Exercice I:

Soit k un corps commutatif.

- 1) Montrer que si k n'est pas dénombrable, alors k(X) est un k espace vectoriel de dimension infinie non dénombrable.
- 2) Si k est algébriquement clos et non dénombrable. Soit K une extension de k telle que K soit un k-espace vectoriel de dimension finie ou dénombrable, alors K = k.
 - 3) Connaissez vous un corps algébriquement clos dénombrable?

Exercice II: Th des zéros (Nullstellensatz) faible

Soit k un corps algébriquement clos non dénombrable¹

- 1) Soit (a_1, \ldots, a_n) un élément de k^n . Montrer que l'idéal $(x_1 a_1, \ldots, x_n a_n)$ de $k[x_1, \ldots, x_n]$ est maximal.
- 2) Soit \mathcal{M} un idéal maximal de $k[x_1, \ldots, x_n]$, déduire de l'exercice précédent qu'il existe $(a_1, \ldots, a_n) \in k^n$ tel que $\mathcal{M} = (x_1 a_1, \ldots, x_n a_n)$.
 - 3) Soit I un idéal de $k[x_1, ..., x_n]$. On note $V(I) = \{(a_1, ..., a_n) | \forall P \in I, P(a_1, ..., a_n) = 0\}$.

Montrer que
$$V(I) = \emptyset \iff I = k[x_1, \dots, x_n]$$

Exercice III: Th des zéros (Nullstellensatz)

Soit k un corps algébriquement clos, que l'on suppose non dénombrable.

- 1) Soit I un idéal d'un anneau commutatif unitaire A. Montrer que $\sqrt{I} := \{a \in A | \exists n \in \mathbb{N}^*, a^n \in I\}$ est un idéal de A.
- 2) Nous alons montrer le Théorème: Soit I un idéal de $k[x_1, \ldots, x_n]$, et V(I) le lieu des zéros dans k^n des éléments de I. Alors l'idéal des polynômes qui s'annulent en tous les points de V(I) est \sqrt{I} .
- a) Soit $I=(P_1,\ldots,P_r)$ un idéal de $k[x_1,\ldots,x_n]$, et F un élément de $k[x_1,\ldots,x_n]$ nul en tout point de V(I). On considère l'idéal J de $k[x_1,\ldots,x_n,t]$: $J=(1-t.F,P_1,\ldots,P_r)$. Montrer que $J=k[x_1,\ldots,x_n,t]$.
 - b) En déduire que $F \in \sqrt{I}$.
 - 3) a) Etudier V(I+J), $V(I\cap J)$, V(I.J).
- b) Pour $I \subset J$, comparer V(I) et V(J). Montrer que l'ensemble $(I:J) = \{a \in k[x_1, \dots, x_n], \forall P \in J, a.P \in I\}$ est un idéal contenant I. Etudier V(I:J).

Exercice IV: ²

- 1) Soit A l'anneau des fonctions holomorphes sur \mathbb{C} .
- a) Soit $n \in \mathbb{N}^*$. Quels sont les zéros complexes de $\sin(\frac{\pi \cdot z}{n})$. En déduire que l'idéal I_n des éléments de A nuls sur $n.\mathbb{Z}$ est principal.
 - b) Montrer que l'idéal engendré par $\left(\sin(\frac{\pi \cdot z}{n})\right)_{n \in \mathbb{N}^*}$ n'est pas de type fini.
- 2) On dit qu'un anneau commutatif est noetherien si tout idéal est de type fini. Soit A un anneau Noetherien. Nous allons montrer que A[x] est aussi Noetherien. Soit I un idéal de A[x].
- a) On suppose que I n'est pas de type fini. Soit f_1 un élément non nul de I, et pour n > 0 on choisit f_{n+1} de plus petit degré parmis les éléments de $I (f_1, \ldots, f_n)$. On note a_j le coefficient du terme de plus haut degré de f_j . Montrer qu'il existe $m \in \mathbb{N}$ et $(u_i) \in A^m$ tels que $a_{m+1} = \sum_{i=1}^m u_j.a_j$.
 - b) Obtenir une contradiction sur la définition de f_{m+1} .

Exercice V: Codes cycliques

Soit q une puissance d'un nombre premier. Pour $n \in \mathbb{N}, n > 1$, on pose $H = \mathbb{F}_q[X]/(X^n - 1)$.

1) On appellera code cyclique de longueur n un idéal I de H vu comme \mathbb{F}_q -espace vectoriel. Montrer que I est principal, et donner une base de I en fonction d'un générateur bien choisi de I.³

¹Cf par exemple Francinou-Gianella pour une preuve sans l'hypothèse non dénombrable

²CF Mérindol p 259

³La matrice des vecteurs de base exprimée dans la base (x^i) est appelée matrice génératrice du code.

- 2) Codes de Reed-Solomon. On suppose q > 2, et l'on pose n = q 1. Soit $t \in \mathbb{N}, 1 < t \le n$. On note $\Sigma = \{1, \ldots, t 1\}$
- a) Montrer qu'il existe dans \mathbb{F}_q une racine primitive n-ième de l'unité (On en choisira une notée ζ).
- b) On considère le polynôme $g = \prod_{i \in \Sigma} (X \zeta^i)$. Montrer que g permet de définir un code cyclique de longueur n. Quelle est sa dimension.
- c) Montrer qu'un élément non nul m de l'idéal (g) de $\mathbb{F}_q[X]/(X^n-1)$ exprimé dans la base $1, \ldots, X^{n-1}$ a au moins t coordonnées non nulles. ⁴ En déduire que la distance minimale entre 2 mots du code est t.
- d) Remarquer que si l'on regarde maintenant ces \mathbb{F}_q espaces vectoriels comme des \mathbb{F}_p espaces vectoriels, alors ce code peut corriger (t-1)/2*s erreurs consécutives, (où $q=p^s$). Par exemple, deux codes racourcis de celui obtenu par la méthode précédente en prenant $q=2^8$ et t=5 sont utilisés dans les CD.

 $^{^4}$ Un élément du code (g) est appelé un mot du code. La distance entre 2 mots est le nombre de coordonnées différentes des 2 vecteurs.