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Introduction
Basic definitions and motivating known results.

Our results

Introduction

Surreal numbers :

I form a proper class totally ordered that contains "all
numbers great and small", e.g. real numbers and ordinal
numbers (Conway 76) ;

I form a divisible ordered abelian group that is a universal
domain for ordered abelian groups (Conway 76, Ehrlich
2001) ;
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Introduction

Surreal numbers :

I form a real closed field that is a universal domain for real
fields (Conway 76, Ehrlich 2001) ;

I form a field of generalized power series (Conway 76) ;

I form a real exponential field that is a non standard model
of the theory of Ran,exp (Gonshor 86, van den Dries-Ehrlich
2001).
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Introduction
Our result : describe a natural and explicit system Φ0 of
representatives of the exponential-logarithmic equivalence
classes of surreal numbers.

Our conjectures :
I Conjecture 1 Surreal numbers form an

exponential-logarithmic transseries field :
NO = ELT(Φ0, σ0)

for some automorphism σ0 = log|Φ0
of Φ0.

→ Φ0 is the chain of initial fundamental monomials (S.
Kuhlmann’s context of EL-series) ;
→ Φ0 is the chain of log-atomic elements (van der
Hoeven’s context of transseries).
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I Conjecture 2 Surreal numbers carry a Hardy type
derivation (i.e. a derivation with same valuative properties
as the derivation in Hardy fields or H-fields).

 We expect (NO,exp,d) to be a universal domain for
real differential exponential fields.
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Introduction

My aims today are :

I to give a short survey on NO ;
I to give a description of our results on what should be Φ0 ;
I to give a short survey on ELT fields.
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Definitions.
Known results due to Conway.

Definitions and results due to Conway.

Denote by ON the (proper) class of all ordinals numbers.

I A surreal number a ∈ NO is defined to be a map
a : α→ {	,⊕} for some α ∈ ON

A surreal number is usually identified to its image : a well
ordered sequence of 	’s and ⊕’s

⊕⊕	⊕		 · · ·

I The support α ∈ ON of a is called its length l(a).
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Definitions and results due to Conway.

I Surreal numbers are ordered lexicographically with :
	 < ∅ < ⊕.

I Surreal numbers carry a partial ordering called simplicity :
a is simpler than b, write a <s b iff a is a proper initial

subsequence of b
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Definitions and results due to Conway.

Key property : any subsets F < G in NO define a unique
shortest element such that F < a < G. One denotes

a = 〈F |G〉,

also unique up to cofinal representations.

I NO is a continuum containing ON ;

I any surreal number has a canonical representation
a = 〈aL|aR〉 where aL and aR are simpler than a ;

I one can define functions on NO by transfinite recursion :
from the shortest to the largest surreal numbers.
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Field structure and normal form.

I There is a field structure on NO which makes it a real
closed fields containing R→ universal domain for RCF.

I The ω-map : for any a ∈ NO, define

ωa := 〈0,nωaL |ωaR
/2n〉,

then ωa is the shortest representative of an Archimedean
equivalence class of NO.

→ Conway normal form of the surreal numbers i.e.
generalized series field structure of NO :

NO = R((ωNO))
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Generalized series field.

I ωω
NO

is a system of representatives of the multiplicative
equivalence classes of NO.

→ Hahn series field structure of NO :
NO = R((H(ωω

NO
)))

where H(ωω
NO

) is the Hahn group generated by ωω
NO

.
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Kruskal-Gonshor results.

I The ω-map is not an exponential map, since it has fixed
points : the generalized epsilon numbers s.t. a = ωa.

I NO admits an exponential
exp : (NO,+)→ (NO>0, .)

and a logarithm log = exp−1.

NO |= Tan,exp
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Definitions.
Known results due to Conway.

Kruskal-Gonshor results.

I For any purely infinite surreal a and any surreal b,

exp(ωa) = ωω
g(a)

log(ωω
b
) = ωh(b)

with g = h−1 and h(b) := 〈0,h(bL)|h(bR), ω/2n〉.

I log and exp are strong morphisms.
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Our results : recursive definition.

I Exponential-logarithmic equivalence relation :
∀x , y ∈ NO>>1,

x ∼EL y ⇔ ∃n ∈ N, logn(x) ≤ y ≤ expn(x) ;

x >EL y ⇔ ∀n, logn(x) > y .

I The κ-map : for any a ∈ NO, define

κ(a) = κa := 〈expn(0),expn(κaL) | logn(κaR )〉 (n ∈ N).
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Examples.

I

κ0 := 〈expk (0), k ∈ N | ∅〉
= 〈k ∈ N | ∅〉
= ω

;

I

κ1 := 〈expk (0), expk (ω) k ∈ N | ∅〉
= 〈ωk (1), k ∈ N | ∅〉
= ε0

;

I

κ−1 := 〈expk (0), k ∈ N | logk (ω), k ∈ N〉
= 〈k ∈ N | ωω−k

, k ∈ N〉
= ωω

−ω
.
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First theorem for the κ-map.

Theorem 1.
The map κ is well defined on NO and for any a ∈ NO :

• ∀n ∈ Z, κa,n := logn κa ∈ ωω
NO

;

• κa is the shortest element of an exponential equivalence
class.
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About our conjecture.

Heuristic.

εNO ( κNO ( ωω
NO ( ωNO ( NO

Set :
I κa,n := logn(κa,n), n ∈ Z ;

I Φ0 :=
⋃

a∈NO

(
⋃
n∈Z

κa,n) ;

I σ0 : Φ0 → Φ0 by σ0 := log|Φ0

Conjecture :

NO=ELT(Φ0, σ0)
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Our results : sign sequence.

I Denote by N the "concatenation" of sign sequences.

I For any a ∈ NO, write its sign sequence as the following
transfinite concatenation :

a = (a0⊕)N(b0	)N(a1⊕)N(b1	)N· · ·

N.B : aα is possibly 0 for α = 0 or α is a limit ordinal.
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Our results : sign sequence.

I The µ-map : for any a ∈ NO, define :

µ(a) := 〈µ(aL)N(ωn(εc + 1)⊕) | µ(aR)N(n	)〉

where c is the total number of ⊕’s in a, minus 1.
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Second theorem for the κ-map.
Theorem 2. Take a surreal

a = (a0⊕)N(b0	)N(a1⊕)N(b1	)N· · ·

and, for any α, define cα := (
∑
β≤α

aβ)[. Then we have :

µ(a) = (εc0⊕)N(ω.b0	)N(εc1⊕)N(ω.b1	)N· · ·

and for any n ∈ N∗,

κa = ωω
µ(a)

κa,n = ωω
µ(a)N(n	)

κa,−n = ωω
µ(a)N(ωn−1(εc +1)⊕)
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Ideas of our proofs.

I Theorem 1 : inspired by Gonshor’s proof for the ω-map.
Induction on the length of a.

I Theorem 2 : the main ingredient is the following lemma

Lemma 1 : ∀a ∈ NO, ∀β ∈ ON,
•h(µ(a)Nβ	) = ωµ(a)N(β+1)	 ;

•h(µ(a)Nβ⊕) =

∣∣∣∣ ωµ(a)N(β − 1)⊕ if ε+ 1 ≤ β < ε+ ω

ωµ(a)Nβ⊕ if not
.
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Ideas of our proofs.

Proof by induction on the length of a.

For example, consider a ∈ NO with l(a) = α = α̃ + 1 successor
ordinal, and suppose the Lemma true for all b with l(b) ≤ α̃.
There are 2 cases :
• if a = ãN⊕, then a = 〈aL|aR〉 = 〈ã|ãR〉. Moreover,
µ(a) = µ(ã)Nεc⊕.
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Ideas of our proofs.

Now, by definition,

h(µ(a)) := 〈0,h(µ(ã)Nωn(εcL + 1)⊕)|h(µ(ãR)Nn	), ωµ(a)/2k 〉
= 〈ωµ(ã)Nωk (εcL + 1)⊕), k ∈ N|ωµ(a)/2k , k ∈ N〉
= ωµ(ã)Nεc ⊕Nεcω	
= ωµ(ã)N⊕N	

= ωµ(a)N	

etc...
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About transseries and exp-log series.

I Take R((Γ)) a field of generalized series endowed with a
non surjective logarithm

log : Γ→ R((Γ�1)).
In particular, suppose Γ = H(Φ0) for some chain Φ0 on
which log = σ0.

I Key idea. To make the log surjective and therefore define
exp→ apply an infinite towering exponential extension
process and take the inductive limit
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About transseries and exp-log series.

I Definition A complete subfield L ⊂ K which contains Γ is
called an exp-log transseries field if the following hold :

ELT1. domain(log) = L>0.
ELT2. log(Γ) = L�1.

ELT3. log(1 + ε) =
∞∑

n=1

εn/n ∈ L≺1 for any ε ∈ L≺1.

ELT4. For any (mn)n ⊂ Γ such that
∀n ∈ N, mn+1 ∈ Supp log(mn),

then there exists a rank N ∈ N such that
∀k ∈ N, log(mN+k ) = mN+k+1.
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To be continued.

I Conjecture : describe NO as an ELT field over R((H(Φ0)))

with Φ0 :=
⋃

a∈NO

(
⋃
n∈Z

κa,n).
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To be continued.

I Last theorem to find : define a "good" derivation on κNO,
so that it extends to the whole NO as we desire :

- strong linearity
- generalized Leibniz rule
- l’Hospital’s rule.
- etc

See "Hardy type derivations on EL-series fields" (S.
Kuhlmann, M.M.).
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