are
affine with their linear parts having coefficients in Q.

Since the cell … is bounded, its projection � onto Rm�1 is bounded as well, and
the constant terms of both � and  are bounded too, thus the standard parts std.�/
and std./ make sense as affine functions from Rm�1! R, with linear parts having
coefficients in Q.

Now a direct computation shows that std.…/ is equal to the set of those m-tuples
.x1; : : : ; xm/ 2Rm such that

.x1; : : : ; xm�1/ 2 std.�/ and

std.�/.x1; : : : ; xm�1/� xm � std./.x1; : : : ; xm�1/º:

Since std.�/ is a polyhedron of Rm�1 by our induction hypothesis, we are done.

7.2
Let U be a Zariski-open subset of X , let g1; : : : ; g` be regular functions on U , and
let P be a pseudopolyhedron of .R[ ¹�1º/`. Let Q be the closed analytic domain
.Log[ jgj[/

�1.P / of U an (with gD .g1; : : : ; g`/). A point x of U.C/ belongs to Q if
and only if Log[ jg.x/j[ 2 P , which is equivalent to

� log.� std. log jg.x/j
log jtj //

log �
2 P;

which we may rewrite as

� std
� log jg.x/j

log jt j

�
2 P

or equivalently as

Log
ˇ̌
g.x/

ˇ̌
2 PR C nm;

where we denote by n the set of negligible elements of R.
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7.3 Notation
If … is a pseudopolyhedron of .R [ ¹�1º/` for some ` and if a is a nonnegative
element of R, we shall denote by …a the pseudopolyhedron …C Œ�a;a�`. If … and
a are bounded, then …a is bounded as well.

7.4 LEMMA

Let X be a C -scheme of finite type, let g W X ! A`C be a morphism, and let … be a
bounded pseudopolyhedron of .R[ ¹�1º/`. The following are equivalent:
(i) the analytic domain .Log[ jgj[/

�1.std.…// of X an is compact;
(ii) there exists a positive standard number " such that the semialgebraic subset

.Log jgj/�1.…"/ of X.C/ is definably compact.

Proof
Choose a finite affine open cover .Xi / of X and for each i , a finite family .fij / of
regular functions on Xi that generate OX .Xi / as a C -algebra. For every i and every
positive bounded element M of R (resp., every positive real number M ), denote by
KMi (resp., KM

i[
) the subset of Xi .C / consisting of points at which Log jfij j �M

for all j (resp., the subset of X an
i consisting of points at which Log[ jfij j[ �M for

all j ). For every positive real number M and every positive real number ", we have
the inclusions

KMi �K
M
i[ .C /�K

MC"
i :

Assume that (i) holds. As .Log[ jgj[/
�1.std.…// is compact, it is contained inS

i K
M
i[

for some positive real number M .
Let a be a positive infinitesimal element of R. The subset .Log jgj/�1.…a/ of

X.C/ is contained in .Log[ jgj[/
�1.std.…a//D .Log[ jgj[/

�1.std.…//; it is thus con-
tained in the definably compact semialgebraic subset

S
i K

MC1
i .

Let I be the set of positive elements a of R such that .Log jgj/�1.…a/ �S
i K

MC1
i . This is a definable subset of R>0 which contains by the above every

positive infinitesimal element; thus it contains some standard positive element ". The
semialgebraic subset .Log jgj/�1.…"/ of X.C/ is closed by its very definition, and is
contained in the definably compact semialgebraic subset

S
i K

MC1
i by the choice of

", so it is definably compact; thus (ii) holds.
Conversely, assume that (ii) holds. Then there exists a positive real number M

such that .Log jgj/�1.…"/�
S
i K

M
i .

The set of C -points of .Log[ jgj[/
�1.…/ is contained in .Log jgj/�1.…"/, hence

in
S
i K

M
i . The latter is itself contained in the set of C -points of

S
i K

M
i[

; thus
.Log[ jgj[/

�1.…/�
S
i K

M
i[

, which implies that .Log[ jgj[/
�1.…/ is compact.
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7.5 Notation
Let X and g be as in Lemma 7.4 above. The set of bounded pseudopolyhedra … of
.R [ ¹�1º/` such that the equivalent assertions (i) and (ii) of Lemma 7.4 hold will
be denoted by‚.g/. For any… 2‚.g/, we will denote byƒ.g;…/ the set of positive
real numbers " as in (ii).

7.6 Remark
Let X and g be as in Lemma 7.4 above, and let … 2 ‚.g/. The set ƒ.g;…/ is
nonempty by definition; choose " therein. If � is any real number in .0; "/, then it
is clear that …� 2‚.g/ and that ."� �/ 2ƒ.g;…�/.

8. Main theorem: Statement and consequences

8.1 THEOREM

Let X be a smooth scheme over C of pure dimension n. There exists a unique mor-
phism of sheaves of bigraded differential R-algebras on XZar

A�;� �! B�;�

! 7�! ![

such that for every Zariski-open subset U of X , every finite family .f1; : : : ; fm/ of
regular functions on U , every pair .I; J / of subsets of ¹1; : : : ;mº, and every .I [J /-
vanishing reasonably smooth function ' in S I;J;.fi /, one has�

'
�
Log jf1j; : : : ;Log jfmj

�
d Log jfI j ^ d ArgfJ

�
[

D '
�
Log[ jf1j[; : : : ;Log[ jfmj[

�
d0 Log[ jfI j[ ^ d00 log jfJ j[:

Moreover, this morphism enjoys the following properties; let U be a Zariski-open
subset of X , and let ! 2 Ap;q.U /.
(1) Assume that the support of ! is contained in some definably compact semial-

gebraic subset of U.C/. Then ![ is compactly supported.
We assume from now on that pD q D n.

(2) Let g W U !A`C be a morphism, and let… be an element of‚.g/. The integralR
.Log jgj/�1.…/ j!j is bounded, which implies that

R
.Log jgj/�1.…/! is bounded

too.
(3) Let .Vi / be a finite family of Zariski-open subsets of U ; for every i , let gi be

a morphism from Vi !A`iC , and let …i be an element of ‚.gi /. Then

std
�Z

S
i .Log jgi j/�1.…i;"/

!
�
�!

Z
S
i .Log[ jgi j[/�1.std.…i //

![ (a)

and
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std
�Z

S
i .Log jgi j/�1.…i;"/

j!j
�
�!

Z
S
i .Log[ jgi j[/�1.std.…i //

j![j[ (b)

when the positive standard number " belongs to
T
i ƒ.gi ;…i / and tends to

zero.
Moreover, there exists a positive negligible element ˛ 2R such that

std
�Z

S
i .Log jgi j/�1.…i;"/n

S
i .Log jgi j/�1.…i;˛/

j!j
�
�! 0 (c)

when the positive standard number " belongs to
T
i ƒ.gi ;…i / and tends to

zero.
(4) Assume that the support of ! is contained in a definably compact semialge-

braic subset of U.C/, which implies by (1) that ![ is compactly supported.
Then

R
U.C/ j!j is bounded and

std
�Z
U.C/

!
�
D

Z
U an

![ (d)

and

std
�Z
U.C/

j!j
�
D

Z
U an
j![j[: (e)

8.2 Remark
Statement (3c) has the following consequence. Assume that we are given for every
small enough positive standard " in

T
i ƒ.gi ;…i / a semialgebraic subsetD" of U.C/

satisfying [
i

�
Log jgi j

��1
.…i;˛/�D" �

[
i

�
Log jgi j

��1
.…i;"/:

Then

std
�Z
D"

!
�
�!

Z
S
i .Log[ jgi j[/�1.std.…i //

![ (f)

and

std
�Z
D"

j!j
�
�!

Z
S
i .Log[ jgi j[/�1.std.…i //

j![j[ (g)

when the positive standard number " tends to zero.
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8.3. A statement about ordinary limits of complex integrals
Our purpose now is to state a corollary of our main theorem in a more classical lan-
guage, namely, in terms of limits of usual complex integrals, without using any ultra-
filter nor any nonstandard model of R or C.

Let us recall that M denotes the field of meromorphic functions around the origin
of C. Let X be a smooth M -scheme of finite type and pure dimension n, and let .Ui /
be a finite Zariski-open cover of X . For every i , let .fij /1�j�ni be a finite family
of regular functions on Ui ; for every subset I and J of ¹1; : : : ; nj º of cardinality n,
let 'i;I;J be a reasonably smooth and .I [ J /-vanishing complex-valued function
defined on some suitable open subset of .R[ ¹�1º/ni .

Since M is the field of meromorphic functions around the origin, X gives rise
to a complex analytic space, relatively algebraic, over a small enough punctured disk
D�, which we still denote by X . Up to shrinking D�, we can assume that every Ui is
a relative Zariski-open subset of the analytic space X , and that the functions fij are
relatively algebraic holomorphic functions on Ui .

Assume that there exists a relative .n;n/-form ! on X whose support is proper
over D� and such that

!jUi D
� �1

log jt j

�nX
I;J

'i;I;J

�
�

log jfi1j

log jt j
; : : : ;�

log jfini j

log jt j

�
d log jfi;I j ^ d Argfi;J

for every i (otherwise said, the forms locally defined by the above formulas coincide
on overlaps, and the global form obtained by gluing them is relatively compactly
supported).

The t -adic completion of M is the field C..t// of Laurent series. Fix � 2 .0; 1/,
and endow C..t// with the t -adic absolute value j � j[ that maps t to � ; let us denote
by X an the Berkovich analytification of X 	M C..t//.

Then the existence of our morphism of sheaves of bigraded differential R-
algebras implies the existence of a compactly supported .n;n/-form ![ on X an (in
the sense of [6]) such that

![jU an
i

D
� �1

log �

�nX
I;J

'i;I;J

�
�

log jfi1j[
log �

; : : : ;�
log jfini j[

log �

�
d0 log jfi;I j[

^ d00 log jfi;J j[

for every i .
Now assertion (4) has the following consequence.
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8.4 THEOREM

We have

lim
t!0

Z
Xt

!jXt D

Z
Xan

![:

Proof
Let .zn/ be a zero sequence of nonzero complex numbers such that

R
Xzn

!jXzn has a
limit in R [ ¹�1;C1º when n tends to infinity, and let U be any ultrafilter on C
containing all cofinite subsets of ¹znºn. Then applying our general construction with
this specific U (recall that M has a natural embedding into our fieldC of nonstandard
complex numbers), we see thatZ

Xzn

!jXzn �!

Z
Xan

![

when n tends to infinity. As this holds for an arbitrary sequence .zn/ as above, we are
done.

9. Proof of the main theorem

9.1. Compatibility with integration
We shall in some sense establish the good behavior with respect to integration before
showing the existence of the morphism ! 7! ![. Let us make this more precise.

9.1.1. Our setting
We assume that ! can be written asX

I;J

'I;J
�
Log jf1j; : : : ;Log jfmj

�
d Log jfI j ^ d ArgfJ ;

where I and J run through the set of subsets of ¹1; : : : ;mº of cardinality n, where
.fi /1�i�m is a family of regular invertible functions on U , and where 'I;J is an
.I [J /-vanishing reasonably smooth function in S I;J;.fi / for each .I; J /. We denote
by ![ the formX

I;J

'I;J
�
Log[ jf1j[; : : : ;Log[ jfmj[

�
d0 Log[ jfI j[ ^ d00 log jfJ j[

(we insist that our morphism has not yet been defined, so ![ is currently just a notation
for the form above).

We also assume that the open covering .Vi / is the trivial covering consisting of
one open subset V1 DU and we write g instead of g1,… instead of…1, and ` instead
of `1.

Section 9.1 will be devoted to the proofs of (2) and (3) in this setting.
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9.1.2. Proof of (2)
We shall in fact prove that

R
K
j!j is bounded for any t -bounded definably com-

pact semialgebraic subset K of U.C/; so, let us fix such a subset K . Since K is
definably compact and since Log jfi j only takes bounded values on the invertible
locus of fi , there exists a positive standard real number A such that Log jfi j �
A on K for all i ; thus there exists a positive standard real number N such that
j'I;J .Log jf1j; : : : ;Log jfmj/j �N on K for all .I; J /.

Fix I and J . By the very definition of .I [ J /-vanishing reasonably smooth
functions, there exist two open subsets V 0I;J � VI;J of .R [ ¹�1º/m, defined by
Q-linear inequalities, and such that the following holds:
� 'I;J is defined on VI;J and .Log jf1j; : : : ;Log jfmj/.U.C //� VI;J .R/;
� 'I;J jV 0

I;J
D 0, and for every i 2 I [ J , the i th coordinate function does not

take the value �1 on VI;J n V 0I;J .
Let KI;J be the preimage of VI;J n V 0I;J in K under .Log jf1j; : : : ;Log jfmj/. This is
a definably compact semialgebraic subset of K on which jfi j does not vanish as soon
as i 2 I [ J ; by construction, 'I;J .Log jf1j; : : : ;Log jfmj/ vanishes on K nKI;J .

By enlarging A, we may assume that for all I , J and all i 2 I [ J one has the
minoration log jfi j � �A on KI;J .

For every subset L of ¹1; : : : ;mº, denote by DL the subset of U.C/ consist-
ing of points at which every fi with i 2 L is invertible. Let i 2 ¹1; : : : ;mº; on
D¹iº we set fi D rie

2i�˛i for every i (where ri D jfi j and ˛i is a multivalued
function, which we will use only through the well-defined differential form d˛i ).
Let I and J be two subsets of ¹1; : : : ;mº of cardinality n. Let i1 < � � � < in

be the elements of I , and let j1 < � � � < jn be those of J ; on DI[J , we set
drI
rI
D

dri1
ri1
^ � � � ^

drin
rin

and d˛J D d˛j1 ^ � � � ^ d˛jn . Let S1R denote the “unit

circle” ¹z 2 C; jzj D 1º. Let uI;J be the map from DI;J to .R>0/n	 .S1R/
n that maps

a point x to .jfi1.x/j; : : : ; jfin.x/j;
fj1 .x/

jfj1 .x/j
; : : : ;

fjn .x/

jfjn .x/j
/.

We denote by �j the coordinate function on .R>0/n 	 .S1R/
n corresponding to

the j th factor R>0, and by $j the multivalued argument function corresponding to
the j th factor S1R. The form d$j is well defined (we can describe it alternatively as
the pullback under the projection to the j th factor S1R ' ¹.x; y/ 2R

2; x2 C y2 D 1º

of the form x dy � y dx). Let EI;J denote the étale locus of uI;J ; by definability and
o-minimality, there exists an integer d such that the fibers of uI;J jEI;J\K are all of
cardinality at most d for all I and J .

We then have (recall that �D� log jt j)Z
K

j!j �
N

�n

X
I;J

Z
KI;J

ˇ̌̌ drI
rI
^ d˛J

ˇ̌̌
(h)
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D
N

�n

X
I;J

Z
KI;J\EI;J

ˇ̌̌ drI
rI
^ d˛J

ˇ̌̌
(i)

�
Nd

�n

X
I;J

Z
uI;J .KI;J\EI;J /

ˇ̌̌ d�1
�1
^ � � � ^

d�n
�n
^
d$1

2�
^ � � � ^

d$n

2�

ˇ̌̌
(j)

�
Nd

�n

X
I;J

Z
jfI j.KI;J\EI;J /

d�1
�1
^ � � � ^

d�n
�n

(k)

�

 
m

n

!2
Nd

�n

Z
Œjt jA;jt j�A�n

d�1
�1
^ � � � ^

d�n
�n

(l)

�

 
m

n

!2
Nd

�n

�
�2A log jt j

�n
(m)

D

 
m

n

!2
Nd.2A/n: (n)

Hence
R
K
j!j is bounded, as announced.

9.1.3. Proof of (3)(c)
The proofs of (a) and (b) will rest on several steps allowing ourselves to reduce to a
simpler case, in which it will be possible to perform some explicit computations that
are the core of our proof. But to achieve this reduction we shall need (c); hence we
start by proving it.

Let … 2‚.g/. Choose a positive standard real number a in ƒ.g;…/ (such an a
exists in view of Remark 7.6). For every nonnegative standard real number ", we set
P" D std.…/C Œ�"; "�` �R` (so P0 D std.…/). Let us introduce some notation:
� V" D .Log[ jgj[/

�1.P"/�U
an, for " a standard element of Œ0; a�;

� V";� D .Log[ jgj[/
�1.P" nP�/� U

an, for " a standard element of Œ0; a� and �
a standard element of .0; "/;

� K" D .Log jgj/�1.…"/�U.C/, for " any element of R lying on Œ0; a�;
� K";� D .Log jgj/�1.…" n…�/� U.C/, for " any element of R lying on Œ0; a�

and � any element of R lying on .0; "/.
We fix two subsets I and J of ¹1; : : : ;mº of cardinality n. For every standard real

number A, we shall need the following extra notation:
� V A" (resp., V A";�) for the intersection of V" (resp., V";�) with the closed analytic

domain of U an defined by the inequalities Log[ jfi j[ �A for all i 2 I ;
� KA" (resp., KA";�) for the intersection of K" (resp., K";�) with the closed semi-

algebraic subset of U.C/ defined by the inequalities Log jfi j �A for all i 2 I .
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The preimage of VI;J n V 0I;J (the notation is introduced in the second paragraph
of Section 9.1.2) in Ka under .Log jfi j/1�i�m is definably compact, and none of the
functions fi with i 2 I vanishes on it; thus there exists some standard real number
A such that every point of Ka at which at least one of the Log jfi j is smaller than
A belongs to the preimage of V 0I;J , so 'I;J .Log jf j/ vanishes at such a point. Using
mutatis mutandis the same argument and up to decreasing A if necessary, we can
ensure that 'I;J .Log[ jf j[/ vanishes at every point of Va at which at least one the
Log[ jfi j[ is smaller than A.

Otherwise said, there exists a standard real number A such that for every ele-
ment " of R lying on Œ0; a�, the function 'I;J .Log jf j/ vanishes on K" nKA" and the
function 'I;J .Log[ jf j[/ vanishes on V" n V A" .

We are now going to show that Vol.Log[ jfI j[.V
A
" n V

A
0 // tends to zero when

" tends to zero, which is the core of the proof of (3)(c). Our method for proving
this claim consists in describing Log[ jfI j[.V

A
" / more or less as the image under

Log[ jfI j[ of a piecewise linear subset of V Aa , which allows us to get rid of non-
Archimedean geometry and only deal with usual real integration.

Recall that the skeleton of GI;an
m is the closed subspace of GI;an

m homeomorphic
to RI via the mapping sk WRI !GI;an

m sending .log.ri //i2I to the seminorm assign-
ing the real number maxm2ZI jamj

Q
i2I r

mi
i to a Laurent polynomial

P
m2ZI amT

m.
Let † be the preimage of the skeleton of GI;an

m under fI jVAa . This is a skeleton of

V Aa in the sense of [8, Section 4.6] (see Théorème 5.1 there; a mistake in this paper is
corrected in the erratum); in particular, it inherits a canonical piecewise linear struc-
ture and .Log[ jfI j[/j† is piecewise linear. Moreover, if W is any compact analytic
domain of V Aa , then the intersection † \ W is a piecewise linear subset of † and
Log[ jfI j[.W /

.n/ D Log[ jfI j[..† \ W /
.n//, where the superscript .n/ denotes the

pure n-dimensional part of a piecewise linear set (this last equality is a lemma which
is shown in a forthcoming version of [6]; its proof is not difficult and rests on the
description of a skeleton in terms of tropical dimension; see [6, Section 2.3.3]); in
particular, the volume of Log[ jfI j[.W / is equal to that of Log[ jfI j[.W \†/.

Choose " 2 .0; a�. From the equality V A" n V
A
0 D

S
0<�<" V

A
";� , we get

Vol.Log[ jfI j[
�
.V A" n V

A
0 /
�
D sup
0<�<"

Vol
�
Log[ jfI j[.V

A
";�/

�
D sup
0<�<"

Vol
�
Log[ jfI j[.†\ V

A
";�/

�
DVol.Log[ jfI j[

�
.†\ V A" / n .†\ V

A
0 /
�
:

Now .†\ V A" /0<"�a is a nonincreasing family of compact piecewise linear subsets
of † with intersection †\ V A0 , and Log[ jfI j[j† is piecewise linear. Since dim†�
n, this implies that Vol.Log[ jfI j[.† \ V

A
" n† \ V

A
0 // tends to zero when " tends
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to zero. By the above, this means that Vol.Log[ jfI j[.V
A
" n V

A
0 // tends to zero, as

announced.
In order to end the proof of (3)(c), we now have to understand the consequences

in the nonstandard world of the limit statement above (which involves only standard
objects); this step rests in a crucial way on DOAG-definability.

For every standard " 2 .0; a�, the set ƒ" WD Log[ jfI j[.V
A
" n V

A
0 / is DOAG-

definable, and depends DOAG-definably on ". Thus ƒ";R makes sense for every
element " 2R with 0 < "� a.

Let D be the set of positive elements x 2R such that x < a=2 and

Log jfI j.K
A
" nK

A
x /�ƒ2";R

for all " 2 .x; a
2
/. An element x of R belongs to D if and only if the implication�ˇ̌

g.z/
ˇ̌
2 jt j�.…"n…x/ and

ˇ̌
fI .z/

ˇ̌
2 jt jŒA;C1/

I �
)
ˇ̌
fI .z/

ˇ̌
2 jt j�ƒ2";R

holds for all z 2 U.C/. It thus follows from Section 7.1.2 that jt jD is definable; but
since it is 1-dimensional, it is a finite union of intervals by o-minimality, so D is also
such a union, hence is definable as well. Moreover, it contains by definition every
bounded x whose standard part belongs to .0; a

2
�. As a consequence,D contains Œ˛; a

2
�

for some positive negligible element ˛.
For all elements " of R lying on .˛; a=2/, we have

Log jfI j.K
A
" nK

A
˛ /�ƒ2";R:

The inclusion above holds in particular for every positive standard " < a=2; for such
an ", we thus have

1

�n

Z
jfI j.K

A
" nK

A
˛ /

d�1
�1
^ � � � ^

d�n
�n
�Vol.ƒ2"/:

Since Vol.ƒ2"/�! 0 when "�! 0, it follows that

std
� 1
�n

Z
jfI j.K

A
" nK

A
˛ /

d�1
�1
^ � � � ^

d�n
�n

�
�! 0

when "�! 0. In view of inequality (k) of Section 9.1.2, this implies that

std
�Z
KA" nK

A
˛

ˇ̌
'I;J

�
Log jf1j; : : : ;Log jfmj

�
d Log jfI j ^ d ArgfJ

ˇ̌�
�! 0

when "�! 0. But by the choice of A the integralZ
KA" nK

A
˛

ˇ̌
'I;J

�
Log jf1j; : : : ;Log jfmj

�
d Log jfI j ^ d ArgfJ

ˇ̌
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is equal to Z
K"nK˛

ˇ̌
'I;J

�
Log jf1j; : : : ;Log jfmj

�
d Log jfI j ^ d ArgfJ

ˇ̌
;

so that

std
�Z
K"nK˛

ˇ̌
'I;J

�
Log jf1j; : : : ;Log jfmj

�
d Log jfI j ^ d ArgfJ

ˇ̌�
�! 0

when "�! 0.
The infinitesimal element ˛ above depends a priori on .I; J /; but by taking it

large enough (and still infinitesimal) we can ensure that it does not. Then

std
�Z
K"nK˛

j!j
�
�! 0

when "�! 0, which ends the proof of (3)(c) in our particular setting.

9.1.4. Proof of (3)(a) and (3)(b) in our setting
Assertions (3)(a) and (3)(b) involve the form to be integrated !, which is defined with
an explicit formula using the functions fi , and the domain of integration, whose def-
inition uses another family of functions g and a pseudopolyhedron …. We will first
simplify slightly this set of data, by showing that we may assume that f D g and… is
of the form PR for some pseudopolyhedron P � .R[¹�1º/` (and so std.…/D P ),
with moreover Log[ jf j[..Log[ jf j[/

�1.P // D P . This reduction essentially uses
(3)(c) through its consequence Remark 8.2, together with some elementary defin-
ability arguments.

Set h D .f;g/, P D std.…/, W D .Log[ jgj[/
�1.P / � V an, and Q D

Log[ jhj[.W / � RmC`. Then W D .Log[ jhj[/
�1.Q/. We are now going to explain

why it is sufficient to prove assertion (3) for .QR; h/ instead of .…;g/. So we assume
that (3)(a) and (b) hold for .QR; h/.

If " is a positive real number, then we clearly have .Log[ jhj[/
�1.Q"/ �

.Log[ jgj[/
�1.P"/. On the other hand, for every " > 0, the set .Log[ jhj[/

�1.Q"/

is a neighborhood of W , hence contains .Log[ jgj[/
�1.P�/ for some � which can be

taken in .0; "� (here we use topological properness—recall that … 2‚.g/). Let ı."/
denote the least upper bound of®

� 2 .0; "/;
�
Log[ jgj[

��1
.P�/�

�
Log[ jhj[

��1
.Q"/

¯
I

note that by compactness we have .Log[ jhj[/
�1.Pı."// � .Log[ jhj[/

�1.Q"/. Then
ı is a DOAG-definable function; in view of the fact that ı."/ � " by definition, this
implies that there exists a positive rational number r and a positive real number M
such that ı."/DM"r for " small enough.
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This implies that�
Log jhj

��1
.QR; "2

/�
�
Log jgj

��1
.…"/�

�
Log jhj

��1
.QR; 2M "1=r /

for " a small enough standard positive real number. Since we assume that (3)(a) and
(3)(b) hold for .QR; h/ (and since (3)(c) has already been proved), it follows from
Remark 8.2 that

std
�Z
.Log jgj/�1.…"/

!
�
�!

Z
.Log[ jgj[/�1.P /

![

and

std
�Z
.Log jgj/�1.…"/

j!j
�
�!

Z
.Log[ jgj[/�1.P /

j![j[

when the positive standard number " belongs to ƒ.g;…/ and tends to zero.
Therefore, if the result holds for .QR; h/, then it holds for .…;g/; we thus can

replace … by QR and g by h, and then enlarge f (which is harmless) so that gD f .
We keep the notation P D std.…/ and

W D
�
Log[ jgj[

��1
.P /D

�
Log[ jf j[

��1
.P /I

note that we have …D PR and .Log[ jf j[/.W /D P .

9.1.5. Arguing piecewise on P
To allow for more flexibility in the proof, we shall need to argue piecewise on P . We
explain here why it is possible; the key points are once again (3)(c), and the additivity
of integrals in both frames.

Assume that we are given a finite covering .Pi /i2I of P by pseudopolyhedra, and
that for every nonempty subset J of I , statements (3)(a) and (3)(b) hold for .PJ ; f /
with PJ WD

T
i2J Pi . Then these statements hold for .P;f /.

Indeed, for every i set …i D Pi;R, and every nonempty subset J of I , set …J D

PJ;R. For every positive standard ", we have…" D
S
i…i;". Now let J be a nonempty

subset of I .
If PJ D ;, then for " small enough we have

T
i2J …i;" D ;. If PJ ¤ ;, then by

definability and compactness there exist two positive real numbers A and � such that

PJ;" �
\
i2J

Pi;" � PJ;A"

for all positive real numbers " < �, which implies (by model-completeness of DOAG)
that
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…J;" �
\
i2J

…i;" �…J;A"

for every positive " < � in R
The differenceZ

.Log jf j/�1.…"/
! �

X
J¤;

.�1/jJ jC1
Z
.Log jf j/�1.…J;"/

!

can be rewritten asX
J¤;

.�1/jJ jC1
�Z

T
i2J .Log jf j/�1.…i;"/

! �

Z
.Log jf j/�1.…J;"/

!
�
:

It now follows from (3)(c) (which has already been proved) and from the inclusions
…J;" �

T
i2J …i;" �…J;A" (which hold for " small enough) that

std
�Z

T
i2J .Log jf j/�1.…i;"/

! �

Z
.Log jf j/�1.…J;"/

!
�
�! 0

when "�! 0 (and remains standard). Thus

std
�Z
.Log jf j/�1.…"/

! �
X
J¤;

.�1/jJ jC1
Z
.Log jf j/�1.…J;"/

!
�
�! 0

when "�! 0. As statements (3)(a) and (3)(b) hold for every PJ , this implies that

std
�Z
.Log jf j/�1.…"/

!
�
�!

X
J

.�1/jJ jC1
Z
.Log[ jf j[/�1.PJ /

![ D

Z
.Log[ jf j[/�1.P /

![

when "�! 0.
We prove in the same way that

std
�Z
.Log jf j/�1.…"/

j!j
�
�!

Z
.Log[ jf j[/�1.P /

j![j[

when "�! 0.

9.1.6
Being allowed to argue piecewise on P , we now would like to cut it into finitely many
pieces as nicely as possible. This will be achieved by exhibiting a finite covering .Pi /
of P by pseudopolyhedra such that for every i , the following hold:
(i) for every pair .I; J / of subsets of ¹1; : : : ;mº of cardinality n, either 'I;J is

identically zero on Pi , either for every .x1; : : : ; xm/ 2 Pi and every j 2 I [J ,
we have xj ¤�1;
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(ii) there exists a subset E of ¹1; : : : ;mº such that:

 for every .x1; : : : ; xm/ 2 Pi and every j 2E , we have xj ¤�1;

 for every pair .I; J / of subsets of ¹1; : : : ;mº of cardinality n, there

exists a compactly supported smooth function  I;J on RE such that
for every .x1; : : : ; xm/ 2 Pi one has 'I;J .x1; : : : ; xm/D I;J .xj /j2E .

Let us explain how this can be done. Let 
 be a point of P , and let I and J be
two subsets of ¹1; : : : ;mº of cardinality n. By the very definition of .I [J /-vanishing
reasonably smooth functions, there exists a pseudopolyhedral neighborhood Q of x
in P such that:
(i) either 'I;J is identically zero on Q, either for every .x1; : : : ; xm/ 2 Q and

every j 2 I [ J we have xj ¤�1;
(ii) there exists a subset E of ¹1; : : : ;mº such that:


 we have xj ¤�1 for every .x1; : : : ; xm/ 2Q and every j 2E;

 there exists a compactly supported smooth function  on RE such that

for every .x1; : : : ; xm/ 2Q one has 'I;J .x1; : : : ; xm/D .xj /j2E
(note that a priori  is a smooth function defined on an open neighborhood of the
projection ofQ to RE , but since the latter is compact we can assume that  is defined
on the whole of RE and compactly supported). We now conclude by compactness
of P .

9.1.7
In view of Sections 9.1.5 and of 9.1.6, we can assume that there exists a subset E of
¹1; : : : ;mº satisfying the following:

 for all .x1; : : : ; xm/ in P and all j 2E , we have xj ¤�1;

 one can in fact write

! D
X
I;J

'I;J
�
Log jfj j

�
j2E

d Log jfI j ^ d ArgfJ

and

![ D
X
I;J

'I;J
�
Log[ jfj j[

�
j2E

d0 Log[ jfI j[ ^ d00 log jfJ j[;

where I and J run through the set of subsets of E of cardinality n, and where
the 'I;J are smooth, compactly supported functions on RE .

We note that the functions fj with j 2 E are invertible on the analytic domain W .
We set QD .Log[ jfE j[/.W /; this is a compact polyhedron of RE which can also be
described as the image of P under the projection to .R[ ¹�1º/E .

We denote by 
 the Lagerberg form
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I;J

� 1
�[

�n
'I;J .xj =�[/j2E d0xE ^ d00xE

on �[Q; by construction, ![ D f �E 
 .

9.1.8
We first consider the case where dimQ< n. In this case the .n;n/-form 
 on �[Q is
zero, and it suffices to prove that

std
�Z
.Log jgj/�1.…"/

j!j
�
�! 0

when "�! 0. This will follow quite easily from the rough estimates of Section 9.1.2.
Let I be any subset ofE of cardinality n. For every positive standard real number

", letQI
" denote the image ofQ" under the projection map RE !RI . The inequality

dimQ< n implies that Vol.QI
" /�! 0 when "�! 0.

Now for every standard positive ", we have the inclusion�
Log jfI j

���
Log jf j

��1
.…"/

�
�QI

2";R:

It follows that

1

�n

Z
jfI j..Log jf j/�1.…"//

d�1
�1
^ � � � ^

d�n
�n
�Vol.QI

2"/:

Since this holds for all I , this implies in view of inequality (k) of Section 9.1.2
that

std
�Z
.Log jgj/�1.…"/

j!j
�
�! 0

when "�! 0.

9.1.9
We are now going to describe two general methods which we shall use several times
to make the situation simpler. The first one essentially combines the fact that the
statements we want to prove can be checked piecewise on P (Section 9.1.5) and the
fact that they hold as soon as dimQ< n (Section 9.1.8); the second one follows easily
from Remark 8.2.

9.1.9.1. Arguing cellwise on Q. Let .Qi / be a finite covering of Q by compact
polyhedra whose pairwise intersections are of dimension less than n; for every i , let
Pi be the preimage of Qi in P . Assume that statements (3)(a) and (3)(b) hold for
every Pi ; then they hold for P . Indeed, let I be any finite set of indices of cardinality
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at least 2. Then the projection of
T
i2I Pi to .R[ ¹�1º/E is equal to

T
i2I Qi , so

it is of dimension less than n. Therefore, the theorem holds for
T
i2I Pi in view of

Section 9.1.8; it now follows from Section 9.1.5 that it holds for P .

9.1.9.2. Affine change of coordinates. Let M D .mij / be a matrix belonging
to ME .Z/ with nonzero determinant, and let v D .vj /j 2 RE . For every point
x D .x1; : : : ; xm/ in P , we set Mx D .y1; : : : ; ym/ with yi D xi if i … E , and
yi D

P
j2I mijxj otherwise. For i … E , we set hi D fi ; for i 2 E , we set

hi D jt j
vi
Q
j2I f

mij
j .

Set P 0 DMP C v; this is a pseudopolyhedron. By expressing Log jhj, d Log jhj,
and d argh in terms of Log jf j, d Log jf j, and d argf , and the same with Log[ instead
of Log and j � j[ instead of j � j, we get equalities

! D
X
I;J

 I;J
�
Log jh1j; : : : ;Log jhmj

�
d Log jhI j ^ d ArghJ

and

![ D
X
I;J

 I;J
�
Log[ jh1j[; : : : ;Log[ jhmj[

�
d0 Log[ jhI j[ ^ d00 log jhJ j[:

Assume that statements (3)(a) and (3)(b) hold for .P 0R; h/. We are going to prove that
they hold for .…;f /.

There exist two standard positive real numbers A and B with A<B such that�
Log jhj

��1
.P 0R;A"/�

�
Log jf j

��1
.…"/�

�
Log jhj

��1
.P 0R;B"/

for " small enough. Then

std
�Z
.Log jf j/�1.…"/

!
�
�!

Z
.Log[ jhj[/�1.P 0/

![ D

Z
.Log[ jf j[/�1.P /

![

and

std
�Z
.Log jf j/�1.…"/

j!j
�
�!

Z
.Log[ jhj[/�1.P 0/

j![j[ D

Z
.Log[ jf j[/�1.P /

j![j[

by Remark 8.2.

9.1.10
We assume now that .![/jW D 0, which means that the form 
 on �[Q is zero, and
we are going to prove (3)(a) and (3)(b) under this assumption. We will use the fact that
these statements hold whenever dimQ< n (Section 9.1.8), that they can be checked
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cellwise onQ (Section 9.1.9.1), that they can be proved after an affine change of coor-
dinates (Section 9.1.9.2), and that J acts trivially on An;n; and then we will ultimately
rely on the estimates in Section 9.1.2.

We want to prove that

std
�Z
.Log jf j/�1.…"/

j!j
�
�! 0

when " �! 0. By considering a cell decomposition of Q and using Section 9.1.9.1,
we reduce to the case where Q is a cell. If dimQ < n, then we already know that
the required statement holds (Section 9.1.8); we can thus assume that dimQ D n.
And in view of Section 9.1.9.2, we are allowed to perform an affine change of the
coordinates indexed by E with integral linear part; hence we can assume that there
exists a subset E0 of E of cardinality n such that Q is contained in the subspace
defined by the equations xi D 0 for i running through E nE0. The assumption that

 D 0 now simply means that 'E0;E0 jQ D 0.

We fix two subsets I and J of E , both of cardinality n. Let !I;J be the form
'I;J .Log jf1j; : : : ;Log jfmj/d Log jfI j ^ d ArgfJ . It suffices to prove that

std
�Z
.Log jf j/�1.…"/

j!I;J j
�
�! 0

when "�! 0.

9.1.10.1. The case where I D J D E0. We then have 'IJ jQ D 0. Let P 0 be the
preimage of @Q on P . Since 'I;J jQ D 0, we have

std
�Z
.Log jf j/�1.…"/

j!I;J j
�
D std

�Z
.Log jf j/�1..P 0

R
/"/

j!I;J j
�

for all ", and since dim@Q < n, the result follows from Section 9.1.8.

9.1.10.2. The case where I ¤E0. Choose i 2 I nE0. Then since xi vanishes iden-
tically on P , we have for every "

jfi j
��

Log jf j
��1

.…"/
�
�
�
jt j2"; jt j�2"

�
:

Therefore, there exists some positive standard real number A such that

jfI j
��

Log jf j
��1

.…"/
�
�
�
jt j2"; jt j�2"

�¹iº
	
�
jt jA; jt j�A

�In¹iº
for " small enough (see Section 9.1.2). In view of inequality (k) of Section 9.1.2, it
follows that

std
�Z
.Log jf j/�1.…"/

j!I;J j
�
�! 0

when "�! 0.
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9.1.10.3. The case where J ¤ E0. Since the operator J acts trivially on An;n, we
have

!I;J D J.!I;J /

D .�1/n'I;J
�
Log jf1j; : : : ;Log jf jm

�
d ArgfI ^ d Log jfJ j

D .�1/n
2Cn'I;J

�
Log jf1j; : : : ;Log jf jm

�
d Log jfJ j ^ d ArgfI

D 'I;J
�
Log jf1j; : : : ;Log jf jm

�
d Log jfJ j ^ d ArgfI :

Hence we reduce to the case considered in Section 9.1.10.2.

9.1.11. Proof of (3)(a) and (3)(b) in the general case
Now comes the core of our proof; this is the only step in which one uses the actual def-
inition of the non-Archimedean integrals (the former ones used only basic properties
like additivity or obvious norm estimates). Using once again the flexibility allowed
by the former steps (which enables us to argue cellwise, see Section 9.1.9.1; or to
modify the explicit writing of !, provided that .![/jW remains unchanged, see Sec-
tion 9.1.10), we will simplify slightly our assumptions, and then reduce to the case in
which the integral

R
W
![ can be computed by an explicit formula. The latter involves

a classical real integral and the degree d of an étale map between Berkovich spaces
over some skeleton †, and the main point of our reasoning consists in interpreting
this degree d in the nonstandard Archimedean world; this is achieved by showing
that our étale map also has degree d above “sufficiently many” C -points (over which
the degree is now simply the naive one, namely, the cardinality of the fibers, which
makes sense in our nonstandard Archimedean world as well).

By considering a cell decomposition of Q and using Section 9.1.9.1, we reduce
to the case where Q is a cell. If dimQ < n, then we already know that the required
statement holds (see Section 9.1.8); we can thus assume that dimQ D n. And in
view of Section 9.1.9.2 we are allowed to perform an affine change of the coordinates
indexed by E with integral linear part, we can assume that there exists a subset E0 of
E of cardinality n such that Q is contained in the subspace defined by the equations
xi D 0 for i running through E nE0. Otherwise said, QDQ0 	 ¹0ºEnE0 for some
convex polyhedron Q0 of RE0 . Since dimQ D n by our assumption, dimQ0 D n.
Now 
j	[Q can be written as

1

�n
[

'
�xj
�[

�
j2E0

d0xE0 ^ d00xE0

(with ' smooth). Set

!0 D '
�
Log jfj j

�
j2E0

d Log jfE0 j ^ d ArgfE0



376 DUCROS, HRUSHOVSKI, and LOESER

and

!0[ D '
�
Log[ jfj j[

�
j2E0

d0 Log[ jfE0 j[ ^ d00 Log[ jfE0 j[:

Then .![ �!0[/jW D 0, and in view of Section 9.1.10 this implies that

std
�Z
.Log jf j/�1.…"/

j! �!0j
�
�! 0

when "�! 0. We can thus replace ! with !0, hence reduce to the case where ! is of
the form

! D '
�
Log jfj j

�
j2E0

d Log jfE0 j ^ d ArgfE0 :

Let  W V ! GE0
m be the map induced by the functions fj for j 2 E0. Since

dimQ0 D n the tropical dimension of fE0 is n, which forces  to be dominant, hence
generically étale, because both schemes involved are integral of the same dimension
and the ground field is of characteristic 0. Let Z be a proper Zariski-closed subset of
GE0

m such that  is finite étale over the open complement of Z .
Let D be the affinoid domain of GE0;an

m defined by the condition Log[ jT j[ 2

Q0, and let D0 be the open subset of D defined by the condition Log[ jT j[ 2 VQ0.
Also, let sk denote the canonical homeomorphism between RE0 and the skeleton of
GE0;an

m . The images under Log[ jfE0 j[ of the boundary of D and the image of Z an

under Log[ jT j[ are of dimension less than n. Since we can argue cellwise on Q (see
Section 9.1.9.1), we may thus assume the following:
� .Log[ jfE0 j[/.@W /� @Q0;
� the morphism W 	

G
E0;an
m

D0!D0 is finite étale.

These two conditions imply that jW is finite étale above D0. Since the latter is con-
nected (it admits a deformation retraction to sk.�[ VQ0/), the degree of jW overD0 is
constant; let us denote it by d . The map jV is in particular finite and flat of degree d
above every point of sk.�[ VQ0/, whence the equalitiesZ

W

![ D .�1/
n.n�1/=2 d

�n
[

Z
	[Q0

'
�xj
�[

�
j2E0

dxE0

D .�1/n.n�1/=2d

Z
Q0

'.xj /j2E0 dxE0

and Z
W

j![j[ D
d

�n
[

Z
	[Q0

ˇ̌̌
'
�xj
�[

�
j2E0

ˇ̌̌
dxE0

D d

Z
Q0

ˇ̌
'.xj /

ˇ̌
j2E0

dxE0 :
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9.1.11.1. By construction, every point ofD0.C / has d preimages under  inW.C/.
We would like to exploit this fact in the nonstandard Archimedean setting. The point
is that D0.C / and W.C/ are ACVF-definable, but not RCF-definable; so we will
first have to “approximate” them by RCF-definable subsets for which this statement
remains true.

Let n be the set of negligible elements of R. Let � be a positive standard real
number, and setQ� D VQ0n.@Q0/� . Let x 2 .Log jT j/�1.Q�;R/. The point x belongs

to .Log[ jT j[/
�1. VQ0/, hence the intersection

�1.x/\
�
Log jf j

��1
.…C n`/D �1.x/\

�
Log[ jf j[

��1
.P /D �1.x/\W

has exactly d elements. Letm.x/ andM.x/ be, respectively, the greatest lower bound
and the least upper bound of the set ‚ of those u 2 Œ1; jt j�1� such that

�1.x/\ jf j�1
�
jt j�… � Œu�1; u�

�
has exactly d elements. Since ‚ is definable, if follows from the above that

std
�
Logm.x/

�
D 0 and std

�
LogM.x/

�
> 0:

Now m and M are definable functions; as a consequence, the greatest lower bound
of M on .Log jT j/�1.Q�;R/ is equal to jt jB.�/ for some B.�/ with negative standard
part, and the least upper bound ofm on .Log jT j/�1.Q�;R/ is equal to jt jb.�/ for some
negative negligible b.�/.

9.1.11.2. Let ı be a positive real number. Choose � such that the volume of .@Q0/2�
is smaller than ı. Let " be a positive real number such that " <min.B.�/; �/. Let…0 be
the subset of …" consisting of points whose projection to the variables in E0 belongs
to Q� , and let …00 be the complement of …0 in …". One hasZ

.Log jf j/�1.…"/
! D

Z
.Log jf j/�1.…0/

! C

Z
.Log jf j/�1.…00/

!:

It follows from inequality (k) of Section 9.1.2 that there exists a positive standard
real number M (independent of ı, �, ", and so on) such that

R
.Log jf j/�1.…00/ j!j �

M Vol..@Q0/2�/�Mı.
Now since b.�/ < " < B.�/, the map  induces a d -fold covering�

Log jf j
��1

.…0/�!
�
Log jT j

��1
.Q�;R/;

so
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.Log jf j/�1.…0/

! D
d

�n

Z
.Log jT j/�1.Q�;R/

'
�
Log jT j

�
d Log jT j ^ d ArgT

D .�1/n.n�1/=2d

Z
Q�;R

'.xj /j2E0 dxE0

D .�1/n.n�1/=2d

Z
Q�

'.xj /j2E0 dxE0 :

Therefore, ˇ̌̌Z
.Log jf j/�1.…0/

! �

Z
W

![

ˇ̌̌
� sup

P0

j'jd Vol.Q0 nQ�/

� d Vol
�
.@Q0/2�

�
sup
Q0

j'j

� ıd sup
Q0

j'j:

Hence ˇ̌̌Z
.Log jf j/�1.…"/

! �

Z
W

![

ˇ̌̌
� ı

�
M C d sup

Q0

j'j
�
:

One shows exactly in the same way thatˇ̌̌Z
.Log jf j/�1.…"/

j!j �

Z
W

ˇ̌̌
![jj � ı

�
M C d sup

Q0

j'j
�
:

We thus have proved that

std
�Z
.Log jf j/�1.…"/

!
�
�!

Z
.Log[ jf j[//�1.std.…//

![

and

std
�Z
.Log jf j/�1.…"/

j!j
�
�!

Z
.Log[ jf j[//�1.std.…//

j![j[

when the standard positive real number " tends to zero.

9.2. Construction of the map ! 7! ![
It is clear that there is at most one such morphism of sheaves. We are going to prove
that there is actually one by using our comparison theorem for integrals and the fact
that forms are naturally embedded into currents on Berkovich spaces. Let p and q be
two integers. Let U be a Zariski-open subset of X . Let ! be a section of Ap;q on U
that can be written as
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! D
X

jI jDp;jJ jDq

'I;J
�
Log jf1j; : : : ;Log jfmj

�
d Log jfI j ^ d ArgfJ

with fi regular functions on U and 'I;J an .I [ J /-vanishing reasonably smooth
function in S I;J;.fi / for each .I; J / (we shall say for short that ! is tropical on U ).

Let ![ be the sectionX
I;J

'I;J
�
Log[ jf1j[; : : : ;Log[ jfmj[

�
d0 Log[ jfI j[ ^ d00 log jfJ j[

of Bp;q on U . It suffices to show that ![ depends only on !, and not on the particular
way we have written it. One immediately reduces to proving that ![ D 0 if ! D 0;
for that purpose we suppose that ![ ¤ 0, and we are going to prove that ! ¤ 0. Since
![ ¤ 0 and since U an is boundaryless, there exists a smooth compactly supported
.n � p;n � q/ form � on U an such that

R
U an ![ ^ �¤ 0 (see [6, Corollaire 4.3.7]).

Every point of U an has a basis of affinoid neighborhoods V having the following
properties.
� The restriction �jV can be written asX

jI jDn�p;jJ jDn�q

 I;J
�
Log[ jg1j[; : : : ;Log[ jg`j[

�
d0 log jgI j[ ^ d00 log jgJ j[

with gi regular functions on V and  I;J compactly supported smooth func-
tions on R`.

� The domain V is a Weierstrass domain of �an for some open subscheme � of
U (see Section 6.2).

Then we can find such a V with
R
V
![ ^ �¤ 0. Since V is a Weierstrass domain

in �an, and since �jV does not change if we replace each gi by a function having the
same norm on V (see [6, Lemme 3.1.10]), we can assume by approximation that each
of the functions gi comes from a function belonging to O.�/, which we still denote
by gi . Then by replacing � by the intersection of the sets D.gi /, we can assume that
gi 2O.�/� for all i .

Now set

�] D
X

jI jDn�p;jJ jDn�q

 I;J
�
Log jg1j; : : : ;Log jg`j

�
d Log jgI j ^ d ArggJ :

This is a section of An�p;n�q on �. By Section 9.1, the integral
R
V ![ ^ � can be

expressed as a limit of standard parts of integrals of !j� ^ �] on suitable definably
compact semialgebraic subsets of �.C/. Then these integrals cannot be all equal to
zero, which implies that !j� ^ �] ¤ 0, and a fortiori that ! ¤ 0. We thus are done
with the proof in the particular setting of Section 9.1.1.
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9.3. Proof of (3)
We are now going to prove (3) in the general case. The reasoning is tedious, but rather
formal; it uses as a crucial input the particular case handled above in Section 9.1,
together with the additivity of the integrals in both settings.

For all i , we set Pi D std.…i / and Wi D .Log[ jgi j[/
�1.Pi /� V

an
i ; we also set

W D
S
i Wi .

9.3.1. Reduction to the case where …i D Pi;R for all i
Assume that (3) holds for .Pi;R/i . Since std.…i /D std.Pi;R/, there exists a positive
negligible element a such that …i � Pi;R;a and Pi;R �…i;a for every i . Let " be a
standard positive real number. By the above,

Pi;R;"=2 �…i;" � Pi;R;2"

for all i . Then it follows from Remark 8.2 that statements (3)(a) and (3)(b) hold for
.…i /.

We then have for all standard " > 0 and all i[
i

…i;" n
[
i

…i;˛Ca �
[
i

Pi;R;2" n
[
i

Pi;R;˛;

so (3)(c) holds for .…i /i with the negligible element ˛C a instead of ˛. We assume
from now on that …i D Pi;R for all i .

9.3.2
Fix an index i . Let x be a point of Wi . There exists a Zariski-open subset � of Vi on
which ! is tropical, and such that x 2�an. The point x has a Weierstrass neighbor-
hood �0 in �an; by construction, �0 \Wi is of the form .Log[ jhj[/

�1.Q/ for some
family hD .h1; : : : ; hN / of regular functions on �0 and some pseudopolyhedron Q
of .R[ ¹�1º/N .

By compactness, it follows that there exists a finite family .Vij / of Zariski-open
subsets of Vi and, for each .i; j /, a finite family hij D .hijk/1�k�`ij of regular func-
tions on Vij and a pseudopolyhedron Pij of .R [ ¹�1º/`ij such that the following
hold:
� for each .i; j /, the form ! is tropical on Vij ;
� Wi D

S
j Wij with Wij D .Log[ jhij j[/

�1.Pij /.
We set …ij D Pij;R; for every nonempty set I of pairs .i; j /, we set

� `I D
P
.i;j /2I `ij ;

� …I D
Q
.i;j /2I …ij � .R[ ¹�1º/

`I ;
� PI D

Q
.i;j /2I Pij � .R[ ¹�1º/

`I ;
� VI D

T
.i;j /2I Vij andWI D

T
.i;j /2I Wij .
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We also denote by hI the concatenation of the functions hij for .i; j / 2 I ; this is a
family of `I invertible functions on VI and WI D .Log[ jhI j[/

�1.PI /� V
an
I .

For every I , the form !jVI is tropical. It follows therefore from Section 9.1 that

std
�Z
.Log jhI j/�1.…I;"/

!
�
�!

Z
.Log[ jhI j[/�1.PI /

![; (o)

std
�Z
.Log jhI j/�1.…I;"/

j!j
�
�!

Z
.Log[ jhI j[//.PI /

j![j[ (p)

when the positive standard number " tends to zero, and that there exists a positive
negligible ˛ 2R such that

std
�Z
.Log jgj/�1.…I;"n…I;˛/

j!j
�
�! 0 (q)

when the positive standard number " tends to zero.
The equality W D

S
.i;j /2I Vij can be rewritten as[

i

�
Log[ jgi j[

��1
.Pi /„ ƒ‚ …

understood as contained in V an
i

D
[
.i;j /

�
Log[ jhij j[

��1
.Pij /„ ƒ‚ …

understood as contained inV an
ij

:

If a is a small enough positive real number, then for every i , j the sets
.Log[ jgi j[/

�1.Pi;a/ and .Log[ jhij j[/
�1.Pij;a/ are compact in view of assertion

(1). Hence for a small enough, the infimum m.a/ of all positive real numbers b such
that [

i

�
Log[ jgi j[

��1
.Pi;a/�

[
.i;j /

�
Log[ jhij j[

��1
.Pij ;b/

is well defined. This is a DOAG-definable function of a that tends to zero when a tends
to zero. It follows that there exists a positive rational number � such that[

i

�
Log[ jgi j[

��1
.Pi;a/�

[
.i;j /

�
Log[ jhij j[

��1
.Pij ;
a/

for a small enough. We can perform the same kind of reasoning for the converse
inclusion, and by taking � big enough we can thus assume that we also have[

i

�
Log[ jgi j[

��1
.Pi;
a/�

[
.i;j /

�
Log[ jhij j[

��1
.Pij;a/

for a small enough.
We then have for all positive standard real numbers a the inclusions[

i

�
Log jgi j

��1
.…i;a/�

[
.i;j /

�
Log jhij j

��1
.…ij;2
a/
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and [
i

�
Log jgi j

��1
.…i;2
a/�

[
.i;j /

�
Log jhij j

��1
.…ij;a/:

But then by a definability argument (using Section 7.1.2), there exist a positive negli-
gible element ˇ 2 R and an element � 2 R with positive standard part such that the
above inclusions hold for all elements a 2R with ˇ � a � � .

By the same kind of arguments, we can increase ˇ and � and decrease � so that
we have for all I and all a 2 Œˇ; �� the inclusions\

.i;j /2I

�
Log jhij j

��1
.…ij;a/�

�
Log jhI j

��1
.…I;
a/

and \
.i;j /2I

�
Log jhij j

��1
.…ij;
a/�

�
Log jhI j

��1
.…I;a/:

Together with (o), (p), and (q) above and with the additivity of both the
Archimedean and the Berkovich integrals, this ends the proof of (2).

9.4. End of the proof
It remains to show (1) and (4). The proofs essentially consist in standard computa-
tions, once granted the existence of our map of complexes and the comparison theo-
rems (3)(a), (3)(b), and (3)(c) for integrals.

We use the assumptions of (1). Choose a finite open affine cover .Ui / of U . For
every i , let .fij /j be a finite generating family of the C -algebra OX .Ui /. By our
assumption on the support of ! and by Lemma 3.2, there exists A 2 R such that the
! is zero outside the set

EA WD
[
i

®
x 2 Ui .C /;Log

ˇ̌
fij .x/

ˇ̌
�A for allj

¯
:

We also set

EA;[ D
[
i

®
x 2 U an

i ;Log[
ˇ̌
fij .x/

ˇ̌
[
�A for allj

¯
:

9.4.1. Proof of (1)
We are going to prove that ![ is zero outside EA;[, which will show that it is com-
pactly supported.

Let y be a point of U an n EA;[. The point y belongs to Ui for some i . Let us
choose a neighborhood V of y in U an

i n EA;[ of the form Log[ jgj
�1
[
.P /, where
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g D .g1; : : : ; gm/ is a finite family of regular functions on Ui and where P � .R [
¹�1º/m is a product of intervals, each of which is either of the form .�;/ or
of the form .�1;/. Up to shrinking P , we can assume that for some " > 0 the
preimage Log[ jgj

�1
[
.P C Œ0; "/m/ still avoids EA;[. Let ' be a reasonably smooth

function on .R [ ¹�1º/m whose support is contained in P , which does not van-
ish at g.y/, and which takes only nonnegative values. We shall prove that the form
'.Log[ jgj[/![ 2A p;q.U an

i / is zero; this will ensure that ![ vanishes around y and
thus imply our claim.

Since Log[ jgj
�1
[
.P C Œ0; "/m/ is contained in U an n EA;[, the preimage

Log jgj�1.PR/ avoids E . As the support of ' is contained in P and as ! van-
ishes outside E , the form '.Log jgj/! vanishes. But this form belongs to Ap;q.Ui /
and its image in Bp;q.Ui / is precisely '.Log[ jgj[/![. The latter is thus zero, as
announced.

9.4.2. Proof of (4)
Assume moreover that p D q D n, and let us prove (f) and (g). It follows from (2),
(3)(a), and (3)(b) that if the standard positive " is small enough, then

R
EAC"

j!j is
bounded, and that

std
�Z
EAC"

!
�
!

Z
EA;[

![

and

std
�Z
EAC"

j!j
�
!

Z
EA;[

j![j[

when " tends to zero (while remaining standard and positive).
But since ! is zero outside EA, we haveZ

EAC"

! D

Z
U.C/

! and
Z
EAC"

j!j D

Z
U.C/

j!j

for any " as above. And since ![ is zero outside EA;[ by Section 9.4.1, we haveZ
EA;[

![ D

Z
U an

![ and
Z
EA;[

j![j[ D

Z
U an
j![j[:

Assertion (4) follows immediately.
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