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Abstract

Let X be a suitable function space and let G ⇢ X be the set of divergence free vector fields
generating a global, smooth solution to the incompressible, homogeneous three dimensional Navier-
Stokes equations. We prove that a sequence of divergence free vector fields converging in the sense
of distributions to an element of G belongs to G if n is large enough, provided the convergence holds
“anisotropically” in frequency space. Typically that excludes self-similar type convergence. Anisotropy
appears as an important qualitative feature in the analysis of the Navier-Stokes equations; it is also
shown that initial data which does not belong to G (hence which produces a solution blowing up in
finite time) cannot have a strong anisotropy in its frequency support.
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1. Introduction and statement of results

1.1. Setting of the problem

We are interested in the three dimensional, incompressible Navier-Stokes equations
8

>

<

>

:

@tu+ u ·ru��u = �rp in R+ ⇥ R3

div u = 0

u|t=0 = u0 ,

where u(t, x) and p(t, x) are respectively the velocity and the pressure of the fluid at time t � 0 and
position x 2 R3. We recall that the pressure may be eliminated by projection onto divergence free
vector fields, hence we shall consider the following version of the equations:

(NS)
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:

@tu+ P(u ·ru)��u = 0 in R+ ⇥ R3

div u = 0

u|t=0 = u0 ,

where P := Id�r��1div.

Note also that the Navier-Stokes system may be written as
8
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:

@tu+ div(u⌦ u)��u = �rp in R+ ⇥ R3

div u = 0

u|t=0 = u0 ,

where div(u⌦u)j =
d
X

k=1

@k(u
juk) = div(uju). The advantage of this weak formulation is that it makes

sense for singular vector fields and allows to consider weak solutions. The question of the existence of

global, smooth (and unique) solutions is a long-standing open problem, and we shall only recall here a
few of the many results on this question. We refer for instance to [3] or [45] and the references therein,
for a precise definition of weak solutions and recent surveys on the subject. An important point in the
study of (NS) is its scale invariance: if u is a solution of (NS) on R+⇥Rd associated with the data u0,
then for any � > 0, u�(t, x) := �u(�2t,�x) is a solution on R+ ⇥ Rd, associated with the data

u0,�(x) := �u0(�x) . (1.1)

? The second author was partially supported by the A.N.R grant ANR-08-BLAN-0301-01 ”Mathocéan”, and
the Institut Universitaire de France.
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In two space dimensions, L2(R2) is scale invariant, while in three space dimensions that is the case

for L3(R3), the (smaller) Sobolev space Ḣ
1
2 (R3), or the Besov spaces Ḃ

�1+ 3
p

p,q (R3), with 1  p  1
and 0 < q  1. We refer to Appendix B for all necessary definitions and properties of those spaces.
Note that anisotropic spaces such as L2(R2; Ḣ

1
2 (R)) can also be scale invariant under (1.1), but also

more generally under the anisotropic scaling

f�,µ(x) := �f(�x1,�x2, µx3) , 8�, µ > 0 . (1.2)

Of course (NS) is not invariant through that transformation if � 6= µ.

It is well-known that (NS) is globally wellposed if the initial data is small in Ḃ
�1+ 3

p

p,1 as long as p < 1
(see the successive results by [46], [24], [38], [12] and [52]). Let us emphasize that in all those results,
the global solution lies in C(R+;X) when the Cauchy data belongs to the Banach space X. We note
that the proof of uniqueness may require the use of more refined spaces. In [42], H. Koch and D.
Tataru obtained a unique (in a space we shall not detail here) global in time solution for data small
enough in the larger space BMO�1, consisting of vector fields whose components are derivatives of
BMO functions.

The smallness assumption is not necessary in order to obtain global solutions to (NS), as pointed out
for instance in [13]-[15]. We also recall that in two space dimensions, (NS) is globally wellposed as
soon as the initial data belongs to L2(R2), with no restriction on its size (see [47]); this is due to the
fact that the L2(Rd) norm is controlled a priori globally in time. This estimate also allowed J. Leray
in [46] to prove the existence of global in time weak solutions in two and three dimensions. J. Leray’s
result extends to any dimension, as shown in [18] for instance.

In this article we are interested in the structure of the set G of initial data giving rise to a unique,
global solution to the Navier-Stokes equations. More precisely our interest will be in the global nature
of the solution, as the uniqueness of the solution will not be an issue. The solutions will be obtained
via a fixed point procedure in an adequate function space. It is known that the set G contains small
balls in BMO�1 centered at the origin. But it is known to include many more classes of functions. We
recall that it was proved in [2] (see [27] for the setting of Besov spaces) that G is open for the strong
topology of BMO�1, provided one restricts the setting to the closure of Schwartz-class functions for
the BMO�1 norm. In this paper we address the same question for weak topology. More precisely
we wish to understand under what conditions a sequence of divergence free vector fields converging
in the sense of distributions to an initial data in G, will itself be in G (up to a finite number of terms
in the sequence).

Before going into more details let us discuss some examples. If a sequence converges not only weakly

but strongly in Ḃ
�1+ 3

p

p,1 , say, to an element of G then the result is known, see [27]. To give another
example, consider a sequence of divergence free vector fields u0,n, bounded in L3(R3), converging in
the sense of distributions to some vector field u0 in L3(R3) \ G. If (1 + | · |)1+"u0,n is bounded in L1

for some " > 0, then it is easy to see that u0,n generates a global unique solution to (NS) for n
large enough. This can be seen using the “stability of singular points” of [37,53], or more directly

using the fact that such a sequence is actually compact1 in Ḃ
�1+ 3

p

p,1 for p > 3 and applying the strong
stability result [27]. This example shows that in some cases, the weak convergence assumption implies
the strong convergence in spaces where stability results are available. Here we consider a situation
where such a reduction does not occur. One way to achieve this is considering sequences bounded in
a scale-invariant space only, with no additional bound in a non-scale-invariant space. However in that
case clearly some restrictions have to be imposed to hope to prove such a weak openness result; indeed
consider for instance the sequence

�n(x) := 2n�(2nx) , n 2 N , (1.3)

1 This fact can readily be seen by applying a profile decomposition technique and eliminating all profiles
except for the weak limit, thanks to the additional bounds satisfied by the sequence.
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where � is any smooth, divergence free vector field. This sequence converges to zero in the sense of
distributions as n goes to infinity, and zero belongs to G. If one could infer, by weak stability, that �n

gives rise to a global unique solution for large enough n, then so would � by scale invariance and that
would solve the problem of global regularity for the Navier-Stokes equations. Note that the same can
be said of the sequence

e�n(x) := �(x� xn) , |xn| ! 1 . (1.4)

Since the global regularity problem seems out of reach, we choose here to add assumptions on the
spectral structure of the sequences converging weakly to an element of G, which in particular forbid
sequences such as �n or e�n which in a way are “too isotropic”.

Actually one has the following interesting and rather easy result, which highlights the role anisotropy
can play in the study of the Navier-Stokes equations. This result shows that initial data generating a
solution blowing up in finite time cannot be too anisotropic in frequency space, meaning that the set of
its horizontal and vertical frequency sizes cannot be too separated; the threshold depends only on the
norm of the initial data. The result is proved in Appendix B; its proof relies on elementary inequalities
on the Littlewood-Paley decomposition, which are all recalled in that appendix. The notation �h

k�
v
j

appearing in the statement stands for horizontal and vertical Littlewood-Paley truncations at scale 2k

and 2j respectively, and is also introduced in Appendix B. The space Ḃ
1
2
2,1(R

3) is a scale invariant

space, slightly smaller than Ḣ
1
2 (R3).

Theorem 1 Let ⇢ > 0 be given. There is a constant N0 2 N such that any divergence free vector

field u0 of norm ⇢ in Ḃ
1
2
2,1(R

3) satisfying u0 =
X

|j�k|�N0

�h
k�

v
ju0 gives rise to a global, unique solution

to (NS) in C(R+;L3(R3)).

Let us now define the function spaces we shall be working with. As explained above we want to work
in anisotropic spaces, invariant through the scaling (1.2). For technical reasons we shall assume quite
a lot of smoothness on the sequence of initial data: we choose the sequence bounded in essentially the
smallest anisotropic Besov space Ḃs,s0

p,q invariant through (1.2). It is likely that this smoothness could
be relaxed somewhat, but perhaps not with the method we follow. We shall point out as we go along
where those restrictions appear, see in particular Remark 47 page 19.

Definition 11 We define, for 0 < q  1, the space B1
q by the (quasi)-norm

kfkB1
q

:=
⇣

X

j,k2Z
2(j+k)qk�h

k�
v
jfk

q
L1(R3)

⌘

1
q

, (1.5)

where �h
k and �v

j are horizontal and vertical frequency localization operators (see Appendix B).

This corresponds to the space Ḃ1,1
1,q defined in Appendix B, where the reader will also find its properties

used in this text. More generally we define in Appendix B

kfkḂs,r

p,q

:=
⇣

X

j,k2Z
2(rj+sk)qk�h

k�
v
jfk

q
Lp(R3)

⌘

1
q

.

The norm (1.5) is equivalent to the norm (B.3) which is clearly invariant by the scaling (1.2), and is

slightly larger (if q  1) than the more classical Ḃ
0, 12
2,1 norm (for the role of Ḃ

0, 12
2,1 in the study of the

Navier-Stokes equations see for instance [17],[51]). Moreover the space B1
q is anisotropic by essence,

which as pointed out above, will be an important feature of our analysis.

It is proved in Appendix A that any initial data small enough in B1
1 generates a unique, global solution

to (NS) in the space S1,1 :=gL1(R+;B1
1)\L1(R+; Ḃ3,1

1,1 \ Ḃ1,3
1,1), and if the data is not small then there

is a unique solution in the local space

S1,1(T ) := gL1
loc([0, T );B

1
1) \ L1

loc((0, T ); Ḃ
3,1
1,1 \ Ḃ1,3

1,1)
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for some T > 0.

We provide also in Appendix A a strong stability result in B1
1, whose proof follows a classical proce-

dure, and the main goal of this text is to prove a stability result in the weak topology for data in B1
q

for 0 < q < 1.

Now let us define our notion of an anisotropically oscillating sequence. We shall need another more
technical assumption later, which is stated in Section 2 (see Assumption 2 page 10).

Assumption 1 Let 0 < q  1 be given. We say that a sequence (fn)n2N, bounded in B1
q , is

anisotropically oscillating if the following property holds. There exists p � 2 such that for all
sequences (kn, jn) in ZN ⇥ ZN,

lim inf
n!1

2kn

(�1+ 2
p

)+ j

n

p k�h
k
n

�v
j
n

fnkLp(R3) = C > 0 =) lim
n!1

|jn � kn| = 1 . (1.6)

Remark 12 It is easy to see (see Appendix B) that any function f in B1
q belongs also to Ḃ

�1+ 2
p

, 1
p

p,1
for any p � 1 hence

f 2 B1
q =) sup

(k,j)2Z2

2k(�1+ 2
p

)+ j

p k�h
k�

v
jfkLp < 1 .

The left-hand side of (1.6) indicates which ranges of frequencies are predominant in the sequence (fn):

if lim sup
n!1

2kn

(�1+ 2
p

)+ j

n

p k�h
k
n

�v
j
n

fnkLp is zero for a couple of frequencies (2kn , 2jn), then the se-

quence (fn)n2N is “unrelated” to those frequencies, with the vocabulary of [31] (see also Lemma 52 in
this paper). The right–hand side of (1.6) is then an anisotropy property. Indeed one sees easily that
a sequence such as (�n)n2N defined in (1.3) is precisely not anisotropically oscillating: for the left-hand
side of (1.6) to hold for �n one would need jn ⇠ kn ⇠ n, which is precisely not the condition required
on the right-hand side of (1.6). A typical sequence satisfying Assumption 1 is rather (for a 2 R3)

fn(x) := 2↵nf
�

2↵n(x1 � a1), 2
↵n(x2 � a2), 2

�n(x3 � a3)
�

, (↵,�) 2 R2, ↵ 6= �

with f smooth. One of the results of this paper states that any sequence satisfying Assumption 1 may
be written as the superposition of such sequences, up to a small remainder term (see Proposition 24
page 8).

1.2. Main results

We prove in this article that G is open for weak topology, provided the weakly converging sequence is
of the type described in Assumption 1.

Theorem 2 Let q 2]0, 1[ be given and let (u0,n)n2N be a sequence of divergence free vector fields
bounded in B1

q , converging towards u0 2 B1
q in the sense of distributions, and assume that u0 generates

a unique solution in S1,1(1). If u0�(u0,n)n2N is anisotropically oscillating and satisfies Assumption 2
page 10, then for n large enough, u0,n generates a unique, global solution to (NS) in S1,1(1).

Remark 13 Theorem 2 may be generalized by adding two more sequences to u0,n, where in each
additional sequence the “privileged” direction is not x3 but x1 or x2. It is clear from the proof that
the same result holds, but we choose not to present the proof of that more general result due to its
technical cost. Actually a more interesting generalization would consist in considering more geometrical
assumptions, but that requires more work and ideas, and will not be addressed here.

Remark 14 Assumption 2 is stated page 10, along with some comments (see in particular Re-
marks 28, 29 and 210). Its statement requires the introduction of the profile decomposition of the
sequence of initial data and it requires that some of the profiles vanish at zero.
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Remark 15 Theorem 2 generalizes the result of [15], where it is shown that the initial data

u0(x) +
J
X

j=1

(v1(j)0 + "jw
1(j)
0 , v

2(j)
0 + "jw

2(j)
0 , w

3(j)
0 )(x1, x2, "jx3)

generates a global solution if u0 belongs to Ḣ
1
2 (R3)\G, if the profiles (v1(j)0 , v

2(j)
0 , 0) and w

(j)
0 are diver-

gence free and in L2(Rx3 ; Ḣ
�1(R2)), as well as all their derivatives, if "1, . . . "J > 0 are small enough,

and finally under the assumption that v
1(j)
0 (x1, x2, 0) ⌘ v

2(j)
0 (x1, x2, 0) ⌘ 0 and w

3(j)
0 (x1, x2, 0) ⌘ 0.

Those last requirements are analogous to Assumption 2. Note that even in the case when u0 ⌘ 0, such

initial data cannot be dealt with simply using Theorem 1 since it is not bounded in Ḃ
1
2
2,1. Note also

that as in [15], the special structure of (NS) is used in the proof of Theorem 2.

Remark 16 Notice that it is not assumed that the global solution associated with u0 satisfies uniform,
global in time integral bounds. Similarly to [2] and [27] such bounds may be derived a posteriori from
the fact that the solution is global: see Appendix A, Corollary 3.

Remark 17 One can see from the proof of Theorem 2 that the solution un(t) associated with u0,n

converges for all times, in the sense of distributions to the solution associated with u0. In this sense
the Navier-Stokes equations are stable by weak convergence.

The proof of Theorem 2 enables us to infer easily the following results. The first corollary generalizes
the statement of Theorem 2 to the case when u0 /2 G.

Corollary 1 Let (u0,n)n2N be a sequence of divergence free vector fields bounded in the space B1
q for

some 0 < q < 1, converging towards some u0 2 B1
q in the sense of distributions, with u0 � (u0,n)n2N

anisotropically oscillating and satisfying Assumption 2. Let u be the solution to the Navier-Stokes
equations associated with u0 and assume that the life span of u is T ⇤ < 1. Then for all T < T ⇤, there
is a subsequence such that the life span of the solution associated with u0,n is at least T .

The second corollary deals with the case when the sequence belongs to G, with an a priori boundedness
assumption on the solution (which could actually be generalized but we choose not to complicate things
too much at this stage; see Appendix B for definitions), and infers that the weak limit also belongs
to G.

Corollary 2 Assume (u0
n)n2N is a sequence of initial data, such that the associate solution un is

uniformly bounded in fL2
�

R+; Ḃ
2
3 ,

1
3

3,1

�

. If u0
n converges in the sense of distributions to some u0, with u0�

(u0,n)n2N anisotropically oscillating and satisfying Assumption 2, then u0 gives rise to a unique, global
solution in S3,1(1).

1.3. Notation

For all points x = (x1, x2, x3) in R3 and all vector fields v = (v1, v2, v3), we shall denote by

xh := (x1, x2) and vh := (v1, v2)

their horizontal parts. We shall also define horizontal di↵erentiation operatorsrh := (@1, @2) and divh :=
rh·, as well as �h := @21 + @22 .

We shall also use the shorthand notation for function spaces X (defined on R2) and Y (defined on R):
XhYv := X(R2;Y (R)).
Finally we shall denote by C a constant which does not depend on the various parameters appearing in
this paper, and which may change from line to line. We shall also denote sometimes x  Cy by x . y.
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1.4. General scheme of the proof and organization of the paper

The main arguments leading to Theorem 2 are the following: by a profile decomposition argument,
the sequence of initial data is decomposed into the sum of the weak limit u0 and a sequence of
“orthogonal” profiles, up to a small remainder term. Under Assumptions 1 and 2 and using scaling
arguments it is proved that each individual profile belongs to G; this step relies crucially on the results
of [14] and [15]. The mutual orthogonality of each term in the decomposition of the initial data implies
finally that the sum of the solutions associated to each profile is itself an approximate solution to (NS),
globally in time, which concludes the proof.

The paper is organized in the following way:

– In Section 2 we provide an “anisotropic profile decomposition” of the sequence of initial data,
based on a general result, Theorem 3 stated and proved in Section 5 page 25. This enables us to
replace the sequence of initial data, up to an arbitrarily small remainder term, by a finite (but
large) sum of profiles.

– Section 3 is then devoted to the construction of an approximate solution by propagating globally
in time each individual profile of the decomposition. The propagation is through either the Navier-
Stokes flow or transport-di↵usion equations.

– In Section 4 we prove that the construction of the previous step does provide an approximate
solution to the Navier-Stokes equations, thus completing the proof of Theorem 2, while Corollaries 1
and 2 are proved at the end of Section 4. That section is the most technical part of the proof,
as one must check that the nonlinear interactions of all the functions constructed in the previous
step are negligible. It also relies on results proved in Appendix A, on the global regularity for
the Navier-Stokes equation (and perturbed versions of that equation) for small data and forces in
anisotropic Besov spaces.

– Finally in Appendix B we collect useful results on isotropic and anisotropic spaces which are used
in this text, and we prove Theorem 1.

2. Profile decomposition of the initial data

In this section we consider a sequence of initial data as given in Theorem 2, and write down an
anisotropic profile decomposition for that sequence. We shall constantly be using the following scaling
operators.

Definition 21 For any two sequences " = ("n)n2N and � = (�n)n2N of positive real numbers and any
sequence x = (xn)n2N in R3 we define the scaling operator

⇤n
",�,x�(x) :=

1

"n
�

✓

xh � xn,h

"n
,
x3 � xn,3

�n

◆

.

Remark 22 The operator ⇤n
",�,x is an isometry in the space Ḃ

�1+ 2
p

, 1
p

p,q for any 1  p  1 and 0 <
q  1.

Then we define the notion of orthogonal cores/scales as follows (see also Section 5).

Definition 23 We say that two triplets of sequences ("`,�`,x`) for ` 2 {1, 2}, where ("`,�`) are two
sequences of positive real numbers and x

` are sequences in R3, are orthogonal if

either
"1n
"2n

+
"2n
"1n

+
�1n
�2n

+
�2n
�1n

! 1 , n ! 1

or ("1n, �
1
n) = ("2n, �

2
n) and |(x1

n)
"1,�1

� (x2
n)

"1,�1

| ! 1 , n ! 1 ,

where we have denoted (x`)"
k,�k

:=
�

x

`

h

"

k

,
x

`

3

�

k

�

.
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Note that up to extracting a subsequence, any sequence of positive real numbers can be assumed to
converge either to 0, to 1, or to a constant. In the rest of this paper, up to rescaling the profiles by a
fixed constant, we shall assume that if the limit of any one of the sequences "`,�`,⌘`, �` is a constant,
then it is one.

The main result of this section is the following.

Proposition 24 Under the assumptions of Theorem 2, the following holds. Let 2  p  1 be given
as in Assumption 1. For all integers ` there are two sets of orthogonal sequences in the sense of
Definition 23, ("`,�`,x`) and (⌘`, �`, x̃`) and for all ↵ 2 (0, 1) there are arbitrarily smooth divergence
free vector fields (�̃h,`

↵ , 0) and (�rh�
�1
h @3�

`
↵,�

`
↵) such that up to extracting a subsequence, one can

write

u0,n = u0 +
L̃
X

`=1

⇤n
⌘

`,�`,x̃`

⇣

�̃h,`
↵ + r̃h,`↵ , 0

⌘

+
L
X

`=1

⇤n
"

`,�`,x`

✓

� "`n
�`n

rh�
�1
h @3(�

`
↵ + r`↵),�

`
↵ + r`↵

◆

+ ( ̃h,L̃
n �rh�

�1
h @3 

L
n , 

L
n ) , div r̃h,`↵ = 0 , kr̃h,`↵ kB1

q

+ kr`↵kB1
q

 ↵ ,

with  ̃h,L̃
n and  L

n independent of ↵ and uniformly bounded (in n and L) in B1
q , and

lim sup
n!1

⇣

k ̃h,L
n k

Ḃ
�1+ 2

p

,

1
p

p,1

+ k L
nk

Ḃ
�1+ 2

p

,

1
p

p,1

⌘

! 0 , L ! 1 . (2.1)

Moreover the following properties hold:

8` 2 N, lim
n!1

(�`n)
�1⌘`n 2 {0,1} , lim

n!1
(�`n)

�1"`n = 0 , (2.2)

as well as the following stability result:

X

`2N

�

k�̃h,`
↵ kB1

q

+ k�`
↵kB1

q

�

. sup
n

ku0,nkB1
q

+ ku0kB1
q

. (2.3)

Proof (Proof of Proposition 24). The proof is divided into two steps. First we decompose the
third component u3

0,n according to Theorem 3 in Section 5, and then we decompose the horizontal

component uh
0,n using both the first step and Theorem 3 again (for the divergence free part of uh

0,n).

Step 1. Decomposition of u3
0,n. Let us apply Theorem 3 of Section 5 (see page 25) to the se-

quence u3
0,n � u3

0. With the notation of Theorem 3, we define

"`n := 2�j1(�`

(n))

�`n := 2�j2(�`

(n))

x`
n,h := 2�j1(�`

(n))k1(�`(n))

x`
n,3 := 2�j2(�`

(n))k2(�`(n)) .

The orthogonality of the sequences ("`,�`,x`), as given in Definition 23, is a consequence of the
orthogonality property stated in Theorem 3 along with Remark 51. According to that theorem we can
write

u3
0,n � u3

0 =
L
X

`=1

⇤n
"

`,�`,x`'
` +  L

n , (2.4)

where due to (5.10) in Theorem 3,
X

`2N
k'`kB1

q

. sup
n

ku3
0,n � u3

0kB1
q

< 1 .

In particular  L
n is uniformly bounded (in n and L) in B1

q ⇢ Ḃ
�1+ 2

p

, 1
p

p,q , and Theorem 3 gives

lim sup
n!1

k L
nk

Ḃ
�1+ 2

p

,

1
p

p,p

! 0 , L ! 1 .
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The result (2.1) then follows by Hölder’s inequality for sequences. Note that we have used here the
fact that q < 1.

Using horizontal and vertical frequency truncations, given any ↵ > 0 we may further decompose '`

into
'` = �`

↵ + r`↵ , with �`
↵ arbitrarily smooth and kr`↵kB1

q

 ↵ , (2.5)

and we have, by this choice of regularization,

k�`
↵kB1

q

+ kr`↵kB1
q

 2k'`kB1
q

.

This implies (2.3) for �`
↵.

Now let us prove that
8` 2 N, lim

n!1
(�`n)

�1"`n = 0 .

Assumption 1 along with Lemma 52 page 28 imply that the limit of (�`n)
�1"`n belongs to {0,1}.

Moreover by the divergence free condition on u0,n we have divh uh
0,n = �@3u3

0,n and since uh
0,n is

bounded in B1
q we infer that @3u3

0,n is bounded in Ḃ0,1
1,q and @3u

3
0 also belongs to Ḃ0,1

1,q . This in turn,
due to Lemma 53, implies that

lim
n!1

(�`n)
�1"`n = 0 .

Step 2. Decomposition of uh
0,n. The divergence free assumption on the initial data enables us to

recover from the previous step a profile decomposition for uh
0,n. Indeed there is a two-dimensional,

divergence free vector field r?
hC0,n such that

uh
0,n = r?

hC0,n �rh�
�1
h @3u

3
0,n ,

where r?
h = (�@1, @2). Similarly there is some function ' such that

uh
0 = r?

h '�rh�
�1
h @3u

3
0 .

Furthermore as recalled in the previous step @3u
3
0,n is bounded in Ḃ0,1

1,q . This implies that the se-

quence r?
hC0,n is bounded in B1

q and arguing similarly for r?
h ', the profile decomposition of Section 5

may also be applied to r?
hC0,n(x)�r?

h ': we get

r?
hC0,n �r?

h ' =
L
X

`=1

⇤n
⌘

`,�`,x̃` �̃
h,` +  ̃h,L

n

with lim sup
n!1

k ̃L
nk

Ḃ
�1+ 2

p

,

1
p

p,p

! 0 as L ! 1 and divh �̃h,` = 0 thanks to Lemma 54. Finally ⌘`n/�
`
n ! 0

or 1 due to the anisotropy assumption as in the previous step. The rest of the construction is identical
to Step 1. The proposition is proved.

Before evolving in time the decomposition provided in Proposition 24 we notice that it may happen
that the cores and scales of concentration (⌘`, �`, x̃`) appearing in the decomposition of r?

hC0,n

coincide with (or more generally are non orthogonal to) those appearing in the decomposition of u3
0,n,

namely ("`,�`,x`). In that case the corresponding profiles should be evolved together in time. This
leads naturally to the next definition.

Definition 25 For each ` 2 N, we define (`) by the condition (with the notation of Definition 23)

lim
n!1

⇣

"

(`)

⌘

`

,
�

(`)

�

`

, (x(`) � x̃

`

)

"

(`)
,�

(`)
⌘

= (�1,�2, a) , �1,�2 > 0 , a 2 R3 . (2.6)

We also define for each L 2 N the set

K(L) :=
n

` 2 N / ` = (˜̀) , ˜̀2 {1, . . . , L}
o

.
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Remark 26 Note that for each ` there is at most one such (`) by orthogonality. Moreover up to
rescaling-translating the profiles we can assume that �1 = �2 = 1 and a = 0.

The decomposition of Proposition 24 can now be written, for any L 2 N in the following way. The
interest of the next formulation is that as we shall see, each profile is either small, or orthogonal to

all the others. In the next formula we decide, to simplify notation that the profile �(`)
↵ is equal to

zero if (2.6) does not hold. We also have changed slightly the remainder terms r`↵ and  L
n , without

altering their smallness properties (and keeping their notation for simplicity), due to the fact that in
Definition 25 the ratios converge to a fixed limit but are in fact not strictly equal to the limit. So we
write

u0,n = u0 +
L
X

`=1

⇤n
⌘

`,�`,x̃`

✓

�̃h,`
↵ + r̃h,`↵ � ⌘`n

�`n
rh�

�1
h @3(�

(`)
↵ + r(`)↵ ),�(`)

↵ + r(`)↵

◆

+
L
X

(`)=1
(`)2K(1)\K(L)

⇤n
⌘

`,�`,x̃`

✓

�̃h,`
↵ + r̃h,`↵ � ⌘`n

�`n
rh�

�1
h @3(�

(`)
↵ + r(`)↵ ),�(`)

↵ + r(`)↵

◆

+
L
X

`=1
`/2K(1)

⇤n
"

`,�`,x`

✓

� "`n
�`n

rh�
�1
h @3(�

`
↵ + r`↵),�

`
↵ + r`↵

◆

(2.7)

�
X

`>L

`2K(L)

⇤n
"

`,�`,x`

✓

� "`n
�`n

rh�
�1
h @3�

`,�`

◆

�
X

`>L

1(`)L

⇤n
⌘

`,�`,x̃`

�

�̃h,`
↵ + r̃h,`↵ , 0

�

+
�

 ̃h,L
n �rh�

�1
h @3 

L
n , 

L
n

�

.

Before moving on to the time evolution of (2.7), we are now in position to state the second assumption
entering in the statement of Theorem 2.

Assumption 2 With the notation of Proposition 24, there is L0 such that for every L � L0, the
following holds.

• Suppose there are two indexes `1 6= `2 in {1, . . . , L} such that the following properties are
satisfied:

⌘`1n = ⌘`2n , �`1n ! 1 , �`2n ! 1 or 1 with �`1n /�`2n ! 1 ,

and (x̃`1
n � x̃`2

n )⌘
`2
n

,�`2
n ! a`1,`2 2 R3 ,

x̃`2
n,3

�`2n
! ak3 2 R .

(2.8)

Then one has �̃h,`1(·, 0) := (�̃h,`1
↵ + r̃h,`1↵ )(·, 0) ⌘ 0.

• If u0 6⌘ 0 and if there are `1 6= `2 2 {1, . . . , L} such that for i 2 {1, 2}, ⌘`in = 1 with �`in ! 1
while x̃`

i

n,h is bounded and x̃`
i

n,3/�
`
i

n ! ã`i3 2 R, then �̃h,`
i(·,�ã`i3 ) ⌘ 0 for each i 2 {1, 2}.

• A similar result holds for the profiles �` := �̃h,`
↵ + rh,`↵ , with the corresponding assumptions on

the scales and cores.

Proposition 27 With the notation of Proposition 24 assume the following:
• If `1 6= `2 in {1, . . . , L} are two indexes satisfying (2.8), then a weak limit of the sequence ⌘`2n (uh

0,n�
uh
0 �  ̃h,L

n +rh�
�1
h @3 

L
n )(⌘

`2
n yh + x̃`2

n,h, �
`2
n y3 + x̃`2

n,3) is �̃
h,`2(y).

• A similar result holds for "`2n (u3
0,n � u3

0 �  ̃3,L̃
n �  L

n )("
`2
n yh + x`2

n,h, �
`2
n y3 + x`2

n,3), with the
corresponding assumptions on the scales and cores.

Then Assumption 2 holds.

Proof (Proof of Proposition 27).
• We shall start by proving the result for a couple `1 6= `2 chosen in {1, . . . , L} so that �`1n is the

largest vertical scale among the vertical scales associated with all couples satisfying (2.8).
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We begin by noticing that the limit (after extraction) of
x̃`1
n,3

�`1n
is necessarily zero since

x̃`1
n,3

�`1n
=

 

x̃`1
n,3 � x̃`2

n,3

�`2n
+

x̃`2
n,3

�`2n

!

�`2n
�`1n

! 0 . (2.9)

Without loss of generality we may also assume that for the index `1 we have chosen, �`2n is the
largest vertical scale satisfying (2.8). By the hypothesis of Proposition 27 we know that the weak limit

of ⌘`2n
�

uh
0,n �uh

0 �  ̃h,L̃
n +rh�

�1
h @3 

L
n

�

(⌘`2n yh + x̃`2
n,h, �

`2
n y3 + x̃`2

n,3) is �̃
h,`2(y). This weak limit may be

explicitly computed: noticing that for any integer k,

⌘`2n
�

⇤n
⌘

k,�k,x̃k �̃
h,k
�

(⌘`2n yh + x̃`2
n,h, �

`2
n y3 + x̃`2

n,3) = ⇤n
⌘k

⌘`2
, �k

�`2
,x̃k,`2

�̃h,k(y),

with x̃k,`2
n := (x̃k

n � x̃`2
n )⌘

`2
n

,�`2
n , we find that the weak limit of such a term is zero except in three

situations : if k = `2, if k = `1, or if

⌘kn = ⌘`2n , �kn/�
`2
n ! 1 , (x̃k

n � x̃`2
n )⌘

k

n

,�k
n ! ak,`2 2 R3 . (2.10)

If k = `2, then the function is simply equal to �̃h,`2(y), and if k = `1 then by (2.8) the weak limit
is equal to �̃h,`1(yh + a`1,`2h , 0). Finally if (2.10) were to hold then in particular k would satisfy the
same properties as `2 in the statement of the proposition, while �kn/�

`2
n ! 1, and that is impossible

by choice of `2 as corresponding to the largest vertical scale satisfying (2.8).

So finally the weak limit of ⌘`2n
�

uh
0,n�uh

0 �  ̃h,L̃
n +rh�

�1
h @3 

L
n

�

(⌘`2n yh+ x̃`2
n,h, �

`2
n y3+ x̃`2

n,3) is �̃
h,`2(y)+

�̃`1(yh + a`1,`2h , 0), hence necessarily by the assumptions of Proposition 27, we have that �̃h,`1(yh +

a`1,`2h , 0) ⌘ 0 so the result is proved in the case of the largest possible vertical scale.

Now we can argue by induction for the other possible `1’s: suppose that `1 corresponds to the second
largest for instance, then calling �`0n the largest one, the same argument implies that the weak limit of

the sequence ⌘`2n
�

uh
0,n � uh

0 �  ̃h,L̃
n +rh�

�1
h @3 

L
n

�

(⌘`2n yh + x̃`2
n,h, �

`2
n y3 + x̃`2

n,3) is the function �̃`2(y) +

�̃h,`1(yh + a`1,`2h , 0) + �̃h,`0(yh + a`0,`2h , 0) = �̃`2(y) + �̃h,`1(yh + a`1,`2h , 0) hence �̃`1(yh + a`1,`2h , 0) ⌘ 0
and by induction, the result is proved.

• The proof of the second point is very similar: we first consider `1 corresponding to the largest
vertical scale among the indexes satsfying ⌘`n = 1, �`n ! 1, x̃`

n,h ! ã`h bounded and x̃`
n,3/�

`
n !

ã`3 2 R. If there is no other index satisfying those requirements then we notice that the weak limit

of uh
0,n�uh

0 �  ̃h,L̃
n +rh�

�1
h @3 

L
n is �̃`(yh� ã`h,�ã`3), while we also know that it is zero, so the result

follows. If there is a second index satisfying those requirements, then we consider �`2n the next largest
vertical scale (by orthogonality it cannot be equal to �`1n ) and we use the assumption of Proposition 27,

which implies that the weak limit of the sequence (uh
0,n�uh

0� ̃h,L̃
n +rh�

�1
h @3 

L
n (yh+x̃`2

n,h, �
`2
n y3+x̃`2

n,3)

is the function �̃h,`2(y) while a direct computation gives the limit �̃h,`2(y)+ �̃h,`1(yh � ã`1h + ã`2h ,�ã`3)
and again we get the result.
The rest of the argument is as above, by induction on the size of the vertical scales.

• The proof is identical for the profiles �`.

Proposition 27 is proved.

Remark 28 Assuming the hypotheses of Proposition 27 is actually quite natural. Indeed for any
choice of sequences of cores (x`

n,h)n2N and of scales (⌘`n)n2N, one has that the sequence ⌘`n(u
h
0,n �

uh
0 �  ̃h,L̃

n +rh�
�1
h @3 

L
n )(⌘

`
nyh + x`

n,h, �
`
ny3 + xn,3) converges in S 0, and it is assumed here that the

weak limit is precisely the profile �̃h,`. Note that for a profile decomposition in the space Ḃs,s0

p,q that is
obvious as soon as s < 2/p and s0 < 1/p. Here we have s0 = 1/p so this is a true assumption (in the
same way as the sequence f(xh, "x3) does not necessarily converge weakly to zero with ").

For example the sequence provided in Remark 12 satisfies Assumption 2 since there is only one profile
involved.
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More generally consider the sequence (assuming that 0 6= ↵ 6= �, and �1,�2 6= ↵,�1 6= �)

2↵n
⇣

f1
�

2↵nx1, 2
↵nx2, 2

�1nx3 � a3
�

+ f2
�

2↵nx1, 2
↵nx2, 2

�2nx3

�

⌘

+ 2�nf3
�

2�nx1, 2
�nx2, 2

�1nx3

�

.

It clearly satisfies Assumption 1. If �2 = �1 then Assumption 2 is also satisfied. If �1 < �2 < 0
then one must have f1(·,�a3) ⌘ 0 to ensure Assumption 2: if there are two profiles with the same
horizontal scale (here 2�↵n) and di↵erent vertical scales going both to infinity (since �2 6= �1 and
both are negative), then the profile with the largest vertical scale (here f1

�

2↵nx1, 2↵nx2, 2�1nx3 � a3
�

since �1 < �2), must vanish at x3 = 0.

Remark 29 If it is assumed that the initial data is bounded also in L2(R3), then the same arguments
as those leading to Lemma 53 allow to infer that the vertical scales �`n and �`n must all go to zero. In
particular Assumption 2 is unnecessary in that case since the hypotheses are never met.

Remark 210 Assumption 2 is used in the following to show that profiles do not interact one with
another (see Paragraph 4.3).

3. Time evolution of each profile, construction of an approximate solution

In this section we shall construct an approximate solution to the Navier-Stokes equations by
evolving in time each individual profile provided in Proposition 24 – or rather the version written
in (2.7) – either by the Navier-Stokes flow or by a linear transport-di↵usion equation, depending on
the profiles. First we shall be needing a time-dependent version of the scaling operator ⇤n

",�,x given
in Definition 21.

Definition 31 For any two sequences " = ("n)n2N and � = (�n)n2N of positive real numbers and any
sequence x = (xn)n2N in R3 we define the scaling operator

e⇤n
",�,x�(t, x) :=

1

"n
�

✓

t

"2n
,
xh � xn,h

"n
,
x3 � xn,3

�n

◆

.

Next let us introduce some notation for function spaces naturally associated with the resolution of
the Navier-Stokes equations. We refer to Appendix B for definitions.

Definition 32 We define the following function spaces, for 1  p  1 and 0 < q  1:

Ip,q :=
1
\

r=1

fLr
�

R+; Ḃ
�1+ 3

p

+ 2
r

p,q (R3)
�

,

Ap,q :=
1
\

r=1

fLr(R+; Ḃ
�1+ 2

p

+ 2
r

, 1
p

p,q ) ,

Sp,q :=gL1(R+; Ḃ
�1+ 2

p

, 1
p

p,q ) \fL1(R+; Ḃ
1+ 2

p

, 1
p

p,q \ Ḃ
�1+ 2

p

,2+ 1
p

p,q ) .

Remark 33 The spaces defined above are natural spaces for the resolution of the Navier-Stokes

equations: for instance Ip,1 is associated with small data in Ḃ
�1+ 3

p

p,1 (R3) (see [12],[52], as well as [3])

and Sp,1 with small data in Ḃ
�1+ 2

p

, 1
p

p,1 (see Appendix A). Note that Ap,q contains strictly Sp,q and Ap1,q

is embedded in Ap2,q as soon as p1  p2, and similarly for Sp1,q and Sp2,q.

Remark 34 The operator e⇤n
",�,x is an isometry in Ap,q for all 1  p  1 and 0 < q  1. That is

however not the case for the space Sp,q.

Now let us consider the decomposition (2.7), and evolve each term in time so as to construct by
superposition an approximate solution to the Navier-Stokes equations with data u0,n. We leave to
Section 4 the proof that the superposition is indeed an approximate solution to (NS).
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• The first term of the decomposition (2.7) is the weak limit u0 2 B1
q , which gives rise to a unique,

global solution by assumption: we define u 2 S1,1(1) the associate global solution. Due to Corollary 3
stated page 33, we know that actually u belongs to S1,1.

• Let us turn to the profiles in the decomposition (2.7), namely first the terms

'̃`
0,n := ⇤n

⌘

`,�`,x̃`

✓

�̃h,`
↵ � ⌘`n

�`n
(rh�

�1
h @3�

(`)
↵ ),�(`)

↵

◆

for any ` 2 N. We use the notation of Appendix A, and in particular that of Theorem 4.

Lemma 35 Let ` 2 N. There is L̃0, independent of n and ↵, such that the following properties hold.

• If ` � L̃0 and (`) � L̃0, then for all ↵ 2 (0, 1) and n large enough, '̃`
0,n belongs to G and the

associate solution ũ`
n to (NS) satisfies

8` � L̃0 s.t. (`) � L̃0 , kũ`
nkS3,1  2

�

k�̃h,`
↵ k

Ḃ
� 1

3
,

1
3

3,1

+ k�(`)
↵ k

Ḃ
� 1

3
,

1
3

3,1

�

 2c0 . (3.1)

• For every ` 2 N, if ⌘`n/�`n converges to 1 when n goes to infinity, then for all ↵ 2 (0, 1) and for n

large enough '̃`
0,n belongs to G: the associate solution ũ`

n to (NS) is bounded in S3,1 and satisfies for

all 1  r  1 and all
1

3
 �  1

3
+

2

r

ũ`
n ! 0 in fLr(R+; Ḃ

� 1
3+�, 2

r

��+ 1
3

3,1 ) , n ! 1 . (3.2)

• For every ` 2 N, if ⌘`n/�`n converges to 0 when n goes to infinity, then for all ↵ 2 (0, 1) and for n
large enough '̃`

0,n belongs to G: the associate solution ũ`
n to (NS) is uniformly bounded in the space S1,1

and satisfies for all ↵ 2 (0, 1)

ũ`
n = e⇤n

⌘

`,�`,x̃`

✓

Ũh,` +
⌘`n
�`n

U(`),h
n , U(`),3

n

◆

+ R̃`
n , R̃`

n bounded in S3,1

with R̃`
n ! 0 in fL2(R+; Ḃ

2
3 ,

1
3

3,1 ) \ L1(R+; Ḃ
5
3 ,

1
3

3,1 \ Ḃ
2
3 ,

4
3

3,1 ) , n ! 1 ,

(3.3)

while Ũh,`, U
(`),3
n and

⌘`n
�`n

U(`),h
n are smooth and bounded in S1,1.

Finally if �̃h,`(·, z3) ⌘ �(`)(·, z3) ⌘ 0 for some z3 2 R, then for all s � 0,

lim sup
n!1

�

�Ũh,`(·, z3) + U(`),3
n (·, z3)

�

�

L1(R+;Hs(R2))\L2(R+;Ḣs+1(R2))
. ↵ . (3.4)

Proof (Proof of Lemma 35). • By the stability property (2.3), for all � > 0 there is L̃(�) such
that if ` � L̃(�) and (`) � L̃(�), then

k�̃h,`
↵ kB1

q

+ k�(`)
↵ kB1

q

 � .

Then if � is small enough, in particular �̃h,`
↵ is smaller than, say c0/2 in Ḃ

� 1
3 ,

1
3

3,1 (by Sobolev embed-
dings).

Now let ↵ > 0 be given and let us consider the initial data (�⌘`n
�`n

rh�
�1
h @3�

(`)
↵ ,�(`)

↵ ). Notice that

the only possible limit for the ratio of scales associated with �(`)
↵ is zero by Proposition 24, so we can

restrict our attention here to the case when ⌘`n/�
`
n ! 0. By construction of �(`)

↵ in (2.5), the vector

field rh�
�1
h @3�

(`)
↵ belongs to B1

q for each given ↵, hence since ⌘`n/�
`
n converges to 0 when n goes to

infinity, then for n large enough and for (`) � L̃(�)

�

�

�

� ⌘`n
�`n

(rh�
�1
h @3�

(`)
↵ ),�(`)

↵

�

�

�

B1
q

 2� .
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Finally choosing �  c0/4, for ` � L̃(�), (`) � L̃(�) and n large enough (depending on ` and ↵)
Theorem 4 applies (using also Remark 22) to yield that '̃`

0,n belongs to G and (3.1) holds.

• If ⌘`n/�
`
n converges to 1, then we observe that �(`)

↵ ⌘ 0 (since as recalled above the only possible

limit for the ratio of scales associated with �(`)
↵ is zero) and we have by a direct computation

�

�

�

⇤n
⌘

`,�`,x̃`

⇣

�̃h,`
↵ , 0

⌘

�

�

�

Ḃ0
3,1

.
✓

�`n
⌘`n

◆

1
3

.

In particular for n large enough the data is small in Ḃ0
3,1 so small data theory of [38] and [52] (see

also [3]) gives the result: there is a global solution to (NS) associated with that initial data, which

goes to zero (like (�`n/⌘
`
n)

1
3 ) in gL1(R+; Ḃ0

3,1) \fL1(R+; Ḃ2
3,1). By Proposition B3 and interpolation, it

therefore goes to zero in fLr(R+; Ḃ
� 1

3+�, 2
r

��+ 1
3

3,1 ) for all 1  r  1 and all � 2 [
1

3
,
1

3
+

2

r
], as expected.

In particular eu`
n is bounded in fL2(R+; Ḃ

2
3 ,

1
3

3,1 ) which controls the Navier-Stokes equation for data

in Ḃ
� 1

3 ,
1
3

3,1 (see Theorem 4), so we get in particular that eu`
n is bounded in S3,1.

• Conversely let us suppose that ⌘`n/�
`
n converges to 0. Then by (isotropic) scale and translation

invariance of (NS) we can first rescale by ⌘`n and translate by ex`
n, hence consider the initial data

e�`
0,n(x) := ⇤n

1, �
`

⌘` ,0

✓

�̃h,`
↵ � ⌘`n

�`n
(rh�

�1
h @3�

(`)
↵ ),�(`)

↵

◆

(x)

=

✓

�̃h,`
↵ � ⌘`n

�`n
(rh�

�1
h @3�

(`)
↵ ),�(`)

↵

◆

(xh,
⌘`n
�`n

x3) .

Since ⌘`n/�
`
n ! 0 as n goes to infinity, we can rely on Theorem 3 in [14] which states that as soon

as ⌘`n/�
`
n is small enough (depending on norms of the profiles �̃h,`

↵ ,�
(`)
↵ ), then e�`

0,n belongs to G and

according to [14] the solution to (NS) associated with e�`
0,n is of the form

�

Ũh,` +
⌘`n
�`n

U(`),h
n , U(`),3

n

�

(t, xh,
⌘`n
�`n

x3) + r̃`n(t, x)

where for each z3 2 R, Ũh,`(·, z3) is the global solution to the two-dimensional Navier-Stokes equations

with data �̃h,`
↵ (·, z3), while U

(`)
n is a divergence-free vector field solving the linear transport-di↵usion

equation (T "
v ) of [14] with v = Ũh,` and " = ⌘`n/�

`
n, with data

�

�rh�
�1
h @3�

(`)
↵ ,�(`)

↵

�

: we have, for

some pressure p
(`)
n

@tU
(`)
n + Ũh,` ·rhU(`)

n ��hU
(`)
n �

✓

⌘`n
�`n

◆2

@23U
(`)
n = �

✓

rh,
⇣⌘`n
�`n

⌘2
@3

◆

p(`)n .

Both Ũh,` and U
(`)
n are as smooth as needed.

In particular relying on [14] Proposition 3.2, and [32] (where estimates in the – more di�cult –

inhomogeneous situation are obtained), we have that Ũh,`, U(`),3
n and

⌘`n
�`n

U(`),h
n are bounded in S2,1.

It is not di�cult to prove also (for instance using the estimates of Appendix A) that they are bounded
in S1,1.

Furthermore er`n goes to zero in I2,1 by [14] (actually the result of [14] only states the convergence

to zero in L1(R+; Ḣ
1
2 ) \ L2(R+; Ḣ

3
2 ) but it is clear from the proof that it can be extended all the

way to I2,1). It then su�ces to unscale to the original data to find the form (3.3), with eR`
n going to

zero in I2,1. We infer in particular by Proposition B3 and Sobolev embeddings that eR`
n goes to zero

in fL2(R+; Ḃ
2
3 ,

1
3

3,1 ) \ L1(R+; Ḃ
5
3 ,

1
3

3,1 \ Ḃ
2
3 ,

4
3

3,1 ) as required. Finally let us prove that eR`
n is bounded in S3,1.

We notice that due to the above bounds, the function eu`
n solves (NS) and is bounded in fL2(R+; Ḃ

2
3 ,

1
3

3,1 )
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since that holds for the right-hand side of (3.3) by direct inspection. By Theorem 4 this implies

that eu`
n is bounded in particular in gL1(R+; Ḃ

� 1
3 ,

1
3

3,1 ), which proves the result for eR`
n again inspecting

the formula (3.3) giving eu`
n � eR`

n and recalling that ⌘`n/�
`
n ! 0 as n goes to infinity.

To conclude suppose that �̃h,`(·, z3) ⌘ �(`)(·, z3) ⌘ 0 for some z3 2 R. Then by construction of �`
↵

in (2.5) and that of Ũh,` recalled above, the result follows for Ũh,`(t, ·, z3). For U
(`)
n (t, ·, z3) we get

the result from Proposition 3.2 of [15].

Lemma 35 is proved.

• Now let us consider ⇤n
"

`,�`,x`

✓

� "`n
�`n

(rh�
�1
h @3�

`
↵)(x),�

`
↵(x)

◆

, when ` /2 K(1).

Lemma 36 Assume ` /2 K(1). Then there is L0, independent of n such that the following result

holds. For any ` and for n large enough, ⇤n
"

`,�`,x`

✓

� "`n
�`n

(rh�
�1
h @3�

`
↵)(x),�

`
↵(x)

◆

belongs to G and

the associate solution u`
n to (NS) enjoys the following properties.

• For every ` � L0, ↵ 2 (0, 1) and n 2 N large enough,

ku`
nkS3,1  2k�`

↵k
Ḃ

� 1
3
,

1
3

3,1

 2c0 . (3.5)

• For every ` 2 N, ↵ 2 (0, 1) and n large enough, the sequence u`
n is uniformly bounded in the

space gL1(R+; Ḃ
� 1

3 ,
1
3

3,1 ) \ L1(R+; Ḃ
5
3 ,

1
3

3,1 \ Ḃ
2
3 ,

4
3

3,1 ) and satisfies

u`
n = e⇤n

"

`,�`,x`

✓

"`n
�`n

U `,h
n , U `,3

n

◆

+R`
n where

R`
n ! 0 in fL2(R+; Ḃ

2
3 ,

1
3

3,1 ) \ L1(R+; Ḃ
5
3 ,

1
3

3,1 \ Ḃ
2
3 ,

4
3

3,1 ) , n ! 1 ,

(3.6)

and all the properties stated in Lemma 35 hold.

Proof (Proof of Lemma 36). The proof follows the lines of the proof of Lemma 35, and is in fact
easier. One first uses the stability property (2.3) to obtain the existence of L0 such that for all ` � L0,
for each ↵ 2 (0, 1) and for n large enough,

k(rh�
�1
h @3�

`
↵,�

`
↵)k

Ḃ
0, 1

2
2,1

 c0

and Theorem 4 applies. Then we notice again that by rescaling and translation it is enough to con-

sider the vector field ⇤n

1, �
`

"`
,0

✓

� "`n
�`n

(rh�
�1
h @3�

`
↵)(x),�

`
↵(x)

◆

, and again [14] gives the result (recalling

that "`n/�
`
n goes to zero by Proposition 24). Compared with the proof of Lemma 35, in this case the

profile U `
n is simply a solution to the heat equation in R3 with viscosity ("`n/�

`
n)

2 in the third direction
(see [14] system (T "

v ), with v ⌘ 0 and " = "`n/�
`
n). The lemma is proved.

In the following we define, with the notation of Lemmas 35 and 36,

UL
n :=

X

1`L

ũ`
n +

X

1(`)L

`>L

ũ`
n +

L
X

`=1

u`
n , and

RL
n :=

X

1`L

R̃`
n +

X

1(`)L

`>L

R̃`
n +

L
X

`=1

R`
n ,

(3.7)

and we recall that
8L , lim

n!1
kRL

nkfL2(R+;Ḃ
2
3
,

1
3

3,1 )\L1(R+;Ḃ
5
3
,

1
3

3,1 \Ḃ
2
3
,

4
3

3,1 )
= 0 . (3.8)
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• Finally we propagate all the remaining terms in (2.7) by the heat equation: we define

VL
n := ⇢Ln +  L

n (3.9)

with

 L
n (t) := et�

⇣

( ̃h,L
n �rh�

�1
h @3 

L
n , 

L
n )�

X

`>L

`2K(L)

⇤n
"

`,�`,x`

�

� "`n
�`n

rh�
�1
h @3�

`,�`
�

�
X

`>L

1(`)L

⇤n
⌘

`,�`,ex`

�

�̃h,`
↵ , 0

�

⌘

and

⇢Ln(t) := et�
⇣

L
X

`=1

⇤n
⌘

`,�`,x̃`(r̃h,`↵ � ⌘`n
�`n

rh�
�1
h @3r

(`)
↵ , r(`)↵ )

+
L
X

(`)=1
(`)2K(1)\K(L)

⇤n
⌘

`,�`,x̃`(r̃h,`↵ � ⌘`n
�`n

rh�
�1
h @3r

(`)
↵ ), r(`)↵ )

+
L
X

`=1
`/2K(1)

⇤n
"

`,�`,x`(�
"`n
�`n

rh�
�1
h @3r

`
↵, r

`
↵)�

X

`>L

1(`)L

⇤n
⌘

`,�`,x̃`(r̃h,`↵ , 0)
⌘

We notice that by (2.5)

8L 2 N , lim sup
n!1

k⇢LnkS3,1  C(L)↵ ,

and lim sup
n!1

�

k L,h
n kS3,1+ eS3,1

+ k L,3
n kS3,1

�

! 0 , L ! 1 uniformly in↵ ,
(3.10)

where eS3,1 :=
1
\

r=1

2
r

\

�=0

fLr(R+; Ḃ
2
3+�, 2

r

��� 2
3

3,1 ). The presence of that space is due to terms of the

type rh�
�1
h @3�

` and those bounds are due to (2.1) as well as the stability property (2.3) and the fact
that "`n/�

`
n ! 0. In particular

lim sup
n!1

�

k L
n k

L1(R+;Ḃ
5
3
,

1
3

3,1 \Ḃ
2
3
,

4
3

3,1 )\fL2(R+;Ḃ
2
3
,

1
3

3,1 )

�

! 0 , L ! 1 uniformly in ↵ . (3.11)

4. Global regularity for the profiles superposition

Now we need to superpose each of the solutions constructed in the previous section, and check
that the superposition is indeed a good approximate solution. This will prove Theorem 2, and at the
end of this section we shall show how the methods developed here give easily Corollaries 1 and 2.

4.1. Statement of the superposition result and main steps of its proof

The main result is the following, where we use the notation of the previous section.

Proposition 41 For n and L large enough, ↵ small enough and up to an extraction, we have

un = u+ UL
n + VL

n + wL
n , (4.1)

where wL
n belongs to S3,1 with lim

↵!0
(lim sup

n!1
kwL

nkS3,1) ! 0 as L ! 1.

Remark 42 The choice of the function space S3,1 in the statement of Proposition 41 is for conve-
nience, we have not tried to optimize on the integrability index here and other spaces would certainly
do as well.
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Remark 43 This proposition proves Theorem 2. Indeed the sequence (un) belongs in particular to

the space fL2(R+; Ḃ
2
3 ,

1
3

3,1 ), since the results of the previous section show that this is the case for all
the terms in the right-hand side of (4.1). But we know from Theorem 4 that this norm controls the
equation so the result follows.

Proof (Proof of Proposition 41). Let un be the solution of (NS) associated with the data u0,n,
which a priori has a finite life span T ⇤

n , and define

wL
n := un �GL

n with GL
n := u+ FL

n and FL
n := UL

n + VL
n .

The vector field wL
n satisfies

@tw
L
n + P(wL

n ·rwL
n +GL

n ·rwL
n + wL

n ·rGL
n)��wL

n = �PZL
n , div wL

n = 0

with initial data wL
n|t=0 = 0, and where, recalling the definitions of UL

n and VL
n in (3.7) and (3.9)

respectively,

ZL
n :=

X

` 6=k

u`
n ·ruk

n +
X

` 6=k

ũ`
n(11`L + 1 1(`)L

`>L

) ·rũk
n(11kL + 1 1(k)L

`>L

)

+
X

` 6=k

�

ũ`
n(11`L + 1 1(`)L

`>L

) ·ruk
n + u`

n ·rũk
n(11kL + 1 1(k)L

`>L

)
�

+ u ·rFL
n + FL

n ·ru+ UL
n ·rVL

n + VL
n ·rUL

n + VL
n ·rVL

n .

The proposition follows from the two following lemmas.

Lemma 44 Define Y := L2(R+; Ḃ
2
3 ,

1
3

3,1 ) \ L1(R+; Ḃ
5
3 ,

1
3

3,1 \ Ḃ
2
3 ,

4
3

3,1 ). With the notation of Lemmas 35

and 36, there is a constant K (depending on L0, eL0 and bounds on u0, (un) and u) such that one can
decompose GL

n = GL,1
n + GL,2

n , with the following properties: for each L 2 N and each ↵ 2 (0, 1) there
is N(L,↵) such that

kGL,1
n kY  K for n � N(L,↵) ,

while for all L 2 N there is ↵0 > 0 such that

8 0 < ↵  ↵0 , kGL,2
n kY  K uniformly in n .

Lemma 45 Define

X := L1(R+; Ḃ
� 1

3 ,
1
3

3,1 ) +fL2(R+; Ḃ
� 1

3 ,�
2
3

3,1 ) \ L1(R+; Ḃ
2
3 ,�

2
3

3,1 ) .

We can write ZL
n = ZL,1

n + ZL,2
n + ZL,3

n with

lim sup
L!1

kZL,1
n kX = 0 uniformly in n,↵ , (4.2)

8L, lim sup
↵!0

kZL,2
n kX = 0 uniformly in n , (4.3)

and 8L , 8↵ , lim sup
n!1

kZL,3
n kX = 0 . (4.4)

Assume indeed for the time being that those two lemmas are true. Then we start by choosing L large
enough so that uniformly in ↵ and N one has

kZL,1
n kX  c0

12
exp

�

� 2Kc�1
0

�

uniformly in n,↵ (4.5)

with the notation of Theorem 5 stated and proved in Appendix A, and Lemma 45. Then now that L
is fixed we choose ↵ 2 (0,↵0) small enough so that

kZL,2
n kX  c0

12
exp

�

� 2Kc�1
0

�

uniformly in n (4.6)
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and
kGL,2

n kY  K uniformly in n ,

with the notation of Lemma 44. Finally now that L and ↵ are fixed we take N0 � N(L,↵) so that for
all n � N0,

kZL,3
n kX  c0

12
exp

�

� 2Kc�1
0

�

(4.7)

and
kGL,1

n kY  K .

It then su�ces to apply Theorem 5 in Appendix A with U = GL
n , F = ZL

n and data u0 ⌘ 0, noticing
that X = X3,1 and Y ⇢ Y3,1. The result follows immediately: we get that wL

n belongs to S3,1, and
the fact that lim

↵!0
(lim sup

n!1
kwL

nkS3,1) ! 0 as L ! 1 is due to the fact that one can choose the bounds

in (4.5)-(4.7) as small as one want, provided L and n are large enough, and ↵ is small enough.

The two coming paragraphs are devoted to the proofs of Lemmas 44 and 45, thus achieving the proof
of Theorem 2. The final paragraph of this section contains the proofs of Corollaries 1 and 2.

4.2. Study of the drift term GL
n

Proof (Proof of Lemma 44). Recall that GL
n = u + FL

n = u + UL
n + VL

n with the notation of
Section 3, so since we know that u belongs to S2,1, which embeds continuously in Y, and u depends
neither on L, on ↵ nor on n, we need to study FL

n . According to Lemmas 35 and 36 and recalling the
notation (3.7), we can split FL

n = UL
n + VL

n into FL
n := FL,1

n + FL,2
n + VL

n , with

FL,1
n :=

X

1`L

⌘

`

n

/�

`

n

!0

ũ`
n +

X

1(`)L

`>L

⌘

`

n

/�

`

n

!0

ũ`
n +

L
X

`=1

u`
n and FL,2

n :=
L
X

`=1
⌘

`

n

/�

`

n

!1

ũ`
n . (4.8)

The result (3.2) deals with FL,2
n , since according to (3.2), ũ`

n goes to zero in Y for each ` as n goes to
infinity. So that term is incorporated in the term GL,1

n .
Now let us consider FL,1

n . We can decompose the sum again into several pieces, writing with the
notation of Lemmas 35 and 36, for all L > max(L0, L̃0),

L
X

`=1

u`
n =

L0
X

`=1

u`
n +

L
X

`=L0+1

u`
n ,

X

1`L

⌘

`

n

/�

`

n

!0

ũ`
n =

X

1`L̃0
⌘

`

n

/�

`

n

!0

ũ`
n +

X

L̃0<`L

1(`)L̃0
⌘

`

n

/�

`

n

!0

ũ`
n +

X

L̃0<`L

L̃0<(`)

⌘

`

n

/�

`

n

!0

ũ`
n ,

and
X

1(`)L

`>L

⌘

`

n

/�

`

n

!0

ũ`
n =

X

1(`)L̃0
`>L

⌘

`

n

/�

`

n

!0

ũ`
n +

X

L̃0<(`)L

`>L

⌘

`

n

/�

`

n

!0

ũ`
n .

In all three right-hand-sides, the easiest term to deal with is the last one: indeed we can write

�

�

�

L
X

`=L0+1

u`
n +

X

L̃0<`L

L̃0<(`)

⌘

`

n

/�

`

n

!0

ũ`
n +

X

L̃0<(`)L

`>L

⌘

`

n

/�

`

n

!0

ũ`
n

�

�

�

Y
.

L
X

`=L0+1

ku`
nkY +

X

L̃0<`

L̃0<(`)

kũ`
nkY .

Then by (3.1) and (3.5) we infer that as soon as n is large enough (depending on the choice of L
and ↵)

�

�

�

L
X

`=L0+1

u`
n +

X

L̃0<`.L

L̃0<(`)

⌘

`

n

/�

`

n

!0

ũ`
n +

X

L̃0<(`).L

`>L

⌘

`

n

/�

`

n

!0

ũ`
n

�

�

�

Y

X

L0<`

k�`
↵k

Ḃ
� 1

3
,

1
3

3,1

+
X

L̃0<`

k�̃h,`
↵ k

Ḃ
� 1

3
,

1
3

3,1
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and the conclusion comes from the embedding of B1
q into Ḃ

� 1
3 ,

1
3

3,1 along with the stability property (2.3):
for n � N(L,↵)

�

�

�

L
X

`=L0+1

u`
n +

X

L̃0<`L

L̃0<(`)

⌘

`

n

/�

`

n

!0

ũ`
n +

X

L̃0<(`)L

`>L

⌘

`

n

/�

`

n

!0

ũ`
n

�

�

�

Y
.
X

L0<`

k�`
↵kB1

q

+
X

L̃0<`

k�̃h,`
↵ kB1

q

 C .

So
L
X

`=L0+1

u`
n +

X

L̃0<`L

L̃0<(`)

⌘

`

n

/�

`

n

!0

ũ`
n +

X

L̃0<(`)L

`>L

⌘

`

n

/�

`

n

!0

ũ`
n is of the type GL,1

n .

Now let us estimate
L0
X

`=1

u`
n and

X

1`L̃0
⌘

`

n

/�

`

n

!0

ũ`
n . There is of course no uniformity problem in L and we sim-

ply use the uniform bound in Y provided in Lemmas 35 and 36. The terms
X

L̃0+1`L

1(`)L0
⌘

`

n

/�

`

n

!0

ũ`
n and

X

1(`)L0
`>L

⌘

`

n

/�

`

n

!0

ũ`
n

are dealt with similarly and all those three terms are also of the type GL,1
n . Choosing GL,2

n := VL
n and

using (3.10) and (3.11) concludes the proof of Lemma 44.

Remark 46 This argument shows that UL
n is uniformly bounded in the space S3,1.

Remark 47 It is important to have chosen the initial data bounded in a space of the type Ḃs,s0

p,q

with p = 1 > q (hence in particular with p = 1 = q by embedding), as it enables us to prove easily
the uniform bound on FL,1

n . As seen for instance in [28], it is indeed possible to prove such a bound
when p = q and it is not clear how to prove it in the general case, when p 6= q. Then it is very
natural to pick q  1 as explained in the introduction in order to have a good Cauchy theory for the
Navier-Stokes equations in anisotropic spaces, and finally the choice q < 1 implies by interpolation
that the remainders are small precisely in a space where the Cauchy theory for (NS) is satisfactory
(namely q = 1).

4.3. Study of the forcing term

Proof (Proof of Lemma 45). We recall that

ZL
n :=

X

` 6=k

u`
n ·ruk

n +
X

` 6=k

ũ`
n(11`L + 1 1(`)L

`>L

) ·rũk
n(11kL + 1 1(k)L

`>L

)

+
X

` 6=k

�

ũ`
n(11`L + 1 1(`)L

`>L

) ·ruk
n + u`

n ·rũk
n(11kL + 1 1(k)L

`>L

)
�

+ u ·rFL
n + FL

n ·ru+ UL
n ·rVL

n + VL
n ·rUL

n + VL
n ·rVL

n .

We define

HL,1
n :=

X

` 6=k

u`
n ·ruk

n +
X

` 6=k

ũ`
n(11`L + 1 1(`)L

`>L

) ·rũk
n(11kL + 1 1(k)L

`>L

)

+
X

` 6=k

�

ũ`
n(11`L + 1 1(`)L

`>L

) ·ruk
n + u`

n ·rũk
n(11kL + 1 1(k)L

`>L

)
�

,

HL,2
n := UL

n ·rVL
n + VL

n ·rUL
n + VL

n ·rVL
n and HL,3

n := u ·rFL
n + FL

n ·ru .

Let start by discussing HL,1
n . We shall actually only deal with

X

1` 6=kL

ũ`
n ·rũk

n =
X

1` 6=kL

div
�

ũ`
n ⌦ ũk

n

�

,
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as all the other terms in HL,1
n can be dealt with similarly. Referring to Lemma 35, we know that this

term can in turn be split into two parts, defining

HL,1,1
n :=

X

1` 6=kL

⌘

`

n

/�

`

n

!1

div
�

ũ`
n ⌦ ũk

n + ũk
n ⌦ ũ`

n

�

+
X

1` 6=kL

⌘

`

n

/�

`

n

+⌘

k

n

/�

k

n

!0

div
⇣

R̃`
n ⌦ ũk

n + ũk
n ⌦ R̃`

n

⌘

,

HL,1,2
n :=

X

1` 6=jL

⌘

`

n

/�

`

n

+⌘

j

n

/�

j

n

!0

div
⇣

e⇤n
⌘

`,�`,x̃`

�

Ũh,` +
⌘`n
�`n

U(`),h
n , U(`),3

n

�

⌦ e⇤n
⌘

j ,�j ,x̃j

�

Ũh,j +
⌘jn

�jn
U(j),h
n , U(j),3

n

�

⌘

.

The first term HL,1,1
n is dealt with using product laws in anisotropic Besov spaces (see Appendix B).

On the one hand we have for any j 2 {1, 2}, by (B.4),

k@j(fg)kfL1(R+;Ḃ
� 1

3
,

1
3

3,1 )
. kfgkfL1(R+;Ḃ

2
3
,

1
3

3,1 )

. kfkfL2(R+;Ḃ
2
3
,

1
3

3,1 )
kgkfL2(R+;Ḃ

2
3
,

1
3

3,1 )
,

(4.9)

and on the other hand estimate (B.5) gives

k@3(fg)kfL2(R+;Ḃ
� 1

3
,� 2

3
3,1 )

. kfgkfL2(R+;Ḃ
� 1

3
,

1
3

3,1 )

. kfk
gL1(R+;Ḃ

� 1
3
,

1
3

3,1 )
kgkfL2(R+;Ḃ

2
3
,

1
3

3,1 )
.

(4.10)

and by (B.4) again

k@3(fg)kfL1(R+;Ḃ
2
3
,� 2

3
3,1 )

. kfgkfL1(R+;Ḃ
2
3
,

1
3

3,1 )

. kfkfL2(R+;Ḃ
2
3
,

1
3

3,1 )
kgkfL2(R+;Ḃ

2
3
,

1
3

3,1 )
.

(4.11)

So using (3.2) along with the uniform bounds provided by Lemma 35 gives

8L, lim
n!1

�

�

�

X

1` 6=kL

⌘

`

n

/�

`

n

!1

div
�

ũ`
n ⌦ ũk

n

�

�

�

�

X
= 0 . (4.12)

The terms R̃`
n ⌦ ũk

n are dealt with in the same way using Lemma 35: we find that eHL,1,1
n satisfies the

bound (4.2).

The same product laws (using the structure of the nonlinear term) enable us to deal with HL,2
n ,

recalling that
HL,2

n := UL
n ·rVL

n + VL
n ·rUL

n + VL
n ·rVL

n

using (3.10)-(3.11) to estimate VL
n , and Remark 46 for UL

n . To control VL
n ·rVL

n for instance, we notice

that the horizontal component does not belong a priori to gL1(R+; Ḃ
� 1

3 ,
1
3

3,1 ) (see (3.10)) but that is
not a problem as in (4.10), due to the structure of the nonlinear term, one of the two functions is

necessarily a third component, which does belong to gL1(R+; Ḃ
� 1

3 ,
1
3

3,1 ). We argue similarly for all the
other terms.

Next let us consider the term HL,1,2
n and prove it satisfies the bounds (4.3)-(4.4). Let us define a

typical term
U j,`
n := e⇤n

⌘

`,�`,x̃`Ũ
h,` ⌦ e⇤n

⌘

j ,�j ,x̃j Ũ
h,j ,

and first show that

div U j,`
n is bounded in L1(R+; Ḃ1,1

1,1) \gL1(R+; Ḃ�1,1
1,1 ) + L1(R+; Ḃ2,0

1,1) \gL1(R+; Ḃ0,0
1,1) . (4.13)
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This follows from the fact that Ũh,` belongs to L2(R+; Ḃ2,1
1,1) \ gL1(R+; Ḃ1,1

1,1) (see Lemma 35 for

that result): we know indeed that Ḃ2,1
1,1 is an algebra and that the product of two functions in Ḃ1,1

1,1

belongs to Ḃ0,1
1,1 (see Appendix B). Since fL2(R+; Ḃ2,1

1,1)\gL1(R+; Ḃ1,1
1,1) is invariant through the action

of e⇤n
⌘

`,�`,x̃` (see Remark 34) the result (4.13) follows.

Now let us prove that U j,`
n goes to zero in L1(R+; Ḃ2,1

1,1)\gL1(R+; Ḃ0,1
1,1), as in (4.3)-(4.4): divU j,`

n will

then go to zero in L1(R+; Ḃ1,1
1,1) \gL1(R+; Ḃ�1,1

1,1 ) + L1(R+; Ḃ2,0
1,1) \gL1(R+; Ḃ0,0

1,1) which is contained
in X .

Let us start by the L1(R+; Ḃ2,1
1,1) norm. By the equivalent formulation in terms of the heat flow (B.3),

we know that ⌧�2⌧ 0�
3
2Kh(⌧)Kv(⌧ 0)U j,`

n (t, x) is uniformly bounded in L1 in all variables. To prove the
result, by Lebesgue’s dominated convergence theorem we shall therefore prove the pointwise conver-
gence of ⌧�2⌧ 0�

3
2Kh(⌧)Kv(⌧ 0)U j,`

n (t, x) to zero for almost every (⌧, ⌧ 0, t, x), as n goes to infinity.

We shall use the well-known bounds

kKh(⌧)Kv(⌧
0)f(t, x)kL1

t,x

 ⌧�1⌧ 0
� 1

2 kf(t, x)kL1
t

L1
x

and

kKh(⌧)Kv(⌧
0)f(t, x)kL1

t,x

 kf(t, x)kL1
t,x

,
(4.14)

as well as their interpolates, in the horizontal and vertical space variables: for instance denoting Lp
hL

r
v :=

Lp(R2;Lr(R)) we have also

kKh(⌧)Kv(⌧
0)f(t, x)kL1

t,x

 ⌧�1kf(t, x)kL1
t

L1
h

L1
v

.

We first notice that

kU j,`
n kL1

t

L1
x


�

� e⇤n
⌘

`,�`,x̃`Ũ
h,`
�

�

L1
t

L2
h

L1
v

�

� e⇤n
⌘

j ,�j ,x̃j Ũ
h,j
�

�

L1
t

L2
h

L1
v

 C�`n

so the a.e. pointwise convergence of ⌧�2⌧ 0�
3
2Kh(⌧)Kv(⌧ 0)U j,`

n (t, x) to zero follows, using (4.14), if (by
symmetry in ` and j) either �`n or �jn go to zero. So from now on we assume that �`n and �jn go to
infinity or 1. Next we write

kU j,`
n kL1

t

L1
h

L1
v

 k e⇤n
⌘

`,�`,x̃`Ũ
h,`kL1

t

L1
h

L1
v

k e⇤n
⌘

j ,�j ,x̃j Ũ
h,jkL1

t

L1
h

L1
v

 C
⌘`n

⌘jn

so again from now on we may assume that ⌘`n = ⌘jn, if not the result is proved (if one or the other
ratio goes to zero). But in that case

kU j,`
n kL1

t

L1
x

 C
1

(⌘`n)
2

hence from now on we restrict our attention to the case when ⌘`n = ⌘jn ! 0 or 1. We notice that by
the change of variables

yh :=
xh � x̃`

n,h

⌘`n
, y3 :=

x3 � x̃`
n,3

�`n
, � := (⌘`n)

�2⌧ , �0 := (�`n)
�2⌧ 0 , s := (⌘`n)

�2t ,

we have after an easy computation
Z

⌧�2⌧ 0�
3
2

�

�

�

Kh(⌧)Kv(⌧
0)U j,`

n (t, x)
�

�

�

d⌧d⌧ 0dxdt=

Z

��2�0� 3
2

�

�

�

Kh(�)Kv(�
0)Ũ j,`

n (s, y)
�

�

�

d�d�0dsdy

where

Ũ j,`
n (s, y) := Ũh,`(s, y)⌦ Ũh,j

⇣

s, yh +
x̃`
n,h � x̃j

n,h

⌘jn
,
�`n

�jn
y3 +

x̃`
n,3 � x̃j

n,3

�jn

⌘

,



22 Hajer Bahouri, Isabelle Gallagher

so if �`n = �jn then the orthogonality assumption on the cores of concentration implies the result,
so we may assume for instance that �`n/�

j
n goes to infinity, and since neither goes to zero, that in

particular �`n goes to infinity. The same argument lets us assume that (x̃`
n,h � x̃j

n,h)/⌘
j
n is bounded.

Next we notice that the change of variables

yh :=
xh � x̃`

n,h

⌘`n
, y3 :=

x3 � x̃`
n,3

�jn
, � := (⌘`n)

�2⌧, �0 := (�jn)
�2⌧ 0, s := (⌘`n)

�2t ,

gives
Z

⌧�2⌧ 0�
3
2

�

�

�

Kh(⌧)Kv(⌧
0)U j,`

n (t, x)
�

�

�

d⌧d⌧ 0dxdt=

Z

��2�0� 3
2

�

�

�

Kh(�)Kv(�
0)eV j,`

n (s, y)
�

�

�

d�d�0dsdy

where

eV j,`
n (s, y) := Ũh,`(s, yh,

�jn
�`n

y3)⌦ Ũh,j
⇣

s, yh +
x̃`
n,h � x̃j

n,h

⌘jn
, y3 +

x̃`
n,3 � x̃j

n,3

�jn

⌘

.

So if (x̃`
n,3 � x̃j

n,3)/�
j
n is not bounded, then for each fixed y3 the limit of eV j,`

n (s, y) is zero hence we

may from now on assume that (x̃`
n,3 � x̃j

n,3)/�
j
n is bounded, and similarly for x̃j

n,3/�
j
n and x̃`

n,3/�
j
n by

translation invariance. Notice that repeating the argument (2.9) we get that x̃`
n,3/�

`
n must go to zero.

According to Assumption 2, we may therefore now assume that

'̃h,`(·, 0) ⌘ 0 ,

which implies by Lemma 35, (3.4), that

�

�

�

Ũh,`
�

t, yh,
�jn
�`n

y3
�

�

�

�


⇣�jn
�`n

|y3|+ ↵
⌘

f(t, yh) (4.15)

where f(t, yh) is a smooth function in L1(R+;L2 \ L1(R2)). We obtain finally that

keV j,`
n (·, ·, y3)kL1

t

L1
h

.
�

�

�

↵+
�jn
�`n

�

�

�

.

The result in L1(R+; Ḃ2,1
1,1) follows.

The same argument gives actually also the result ingL1(R+; Ḃ0,1
1,1) since all convergences to zero above

are uniform in t.

All other terms of HL,1,2
n are dealt with in a similar fashion hence HL,1

n satisfies the bounds (4.3)
and (4.4).

Recalling that HL,2
n was already dealt with, let us finally consider HL,3

n with

HL,3
n := u ·rFL

n + FL
n ·ru .

Using the decomposition (4.8) of FL
n and the same arguments as above give

8L, lim sup
n!1

�

u ·r eFL,1
n + eFL,1

n ·ru
�

= 0 in L1(R+; Ḃ1,1
1,1 + Ḃ2,0

1,1) \gL1(R+; Ḃ�1,1
1,1 + Ḃ0,0

1,1)

where

eFL,1
n :=

X

1`L

⌘

`

n

/�

`

n

!0

ũ`
n +

L
X

`=1

u`
n and FL,2

n :=
L
X

`=1
⌘

`

n

/�

`

n

!1

ũ`
n .

while the terms FL,1
n � eFL,1

n and FL,2
n are dealt with using the product laws (4.9)-(4.11). We leave the

details to the reader. Lemma 45 is proved.
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4.4. Proof of Corollaries 1 and 2

4.4.1. Proof of Corollary 1 If the solution u associated with u0 only has a finite life span T ⇤, then
we can retrace the following steps, replacing everywhere R+ by [0, T ] for T < T ⇤ and it is obvious
that the result of Corollary 1 holds as soon as n is large enough (depending on T ).

4.4.2. Proof of Corollary 2 The proof of that corollary is very close to the proof of a similar
result in the isotropic context (see [25], Theorem 2(ii)). Under the assumptions of Corollary 2, we can
apply the previous results (in particular Corollary 1) to write that as long as the solution u associated
with u0 exists, it may be decomposed into

u = un � UL
n � VL

n � wL
n ,

and we know that for all T < T ⇤, denoting by L2(T ) := fL2([0, T ]; Ḃ
2
3 ,

1
3

3,1 ),

lim
↵!0

�

lim sup
n!1

kwL
nkL2(T )

�

! 0 , L ! 1 . (4.16)

Moreover we also have, for n large enough, ↵ small enough and all L (due to the assumption on un

and to Lemma 44),
ku+ wL

nkL2(T )  C ,

uniformly in L, ↵ and n. Next recalling that if a solution blows up at time T ⇤, then its norm in L2(T )
blows up when T goes to T ⇤ (see Appendix A), we can therefore choose T < T ⇤ such that

kukL2(T ) � 2C .

We conclude by noticing that
kukL2(T )  C + kwL

nkL2(T )

so choosing n and L large enough and ↵ small enough gives a contradiction due to (4.16), whence the
result.

5. Profile decompositions in B1
q

5.1. Introduction and statement of the theorem

After the pioneering works of P. -L. Lions [48] and [49], the lack of compactness in critical Sobolev
embeddings was investigated for di↵erent types of examples through several angles. For instance, in
[30] the lack of compactness in the critical Sobolev embedding Ḣs(Rd) ,! Lp(Rd) in the case where
d � 3 with 0  s < d/2 and p = 2d/(d � 2s) is described in terms of microlocal defect measures
and in [31], it is characterized by means of profiles. More generally for Sobolev spaces in the Lq

framework, this question is treated in [36] (see also the more recent work [41]) by the use of nonlinear
wavelet approximation theory. In [6], the authors look into the lack of compactness of the critical

embedding H1
rad(R2) ,! L , where L denotes the Orlicz space associated to the function �(s) = es

2�1.
Other studies were conducted in various works (see among others [7,11,23,54–56]) supplying us with
a large amount of information on solutions of nonlinear partial di↵erential equations, both in the
elliptic or the evolution framework; among other applications, one can mention [5,25,26,28,39,40,57].
Recently in [4], the wavelet-based profile decomposition introduced by S. Ja↵ard in [36] was revisited
in order to treat a larger range of examples of critical embedding of function spaces X ,! Y including
Sobolev, Besov, Triebel-Lizorkin, Lorentz, Hölder and BMO spaces. For that purpose, two generic
properties on the spaces X and Y were identified to build the profile decomposition in a unified way.
These properties concern wavelet decompositions in the spaces X and Y supposed to have the same
scaling, and endowed with an unconditional wavelet basis ( �)�2⇤.

The first property is related to the existence of a nonlinear projector QM satisfying

lim
M!+1

max
kfk

X

1
kf �QMfkY = 0 .
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More precisely, if f may be decomposed in the following way (the notation will be made precise below):

f =
X

�2r
d� �, then QMf , sometimes called the best M -term approximation, takes the general form

QMf :=
X

�2E
M

d� � , (5.1)

where the sets EM = EM (f) of cardinality M depend on f and satisfy EM (f) ⇢ EM+1(f). The
existence of such a nonlinear projector was extensively studied in nonlinear approximation theory and
for many cases, like Sobolev spaces, it turns out that the set EM = EM (f) can be chosen as the subset
of r that corresponds to the M largest values of |d�|. It is in fact known (see [50] for instance) that
in homogeneous Besov spaces Ḃ�

r,r, we have the following norm equivalence :

kfkḂ�

r,r

⇠ k(d�)�2rk`r , (5.2)

for f =
X

�2r
d� � with wavelets normalized in Ḃ�

r,r. Therefore, in the particular case where X = Ḃs
p,p

and Y = Ḃt
q,q, with

1
p �

1
q = s�t

d , the nonlinear projector QM defined by (5.1), where EM = EM (f) is

the subset of r of cardinality M that corresponds to the M largest values of |d�|, is appropriate and
satisfies (see [4] for instance):

sup
kfk

Ḃ

s

p,p

1
kf �QMfkḂt

q,q

 CM� s�t

d . (5.3)

The second property concerns the stability of wavelet expansions in the function space X with respect
to certain operations such as “shifting” the indices of wavelet coe�cients, as well as disturbing the
value of these coe�cients. In practice and for most cases of interest, this property derives from the
fact that the X norm of a function is equivalent to the norm of its wavelet coe�cients in a certain
sequence space, by invoking Fatou’s lemma.

Under these assumptions, it is proved in [4] that, as in the previous works [30] and [36], translation and
scaling invariance are the sole responsible for the defect of compactness of the embedding of X ,! Y .

In what follows, we shall apply the same lines of reasoning, taking advantage of an anisotropic wavelet

setting to describe the lack of compactness of the Sobolev embedding B1
q ,! Ḃ

�1+ 2
p

, 1
p

p,p with p >
max(1, q) in terms of an asymptotic anisotropic profile decomposition. We recall that as defined in
the introduction of this paper, B1

q := Ḃ1,1
1,q . Our presentation is essentially based on ideas and methods

developed for the isotropic setting in [4]. Because of the anisotropy, we use a two-parameter wavelet
basis. More precisely, wavelet decompositions of a function have the form

f =
X

�=(�1,�2)2r

d� � , (5.4)

where the wavelets  � are assumed to be normalized in the spaceX = B1
q , and where the notation �1 =

(j1, k1) 2 Z ⇥ Z2 (resp. �2 = (j2, k2) 2 Z ⇥ Z) concatenates the scale index j1 = j1(�1) (resp. j2 =
j2(�2)) and the space index k1 = k1(�1) (resp. k2 = k2(�2)) for the horizontal variable (resp. the
vertical variable). Thus the index set r in (5.4) is defined as r := (Z ⇥ Z2) ⇥ (Z ⇥ Z) and the
wavelets  � write under the form

 � =  (�1,�2) = 2j1 (2j1 ·�k1, 2
j2 ·�k2)

where  the so-called “mother wavelet” is generated by a finite dimensional inner product of one
variable functions  e, for e 2 E a finite set. It is known (see for instance [8]) that wavelet bases
are unconditional bases, i.e. there exists a constant D such that for any finite subset E ⇢ r and
coe�cients vectors (c�)�2E and (d�)�2E such that |c�|  |d�| for all �, one has

�

�

X

�2E

c� �

�

�

B1
q

 D
�

�

X

�2E

d� �

�

�

B1
q

(5.5)
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and similarly for Ḃ
�1+ 2

p

, 1
p

p,p . In addition B1
q and Ḃ

�1+ 2
p

, 1
p

p,p may be characterized by simple properties on

wavelet coe�cients: for f =
X

�2r
d� � =

X

(�1,�2)2r

d(�1,�2) (�1,�2) with normalized wavelets, we have

the following norm equivalences:

kfkqB1
q

⇠
X

j12Z

⇣

X

|�1|=j1

⇣

X

j22Z

�

X

|�2|=j2

|d(�1,�2)|
�q
⌘1/q⌘q

(5.6)

and
kfk

Ḃ
�1+ 2

p

p,p

(R2;Ḃ
1
p

p,p

(R))
⇠ k(d�)�2rk`p . (5.7)

Moreover as proved in [4,?], there exists a nonlinear projector QM of the form (5.1) such that

lim
M!+1

max
kfkB1

q

1
kf �QMfk

Ḃ
�1+ 2

p

,

1
p

p,p

= 0 . (5.8)

We refer to [1,8,10,19–22,29,?,44,58] and the references therein for more details on the construction
of wavelet bases and on the characterization of function spaces by expansions in such bases.
In the sequel, for any function �, not necessarily a wavelet, and any scale-space index � defined
by � = (�1,�2) = ((j1, k1), (j2, k2)) 2 r, we shall use the notation

��(x) := 2j1�(2j1xh � k1, 2
j2x3 � k2),

and to avoid heaviness, we shall define for i 2 {1, 2} and � = (�1,�2) = ((j1, k1), (j2, k2)), by ji = ji(�)
and ki = ki(�).

We shall prove the following theorem, characterizing the lack of compactness in the critical embed-

ding B1
q ,! Ḃ

�1+ 2
p

, 1
p

p,p , p > max(q, 1). The result actually holds for many such embeddings, but for the
sake of readability we choose to only state and prove it in this particular case.

Theorem 3 Let (un)n�0 be a bounded sequence in B1
q . Then, up to a subsequence extraction, there

exists a family of functions (�`)`�0 in B1
q and sequences of scale-space indices (�`(n))n�0 for each

` > 0 such that for all p > max(q, 1),

un =
L
X

`=1

�`
�
`

(n) +  L
n , where lim sup

n!1
k L

nk
Ḃ

�1+ 2
p

,

1
p

p,p

! 0 as L ! 1 .

The decomposition is asymptotically orthogonal in the sense that for any k 6= `, as n ! +1, either

|j1(�k(n))� j1(�`(n))|+ |j2(�k(n))� j2(�`(n))| ! +1 (5.9)

or

|k1(�k(n))� 2j1(�k

(n))�j1(�`

(n))k1(�`(n))|+ |k2(�k(n))� 2j2(�k

(n))�j2(�`

(n))k2(�`(n))| ! +1 .

Moreover, we have the following stability estimates

1
X

`=1

k�`kB1
q

 C sup
n�0

kunkB1
q

, (5.10)

where C is a constant which only depends on the choice of the wavelet basis.

Remark 51 Up to rescaling the profiles, if (5.9) does not hold then one may assume that ji(�`(n)) =
ji(�k(n)) for i 2 {1, 2}.

5.2. Proof of Theorem 3

Along the same lines as in [4], the anisotropic profile decomposition construction proceeds in several
steps.
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5.2.1. Step 1: rearrangements According to the notation (5.4), we first introduce the wavelet

decompositions of the sequence un, namely un =
X

�2r
d�,n �. Then we use the nonlinear projector

QM to write for each M > 0

un = QMun +RMun , with lim
M!+1

sup
n>0

kRMunk
Ḃ

�1+ 2
p

,

1
p

p,p

= 0 ,

in view of (5.8) and the boundedness of the sequence un in B1
q . Noting

QMun =
M
X

m=1

dm,n �(m,n) ,

it is obvious that the coe�cients dm,n are uniformly bounded in n and m, so up to a diagonal subse-
quence extraction procedure in n, we can reduce to the case where for all m, the sequence (dm,n)n>0

converges towards a finite limit that depends on m,

dm := lim
n!+1

dm,n .

We may thus write

un =
M
X

m=1

dm �(m,n) + tn,M , where tn,M :=
M
X

m=1

(dm,n � dm) �(m,n) +RMun .

5.2.2. Step 2: construction of approximate profiles The profiles �` will be built as limits of
sequences �`,i resulting by the following algorithm. At the first iteration i = 1, we define

�1,1 = d1 , �1(n) := �(1, n) , '1(n) := n .

Now, supposing that after iteration step i�1, we have constructed L�1 functions denoted by (�1,i�1, . . . ,�L�1,i�1)
and scale-space index sequences (�1(n), . . . ,�L�1(n)) with L  i, as well as an increasing sequence of
positive integers 'i�1(n) such that

i�1
X

m=1

dm �(m,'
i�1(n)) =

L�1
X

`=1

�`,i�1
�
`

('
i�1(n))

,

we shall use the i-th component di �(i,'
i�1(n)) to either modify one of these functions or construct a

new one at iteration i according to the following dichotomy.

(i) First case: assume that we can extract 'i(n) from 'i�1(n) such that for ` = 1, . . . , L � 1 at least
one of the following holds:

lim
n!+1

|j1(�(i,'i(n)))� j1(�`('i(n)))|+ |j2(�(i,'i(n)))� j2(�`('i(n)))| = +1 , (5.11)

or

lim
n!+1

�

�

�

k1
�

�(i,'i(n))
�

� 2j1(�(i,'i

(n)))�j1(�`

('
i

(n)))k1
�

�`('i(n))
�

�

�

�

+
�

�

�

k1
�

�(i,'i(n))
�

� 2j1(�(i,'i

(n)))�j1(�`

('
i

(n)))k1
�

�`('i(n))
�

�

�

�

= +1 .
(5.12)

In such a case, we create a new profile and scale-space index sequence by defining

�L,i := di , �L(n) := �(i, n) , �`,i := �`,i�1 8` 2 {1, . . . , L� 1} .

(ii) Second case: assume that for some subsequence 'i(n) of 'i�1(n) and for some ` belonging
to {1, . . . , L � 1} neither (5.11) nor (5.12) holds. Then it follows that for i in {1, 2}, the quanti-
ties ji(�`('i(n))) � ji(�(i,'i(n))) and ki

�

�(i,'i(n))
�

� 2ji(�(i,'i

(n)))�j
i

(�
`

('
i

(n)))ki
�

�`('i(n))
�

only
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take a finite number of values as n varies. Therefore, up to an additional subsequence extraction, we
may assume that there exists numbers a1, a2, b1 and b2 such that for all n > 0 and for i 2 {1, 2},

ji(�(i,'i(n)))� ji(�`('i(n))) = ai ,

and
ki(�(i,'i(n)))� 2ji(�(i,'i

(n)))�j
i

(�
`

('
i

(n)))ki(�`('i(n))) = bi .

We then update the function �`,i�1 according to

�`,i := �`,i�1 + di2
a1 (2a1 ·�b1, 2

a2 ·�b2) , �`0,i := �`0,i�1 8`0 2 {1, . . . , L� 1} , `0 6= `.

Up to a diagonal subsequence extraction procedure in n, it derives from this construction that for
each value of M there exists L = L(M)  M such that

M
X

m=1

dm �(m,n) =
L
X

`=1

�`,M
�
`

(n)

with for each ` = 1, . . . , L

�`,M
�
`

(n) =
X

m2E(`,M)

dm �(m,n) ,

and where the sets E(`,M) for ` = 1, . . . , L form a partition of {1, . . . ,M}. Moreover, for i 2 {1, 2}
and for any m,m0 2 E(`,M) we have

ji(�(m,n))� ji(�(m
0, n)) = ai(m,m0) , (5.13)

and
ki(�(m,n))� 2ji(�(m,n))�j

i

(�(m0,n))ki(�(m
0, n)) = bi(m,m0) , (5.14)

where ai(m,m0) and bi(m,m0) do not depend on n.

5.2.3. Step 3: construction of the exact profiles The profiles �` will be obtained as the limits
in B1

q of �`,M as M ! +1. To this end, we shall use (5.6) and the fact that the wavelet basis ( �)�2r
is an unconditional basis of B1

q . So let us define for fixed ` and M such that `  L(M) the functions

g`,M :=
X

m2E(`,M)

dm �(m) and f `,M,n :=
X

m2E(`,M)

dm,n �(m), with �(m) := �(m, 1). In view of (5.13),

(5.14) and the scaling invariance of the space B1
q , we have

kf `,M,nkB1
q

=
�

�

�

X

m2E(`,M)

dm,n �(m,n)

�

�

�

B1
q

.

Since
X

m2E(`,M)

dm,n �(m,n) is a part of the expansion of un, we deduce the existence of a constant C

which depends neither on n nor on ` and M such that

kf `,M,nkB1
q

 C .

Now, according to the first step of the proof of the theorem, the coe�cients dm are the limits of dm,n

when n tends to infinity. Therefore, (5.6) and Fatou’s lemma imply that

kg`,MkB1
q

 lim inf
n!+1

kf `,M,nkB1
q

,

which ensures the convergence in B1
q of the sequence g`,M towards a limit g` as M ! +1.

Finally, since by construction the g`,M are rescaled versions of the �`,M , there exists numbers A1 >
0, A2 > 0, B1 2 R2 and B2 2 R such that

�`,M = 2A1g`,M (2A1 ·�B1, 2
A2 ·�B2) .

Therefore �`,M converges in B1
q towards �` := 2A1g`(2A1 ·�B1, 2A2 ·�B2) as M ! +1.
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To conclude the construction, we argue exactly as in the proof of Theorem 1.1 in [4].

Finally, let us prove that the decomposition derived in Theorem 3 is stable. The argument is again
similar to the one followed in [4], we reproduce it here for the convenience of the reader. We shall
use the following property: if E1, . . . , EL are disjoint finite sets in r, then for any coe�cient sequence
(d�), one has

L
X

`=1

k
X

�2E
`

d� �kB1
q

 Ck
L
X

`=1

X

�2E
`

d� �kB1
q

. (5.15)

Such an estimate was proved in [4] for Besov spaces Ḃs
p,a(Rd) and generalizes easily to our framework.

Let us then consider for ` = 1, . . . , L the functions

�`,M,n :=
X

m2E(`,M)

dm,n �(m,n) ,

where E(`,M) are the sets introduced in the second step of the proof of the decomposition. These
functions are linear combinations of wavelets with indices in disjoint finite sets E1, . . . , EL (that vary
with n), which implies by (5.15) that

L
X

`=1

k�`,M,nkB1
q

 C
�

�

�

L
X

`=1

�`,M,n
�

�

�

B1
q

.

Since the functions �`,M,n are part of the wavelet expansion of un, we deduce that

L
X

`=1

k�`,M,nkB1
q

 C sup
n�0

kunkB1
q

.

Now, by construction the sequence (�`,M,n)n>0 converges in B1
q towards the approximate profiles �`,M

�
`

(n) =
X

m2E(`,M)

dm �(m,n) as n ! 1. It follows that for any " > 0 we have

L
X

`=1

k�`,M
�
`

(n)kB1
q

 C sup
n�0

kunkB1
q

+ " ,

for n large enough. Thanks to the scaling invariance, we thus find that

L
X

`=1

k�`,MkB1
q

 C sup
n�0

kunkB1
q

.

Letting M go to +1, we obtain the same inequality for the exact profiles and we conclude by letting
L ! +1. The theorem is proved. ut

5.3. Some additional properties

The following result is very useful.

Lemma 52 Let (un)n2N be a bounded sequence in B1
q , which does not converge strongly to zero in B1

q

and which may be decomposed with the notation of Theorem 3 into

un =
L
X

`=1

�`
�
`

(n) +  L
n . (5.16)

Let p � 2 be given. For any ` 2 {1, ..., L}, there are three constants C > 0 and (a1` , a
2
`) 2 Z2 such that

lim sup
n!1

2j1(�`

(n))(�1+ 2
p

)+
j2(�

`

(n))
p

�

�

�

�h
j1(�`

(n))+a1
`

�v
j2(�`

(n))+a2
`

un

�

�

�

Lp(R3)
= C . (5.17)
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Proof (Proof of Lemma 52). We start by noticing that the existence of C < 1 satisfying (5.17)
is obvious, the only di�culty is to prove that C > 0.

• Let us first estimate one individual contribution, meaning let us show that there is C`,p > 0
and (a1` , a

2
`) 2 Z2 such that

lim sup
n!1

2j1(�`

(n))(�1+ 2
p

)+
j2(�

`

(n))
p

�

�

�

�h
j1(�`

(n))+a1
`

�v
j2(�`

(n))+a2
`

�`
�
`

(n)

�

�

�

Lp(R3)
= C`,p . (5.18)

By definition �h
j1+a1

u = 22(j1+a1) (2j1+a1 ·) ⇤h u and �v
j2+a2

u = 2j2+a2 (2j2+a2 ·) ⇤v u, where  is the
frequency localization function introduced in Appendix B and ⇤h (resp. ⇤v) denotes the convolution
operator in the horizontal (resp. vertical) variable. Writing

�`
�
`

(n) = 2j1(�`

(n))�`
⇣

2j1(�`

(n))(· h � x`
n,h), 2

j2(�`

(n))(· 3 � x`
n,3)
⌘

,

we easily prove that

�h
j1(�`

(n))+a1
`

�v
j2(�`

(n))+a2
`

�`
�
`

(n) = 2j1(�`

(n))(e ` ⇤ �`)
�

2j1(�`

(n))(· h � x`
n,h), 2

j2(�`

(n))(· 3 � x`
n,3)
�

where e `(x) := 22a
1
`

+a2
` (2a

1
`xh) (2

a2
`x3), which ensures that

lim sup
n!1

2j1(�`

(n))(�1+ 2
p

)+
j2(�

`

(n))
p

�

�

�

�h
j1(�`

(n))�
v
j2(�`

(n))un

�

�

�

Lp(R3)
= ke ` ⇤ �`kLp(R3) 6= 0 , (5.19)

as soon as (a1` , a
2
`) are conveniently chosen so that the supports of

c

e ` and b�` are not disjoint.

• Next let us prove that for `0 6= `

2j1(�`

(n))(�1+ 2
p

)+
j2(�

`

(n))
p

�

�

�

�h
j1(�`

(n))+a1
`

�v
j2(�`

(n))+a2
`

�`0

�
`

0 (n)

�

�

�

Lp(R3)
! 0 as n ! 1 ,

when the scales j(�`(n)) and j(�`0(n)) are orthogonal, meaning 2ji(�`

(n))�j
i

(�
`

0 (n)) ! 0 or 1 as n !
1, for i equal either to 1 or 2. Noticing that

�h
k�

v
j

�

�(2k
0
xh, 2

j0x3)
�

= (�h
k�k0�v

j�j0�)(2
k0
xh, 2

j0x3)

we deduce that

2j1(�`

(n))(�1+ 2
p

)+
j2(�

`

(n))
p

�

�

�

�h
j1(�`

(n))+a1
`

�v
j2(�`

(n))+a2
`

�`0

�
`

0 (n)

�

�

�

Lp(R3)

= 2j
`,`

0
1 (n)(�1+ 2

p

)+
j

`,`

0
2 (n)

p

�

�

�

�h

j`,`
0

1 (n)+a1
`

�v

j`,`
0

2 (n)+a2
`

�`0
�

�

�

Lp(R3)

where
j`,`

0

1 (n) := j1(�`(n))� j1(�`0(n)) and j`,`
0

2 (n) := j2(�`(n))� j2(�`0(n)) .

Since �`0 2 Ḃ
�1+ 2

p

, 1
p

p,q , we deduce that

2j1(�`

(n))(�1+ 2
p

)+
j2(�

`

(n))
p

�

�

�

�h
j1(�`

(n))+a1
`

�v
j2(�`

(n))+a2
`

�`0

�
`

0 (n)

�

�

�

Lp(R3)
! 0, as n ! 1 . (5.20)

• Finally, let us regroup in (5.16) all the profiles corresponding to the same scales: namely let us write,
for a given ` 2 N

un �  L
n = u`

n,1 + u`
n,2 ,

where (up to conveniently re-ordering the profiles �`1
�
`1 (n)

, . . . ,�`
L

�
`

L

(n)),

u`
n,1 :=

L
`

X

k=1

�`
k

�
`

k

(n) with ji(�`
k

(n)) = ji(�`(n)) , 8i 2 {1, 2} ,
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and on the other hand, writing to simplify ji(�`(n)) =: ji(n),

u`
n,2 :=

L
X

k=L
`

+1

�`
k

�
`

k

(n) ,

with scales ji(�`
k

(n)) orthogonal to the scale ji(n) for every k 2 {L` + 1, . . . , L}. The result (5.20)
enables us to take care of the term u`

n,2 which satisfies

2j1(�`

(n))(�1+ 2
p

)+
j2(�

`

(n))
p

�

�

�

�h
j1(�`

(n))+a1
`

�v
j2(�`

(n))+a2
`

u`
n,2

�

�

�

Lp(R3)
! 0, as n ! 1 ,

so let us prove that

lim sup
n!1

2j1(n)(�1+ 2
p

)+
j2(n)

p

�

�

�

�h
j1(n)+a1

`

�v
j2(n)+a2

`

u`
n,1

�

�

�

Lp(R3)
= C > 0 .

By Hölder’s inequality if 2  p  1, we have

2
j2(n)

2

�

�

�

�h
j1(n)

�v
j2(n)

u`
n,1

�

�

�

L2(R3)

✓

2j1(n)+j2(n)
�

�

�

�h
j1(n)

�v
j2(n)

u`
n,1

�

�

�

L1(R3)

◆

p�2
2(p�1)

⇥
✓

2j1(n)(�1+ 2
p

)+
j2(n)

p

�

�

�

�h
j1(n)

�v
j2(n)

u`
n,1

�

�

�

Lp(R3)

◆

p

2(p�1)

(5.21)

and since both terms on the right-hand side are bounded, the result will follow if we prove that

lim sup
n!1

2
j2(n)

2

�

�

�

�h
j1(n)+a1

`

�v
j2(n)+a2

`

u`
n,1

�

�

�

L2(R3)
= C > 0.

But this is a simple orthogonality argument, noticing that

�

�

�

�h
j1(n)+a1

`

�v
j2(n)+a2

`

un,1

�

�

�

2

L2(R3)
=

L
`

X

k=1

k�h
j1(n)+a1

`

�v
j2(n)+a2

`

�`
k

�
`

k

(n)k
2
L2(R3)

+
X

k 6=k0

(�h
j1(n)+a1

`

�v
j2(n)+a2

`

�`
k

�
`

k

(n)|�
h
j1(n)+a1

`

�v
j2(n)+a2

`

�
`
k

0
�
`

k

0 (n)
)L2(R3) .

(5.22)

Indeed we know from (5.18) that

2
j2(n)

2

 

L
`

X

k=1

k�h
j1(n)+a1

`

�v
j2(n)+a2

`

�`
k

�
`

k

(n)k
2
L2(R3)

!

1
2

� 2
j2(n)

2 k�h
j1(n)+a1

`

�v
j2(n)+a2

`

�`
�
`

(n)kL2(R3)

� C`,2 > 0 (5.23)

so it is enough to prove that

2j2(n)
X

k 6=k0

(�h
j1(n)+a1

`

�v
j2(n)+a2

`

�`
k

�
`

k

(n)|�
h
j1(n)+a1

`

�v
j2(n)+a2

`

�
`
k

0
�
`

k

0 (n)
)L2(R3) ! 0 . (5.24)

This is a finite sum so it su�ces to prove the result for each individual term, which writes after a
change of variables

Z

R3

(�h
a1
`

�v
a2
`

�`
k)(x)⇥ (�h

a1
`

�v
a2
`

�`
k

0 )(x+ 2j2(n)(x`
k

n,h � x
`
k

0
n,h)) dx

which goes to zero when n goes to infinity, due to the orthogonality of the cores of concentration (see
Theorem 3), so (5.24) holds.

• Finally we need to take the remainder into account. But a reverse triangle inequality gives trivially

the result, since the remainder  L
n may be made arbitrarily small in Ḃ

�1+ 2
p

, 1
p

p,1 as soon as L is large
enough, uniformly in n, whereas (5.22)-(5.23) guarantee that making L larger does not decrease the
norm of the sum of the profiles.

The lemma is proved.
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Lemma 53 Let us consider a sequence (vn)n2N, bounded in B1
q , which may be decomposed with the

notation of Theorem 3 into

vn =
L
X

`=1

�`
�
`

(n) +  L
n .

Assume moreover that lim
n!1

2�j1(�`

(n))+j2(�`

(n)) 2 {0,1}. If (@3vn)n2N is bounded in Ḃ0,1
1,q , then

lim
n!1

2�j1(�`

(n))+j2(�`

(n)) = 0 .

Proof (Proof of Lemma 53). By definition of Ḃ0,1
1,q , we have

k@3vnkḂ0,1
1,q

=
⇣

X

j,k2Z
2jqk�h

k�
v
j@3vnk

q
L1(R3)

⌘1/q
< 1 uniformly in n .

In particular, for any ` 2 {1, ..., L}, we have

2j2(�`

(n))
�

�

�

�h
j1(�`

(n))�
v
j2(�`

(n))@3vn

�

�

�

L1(R3)
< 1 uniformly in n . (5.25)

Now reasoning as in the proof of Lemma 52 and taking into account that @3vn is also bounded in
Ḃ1,0

1,q , we find that there are two integers a1` and a2` such that

lim sup
n!1

2j1(�`

(n))
�

�

�

�h
j1(�`

(n))+a1
`

�v
j2(�`

(n))+a2
`

@3�
`
�
`

(n)

�

�

�

L1(R3)
= C > 0 ,

and for any `0 6= `

2j1(�`

(n))
�

�

�

�h
j1(�`

(n))+a1
`

�v
j2(�`

(n))+a2
`

@3�
`0

�
`

0 (n)

�

�

�

L1(R3)
! 0 as n ! 1 .

Finally, we argue as in the proof of Lemma 52 and write

vn = vn,1 + vn,2 +  L
n ,

where vn,1 contains all the profiles with scale ji(�`(n)), meaning (up to re-ordering the profiles)

vn,1 :=
L

`

X

k=1

�`
k

�
`

k

(n) ,

with �`
k

�
`

k

(n) = 2j1(�`

(n))�`
k

⇣

2j1(�`

(n))(xh � x`
k

n,h), 2
j2(�`

(n))(x3 � x`
k

n,3)
⌘

and where, denoting ji(n) :=

ji(�`(n)),

vn,2 :=
L
X

k=L
`

+1

�`
k

�
`

k

(n) ,

with scales j(�`
k

(n)) orthogonal to the scale ji(n) for any k 2 {L1 + 1, . . . , L}. Using the same
argument as in the proof of Lemma 52, we easily prove that for any ` 2 {1, . . . , L}

2j2(�`

(n))
�

�

�

�h
j1(�`

(n))+a1
`

�v
j2(�`

(n))+a2
`

@3vn

�

�

�

L1(R3)
⇠ 2�j1(�`

(n))+j2(�`

(n)) C, as n ! 1 ,

with C > 0, which concludes the proof of the lemma due to (5.25).

Lemma 54 Let us consider (vhn = (v1n, v
2
n))n2N a bounded sequence of vector fields in B1

q and let us
suppose, with the notation of Theorem 3, that

vhn =
L
X

`=1

�̃`,h
�
`

(n) +  L,h
n .

If divh vhn = 0, then for any ` 2 {1, ..., L} we have divh �̃
`,h
�
`

(n) = 0.
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Proof (Proof of Lemma 54). We use the notation of the proof of Lemma 52. Taking advantage of
the fact that the operator divh is continuous from B1

q into Ḃ0,1
1,q , we get, along the same lines as (5.19)

in the proof of Lemma 52 and recalling that Ḃ0,1
1,q embeds in Ḃ

2
p

�2, 1
p

p,q ,

lim sup
n!1

2j1(�`

(n))( 2
p

�2)2
j2(�

`

(n))
p

�

�

�

�h
j1(�`

(n))+a1
`

�v
j2(�`

(n))+a2
`

divh �̃
`,h
�
`

(n)

�

�

�

Lp

= ke ` ⇤ divh �̃`,h
�
`

(n)kLp

and for any `0 6= `, as in (5.20),

2j2(�`
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�

�

�

�h
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`

�v
j2(�`

(n))+a2
`

divh �̃
`0

�
`

0 (n)

�

�

�

L1(R3)
! 0 as n ! 1 .

Moreover as in (5.24),

2�2j1(�`

(n))2j2(�`

(n))
X

k 6=k0

(�h
j1(n)+a1

`

�v
j2(n)+a2

`

�`
k

�
`

k

(n)|�
h
j1(�`

(n))+a1
`

�v
j2(�`

(n))+a2
`

�
`
k

0
�
`

k

0 (n)
)L2 ! 0 .

Then we follow the method giving Lemma 52 which yields

0 = 2�2j1(�`

(n))2j2(�`

(n))
�

�

�

�h
j1(�`

(n))+a1
`

�v
j2(�`

(n))+a2
`

divh vhn

�

�

�

2

L2(R3)

� 2�2j1(�`

(n))2j2(�`

(n))
L
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X

k=1

k�h
j1(�`

(n))+a1
`

�v
j2(�`

(n))+a2
`

divh �̃
`,h
�
`

(n)k
2
L2(R3) + o(1), n ! 1

� ke ` ⇤ divh �̃`,h
�
`

(n)k
2
L2 + o(1), n ! 1

so finally e ` ⇤ divh �̃`,h
�
`

(n) ⌘ 0 for all couples (a1` , a
2
`), hence divh �̃

`,h
�
`

(n) ⌘ 0.

Appendix A. The (perturbed) Navier-Stokes equation in Ḃ
�1+ 2

p

, 1
p

p,1

Appendix A.1. Statement of the results

In this appendix it proved that (NS) is globally wellposed for small data in Ḃ
�1+ 2

p

, 1
p

p,1 , using
anisotropic techniques (note that in [35] such a study was undertaken in the framework of Sobolev
spaces). We also study a perturbed Navier-Stokes equation in such spaces.

We use the following notation:

Sp,q :=gL1(R+; Ḃ
�1+ 2

p

, 1
p

p,q ) \fL1(R+; Ḃ
1+ 2

p

, 1
p

p,q \ Ḃ
�1+ 2

p

,2+ 1
p

p,q ) ,

Sp,q(T ) := gL1
loc([0, T [; Ḃ

�1+ 2
p

, 1
p

p,q ) \ gL1
loc([0, T [; Ḃ

1+ 2
p

, 1
p

p,q \ Ḃ
�1+ 2

p

,2+ 1
p

p,q ) ,

Xp,q := fL1(R+; Ḃ
�1+ 2

p

, 1
p

p,q ) +fL2(R+; Ḃ
�1+ 2

p

,�1+ 1
p

p,q ) \fL1(R+; Ḃ
2
p

,�1+ 1
p

p,q ) ,

Yp,q := L2(R+; Ḃ
2
p

, 1
p

p,q ) \ L1(R+; Ḃ
2
p

,1+ 1
p

p,q \ Ḃ
1+ 2

p

, 1
p

p,q ) .

Theorem 4 Let 1  p < 1 be given. There is a constant c0 such that the following result holds. Let

u0 2 Ḃ
�1+ 2

p

, 1
p

p,1 verifying the smallness condition ku0k
Ḃ

�1+ 2
p

,

1
p

p,1

 c0. Then, there exists a unique, global

solution u to (NS) in Yp,1, and it satisfies

kukY
p,1  2ku0k

Ḃ
�1+ 2

p

,

1
p

p,1

.

If the initial data belongs to Ḃ
�1+ 2

p

, 1
p

p,1 with no smallness condition, then there is a maximal time of
existence T ⇤ > 0 such that there is a unique solution in Yp,1(T ⇤) and if T ⇤ < 1 then

lim
T!T⇤

kuk
fL2([0,T ];Ḃ

2
p

,

1
p

p,1 )
= 1 . (A.1)
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If the initial data belongs moreover to Ḃ
�1+ 2

p

, 1
p

p,q with q < 1 then the solution belongs to the space Yp,q(T ⇤),
on the same life span.

Moreover if p < 4 then the spaces Yp,q can be replaced by Sp,q everywhere.

The next result deals with a perturbed Navier-Stokes system:

(NSP)

8

>

<

>

:

@tu+ P(u ·ru+ U ·ru+ u ·rU)��u = F in R+ ⇥ R3

u|t=0 = u0 ,

div u0 = div F = 0 .

Theorem 5 Let 1  p < 4 be given. There is a constant c0 such that the following result holds.

Consider three divergence free vector fields u0 2 Ḃ
�1+ 2

p

, 1
p

p,1 , F 2 Xp,1 and U 2 Yp,1. If

ku0k
Ḃ

�1+ 2
p

,

1
p

p,1

+ kFkX
p,1  c0 exp

�

� c�1
0 kUkY

p,1

�

,

then there is a unique, global solution to (NSP), in the space

fL2(R+; Ḃ
2
p

, 1
p

p,1 \ Ḃ
�1+ 2

p

,1+ 1
p

p,1 ) \fL1(R+; Ḃ
1+ 2

p

, 1
p

p,1 \ Ḃ
2
p

,1+ 1
p

p,1 ) .

The proofs of those two theorems allow to obtain the following strong stability result, which to simplify
we only state in the case p = 1 since it is the setting of the stability result by weak convergence proved
in this paper. We recall that B1

1 = Ḃ1,1
1,1 .

Corollary 3 (Strong stability in B1
1) Let u0 2 B1

1 be a divergence free vector field generating a

unique solution u in gL1
loc(R

+;B1
1) \ gL1

loc(R
+; Ḃ3,1

1,1 \ Ḃ1,3
1,1). Then u belongs to S1,1 and ku(t)kB1

1
! 0

as t ! 1.
Moreover there is "0 such that any v0 2 B1

1 satisfying ku0 � v0kB1
1
 "0 generates a unique global

solution in S1,1.

Appendix A.2. Proof of Theorem 4

We shall proceed in several steps:

1. If u0 belongs to Ḃ
�1+ 2

p

, 1
p

p,1 , we prove that a fixed point may be performed in the Banach spacefL2(R+; Ḃ
2
p

, 1
p

p,1 ),
which implies the existence and uniqueness of a solution in that space for small data.

2. We then prove that the solution constructed in the previous step actually belongs to Yp,1, and
to Sp,1 if p < 4, and we prove that any ”almost global solution” belongs to Sp,1 and decays to zero
at infinity.

3. We deduce from the estimates leading to the above steps the result for large data.

4. We prove the propagation of regularity in Sp,q for q < 1.

(1) Let us start by applying a fixed point theorem in the Banach space fL2(R+; Ḃ
2
p

, 1
p

p,1 ), to (NS) written
in integral form:

u(t) = et�u0 �
Z t

0
e(t�t0)� Pdiv (u⌦ u)(t0) dt0 ,

recalling that P := I � r��1div is the Leray projector onto divergence free vector fields. We first
notice that (see Proposition B2)

ket��h
k�

v
ju0kLp . e�ct(22k+22j)k�h

k�
v
ju0kLp ,

so one sees immediately that for any 1  r  1 and for any 0  �  2/r,

ket�u0kfLr(R+;Ḃ
�1+ 2

p

+�,

2
r

��+ 1
p

p,1 )
. ku0k

Ḃ
�1+ 2

p

,

1
p

p,1

. (A.2)
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Now let us turn to the non linear term. Defining

B(u, u)(t) := �
Z t

0
e(t�t0)� Pdiv (u⌦ u)(t0) dt0 ,

we have

2
2k
p

+ j

p k�h
k�

v
jB(u, u)(t)kLp .

Z t

0
e�c(t�t0)(22k+22j)(2k + 2j)2

2k
p

+ j

p k�h
k�

v
j (u⌦ u)(t0)kLp dt0 .

The space Ḃ
2
p

, 1
p

p,1 is an algebra according to (B.4) so we have

ku⌦ uk
L1(R+;Ḃ

2
p

,

1
p

p,1 )
. kuk2

fL2(R+;Ḃ
2
p

,

1
p

p,1 )
. (A.3)

It follows that

2
2k
p

+ j

p k�h
k�

v
jB(u, u)(t)kLp . kuk2

fL2(R+;Ḃ
2
p

,

1
p

p,1 )

Z t

0
e�c(t�t0)(22k+22j)(2k + 2j)cjk(t

0) dt0 , (A.4)

where cjk(t0) belongs to `1jk(L
1
t0) and Young’s inequality in time gives

kB(u, u)k
fL2(R+;Ḃ

2
p

,

1
p

p,1 )
. kuk2

fL2(R+;Ḃ
2
p

,

1
p

p,1 )
. (A.5)

The small data result follows classically from (A.2) and (A.5) by a fixed point in fL2(R+; Ḃ
2
p

, 1
p

p,1 ).

(2) Now let us prove that the solution actually belongs to Yp,1. We first notice that the above

computations actually imply that the solution u belongs to L1(R+; Ḃ
1+ 2

p

, 1
p

p,1 \ Ḃ
2
p

,1+ 1
p

p,1 ). Indeed that

holds for the term et�u0 due to (A.2) so we just need to concentrate on the bilinear term. We return
to estimate (A.4) and consider any real number r 2 [1,1]. Using (A.3), we can write for any � 2 R

Ijk(t) := 2k(�1+ 2
p

+�)2j(
2
r

��+ 1
p

)k�h
k�

v
jB(u, u)kLp

. kuk2
fL2(R+;Ḃ

2
p

,

1
p

p,1 )

Z t

0
e�c(t�t0)(22k+22j)(2k + 2j)2k(�1+ 2

p

+�� 2
p

)2j(
2
r

��+ 1
p

� 1
p

)cjk(t
0) dt0 ,

where again cjk(t0) belongs to `1jk(L
1
t0). We want to prove that Ijk(t) belongs to `1jk(L

r
t0). We apply a

Young inequality in the time variable, which produces

kIjkkLr . kuk2
fL2(R+;Ḃ

2
p

,

1
p

p,1 )
(22k + 22j)�

1
r (2k + 2j)2k(�1+ 2

p

+�� 2
p

)2j(
2
r

��+ 1
p

� 1
p

)djk , (A.6)

with djk 2 `1jk. An easy computation shows that the sequence bounding kIjkkLr is bounded in `1jk as

soon as one has 1  �  2/r. This implies in particular that u belongs to the space L1(R+; Ḃ
1+ 2

p

, 1
p

p,1 \

Ḃ
2
p

,1+ 1
p

p,1 ) as claimed.

Remark A1 Note in passing that if 2k +2j was replaced by 2k on the right-hand side of (A.6), then
one would recover directly the whole range 0  �  2/r. Here we need an extra step because of the
presence of 2j .

From now on we assume that p < 4, and we want to extend this result to any degree of integrability

in time, as well as to the space L1(R+; Ḃ
�1+ 2

p

,2+ 1
p

p,1 ). Let us start with the case r = 1. Due to the
smallness of u0 and to the result we just found, it is enough to prove that

kB(u, u)k
gL1(R+;Ḃ

�1+ 2
p

,

1
p

p,1 )
. kuk

gL1(R+;Ḃ
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,

1
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p,1 )
kuk

L1(R+;Ḃ
1+ 2

p

,

1
p

p,1 \Ḃ
2
p

,1+ 1
p

p,1 )
(A.7)
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since (A.2) takes care of et�u0. But we have, if p < 4,

ku ·ruk
L1(R+;Ḃ

�1+ 2
p

,

1
p

p,1 )
 kuh ·rhuk

L1(R+;Ḃ
�1+ 2

p

,

1
p

p,1 )
+ ku3@3uk

L1(R+;Ḃ
�1+ 2

p

,

1
p

p,1 )

. kuk
gL1(R+;Ḃ
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p

,

1
p

p,1 )

⇣

kuk
L1(R+;Ḃ

1+ 2
p

,

1
p

p,1 )
+ kuk

L1(R+;Ḃ
2
p

,1+ 1
p

p,1 )

⌘ (A.8)

by the product laws (B.5) recalled in Appendix B, and the result follows exactly as above: on the one
hand (A.8) gives

Jjk(t) := 2k(�1+ 2
p

)2
j

p k�h
k�

v
jB(u, u)kLp

.
Z t

0
e�c(t�t0)(22k+22j)2k(�1+ 2

p

)2
j

p 2�k(�1+ 2
p

)2�
j

p cjk(t
0) dt0

⇥ kuk
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p
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1
p
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⇣
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p

,

1
p

p,1 )
+ kuk

L1(R+;Ḃ
2
p
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p
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⌘

,

with cjk(t) 2 `1jk(L
1
t ), hence

kB(u, u)k
gL1(R+;Ḃ
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p

,

1
p

p,1 )
 kJjkk`1
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t

)

. kuk
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,

1
p
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⇣

kuk
L1(R+;Ḃ
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,

1
p

p,1 )
+ kuk

L1(R+;Ḃ
2
p

,1+ 1
p

p,1 )

⌘

,

which proves (A.7). On the other hand

Kjk(t) := 2k(�1+ 2
p

)2j(2+
1
p

)k�h
k�

v
jB(u, u)kLp

.
Z t

0
e�c(t�t0)(22k+22j)2k(�1+ 2

p

)2j(2+
1
p

)2�k(�1+ 2
p

)2�
j

p cjk(t
0) dt0

⇥ kuk
gL1(R+;Ḃ

�1+ 2
p

,

1
p

p,1 )

⇣

kuk
L1(R+;Ḃ

1+ 2
p

,

1
p

p,1 )
+ kuk

L1(R+;Ḃ
2
p

,1+ 1
p

p,1 )

⌘

,

with cjk(t) 2 `1jk(L
1
t ), hence

kB(u, u)k
L1(R+;Ḃ

�1+ 2
p

,2+ 1
p

p,1 )
 kKjkk`1

jk

(L1
t

)

. kuk
gL1(R+;Ḃ

�1+ 2
p

,

1
p

p,1 )

⇣

kuk
L1(R+;Ḃ

1+ 2
p

,

1
p

p,1 )
+ kuk

L1(R+;Ḃ
2
p

,1+ 1
p

p,1 )

⌘

.

We conclude that if the initial data is small enough, then the solution belongs to Sp,1.

Remark A2 It is easy to see, using Remark A1 for instance, that one could add an exterior force,

small enough in fL1(R+; Ḃ
�1+ 2

p

, 1
p

p,q ), and the small data result would be identical.

Remark A3 Note that all the estimates can be restricted to a time interval [a, b] of R+.

Remark A4 The gL1(R+; Ḃ
�1+ 2

p

, 1
p

p,1 ) norm on the right-hand side of (A.8) can be replaced by the

(smaller) L1(R+; Ḃ
�1+ 2

p

, 1
p

p,1 ) norm. The same goes for the fL2(R+; Ḃ
2
p

, 1
p

p,1 ) norm in (A.3), which can be

replaced by the L2(R+; Ḃ
2
p

, 1
p

p,1 ) norm. This will be useful in the proof of Theorem 5.

(3) It is classical that the previous estimates can be adapted to the case of large initial data (for
instance by solving first the heat equation and then a perturbed Navier-Stokes equation, of the same
type as in the proof of Theorem 5 below) and we leave this to the reader.

(4) Now we are left with the proof of the propagation of regularity result. Again this is an easy
exercise based on the fact that Young’s inequality for sequences are true in `q with q > 0 so we can
simply copy the above arguments.

Theorem 4 is proved. ut
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Appendix A.3. Proof of Theorem 5

We shall follow the proof of Theorem 4 above, writing (NSP) under the integral form

u(t) = et�u0 �
Z t

0
e(t�t0)� P

⇣

div (u⌦ u+ U ⌦ u+ u⌦ U) + F
⌘

(t0) dt0 .

The linear term et�u0 and the term involving div (u⌦ u) (called B(u, u) in the previous proof) have
already been dealt with and we know that in particular for any a < b and any 1  r  1,

8 0  �  2

r
, ket�u0kfLr([a,b];Ḃ

�1+ 2
p

+�,
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��+ 1
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p,1 )
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Ḃ
�1+ 2

p

,

1
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. (A.9)

We have as well

kB(u, u)k
fL2([a,b];Ḃ

2
p

,

1
p

p,1 )
+ kB(u, u)k

L1([a,b];Ḃ
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,1+ 1
p

p,1 \Ḃ
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1
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. kuk2
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,

1
p
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, (A.10)

and if 1  p < 4,

kB(u, u)k
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,

1
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p,1 )
+ kB(u, u)k
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p,1 )
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p,1 )

. kuk
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1
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p,1 )
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L1(R+;Ḃ
1+ 2

p

,

1
p

p,1 \Ḃ
2
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,1+ 1
p

p,1 )
.

(A.11)

Note that the estimate in fL2(R+; Ḃ
�1+ 2

p

,1+ 1
p

p,1 ) appearing in (A.11) is a consequence of an interpolation

between the spaces gL1(R+; Ḃ
�1+ 2

p

, 1
p

p,1 ) and L1(R+; Ḃ
�1+ 2

p

,2+ 1
p

p,1 ).

Now let us study the term containing the force F . We define

F(t) :=

Z t

0
e(t�t0)� PF (t0) dt0 , with F1 2 L1(R+; Ḃ

�1+ 2
p

, 1
p

p,1 ) and

F2 2 fL2(R+; Ḃ
�1+ 2

p

,�1+ 1
p

p,1 ) \ L1(R+; Ḃ
2
p

,�1+ 1
p

p,1 ) .

On the one hand the above arguments (see the estimates of Ijk and Kjk, or simply Remark A1) enable
us to write directly that for all � 2 [0, 2],

kFk
gL1([a,b];Ḃ

�1+ 2
p

,

1
p

p,1 )
+ kFk

L1([a,b];Ḃ
�1+�+ 2

p

,2��+ 1
p

p,1 )
. kF1k
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�1+ 2

p

,

1
p

p,1 )
(A.12)

while for all 1  �  2,

kFk
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,

1
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p,1 )
+ kFk

L1([a,b];Ḃ
�1+�+ 2
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p
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. kF2k
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p

p,1 )
. (A.13)

On the other hand the same computations as in the proof of Theorem 4 give easily

kFk
gL1([a,b];Ḃ

�1+ 2
p

,

1
p

p,1 )\fL2([a,b];Ḃ
�1+ 2

p

,1+ 1
p

p,1 )
. kF2kfL2(R+;Ḃ

�1+ 2
p

,�1+ 1
p

p,1 )
. (A.14)

Finally let us turn to the contribution of U . We define

U(t) := �
Z t

0
et� Pdiv (u⌦ U + U ⌦ u)(t0) dt0 .

We can write using (B.5) (and Remark A4)

kuh ·rhU + u3@3Uk
L1([a,b];Ḃ

�1+ 2
p

,

1
p

p,1 )
. kuk

L1([a,b];Ḃ
�1+ 2

p

,

1
p

p,1 )
kUk

L1([a,b];Ḃ
1+ 2

p

,

1
p

p,1 \Ḃ
2
p

,1+ 1
p

p,1 )

. kuk
gL1([a,b];Ḃ

�1+ 2
p

,

1
p

p,1 )
kUk

L1([a,b];Ḃ
1+ 2

p

,

1
p

p,1 \Ḃ
2
p

,1+ 1
p

p,1 )
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and using (B.5) again,

kUh ·rhu+ U3@3uk
L1([a,b];Ḃ

�1+ 2
p

,

1
p

p,1 )
. kuk

fL2([a,b];Ḃ
�1+ 2

p

,1+ 1
p

p,1 \Ḃ
2
p

,

1
p

p,1 )
kUk

L2([a,b];Ḃ
2
p

,

1
p

p,1 )
.

This enables us to write

kUk
gL1([a,b];Ḃ

�1+ 2
p

,

1
p

p,1 )\fL2([a,b];Ḃ
�1+ 2

p

,1+ 1
p

p,1 )
.
⇣

kuk
gL1([a,b];Ḃ

�1+ 2
p

,

1
p

p,1 )
kUk

L1([a,b];Ḃ
1+ 2

p

,

1
p

p,1 \Ḃ
2
p

,1+ 1
p

p,1 )

+kuk
fL2([a,b];Ḃ

�1+ 2
p

,1+ 1
p

p,1 \Ḃ
2
p

,

1
p

p,1 )
kUk

L2([a,b];Ḃ
2
p

,

1
p

p,1 )

⌘

.(A.15)

Putting estimates (A.9), (A.10), (A.12), (A.13), (A.15) together we infer that

kuk
fL2([a,b];Ḃ

2
p

,

1
p

p,1 )\L1([a,b];Ḃ
2
p

,1+ 1
p

p,1 \Ḃ
1+ 2

p

,

1
p

p,1 )
 C

⇣

kuk2
fL2([a,b];Ḃ

2
p

,

1
p

p,1 )
(A.16)

+kuk
fL2([a,b];Ḃ

2
p

,

1
p

p,1 )
kUk

L2([a,b];Ḃ
2
p

,

1
p

p,1 )
+ ku(a)k

Ḃ
�1+ 2

p

,

1
p

p,1

+ kFkX
p,1

⌘

,

while estimates (A.9), (A.11), (A.14), (A.15) give

kuk
gL1([a,b];Ḃ

�1+ 2
p

,

1
p

p,1 )\fL2([a,b];Ḃ
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p

,1+ 1
p
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⇣
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p
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,
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p,1 \Ḃ
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fL2([a,b];Ḃ
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p,1 \Ḃ
2
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,

1
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p,1 )
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L2([a,b];Ḃ
2
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p

p,1 )
+ ku(a)k

Ḃ
�1+ 2
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p,1

+ kFkX
p,1

⌘

.(A.17)

To conclude we resort to a Gronwall-type argument (see for instance [27] for a similar argument):

there exist N real numbers (Ti)1iN such that T1 = 0 and TN = +1, such that R+ =
N�1
[

i=1

[Ti, Ti+1]

and satisfying

kUk
L2([T

i

,T
i+1];Ḃ

2
p

,

1
p

p,1 )
+ kUk

L1([T
i

,T
i+1];Ḃ
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1
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p,1 \Ḃ
2
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,1+ 1
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p,1 )
 1

8C
8i 2 {1, . . . , N � 1} . (A.18)

Then suppose that

ku0k
Ḃ

�1+ 2
p

,

1
p

p,1

+ kFkX
p,1  1

8CN(2C)N
· (A.19)

By time continuity we can define a maximal time T 2 R+ [ {1} such that

kuk
fL2([0,T ];Ḃ

2
p
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1
p

p,1 )
+ kuk

L1([0,T ];Ḃ
2
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p,1 \Ḃ
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1
p

p,1 )
 1

4C
· (A.20)

If T = 1 then the theorem is proved. Suppose now that T < +1. Then we can define an integer k 2
{1, . . . , N � 1} such that

Tk  T < Tk+1 ,

and plugging (A.18) and (A.20) into (A.16) we get for any i  k � 1

kuk
fL2([T

i

,T
i+1];Ḃ

2
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+ CkFkX
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+
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,
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⌘

.
(A.21)
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From relations (A.16) and (A.17) we also get

kuk
gL1([T

i
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i+1];Ḃ
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p,1 )
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Ḃ

�1+ 2
p

,

1
p

p,1

+ kFkX
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. (A.22)

Since gL1(R+; Ḃ
�1+ 2

p

, 1
p

p,1 ) ⇢ L1(R+; Ḃ
�1+ 2

p

, 1
p

p,1 ), we further infer that
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.

A trivial induction now shows that for all i 2 {1, . . . , k � 1},
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.

We conclude from (A.21) and (A.22) that

kuk
fL2([T

i

,T
i+1];Ḃ
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and
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for all i  k � 1. The same arguments as above also apply on the interval [Tk, T ] and yield

kuk
fL2([T

k

,T ];Ḃ
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+ kFkX
p,1

⌘

and

kuk
gL1([T

k

,T ];Ḃ
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.

Then it is easy to see that (see for instance [27])

kuk
fL2([0,T ];Ḃ

2
p
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1
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p,1 )
 kuk

fL2([T1,T2];Ḃ
2
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p,1 )
+ · · ·+ kuk

fL2([T
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 N(2C)Nku0k
Ḃ
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+N(2C)NkFkX
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Under assumption (A.19) this contradicts the maximality of T as defined in (A.20). Since the integer
N can be chosen of size equivalent to kUk

L2(R+;Ḃ
2
p

,

1
p

p,1 )
+ kUk

L1(R+;Ḃ
1+ 2

p

,

1
p

p,1 \Ḃ
2
p

,1+ 1
p

p,1 )
, the theorem is

proved. ut

Remark A5 Note that we have obtained also that u belongs to gL1(R+, Ḃ
�1+ 2

p

, 1
p

p,1 ).

Appendix A.4. Proof of Corollary 3

Let u 2 gL1
loc(R

+;B1
1) \ L1

loc(R
+; Ḃ3,1

1,1 \ Ḃ1,3
1,1) solve (NS) with initial data u0 2 B1

1. Let us start
by proving that u 2 S1,1 and that ku(t)k B1

1
! 0 as t goes to 1. Actually it is enough to prove

the convergence to zero result in large times, since the fact that u 2 S1,1 is then a consequence of
Theorem 4 since for T large enough we have ku(T )kB1

1
 c0.

We shall only sketch the proof as it is very similar to the same result in the isotropic case, proved
in [27]. The idea is to use a frequency truncation to decompose u0 = v0 + w0 with kw0kB1

1
 "0 for

some arbitrarily small "0 and with v0 2 B1
1 \ L2. We then solve globally (NS) in S1,1 with data w0,

and we know from Theorem 4 that

kwkS1,1  2"0 .
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It is easy to see (using the same arguments as in Proposition B3) that kw0kḂ�1
1,1

. "0 so the arguments

of Proposition A.2 of [27] imply that

sup
t>0

p
tkw(t)kL1 . "0 . (A.23)

Now let us consider v: it satisfies the perturbed (NSP) equation with data v0, with F = 0 and

with U = w, and it belongs to gL1
loc(R

+;B1
1) \ L1

loc(R
+; Ḃ3,1

1,1 \ Ḃ1,3
1,1) since that holds for u and w. We

claim that there is T > 0 such that

v 2gL1([0, T ];L2) \ L2([0, T ]; Ḣ1) .

Indeed we have by product laws the following analogue of (A.8):

ku ·ruk
L1([0,T ];Ḃ

1, 1
2

1,1 )
 kuh ·rhuk

L1([0,T ];Ḃ
1, 1

2
1,1 )

+ ku3@3uk
L1([0,T ];Ḃ
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2

1,1 )

. kuk
gL1([0,T ];Ḃ
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2

1,1 )

⇣

kukL1([0,T ];Ḃ3,1
1,1)

+ kukL1([0,T ];Ḃ2,2
1,1)

⌘

,

which implies as in (A.7) that

kB(u, u)k
gL1([0,T ];Ḃ

1, 1
2

1,1 )
. kuk

gL1([0,T ];Ḃ
1, 1

2
1,1 )

kukL1([0,T ];Ḃ3,1
1,1\Ḃ2,1+1

1,1 )

so as in Lemma A.2 of [27] we get v 2 gL1([0, T ]; Ḃ
1, 12
1,1 ) ⇢ gL1([0, T ]; Ḃ0,0

2,1) ⇢ gL1([0, T ];L2). The

bound in L2([0, T ]; Ḣ1) is obtained in a similar way, noticing that if f is in L1([0, T ]; Ḃ
1, 12
1,1 ), then

F :=

Z t

0
e(t�t0)�P(f)(t0) dt0 satisfies, by similar computations to the proof of Theorem 4,

kFkfL2([0,T ];Ḃ1
2,1(R3))

. kfkL1([0,T ];Ḃ0,0
2,1)

. kfk
L1([0,T ];Ḃ

1, 1
2

1,1 )
.

Then we conclude exactly as in the proof of Theorem 2.1 in [27]: we find, writing an energy estimate
in L2 and using (A.23) that v can be made arbitrarily small in Ḣ

1
2 as time goes to infinity, hence

by Proposition B3 the same holds in Ḃ
0, 12
2,1 . It follows that u(t) = v(t) + w(t) is arbitrarily small

in Ḃ
0, 12
2,1 (say smaller than c0, if "0 is small enough) for t large enough, hence there is a global solution

in S2,1 associated with u0, which can be shown to also belong to S1,1 by a propagation of regularity
argument. We know indeed by Theorem 4 that u belongs to S1,1(T ) for some time T so we just need

to check that the fL2([0, T ]; Ḃ2,1
1,1) norm of u remains bounded uniformly in T . But product laws give

ku⌦ ukL1([0,T ];Ḃ2,1
1,1)

. kukfL2([0,T ];Ḃ2,1
1,1)

kukfL2([0,T ];Ḃ
1, 1

2
2,1 )

so as in (A.5) we get

kB(u, u)kfL2([0,T ];Ḃ2,1
1,1)

. kukfL2([0,T ];Ḃ2,1
1,1)

kukfL2([0,T ];Ḃ
1, 1

2
2,1 )

,

which allows to prove the result.

Then the strong stability result is obtained using Theorem 5. Indeed we can solve (NS) with initial
data v0 for a short time and the solution v can be written as u � w. The vector field w then satis-
fies (PNS) with initial data w0, with forcing term zero, and with U = u. We know that u 2 S1,1 ⇢ Y1,1

so the result is a direct consequence of Theorem 5.

Corollary 3 is proved. ut

Appendix B. Anisotropic Littlewood-Paley decomposition

In this section we recall the definition of the isotropic and anisotropic Littlewood-Paley decompo-
sitions and associated function spaces, and give their main properties that are used in this paper. We
refer for instance to [3], [17], [33], [32], [35], [51] and [59] for all necessary details.
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Appendix B.1. Isotropic decomposition and function spaces

Let b� (the Fourier transform of �) be a radial function in D(R) such that b�(t) = 1 for |t|  1
and b�(t) = 0 for |t| > 2, and we define (in d space dimensions) �` := 2d`�(2`| · |). Then the frequency
localization operators used in this paper are defined by

S` := �` ⇤ · and �` := S`+1 � S` =:  ` ⇤ · .

Now let us define Besov spaces on Rd using this decomposition. We start by defining, as in [3],

S 0
h :=

n

f 2 S 0(Rd) / k�jfkL1 ! 0, j ! �1
o

. (B.1)

Let f be in S 0(Rd), let p belong to [1,1] and q to ]0,1], and let s 2 R, s < d/p. We say that f
belongs to Ḃs

p,q(Rd) if the sequence "` := 2`sk�`fkLp belongs to `q(Z), and we have

kfkḂs

p,q

(Rd) := k"`k`q(Z) .

If s = d/p and q = 1, then the same definition holds as soon as one assumes moreover that f 2 S 0
h

— or equivalently after taking the quotient with polynomials. Finally in all other cases then Ḃs
p,q(Rd)

is defined by the above norm, after taking the quotient with polynomials (see [9] and the references
therein for a discussion).

It is well-known that an equivalent norm is given by

8s 2 R, 8(p, q) 2 [1,1], kfkḂs

p,q

(Rd) =
�

�t�
s

2 kK(t)fkLp(Rd)

�

�

Lq(R+; dt
t

)
(B.2)

with K(t) := t@te
t�. We recall also that Sobolev spaces are defined by the norm k · kḂs

2,2(Rd) and

8s < d

2
, kfkḢs(Rd) :=

✓

Z

|⇠|2s|f̂(⇠)|2 d⇠
◆

1
2

where f̂ is the Fourier transform of f .

Finally it is useful, in the context of the Navier-Stokes equations, to introduce the following space-time
norms (see [16]):

kfkfLr([0,T ];Ḃs

p,q

) :=
�

�2jsk�jfkLr([0,T ];Lp(Rd))

�

�

`q

or equivalently

kfkfLr([0,T ];Ḃs

p,q

) =
�

�t�
s

2 kK(t)fkLr([0,T ];Lp(Rd))

�

�

Lq(R+; dt
t

)
.

The following proposition lists a few useful inequalities related to those spaces.

Proposition B1 If 1  p  q  1, then

k@↵�jfkLq(Rd) . 2j(|↵|+d(1/p�1/q))k�jfkLp(Rd) ,

and ket��jfkLq(Rd) . e�ct22jk�jfkLq(Rd) .

Finally let us recall product laws in Besov spaces:

kfgk
Ḃ

s1+s2� d

p

p,q

(Rd)
. kfkḂs1

p,q

(Rd)kgkḂs2
p,q

(Rd) ,

as soon as

s1 + s2 > 0 and sj <
d

p
, j 2 {1, 2} .
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Appendix B.2. Anisotropic decomposition and function spaces

Similarly we define a three dimensional, anisotropic decomposition as follows. For (j, k) 2 Z2, we
define the horizontal decomposition as

Sh
k f := F�1

�

b�(2�k|⇠h|)f̂(⇠)
�

and�h
k := Sh

k+1 � Sh
k , which writes F(�h

kf) := b (2�k|⇠h|)f̂(⇠)

and the vertical decomposition as

Sv
j f := F�1

�

b�(2�j |⇠3|)f̂(⇠)
�

and�v
j := Sv

j+1 � Sv
j , which writes F(�v

jf) := b (2�j |⇠3|)f̂(⇠) .

Now let us define anisotropic Besov spaces. We define, for all (s, s0) 2 R2, s < 2/p, s0 < 1/p and
all p 2 [1,1] and q 2]0,1],

Ḃs,s0

p,q :=
n

f 2 S 0 / kfk
Ḃs,s

0
p,q

:=
�

�

�

2ks+js0k�h
k�

v
jfkLp

�

�

�

`q
< 1

o

.

In all other cases one defines the same norm, and one needs to take the quotient with polynomials.

As in (B.2) an equivalent definition using the heat flow is

kfk
Ḃs,s

0
p,q

=
�

�

�

t�
s

2 t0�
s

0
2 kKh(t)Kv(t

0)fkLp

�

�

�

Lq(R+⇥R+; dt
t

dt

0
t

0 )
(B.3)

where Kh(t) := t@te
t�2

h and Kv(t) := t@te
t@2

3 .

As in the isotropic case we introduce the following space-time norms:

kfkfLr([0,T ];Ḃs,s

0
p,q

)
:=
�

�2ks+js0k�h
k�

v
jfkLr([0,T ];Lp)

�

�

`q

or equivalently

kfkfLr([0,T ];Ḃs,s

0
p,q

)
=
�

�

�

t�
s

2 t0�
s

0
2 kKh(t)Kv(t

0)fkLr([0,T ];Lp)

�

�

�

Lq(R+⇥R+; dt
t

dt

0
t

0 )
.

Notice that of course fLr([0, T ]; Ḃs,s0

p,r ) = Lr([0, T ]; Ḃs,s0

p,r ), and by Minkowski’s inequality, we have the

embedding fLr([0, T ]; Ḃs,s0

p,q ) ⇢ Lr([0, T ]; Ḃs,s0

p,q ) if r � q.

The anisotropic counterpart of Proposition B1 is the following.

Proposition B2 If 1  p1  p2  1, then

k@↵x
h

�h
kfkLp2 (R2;Lr(R)) . 2k(|↵|+2(1/p1�1/p2))k�h

kfkLp1 (R2;Lr(R)) ,

k@↵x3
�v

jfkLr(R2;Lp2 (R)) . 2j(|↵|+1/p1�1/p2)k�v
jfkLr(R2;Lp1 (R)) ,

ket��h
k�

v
jfkLq . e�ct(22k+22j)k�h

k�
v
jfkLq .

In this paper we use product laws in anisotropic Besov spaces, which read as follows:

kfgk
Ḃ

s1+s2� 2
p

,s

0
2

p,q

. kfk
Ḃ

s1,

1
p

p,1
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Ḃ

s2,s
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Ḃ

s1,s

0
2

p,q

kgk
Ḃ
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1
p
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,
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1

p
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2

p
, j 2 {1, 2} ,

and
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Ḃ
s1+s2� 2

p
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0
1+s
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1� 1

p

p,q

. kfk
Ḃ
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0
1

p,q

kgk
Ḃ

s2,s

0
2

p,q

,

as soon as

s01 + s02 > 0 and s0j <
1

p
, j 2 {1, 2}
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and with the same conditions on s1, s2. Finally

kfgk
Ḃ

2
p

,

1
p

p,1

. kfk
Ḃ

2
p

,

1
p

p,1

kgk
Ḃ

2
p

,

1
p

p,1

, (B.4)

and if p < 4,
kfgk

Ḃ
�1+ 2

p

,

1
p

p,1

. kfk
Ḃ

�1+ 2
p

,

1
p

p,1

kgk
Ḃ

2
p

,

1
p

p,1

. (B.5)

The following result compares some isotropic and anisotropic Besov spaces.

Proposition B3 Let s and t be two nonnegative real numbers. Then for any (p, q) 2 [1,1]2 one has

kfkḂs,t

p,q

. kfkḂs+t

p,q

.

Proof (Proof of Proposition B3). We recall that

kfkq
Ḃs,t

p,q

=
X

j,k

2ksq2jtqk�h
k�

v
jfk

q
Lp

.

We separate the sum into two parts, depending on whether j < k or j � k and we shall only detail
the first case (the second one is identical). We notice indeed that if j < k, then

k�h
k�

v
jfkLp = k

X

`

�`�
h
k�

v
jfkLp

⇠ k�k�
h
k�

v
jfkLp .

It follows that
X

j<k

2ksq2jtqk�h
k�

v
jfk

q
Lp

.
X

j<k

2ksq2jtqk�kfkqLp

.
X

k

2k(s+t)qk�kfkqLp

and the result follows.

Finally let us prove the following easy lemma, which implies that (u0,n)n2N is bounded in B1
q if it is

bounded in a space of the type Ḃ1±"1,1±"2
1,1 for some "1, "2 > 0.

Lemma B4 Let s1, s2 2 R, p 2 [1,1], 0 < q1  q2  1 be given, as well as two positive real
numbers "1 and "2. The space Ḃs1±"1,s2±"2

1,q2 is continuously embedded in Ḃs1,s2
p,q1 .

Proof. Let f be an element of Ḃs1±"1,s2±"2
1,q2 and let us prove that f belongs to Ḃs1,s2

p,q1 . We write

kfkq1
Ḃ

s1,s2
p,q2

=
X

j,k

2ks1q12js2q1k�h
k�

v
jfk

q1
Lp

and we decompose the sum into four terms, depending on the sign of j and k. For instance we have

F1 :=
X

j0
k�0

2ks1q12js2q1k�h
k�

v
jfk

q1
Lp


X

j0
k�0

2�k"1q12j"2q12k(s1+"1)q12j(s2�"2)q1k�h
k�

v
jfk

q1
Lp

and we apply Hölder’s inequality for sequences which gives

F1 . kfk
Ḃ

s1+"1,s2�"2
1,q2

.

The other terms are dealt with similarly.
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Appendix B.3. On the role of anisotropy in the Navier-Stokes equations

In this final short paragraph, we shall prove Theorem 1 stated in the introduction.

Proof (Proof of Theorem 1). The proof follows from the small data theory recalled in Appendix A.

Let us first consider v0 :=
X

j�k<�N0

�h
k�

v
ju0. We have

kv0k
Ḃ

0, 1
2

2,1

⇠
X

j�k<�N0

2
j

2 k�h
k�

v
ju0kL2(R3)

⇠
X

j�k<�N0

2
j�k

2 2
k

2 k�h
k�

v
ju0kL2(R3)  C2�

N0
2 ⇢

due to Proposition B3 which states in particular that Ḃ
1
2
2,1 ⇢ Ḃ

1
2 ,0
2,1 . So v0 can be made arbitrarily

small in Ḃ
0, 12
2,1 , for N0 large enough (depending only on ⇢).

Now let us consider w0 =
X

j�k>N0

�h
k�

v
ju0. We shall prove that in this case kw0kL3 is small. Indeed

we know (see for instance [3]) that Ḃ0
3,1 ⇢ L3, and moreover we have as soon as N0 is large enough

(depending only on the choice of the Littlewood-Paley decomposition)

k�`w0kL3 ⇠
�

�

X

k�`<�N0

�h
k�

v
`u0

�

�

L3 .

It follows that
k�`w0kL3 

X

k�`<�N0

k�h
k�

v
`u0kL3

 C
X

k�`<�N0

2
k

3 2
`

6 k�h
k�

v
`u0kL2

by Bernstein’s inequalities (see Proposition B2, applying successively the inequalities for the horizontal

and the vertical truncations). So using Proposition B3 again which states in particular that Ḃ
1
2
2,1 ⇢

Ḃ
0, 12
2,1 , we get

k�`w0kL3  C
X

k�`<�N0

2
k�`

3 2
`

2 k�h
k�

v
`u0kL2  C2�

N0
3 ⇢c` ,

where c` is a sequence in the unit ball of `1(Z). So again if N0 is large enough (depending only on ⇢)
then we find that w0 is small in Ḃ0

3,1 hence in L3.

To conclude we can start by solving (NS) associated with the data w0 which yields a global, unique
solution w that by Proposition B3 belongs to Y3,1, with norm smaller than 2kw0kL3 (by small data

theory, as soon as N0 is large enough). Then since Ḃ
0, 12
2,1 embeds in Ḃ

� 1
3 ,

1
3

3,1 we can apply Theorem 5
with F = 0 and U = w which solves the perturbed equation satisfied by u � w globally in time, as
soon as N0 again is large enough. The solution belongs to C(R+;L3(R3)) by classical propagation of
regularity arguments, and that proves the theorem.

Remark B5 Contrary to Theorem 2, the proof of Theorem 1 does not require the special structure
of the nonlinear term in (NS) as it reduces to checking that the initial data is small in an adequate
scale-invariant space.
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