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Besies 2l s
Valued Fields

Let K be a field and ', an ordered abelian group.
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Valued Fields

Let K be a field and ', an ordered abelian group. Recall that a valuation
on Kisamapv:K —T,U{oo} such that, for all x, y € K,

v(x) = 00 <= x =0, (1)
v(xy) = v(x) + v(y), (2)
v(x +y) = min(v(x), v(y)). (3)
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Recall that the ring O, = {x € K| v(x) > 0} is a valuation ring of K, i.e.
for all x € K we have x € O, or x~ 1 € O,,.

We say that v is non-trivial if v|xx # 0 or, equivalently, O, # K.
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Valued Fields

Let K be a field and ', an ordered abelian group. Recall that a valuation
on Kisamapv:K —T,U{oo} such that, for all x, y € K,

v(x) = 00 <= x =0, (1)
v(xy) = v(x) + v(y), (2)
v(x +y) = min(v(x), v(y)). (3)

Recall that the ring O, = {x € K| v(x) > 0} is a valuation ring of K, i.e.
for all x € K we have x € O, or x~ 1 € O,,.

We say that v is non-trivial if v|xx # 0 or, equivalently, O, # K.

A valuation ring has a unique maximal ideal m, = {x € K | v(x) > 0}, we
call the quotient Kv := O, /m, the residue field of (K, v). We usually
denote vK =1T,.
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Example

For a field F, consider the polynomial ring F[t]. Then there is a natural
valuation v on F[t] via

v Za;ti =min{0 <i<n]|a;#0}
i=0

where n € N, a; € F.
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Example

For a field F, consider the polynomial ring F[t]. Then there is a natural
valuation v on F[t] via

n
v <Za,~t") =min{0 <i<n|a #0}
i=0
where n € N, a; € F. We can extend v to K = F(t) via

f
y <g) — ()~ lg)
for f,g € F[t] \ {0}.
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For a field F, consider the polynomial ring F[t]. Then there is a natural
valuation v on F[t] via

n
v (Za;ti) =min{0 <i<n|a #0}
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where n € N, a; € F. We can extend v to K = F(t) via

o(5)=vin -

for f,g € F[t] \ {0}. Here: value group vK = Z,
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Example

For a field F, consider the polynomial ring F[t]. Then there is a natural
valuation v on F[t] via

n
v (Za;ti) =min{0 <i<n|a #0}
i=0
where n € N, a; € F. We can extend v to K = F(t) via

o(5)=vin -

for f,g € F[t] \ {0}. Here: value group vK = Z, valuation ring
O, = F[t](), maximal ideal m, = t - F[t](), residue field Kv = F.

Furthermore, v extends to the power series field F((t)) by setting

v (Z a;ti) = min{m <i<oola# 0}_
i=m
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Besies 2l s
Some Remarks on Valued Fields

» Algebraic extensions of finite fields are the only fields which admit no
non-trivial valuations.
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» If (K, v) is a non-trivially valued field and K C F, then there is a
non-trivial valuation w on F with w|x = v.
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Some Remarks on Valued Fields

» Algebraic extensions of finite fields are the only fields which admit no
non-trivial valuations.

» If (K, v) is a non-trivially valued field and K C F, then there is a
non-trivial valuation w on F with w|x = v.

> Let (K, v) be a valued field, consider f € O,[X] and a € O,. Then
f(a) = 0 implies f(3) = 0.
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Some Remarks on Valued Fields

» Algebraic extensions of finite fields are the only fields which admit no
non-trivial valuations.

» If (K, v) is a non-trivially valued field and K C F, then there is a
non-trivial valuation w on F with w|x = v.

> Let (K, v) be a valued field, consider f € O,[X] and a € O,. Then
f(a) = 0 implies f(3) = 0.

> Language of valued fields: L,z U{O}, where O is a unary relation
symbol.
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Besies 2l s
Henselian Valued Fields

Theorem (Hensel's Lemma)

For a valued field (K, v), the following are equivalent:
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Henselian Valued Fields

Theorem (Hensel's Lemma)

For a valued field (K, v), the following are equivalent:
1. v extends uniquely to every algebraic extension of K.
2. v extends uniquely to K®°P.
3. For each f € O,[X] and a € O, with 7(3) =0 and 7 (3) # 0, there
exists @ € O, with f(a) =0 and @ =3a.
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Henselian Valued Fields

Theorem (Hensel's Lemma)

For a valued field (K, v), the following are equivalent:
1. v extends uniquely to every algebraic extension of K.
2. v extends uniquely to K®°P.
3. For each f € O,[X] and a € O, with 7(3) =0 and 7 (3) # 0, there
exists o € O, with f(a) =0 and @ = a.

If (K, v) satisfies one of the conditions in the theorem, the valuation v is
called henselian.
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Henselian Valued Fields

Theorem (Hensel's Lemma)

For a valued field (K, v), the following are equivalent:
1. v extends uniquely to every algebraic extension of K.
2. v extends uniquely to K®°P.
3. For each f € O,[X] and a € O, with 7(3) =0 and 7 (3) # 0, there
exists o € O, with f(a) =0 and @ = a.

If (K, v) satisfies one of the conditions in the theorem, the valuation v is
called henselian. The field K is called henselian, if there exists some
non-trivial henselian valuation on K.
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Besies 2l s
Example

With the valuation v defined as before, (F(t), v) is not henselian:
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Example

With the valuation v defined as before, (F(t), v) is not henselian:

Consider the polynomial f(X) = X2 — (t +1) € O,[X]. Then f does not
have a zero in F(tL but there exists an a € O, such that the reduction a3
is a simple zero of f = X? — 1.
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Example

With the valuation v defined as before, (F(t), v) is not henselian:

Consider the polynomial f(X) = X2 — (t +1) € O,[X]. Then f does not
have a zero in F(tL but there exists an a € O, such that the reduction a3
is a simple zero of f = X? — 1.

On the other hand, (F((t)),v) is henselian as it is complete.
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Besies 2l s
The Ax-Kochen /Ersov principle

Ax-Kochen /Ersov Theorem
Let (K, v) and (L, w) be henselian valued fields with char(Kv) = 0. Then

(K,v)=(L,w) <= Kv = Lw and vK = wlL.
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The Ax-Kochen /Ersov principle

Ax-Kochen /Ersov Theorem
Let (K, v) and (L, w) be henselian valued fields with char(Kv) = 0. Then

(K,v)=(L,w) <= Kv =Lw and vK = wL.

» Essentially, the theorem says that if the residue characteristic is 0,
then any (elementary) statement about (K, v) can be reduced to
statements about Kv and vK.
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The Ax-Kochen /Ersov principle

Ax-Kochen /Ersov Theorem
Let (K, v) and (L, w) be henselian valued fields with char(Kv) = 0. Then

(K,v)=(L,w) <= Kv =Lw and vK = wL.

» Essentially, the theorem says that if the residue characteristic is 0,
then any (elementary) statement about (K, v) can be reduced to
statements about Kv and vK.

» There are also versions for positive characteristic.
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Valuations Definable Valuations

Definable Valuations

We call a valuation v on K definable if there is some L,ine-formula with
parameters from K defining the valuation ring.
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Definable Valuations

We call a valuation v on K definable if there is some L,ine-formula with
parameters from K defining the valuation ring.

Idea: Capture the AK/E picture within Th(K).
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Definable Valuations

We call a valuation v on K definable if there is some L,ine-formula with
parameters from K defining the valuation ring.

Idea: Capture the AK/E picture within Th(K).
Example

The t-adic valuation is definable on K((t)) by the formula
P(x)=Tyy® —y = tx°.
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Definable Valuations

We call a valuation v on K definable if there is some L,ine-formula with
parameters from K defining the valuation ring.

Idea: Capture the AK/E picture within Th(K).

Example

The t-adic valuation is definable on K((t)) by the formula
P(x)=Tyy® —y = tx°.

Note that separably and real closed fields do not admit any non-trivial
definable valuations.
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Definable Valuations

We call a valuation v on K definable if there is some L,ine-formula with
parameters from K defining the valuation ring.

Idea: Capture the AK/E picture within Th(K).

Example

The t-adic valuation is definable on K((t)) by the formula
P(x)=Tyy® —y = tx°.

Note that separably and real closed fields do not admit any non-trivial
definable valuations.

From now on, all fields K are neither real nor separably closed.
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Valuations Definable Valuations

Some Facts about Definable Valuations

» Not every henselian valuation is definable (Delon and Farré, see [1]).

Franziska Jahnke (WWU Miinster) Definable Henselian Valuations 18.11.2013 10 / 21



Some Facts about Definable Valuations

» Not every henselian valuation is definable (Delon and Farré, see [1]).

» If (K, v) is henselian and O, is (-definable, then the same formula
defines a non-trivial henselian valuation ring in any L = K.
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Some Facts about Definable Valuations

» Not every henselian valuation is definable (Delon and Farré, see [1]).

» If (K, v) is henselian and O, is (-definable, then the same formula
defines a non-trivial henselian valuation ring in any L = K.

» Admitting a non-trivial henselian valuation is not an elementary
property in L,z (Prestel and Ziegler, see [7]).
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Some Facts about Definable Valuations

» Not every henselian valuation is definable (Delon and Farré, see [1]).

» If (K, v) is henselian and O, is (-definable, then the same formula
defines a non-trivial henselian valuation ring in any L = K.

» Admitting a non-trivial henselian valuation is not an elementary
property in L,z (Prestel and Ziegler, see [7]).

» Not every henselian valued field admits a ()-definable non-trivial
henselian valuation.
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Valuations Definable Valuations

Some Questions about Definable Valuations

Questions

» Does every (not separably nor real closed) henselian valued field
admit a definable henselian valuation?
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» Can we classify which henselian fields admit ()-definable henselian
valuations?

Franziska Jahnke (WWU Miinster) Definable Henselian Valuations 18.11.2013 11 /21



Some Questions about Definable Valuations

Questions
» Does every (not separably nor real closed) henselian valued field
admit a definable henselian valuation?
» Can we classify which henselian fields admit ()-definable henselian

valuations?
» Which henselian valuations are (existentially/universally) definable?
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Some Questions about Definable Valuations

Questions

» Does every (not separably nor real closed) henselian valued field
admit a definable henselian valuation?

» Can we classify which henselian fields admit ()-definable henselian
valuations?

» Which henselian valuations are (existentially/universally) definable?

» Which henselian valuations are (-definable?

» Does every (not real nor separably closed) NIP field with small
absolute Galois group admit a non-trivial definable valuation?
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Valuations Definable Valuations

An Application of Definable Valuations

For a field K, the absolute Galois group of K is the group
Gk = Aut(K*P/K) = lig Gal(L/K)

where L ranges over all finite Galois extensions of K.
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Valuations Definable Valuations

An Application of Definable Valuations

For a field K, the absolute Galois group of K is the group
Gk = Aut(K*P/K) = lig Gal(L/K)

where L ranges over all finite Galois extensions of K.

Theorem (Neukirch-Efrat-Koenigsmann-Pop)

Let K be a field. If Gk and Gg, are isomorphic as profinite groups, then
K = Qp.
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Conditions on the residue field When is a henselian valuation definable?

Value group vs. residue field

» Not every henselian valuation is ()-definable, so we need to add
conditions on (K, v)!
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When is a henselian valuation definable?
Value group vs. residue field

» Not every henselian valuation is ()-definable, so we need to add
conditions on (K, v)!

» Conditions on the value group vK are discussed in work of
Koenigsmann ([6]) and Hong ([2]).
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When is a henselian valuation definable?
Value group vs. residue field

» Not every henselian valuation is ()-definable, so we need to add
conditions on (K, v)!

» Conditions on the value group vK are discussed in work of
Koenigsmann ([6]) and Hong ([2]).

» For the remainder of this talk, we will focus on conditions on the
residue field Kv.
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Conditions on the residue field When is a henselian valuation definable?

Main ingredient

Let p be a prime and K a field. Then we define K(p) as the compositum
of all Galois extensions of K of p-power degree.
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Conditions on the residue field When is a henselian valuation definable?

Main ingredient

Let p be a prime and K a field. Then we define K(p) as the compositum

of all Galois extensions of K of p-power degree. Note that K # K(p) iff K
admits some Galois extension of p-power degree.
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Conditions on the residue field When is a henselian valuation definable?

Main ingredient

Let p be a prime and K a field. Then we define K(p) as the compositum
of all Galois extensions of K of p-power degree. Note that K # K(p) iff K

admits some Galois extension of p-power degree.

Theorem
For a valued field (K, v), the following are equivalent:
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of all Galois extensions of K of p-power degree. Note that K # K(p) iff K

admits some Galois extension of p-power degree.

Theorem
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Conditions on the residue field When is a henselian valuation definable?

Main ingredient

Let p be a prime and K a field. Then we define K(p) as the compositum
of all Galois extensions of K of p-power degree. Note that K # K(p) iff K

admits some Galois extension of p-power degree.

Theorem
For a valued field (K, v), the following are equivalent:

1. v extends uniquely to K(p).
2. For each f € O [X] which splits in K(p) and each a € O, with

f(3) = 0 and 7'(3) # 0, there exists & € O, with () = 0 and

a = a.
v
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Main ingredient

Let p be a prime and K a field. Then we define K(p) as the compositum
of all Galois extensions of K of p-power degree. Note that K # K(p) iff K
admits some Galois extension of p-power degree.

Theorem
For a valued field (K, v), the following are equivalent:

1. v extends uniquely to K(p).
2. For each f € O [X] which splits in K(p) and each a € O, with

f(3) = 0 and 7'(3) # 0, there exists & € O, with () = 0 and
a = a.

We say that (K, v) is p-henselian if one of the above conditions hold.
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Conditions on the residue field When is a henselian valuation definable?

Main ingredient

Let p be a prime and K a field. Then we define K(p) as the compositum
of all Galois extensions of K of p-power degree. Note that K # K(p) iff K
admits some Galois extension of p-power degree.

Theorem
For a valued field (K, v), the following are equivalent:

1. v extends uniquely to K(p).
2. For each f € O [X] which splits in K(p) and each a € O, with

f(3) = 0 and 7'(3) # 0, there exists & € O, with () = 0 and
a = a.

We say that (K, v) is p-henselian if one of the above conditions hold. We
call K p-henselian if K admits a non-trivial p-henselian valuation.
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Conditions on the residue field When is a henselian valuation definable?

Main ingredient

Recall: (K, v) is p-henselian if v extends uniquely to K(p). K is
p-henselian if K admits a non-trivial p-henselian valuation.
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Conditions on the residue field When is a henselian valuation definable?

Main ingredient

Recall: (K, v) is p-henselian if v extends uniquely to K(p). K is
p-henselian if K admits a non-trivial p-henselian valuation.

K is called euclidean if [K(2) : K] = 2.
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Main ingredient

Recall: (K, v) is p-henselian if v extends uniquely to K(p). K is
p-henselian if K admits a non-trivial p-henselian valuation.

K is called euclidean if [K(2) : K] = 2.

Proposition

Let (K, v) be a henselian valued field such that Kv # Kv(p). If p =2,
assume that Kv is not euclidean. If Kv is not p-henselian, then v is
(-definable.
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Main ingredient

Recall: (K, v) is p-henselian if v extends uniquely to K(p). K is
p-henselian if K admits a non-trivial p-henselian valuation.

K is called euclidean if [K(2) : K] = 2.

Proposition

Let (K, v) be a henselian valued field such that Kv # Kv(p). If p =2,
assume that Kv is not euclidean. If Kv is not p-henselian, then v is
(-definable.

Idea of the proof: In the context of the Proposition, v is the canonical
p-henselian valuation and thus (-definable.
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Main ingredient

Recall: (K, v) is p-henselian if v extends uniquely to K(p). K is
p-henselian if K admits a non-trivial p-henselian valuation.

K is called euclidean if [K(2) : K] = 2.

Proposition

Let (K, v) be a henselian valued field such that Kv # Kv(p). If p =2,
assume that Kv is not euclidean. If Kv is not p-henselian, then v is
(-definable.

Idea of the proof: In the context of the Proposition, v is the canonical
p-henselian valuation and thus (-definable.

Corollary
Let (K, v) be henselian such that Kv is finite. Then v is ()-definable. J
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Conditions on the residue field Applications and Examples

Hilbertian fields

Definition

Let K be a field and let T and X be variables. Then K is called hilbertian
if for every polynomial f € K|[T, X] which is separable, irreducible and

monic when considered as a polynomial in K(T)[X] there is some a € K
such that f(a, X) is irreducible in K[X].
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Hilbertian fields

Definition

Let K be a field and let T and X be variables. Then K is called hilbertian
if for every polynomial f € K|[T, X] which is separable, irreducible and
monic when considered as a polynomial in K(T)[X] there is some a € K
such that f(a, X) is irreducible in K[X].

Examples include all infinite finitely generated fields.

Theorem

Let (K, v) be a henselian valued field such that Kv is hilbertian. Then v is
(-definable.

Idea: (for char(K) # p) Consider f(T,X) = XP —mT —1 for m € m,.
Find a € O, such that f(a, X) is irreducible. Then f(a, X) splits in K(p),
has a simple zero in Kv but not zero in K.
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Applications and Examples
PAC fields
Definition

A field K is called PAC if every absolutely irreducible variety over K has a
K-rational point.
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Applications and Examples
PAC fields
Definition

A field K is called PAC if every absolutely irreducible variety over K has a
K-rational point.

Examples include pseudofinite fields.

Theorem

Let (K, v) be a henselian valued field such that Kv is PAC and not
separably closed. Then v is ()-definable.

Idea: Use a p-henselian analogue of Frey-Prestel: PAC + henselian implies
separably closed.

Corollary

Let (K, v) be a henselian valued field such that Kv is PRC and not real
closed. Then v is (-definable.
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Aspilaiiens i Eerits
Simple fields

Definition
A field K is called simple if the L,j,g-theory Th(K) is simple, i.e. no
formula has the tree property.
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Simple fields

Definition
A field K is called simple if the L,j,g-theory Th(K) is simple, i.e. no
formula has the tree property.

Note that if a formula has the strict order property, then the theory is not
simple.
Proposition

Let (K, v) be a non-trivially henselian valued field such that Kv is simple
and not separably closed. Then v is (l-definable.

Idea of the proof: Any p-henselian field admits a V-topology with a
uniformly definable base of neighbourhoods of zero. This can be used to
construct a definable family of strictly decreasing sets (wrt inclusion).
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Conditions on the residue field Applications and Examples

Help from the absolute Galois Group

Definition

Let K be a field. We say that Gk is universal if for every finite group G
there are finite Galois extensions L C M of K such that Gal(M/L) = G.
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Conditions on the residue field Applications and Examples

Help from the absolute Galois Group

Definition

Let K be a field. We say that Gk is universal if for every finite group G
there are finite Galois extensions L C M of K such that Gal(M/L) = G.

Examples

» pro-soluble absolute Galois groups are non-universal.
» G is non-universal if K is NIP of positive characteristic.
» G is universal if K is hilbertian.

Observation

Let (K, v) be henselian. Then Gk is non-universal if and only if Gk, is
non-universal.
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Conditions on the residue field Applications and Examples

Non-universal absolute Galois group

Theorem

Let (K, v) be a henselian valued field such that Kv is not separably nor

real closed and admits no henselian valuation. If Gk is non-universal then
v is (-definable.
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Non-universal absolute Galois group

Theorem

Let (K, v) be a henselian valued field such that Kv is not separably nor

real closed and admits no henselian valuation. If Gk is non-universal then
v is O-definable.

Corollary

Let (K, v) be henselian such that char(K) > 0 and K is not separably
closed. If K is NIP then K admits a non-trivial (-definable henselian
valuation.
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Conditions on the residue field Applications and Examples

Non-universal absolute Galois group

Theorem

Let (K, v) be a henselian valued field such that Kv is not separably nor

real closed and admits no henselian valuation. If Gk is non-universal then
v is O-definable.

Corollary

Let (K, v) be henselian such that char(K) > 0 and K is not separably
closed. If K is NIP then K admits a non-trivial (-definable henselian
valuation.

Thank you for your attention.
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