Very Basic conversion of graphics is supported from giac to sage.

The lines, circles, ... conics are not implemented.

{{{id=17| from giacpy import *; x,y,z=libgiac('x,y,z'); f=sin(1/x); f.plot().mplot() /// // Giac share root-directory:/home/fred/dev/sage/git-trac-command/local/share/giac/ // Using keyword file /home/fred/dev/sage/git-trac-command/local/share/giac/doc/fr/keywords // Giac share root-directory:/home/fred/dev/sage/git-trac-command/local/share/giac/ Help file /home/fred/dev/sage/git-trac-command/local/share/giac/doc/fr/aide_cas not found Added 0 synonyms }}} {{{id=3| M=libgiac.ranm(500,2,'0..1') #p1=plotlist(M) p2=libgiac.scatterplot(M) /// }}} {{{id=22| p2.mplot() /// }}} {{{id=6| x,y=libgiac('x,y'); d=(x^4+y^3+2*x*y^2-y+x).plotimplicit('x=-5..5,y=-5..5'); /// }}} {{{id=21| (d*i*2).mplot() /// }}}

Giac and sage 5.10 answers are different on this example of integration.

Giac answer is more complicated, but the constant is correct, indeed, the primitive must be continuous.
{{{id=9| x=var('x');f=1/(3+sin(3*x)) /// }}} {{{id=33| I1=(libgiac(f)).int();I1 # primitive with giac /// 2/3*2/(sqrt(2)*4)*(atan((3*tan(3*x/2)+1)/(2*sqrt(2)))+pi*floor(3*x/2/pi+1/2)) }}} {{{id=14| I1.plot().mplot() /// }}} {{{id=20| I2=integral(f,x);I2 # the primitive with sage 6.3beta /// 1/6*sqrt(2)*arctan(1/4*sqrt(2)*(3*sin(3*x)/(cos(3*x) + 1) + 1)) }}} {{{id=13| plot(I2,x,-5,5) /// }}} {{{id=31| /// }}}