▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

On the decidability of the p-adic exponential ring.

Nathanaël Mariaule

Seconda Università degli Studi di Napoli

Model Theory of Fields (Interaction between Model Theory and Field Theory) UMons, Mons, November 18, 2013

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Introduction

Theorem (A. Macintyre, A. Wilkie)

If Schanuel's conjecture is true, $Th(\mathbb{R}_{exp})$ is decidable.

On the other hand, $Th(\mathbb{C}_{exp})$ is undecidable.

Problem

Is the theory of $\mathbb{Q}_{p,exp}$ decidable?

1 p-adic exponential

2 Effective model-completeness

3 Decidability

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 めんの

p-adic numbers

ション ふゆ アメリア メリア しょうくしゃ

Let p be a prime number. Consider the map:

$$v_p: \begin{array}{ccc} \mathbb{Z}^* & \longrightarrow & \mathbb{Z} \\ x = p^n m & \longmapsto & n. \end{array}$$

We define $v_p(0) = +\infty$ and extend the map to the set \mathbb{Q} :

$$v_p\left(\frac{a}{b}\right) = v_p(a) - v_p(b).$$

To the map v_p corresponds a distance $|x|_p := p^{-v_p(x)}$. The field of *p*-adic number \mathbb{Q}_p is defined as the completion of \mathbb{Q} with respect to the distance $|\cdot|_p$. *p*-adic numbers

ション ふゆ アメリア メリア しょうくしゃ

$$\begin{split} |\cdot|_p \text{ is an absolute value on the field } \mathbb{Q}_p. \text{ i.e. for all } x, y \in \mathbb{Q}_p \\ & |x|_p = 0 \text{ iff } x = 0; \\ & |xy|_p = |x|_p |y|_p; \\ & |x+y|_p \leq \max\{|x|_p, |y|_p\} \text{ (ultrametric inequality).} \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

p-adic numbers

 (\mathbb{Q}_p, v_p) is a valued field.

• the valuation ring: $\mathbb{Z}_p = \{x \in \mathbb{Q}_p \mid v_p(x) \ge 0\};$

• its maximal ideal: $p\mathbb{Z}_p = \{x \in \mathbb{Q}_p \mid v_p(x) > 0\}.$

The field $\mathbb{Z}_p/p\mathbb{Z}_p \cong \mathbb{F}_p$ is called *residue field* of \mathbb{Q}_p . $Res: \mathbb{Z}_p \longrightarrow \mathbb{F}_p$ is called the residue map.

Decidability 00000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

p-adic exponential function

Fix a sequence $\{a_n\} \subset \mathbb{Q}_p$. The series $\sum a_n$ is convergent in \mathbb{Q}_p iff $|a_n|_p \to 0$ iff $v_p(a_n) \to \infty$.

The exponential function defined by the usual power series $exp(x) = \sum \frac{x^n}{n!}$ is convergent iff

$$v_p(x) > \frac{1}{p-1}.$$

Decidability 00000000000

$\ensuremath{\textit{p}}\xspace$ -adic exponential ring

We define the function

$$\begin{array}{rcl} E_p: (\mathbb{Z}_p, +, 0) & \longrightarrow & (\mathbb{Z}_p^{\times}, \cdot, 1) \\ & x & \longmapsto & \left\{ \begin{array}{cc} exp(p \cdot x) & \text{if } p \neq 2 \\ exp(4 \cdot x) & \text{otherwise.} \end{array} \right. \end{array}$$

$$\mathcal{L}_{\exp} = (+, \cdot, 0, 1, E_p, P_n; n \in \mathbb{N}),$$

 $\mathbb{Z}_{p,\mathsf{exp}}$ denotes the structure \mathbb{Z}_p in the language $\mathcal{L}_{\mathsf{exp}}$.

Problem

Is $Th(\mathbb{Z}_{p,exp})$ decidable?

Let us remark that it is not difficult to generalise the results of this talk to the structure $(\mathcal{O}_K, +, \cdot, 0, 1, E_p, P_k)$ where \mathcal{O}_K is the valuation ring of a finite algebraic extension K of \mathbb{Q}_p .

・ロト ・母 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

$\bigcirc p$ -adic exponential

2 Effective model-completeness

3 Decidability

- ◆ □ ▶ ◆ 個 ▶ ◆ 臣 ▶ ◆ 臣 ● の Q @

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Model-completeness

Theorem (A. Macintyre [2], see also [3])

 $\mathsf{Th}(\mathbb{Z}_{p,\mathsf{exp}})$ is model-complete in the language $\mathcal{L}_{\mathsf{exp}}$ expanded by 'trigonometric' functions.

Theorem (J. Denef, L. van den Dries [1])

The theory of \mathbb{Z}_p admits elimination of quantifiers in \mathcal{L}_{an}^D .

Decidability 00000000000

Weierstrass Preparation theorem

Definition

Let
$$f \in \mathbb{Z}_p\{\overline{X}, Y\}$$
, $f = \sum f_i(\overline{X})Y^i$. We say that f has order d in Y if
$$Res(f) = A_0(\overline{X}) + \dots + A_{d-1}(\overline{X})Y^{d-1} + Y^d$$
where $A_i(\overline{X}) \in \mathbb{F}_p[\overline{X}]$.

Weierstrass Preparation Theorem

Let $f(\overline{X}, Y) \in \mathbb{Z}_p\{\overline{X}, Y\}$ of order d in Y. Then, there are $a_0(\overline{X}), \cdots, a_{d-1}(\overline{X}) \in \mathbb{Z}_p\{\overline{X}\}$ and $u(\overline{X}, Y) \in \mathbb{Z}_p\{\overline{X}, Y\}$ a unit such that

$$f(\overline{X},Y) = u(\overline{X},Y) \cdot \left[Y^d + a_{d-1}(\overline{X})Y^{d-1} + \dots + a_0(\overline{X})\right].$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ● ●

ション ふゆ く 山 マ チャット しょうくしゃ

Weierstrass system

A Weierstrass system over \mathbb{Z}_p is a family of rings $\mathbb{Z}_p[\![X_1, \cdots, X_n]\!]$, $n \in \mathbb{N}$, such that for all n, the following conditions hold:

•
$$\mathbb{Z}[\overline{X}] \subseteq \mathbb{Z}_p[\![\overline{X}]\!] \subseteq \mathbb{Z}_p\{\overline{X}\}$$
 where $\overline{X} = (X_1, \cdots, X_n)$;

- Z_p[[X₁, · · · , X_n]] is closed under permutation of the variables, inverses and division by integers (whenever it is well-defined in Z_p{X});
- (Weierstrass division) If $f \in \mathbb{Z}_p[\![X_1, \cdots, X_n, Y]\!]$ and f is regular of order d in Y, then, for all $g \in \mathbb{Z}_p[\![\overline{X}, Y]\!]$, there are $a_0, \cdots, a_{d-1} \in \mathbb{Z}_p[\![\overline{X}]\!]$ and $q \in \mathbb{Z}_p[\![\overline{X}]\!]$ such that

$$g(\overline{X},Y) = q(\overline{X},Y) \cdot f(\overline{X},Y) + \left(Y^{d-1}a_{d-1}(\overline{X}) + \dots + a_0(\overline{X})\right).$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Weierstrass system

Corollary

Let W be a Weirestrass system, then $Th(\mathbb{Z}_p)$ admits quantifier elimination in \mathcal{L}_W^D . $Th(\mathbb{Z}_p)$ is model-complete in \mathcal{L}_W . Let \mathcal{L}_{pEC} be the expansion of \mathcal{L}_{exp} by the trigonometric functions. We define the Weierstrass system generated by the \mathcal{L}_{pEC} -terms by: For each n, let $W_n^{(0)}$ be the set of \mathcal{L}_{pEC} -terms with n variables. We define $W_n^{(m+1)}$ by induction on m. $W_n^{(m+1)}$ is the ring generated by: $W_n^{(m)} \subset W_n^{(m+1)}$.

- W_n → ⊂ W_n → ;
 For all f ∈ W_n^(m), if g is obtained from f using a permutation of the variables, inversion or division by an integer (when it makes sense in Z_p{X}), then g ∈ W_n^(m+1);
- So For each f ∈ W^(m)_{n+1} of order d in X_{n+1}, for each g ∈ W^(m)_{n+1}, the functions a₀, · · · , a_{d-1} ∈ Z_p{X} and q ∈ Z_p{X, Y} given by the Weierstrass division and their partial derivatives belong to W^(m+1)_n and W^(m+1)_{n+1} respectively.

Let $W_n := \bigcup_m W_n^{(m)}$. It determines a Weierstrass system W_{exp} .

Decidability 00000000000

ション ふゆ アメリア メリア しょうくしゃ

Weierstrass system generated by \mathcal{L}_{pEC}

Then, $Th(\mathbb{Z}_p)$ is model-complete in $\mathcal{L}_{W_{exp}}$.

Lemma

Let
$$f \in W^{(m+1)} = \bigcup_n W_n^{(m+1)}$$
. Then, f is $\mathcal{L}_{W^{(m)}}$ -existentially definable.

So, by induction, any function in W_{exp} is existentially definable in \mathcal{L}_{pEC} . The hard case is when f is obtained using the Weierstrass division theorem.

Decidability 00000000000

Existential definition of the Weierstrass coefficients

Let $f(\overline{X}, Y) \in \mathbb{Z}_p\{\overline{X}, Y\}$ of order d in Y. Let $a_0(\overline{X}), \cdots, a_{d-1}(\overline{X})$ be the power series like in the Weierstrass preparation theorem.

Fix $\overline{x} \in \mathbb{Z}_p^m$. Let $\alpha_1, \dots, \alpha_d$ roots of $f(\overline{x}, Y)$ in $\widetilde{\mathbb{Q}_p}$ with nonnegative valuation. Assume $\alpha_i \neq \alpha_j$ for all $i \neq j$. Then,

$$\begin{pmatrix} 1 & \alpha_1 & \cdots & \alpha_1^{d-1} \\ \vdots & & \vdots \\ 1 & \alpha_d & \cdots & \alpha_d^{d-1} \end{pmatrix} \cdot \begin{pmatrix} a_0(\overline{x}) \\ \vdots \\ a_{d-1}(\overline{x}) \end{pmatrix} = \begin{pmatrix} \alpha_1^d \\ \vdots \\ \alpha_d^d \end{pmatrix} .(*)$$

determines uniquely $a_0(\overline{x}), \cdots, a_{d-1}(\overline{x})$. We can also define the coefficients $a_i(\overline{x})$ when the roots are singular.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Existential definition of the Weierstrass coefficients

We define (K_n) a family of finite algebraic extensions of \mathbb{Q}_p such that:

- $K_m \subset K_n$ for all m < n;
- K_n is the splitting field of P_n polynomial with coefficients in Q and is generated by β_n any root of P_n;

•
$$V_n = \mathbb{Z}_p[\beta_n];$$

• any extension of degree n is contained in K_n .

Then, $\alpha_1, \cdots, \alpha_d \in V_d$ (for all choice of \overline{x}).

Existential definition of the Weierstrass coefficients

As $\alpha_1, \dots, \alpha_d \in V_d$ (for all choice of \overline{x}), the graphs of a_0, \dots, a_{d-1} are determined by an existential formula of the type:

$$\Gamma(\overline{x}, a_0, \cdots, a_{d-1}) \equiv \exists \alpha_1 \cdots \alpha_d \in V_d \land_i f(\overline{x}, \alpha_i) = 0 \land$$
$$\bigwedge_l \Big(\land_{i \neq j} \alpha_i \neq \alpha_j \to T_l(\overline{\alpha}, \overline{a}) = 0 \Big),$$

where l varies over all possibilities for the multiplicities of the roots and the terms T_l are polynomials like (*).

Note that the formula Γ quantifies over V_d . If we are able to define the structure $(V_d, +, \cdot, 0, 1, P_k, E_p)$ in $\mathbb{Z}_{p, \exp}$, then Γ would be equivalent to an existential formula over \mathbb{Z}_p . Therefore the graphs of a_i 's would be existentially definable in $\mathbb{Z}_{p, \exp}$ and so we would have model-completeness (as any function in \mathcal{L}_{Wexp} would be existentially definable in \mathcal{L}_{exp}).

ション ふゆ アメリア メリア しょうくしゃ

Existential definition of the Weierstrass coefficients

- The structure $(V_n, +, \cdot, 0, 1)$ is definable in $\mathbb{Z}_{p, \exp}$.
- However, the structure $(V_n, +, \cdot, 0, 1, E_p)$ may not be interpretable in $\mathbb{Z}_{p, \exp}$.
- We will add in our language symbols for functions such that the above structure is definable in the expanded language.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Existential definition of the Weierstrass coefficients

Let $V_n = \mathbb{Z}_p[\beta_n]$ as before. We decompose $E_p(\beta_n^k x)$, $k < d_n$, in the basis of V_n over \mathbb{Z}_p :

$$E_p(\beta_n^k x) = c_{0,k,n}(x) + c_{1,k,n}(x)\beta_n + \dots + c_{d_n-1,k,n}(x)\beta_n^{d_n-1}$$

We define the language \mathcal{L}_{pEC} the expansion of \mathcal{L}_{exp} by symbols for the functions $c_{i,k,n}$ determined by the extensions K_n .

Lemma

$$(V_n, +, \cdot, 0, 1, P_k, E_p, c_{ijl})$$
 is definable in $(\mathbb{Z}_p, +, \cdot, 0, 1, P_k, E_p, c_{ijl})$.

Theorem (A. Macintyre)

The theory of \mathbb{Z}_p is model-complete in the language \mathcal{L}_{pEC} .

Furthermore,

Lemma

The above model-completeness is effective i.e. given $\psi(\overline{x})$ a \mathcal{L}_{pEC} -formula, one can compute an existential formula equivalent to $\psi(\overline{x})$.

▲ロト ▲舂 ▶ ▲ 恵 ▶ ▲ 恵 ▶ ● 恵 ● のへで

$\bigcirc p$ -adic exponential

- 2 Effective model-completeness
- 3 Decidability

ション ふゆ アメリア メリア しょうくしゃ

Existential sentences

Any sentence is (effectively) equivalent to a disjunction of sentences of the type:

$$\exists \overline{x} f(\overline{x}) = 0 \land g(\overline{x}) \neq 0, \ (*)$$

where f, g are \mathcal{L}_{pEC} -terms. It is sufficient to give an algorithm that stops if (*) is true (and may never stop otherwise). For simplicity, I will assume that f, g are \mathcal{L}_{exp} -terms of the form: $F_P(\overline{X}) = P(x_1, \cdots, x_n, E_p(x_1), \cdots, E_p(x_n))$ where $P \in \mathbb{Z}[\overline{X}, \overline{Y}]$.

Analytic Hensel's lemma

Analytic Hensel's lemma

Let $\mathbf{f} = (f_1, \cdots, f_n), f_i \in \mathbb{Z}_p\{X_1, \cdots, X_n\}$ and $r \in \mathbb{N}$. Assume there exists $\overline{a} \in \mathbb{Z}_p^n$ such that

$$det \ J_{\mathbf{f}}(\overline{a}) \neq 0 \text{ and } v\Big(\mathbf{f}(\overline{a})\Big) > 2 \cdot v\Big(det \ J_{\mathbf{f}}(\overline{a})\Big) + r.$$

Then, there exists a unique $\overline{b} \in \mathbb{Z}_p^n$ such that

$$\mathbf{f}(\overline{b}) = 0$$
 and $v(\overline{b} - \overline{a}) > v\left(det \ J_{\mathbf{f}}(\overline{a})\right) + r.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - の々で

Decidability 0000000000

Nonsingular case

Fix
$$\mathbf{f} = (F_{P_1}, \cdots, F_{P_n}), P_i \in \mathbb{Z}[X_1, \cdots, X_n, Y_1, \cdots, Y_n].$$

We can determine if the sentence:

$$\exists \overline{x} \ \overline{x} \in V^{ns}(\mathbf{f}) \equiv \exists \overline{x} \ F_{P_1}(\overline{x}) = \dots = F_{P_n}(\overline{x}) = 0 \neq det \ J_{\mathbf{f}}(\overline{x}).$$

is true in \mathbb{Z}_p :

Algorithm

Fix $\overline{a}_0, \overline{a}_1, \cdots$, an enumeration of \mathbb{Z}^n . For each *i*, if

$$det \ J_{\mathbf{f}}(\overline{a}_i) \neq 0 \text{ and } v\Big(\mathbf{f}(\overline{a}_i)\Big) > 2 \cdot v\Big(det \ J_{\mathbf{f}}(\overline{a}_i)\Big)$$

return true. Otherwise, go to i + 1.

p-adic exponential

Effective model-completeness 00000000000 Decidability ○○○●○○○○○○

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Desingularization theorem

Theorem (see [3])

Let $F_P \in \mathbb{Z}[X_1, \cdots, X_n, E_p(X_1), \cdots, E_p(X_n)]$, $V(F_P) \neq \emptyset$. Then, there exist $F_{P_1}, \cdots, F_{P_n} \in \mathbb{Z}[\overline{X}, E_p(\overline{X})]$ such that

 $V(F_P) \cap V^{ns}(F_{P_1}, \cdots, F_{P_n}) \neq \emptyset.$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Lemma

Let $m, r \in \mathbb{N}$, I prime ideal of $\mathbb{Z}[X_1, \cdots, X_m]$, $I \cap \mathbb{Z} = \{0\}$ such that

$$trdeg_{\mathbb{Q}} \ Frac\Big(\mathbb{Z}[\overline{X}]/I\Big) = r.$$

Then, there exists $Q \in \mathbb{Z}[\overline{X}] \setminus I$ such that $Q \cdot I$ is generated by (m-r) elements.

Let $\bar{b} \in V(F_P) \cap V^{ns}(F_{P_1}, \cdots F_{P_n})$ like in the last theorem. We want to apply the lemma with

$$I := \{h \in \mathbb{Z}[\overline{X}, \overline{Y}] \mid h(b_1, \cdots, b_n, E_p(b_1), \cdots E_p(b_n)) = 0\}.$$

We have that:

$$trdeg_{\mathbb{Q}} \ Frac\Big(\mathbb{Z}[\overline{X}]/I\Big) = trdeg_{\mathbb{Q}}(b_1, \cdots, b_n, E_p(b_1), \cdots E_p(b_n)).$$

As $\overline{b} \in V^{ns}(F_{P_1}, \cdots F_{P_n}),$
$$trdeg_{\mathbb{Q}}(b_1, \cdots, b_n, E_p(b_1), \cdots E_p(b_n)) \leq n.$$

In order to obtain the equality, we use a p-adic version of Schanuel's conjecture.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

p-adic exponential

Effective model-completeness 00000000000 Decidability ○○○○○●○○○○

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Schanuel's conjecture

p-adic Schanuel's conjecture

Let $\beta_1,\cdots,\beta_n\in\mathbb{C}_p,$ Q-linearly independent such that $v(\beta_i)>1/(p-1).$ Then,

 $trdeg_{\mathbb{Q}}\mathbb{Q}(\beta_1, \cdots, \beta_n, exp(\beta_1), \cdots, exp(\beta_n)) \ge n.$

Let $F_P(\overline{X})=P(\overline{X},E_p(\overline{X})).$ Assume that $F_P(\overline{a})=0$ for some $\overline{a}\in\mathbb{Z}_p^n.$

Let
$$F_{P_1}, \cdots, F_{P_n}$$
 like in the last theorem.

Let
$$\overline{b} \in V(F_P) \cap V^{ns}(F_{P_1}, \cdots, F_{P_n}).$$

Assume that Schanuel's conjecture is true. Then if b_1, \cdots, b_n are \mathbb{Q} -linearly independent,

$$trdeg_{\mathbb{Q}}\mathbb{Q}(b_1,\cdots,b_n,E_p(b_1),\cdots,E_p(b_n))=n.$$

So, by the lemma, there exist $Q, Q_1, \cdots, Q_n, S_1, \cdots, S_n$ such that

$$QP = \sum S_i Q_i.$$

Furthermore, $\overline{b} \in V^{ns}(F_{Q_1}, \cdots, F_{Q_n})$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Decidability

Theorem (see [3])

If the *p*-adic Schanuel's conjecture is true, $Th(\mathbb{Z}_{p,\exp})$ and $Th(\mathbb{Z}_{pEC})$ are decidable.

Let
$$\Psi \equiv \exists \overline{x} F_P(\overline{x}) = 0 \land F_R(\overline{x}) \neq 0.$$

Assume that the formula is realised by $\overline{\alpha} \in \mathbb{Z}_p$ where $\alpha_1, \cdots, \alpha_n$ are Q-linearly independent. Then, the following algorithm stops and returns true.

Algorithm

lf

Enumerate all

• $\overline{a} + p^k \mathbb{Z}_p^n$ where \overline{a} runs over \mathbb{Z}^n and k over \mathbb{N} ;

•
$$m \in \mathbb{N}$$
, $m > k$;

•
$$Q, Q_1, \cdots, Q_n, S_1, \cdots, S_n \in \mathbb{Z}[X_1, \cdots, X_n, Y_1, \cdots, Y_n].$$

• for all $b \in (\mathbb{Z}/p^m\mathbb{Z})^n$ such that $b \equiv \overline{a} \mod p^k$, $F_Q(\overline{b}) \not\equiv 0 \mod p^m$ and $F_R(\overline{b}) \not\equiv 0 \mod p^m$;

return true. Otherwise, go to the next step.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Bibliography

- [1] J. Denef and L. van den Dries.
 - p-adic and Real Subanalytic Sets.

The Annals of Mathematics, Second Series, Vol. 128, No.1, pages 79–138, 1988.

[2] A. Macintyre.

The elementary theory of p-adic exponentiation. Unpublished.

[3] N. Mariaule.

On the decidability of the *p*-adic exponential ring. PhD thesis, University of Manchester, 2013.