
Modular Multiplication and Base Extensions in

Residue Number Systems

Jean-Claude Bajard
LIRMM

Montpellier, France
bajard@lirmm.fr

Laurent-Stephane Didier
Universit�e de Bretagne Occidentale

Brest, F rance
laurent-stephane.didier@univ-brest.fr

P eterKornerup
SDU/Odense Universit y

Odense, Denmark
kornerup@imada.sdu.dk

Abstract

We present a new RNS modular multiplication
for very large operands. The algorithm is based
on Montgomery's method adapted to residue arith-
metic. By cho osing the moduli of the RNS system
reasonably large, an e�ect corresponding to a redun-
dant high-radix implementation is achieved, due to
the c arry-fr ee nature of residue arithmetic. The ac-
tual computation in the multiplication takes place
in constant time, where the unit of time is a few
simple residue op erations. However, it is ne ces-
sary twic eto convert values from one residue sys-
tem into another, operations which take O(n) time
on O(n) processors, where n is the number of mod-
uli in the RNS systems. Thus these conversions are
the bottlenecks of the method, and any futur e im-
provements in RNS base conversions, or the use of
particular residue systems, can immediately be ap-
plied.

1. Introduction

Many cryptosystems [16 , 5, 11] employ modu-
lar multiplications and exponentiation on very large
numbers (possibly one or tw othousand bits), and
various algorithms have been proposed [3, 9, 23, 21,
20, 12]. Most of them use redundant (possibly high-
radix) standard number systems and Montgomery's
modular multiplication [10]. On the other hand the
Residue Number System (RNS) is also of particu-
lar in terest, because of the parallel and carry free
nature of its arithmetic [19, 22].

Note that the Montgomery modular multiplica-
tion takes place in a modi�ed residue system, where

operands and results contain an extra factor M ,
for some suitably chosen value of M . Mapping in
and out of this residue system is simple, and its
cost may be amortized over many multiplications,
when these are used for modular exponentiation.
How ev er, if applied to RSA encryption [16] as well
as decryption (i.e., both ends using the same RNS
system), we may just as well assume that the mes-
sage itself is considered the RNS representation of
a number, thus mapping in and out of the RNS
system is not necessary. This is particularly inter-
esting for the Fiat-Shamir authenti�cation protocol
[5, 11], where only modular multiplications are used
(no exponentiation). We shall thus not further dis-
cuss the implications of using this modi�ed residue
system.

We have previously [1, 2] proposed tw o RNS
versions of the Montgomery algorithm for modu-
lar multiplication. T ocompute A � B mod N , an
in termediate value Q is to be determined such that
A � B + Q � N is a multiple of M , the product
of the moduli of the RNS base. The quotient Q
w as computed digit-wise in a Mixed Radix System
(MRS). The result of one pass of the algorithm was
then obtained in an auxiliary RNS base, using O(n)
(the size of the RNS base) RNS computations. The
�rst version was a direct translation of the classi-
cal Montgomery algorithm for weigh ted representa-
tions to RNS. We just used MRS as a weighted sys-
tem associated with the RNS. The second version
then w asan improvement of the �rst: w esho wed
that a MRS representation of A w as not necessary
and that w ecould precompute some values to re-
duce the complexity of the algorithm.

Here w e propose to compute Q with a single
parallel RNS calculation in one RNS base, but to
be able to divide out the factor M it is neces-

Proceedings of the 15th IEEE Symposium on Computer Arithmetic (ARITH’01)
1063-6889/01 $10.00 © 2001 IEEE

sary to convert Q in to an auxiliary RNS base, such
that w ecan evaluate the result of the algorithm,
R = (A �B +Q �N) �M�1, in the auxiliary RNS
base. The major costs now lie in conversions from
one base into another. Two such O(n)-time paral-
lel conversion algorithms are described, where the
�rst and classical one based on [17] unfortunately
cannot be employed for the conversion ofQ. But it
can be used to con vert theresult R back into the
original base, allowing it to be used as an operand
for another multiplication. F or the �rst conversion
it turns out to be suÆcient to allow an o�set to be
present in the residue, i.e., it need not be properly
modulo reduced, it just has to belong to the cor-
rect residue class. Then using the above mentioned
method for converting back to the original system
removes the un-wanted o�set. Any other baseex-
tension algorithm (without extra modulus) may be
appropriate. Note that for regularity purposes, we
want base conversions which can be executed on
simple cells (the n residue \channels"), which ex-
cludes the use of O(log(n))-time algorithms where
multi-operand addition in a cell is performed in a
tree structure.

Section 2 in troduces the notation used in the
residue and the mixed radix systems employed. In
Section 3 the Montgomery algorithm is briey in-
troduced and its adaption to the RNS system is
discussed, together with a brief proof of correct-
ness. Section 4 then introduces the tw o conversion
algorithms and their use for our new modular mul-
tiplication algorithm. Section 5 combines the ba-
sic RNS multiplication with the conversions, and
�nally Section 6 contains some conclusions.

2. The Residue Number Systems

We begin with a short summary of the RNS sys-
tem, and introduce our terminology:

� The vector fm1;m2; � � � ;mng forms a set of
moduli, called the RNS-base Bn, where the
mi's are mutually prime.

� M is the v alue of the product
Qn

i=1mi.

� The vector fx1; � � � ; xng is the RNS represen-
tation of X , a positiv ein teger less than M ,
where

xi = jX jmi
= X mod mi

Due to the Chinese Remainder Theorem, any
X less than M has one and only one RNS-
representation. Addition and multiplication mod-
uloM can be implemented in parallel in linear space
(O(n) channels), and performed in one single step

without an y carry propagation, by de�ning +
RNS

and �
RNS

as component-wise operations [8, 19, 22]:

A+
RNS

B � jaj + bj jmj
; for j 2 f1; � � � ; ng

A�
RNS

B � jaj � bj jmj
; for j 2 f1; � � � ; ng:

We also de�ne \exact division", A �
RNS

B, as-
suming that B divides A, gcd (B;M) = 1:

R = A�
RNS

B � r̂j for j 2 f1; � � � ; ng
where r̂j is computed as:

r̂j =
���aj � (B)�1mj

���
mj

; (1)

where (X)
�1

mj
denotes the inverse of X modulo mj

for X and mj relatively prime.

We shallalso in troduce an auxiliary base eB~n =
fem1; em2; � � � ; em~ng with fM =

Q
~n

i=1 emi, where fM is
coprime to M . In this system the RNS representa-
tions of an integer X is:

XRNS = fex1; ex2; � � � ; ex~ng
and we shall assume that fM >M .

3. The RNS algorithm

Based on the original M-reduce algorithm by
Montgomery [10] w ewant to compute the modu-
lar product, ABM�1 mod N , for giv enA;B;N and
M , where N < M and M is chosen such that re-
ductions modulo M are \easy", which will be the
case when M is the product of the moduli of the
RNS system used. As we shall see below, to be able
to perform the computations in RNS arithmetic, we
will have to use t w o RNS systems,as also used in
[1, 2, 15, 7]. Hence the operands A and B must be
available in both systems. And when for exponen-
tiations the result of a multiplication may be used
again as input for other multiplications, the result
should also be delivered in both systems.

In the M-reduce algorithm we compute an inter-
mediate value Q, Q < M , such that: A �B+Q �N
is a multiple of M . Then in RNS the representa-
tion of A � B + Q � N in Bn is composed only of
zeros. As w eha veQ < M , Q can be easily ob-
tained in the RNS base Bn. For i = 1::n, w e have
(ai � bi+ qi �ni) mod mi = 0, and thus deduce that
for i = 1::n we have:

qi = (�ai � bi) � (ni)�1mi
mod mi: (2)

But note that since A �B +Q �N is a multiple
of M , it cannot be represented in the system with
base Bn. Hence to compute the �nal result R =
(A � B + Q �N) �M�1 it is necessary to compute

Proceedings of the 15th IEEE Symposium on Computer Arithmetic (ARITH’01)
1063-6889/01 $10.00 © 2001 IEEE

its value in an RNS system using another base eB~n,
and thus not only to haveA;B and N available ineB~n , but also to convert Q in to that system. Hence
w e obtain the following algorithm:

Algorithm 1 RNS Modular Multiplication

Stimulus: A residue base Bn , fm1;m2; � � � ;mng,
where M =

Qn

i=1mi

A residue base eB~n, fem1; em2; � � � ; em~ng,
where fM =

Q
~n

i=1 emi

where gcd(M; fM) = 1 and M < fM
A modulus N expr essedin RNS in the
two bases, with gcd(N;M) = 1,
and 0 < 2N < M

Integer A given in RNS in the two RNS
bases
Integer B given in RNS in the two RNS
bases with A �B < M �N

Response: A ninteger R < 2N expr essedin the
two RNS bases such that
R � ABM�1(modN)

Method: Q (�A�
RNS

B)�
RNS

N�1 in Bn
Conversion of the representation of Q
from Bn to eB~n
R (A�

RNS
B +

RNS
Q�

RNS
N)

�
RNS

M�1in eB~n
Conversion of the repr esentation of R
from eB~n to Bn

Since Q < M and AB < MN it follo ws that
R < 2N , and it is easy to see that the result R sat-
is�es R � ABM�1(modN). With this version of
Montgomery's algorithm, base conversions are the
major operations of the algorithm, as the tw o RNS
computations can be performed in parallel on all
the individual residues.

Remarks:

The direct construction of the result AB mod N
(say for the Fiat-Shamir Algorithm) needs a second
pass of the algorithm with R and (M2 mod N) (a
precomputed value) as inputs. With A;B < N , as
R < 2N < M and (M2 mod N) < N , all the condi-
tions of the algorithm are satis�ed. But if we wan t
to use this algorithm for exponentials, we must note
that it is necessary to require 4N < M , since the
repeated squarings requires results of the algorithm
to be used as operands, and thus A and B will only
be bounded by 2N .

4. Base conv ersion

All conversions of RNS representations from one
base Bn into another eB~n, satisfying gcd(M;fM) = 1,

where M;fM are the products of the moduli of the
systems, must in some way or other implicitly calcu-
late the value of the numbers represented. For our
purpose here we wan t con version algorithms, which
can be executed on a set of simple processors avail-
able for the RNS computations (the \channels").

4.1. Using an extra modulus

We consider XRNS = fx1; x2; : : : ; xng repre-
sented in the system Bn with X 2 [0;M [and con-
struct X using the Chinese Remainder Theorem
(CRT) [8] by the following expression:

X =

nX
i=1

xi jMij�1mi
Mi

!
modM (3)

where Mi =
M
mi

, and jMij�1mi
is the inverse of Mi

modulo mi. Thus we have:

(xi jMij�1mi
Mi) mod mj =

�
xi if j = i

0 else

The normal use of this method is to reconstruct
the integer value of X in a classical number sys-
tem. Now if w eonly want to obtain the residue
of X modulo emi, w e could use theexpression (3).
But the modulo-M reduction gives some problems
evaluating the residues modulo emi. How ever, an
alternative form of the CRT allow us to write

nX
i=1

���xi jMij�1mi

���
mi

Mi = X + �M (4)

for some value of � where 0 � � < n.
In 1989 Shenoy et Kumaresan [17], proposed to

use an extra modulus mx to evaluate �:

� =

�����jM j�1mx

nX
i=1

�����xi jMij
�1

mi

��
mi

Mi

���
mx

� jXj
mx

!�����
mx

(5)

Thus it is now possible to compute ~xj = jX jemj

by

~xj =

�����
nX
i=1

�������xi jMij�1mi

���
mi

Mi

����emj

� j�M jemj

�����emj

(6)

for j = 1::~n. Observing that the constants jMij�1mi
,

jMijmx
, jM j�1mx

, jM jemj
and jMijemj

can be precom-

puted, then � and ~xj are ev aluated withn+1 mul-
tiplications and n additions. The only dependence
on � is in the last multiplication and addition to
compute ~xj . Thus, in parallel using max(n; ~n) + 1
channels, � and all the ~xj can be evaluated in n+2
multiplications and n+ 1 addition steps.

Note that the value of � is bounded by n, which
in practice is much smaller than the other moduli

Proceedings of the 15th IEEE Symposium on Computer Arithmetic (ARITH’01)
1063-6889/01 $10.00 © 2001 IEEE

mi; i = 1::n. Hence the extra channel computing �
can operate with a modulus mx � n smaller than
the rest, possibly even a pow er of 2.

As � < n, the term j�M jemj
in (6) and the prod-

uct by jM j�1mx
in (5) could be read from tables, thus

only n multiplications will be needed.
Howev er, a major dra wback of this method is

that, to compute �, one must kno w one extra
residue, jX jmx

, which cannot be computed by
(2) for Q in our algorithm, since (jAjmx

jBjmx
+

jQjmx
jN jmx

) mod mx is unknown. But if an extra
residue for R can be computed by some means then
this algorithm can be used to convert the represen-
tation of R.

4.2. Allowing an offset in the residue

Considering again equation (4), it expresses
which residue class modulo M that X belongs to,
and when applied to Q we may not need to know
the value of � to proceed. Thus by the CRT

bQ =

nX
i=1

���qi jMij�1mi

���
mi

Mi = Q+ �M (7)

for some value of � where 0 � � < n.
When bQ has been computed it is possible to com-

pute bR as

bR = (AB + bQN)M�1 = (AB +QN + �MN)M�1

= (AB +QN)M�1 + �N

so that bR � R � ABM�1 (mod N), which is
suÆcient for our purpose. Also, assuming that
AB < NM w e �nd thatbR < (n+2)N since � < n.

Given the residue representations of A;B and
N in the system B, it is thus possible to compute
the residue representation of Q in B by (2), and

by (7) to convert it in to the representation of bQ
in the other residue system eB, including possibly
an extra residue. In this system bR can now be
computed, and �nally converted bac k to the sys-
tem B using the method of Shenoy and Kumaresan.
F or applications like in RSAwhere man y modular
multiplications are needed, it is not necessary to
have the in termediate results perfectly reduced, it
is suÆcient at thev ery end of the computation to
�nd the value of �. But the value of N has to
be bounded (n + 2)2N < M , since this together

with AB < NM assures bR < (n+ 2)N . F or single
multiplications the �rst Montgomery pass can be
performed using (4) obtaining bR < (n + 2)N withbR = ABM�1 mod N+�N . F or the second pass the
inputs are bR and M2 mod N , and if an algorithm
with exact con versionis used then an R is found
saitisfying R < 2N .

5. The RNS multiplication algorithm

Figure 1 describes the execution of our algo-
rithm, illustrating the time and area complexities.
Although it is possible to use maximal parallelism
in the form of n+~n+1 channels, max(n; ~n)+1 will
be suÆcient most of the time. The only place where
more processors could be employed is to perform the
computation of the product AB in the system eB~n,
so that it is available when bQ has been converted.
The time complexity is approximately 2(n + ~n)T ,
where T is the time for one table look-up plus one
modular multiply-add operation. F orapplications
in cryptology, say with N � 21024, it is possible to
choose n = ~n = 33, where each channel is realized
by a very simple 32-bit processor, i.e., a total of 34
processors. Each processor has to be able to com-
pute additions and multiplications, modulo some
speci�c 32-bit primes, and to store some 32-entry
look-up tables of 32-bit constants.

Extension of bR
from eB~n to B

using
Shenoy-Kumaresan

bR = (AB + bQ N)M�1

Extension of bQ
from B to eB~n
using the CRT

Q = �ABN�1 modM

RNS operations in B RNS operations in eB~n

-�
n moduli of B

-�
~n moduli of eB~n6

Extra modulus mx

Figure 1. Evaluation ofA�B�M�1 in RNS

Example We consider the systems B5 =
f3; 7; 13; 19; 29g, fB5 = f5; 11; 17; 23; 31g, the extra
modulus me = 8 and operands A, B and N . Thus,
we haveM = 150423 and fM = 666655.

In Bn mx In eBn Base 10
3 7 13 19 29 8 5 11 17 23 31

A 1 3 9 14 25 2 1 8 2 5 5 26386
B 1 5 1 9 25 3 1 1 1 21 19 72931
N 1 2 6 11 27 7 2 7 9 14 19 14527

The computation of A�B �M�1 mod N is de-
tailed as shown in the following table.

Proceedings of the 15th IEEE Symposium on Computer Arithmetic (ARITH’01)
1063-6889/01 $10.00 © 2001 IEEE

In Bn mx In eBn Computation

2 3 5 11 8 Q (�A�B)�N�1 = 143993

5 1 3 8 1 14 Extension of Q from Bn to eBn
1 2 5 12 6 7

0 2 0 16 16 16

6 0 2 14 17 29

7 4 10 0 19 20 bQ = 444839 = 143993 + 2 � 150423

1 3 5 10 1 15 bR (A�B + bQ�N)�M�1

0 6 9 5 25 1 Conversion of R through

2 3 12 12 4 3 Shenoy and Kumaresan algorithm

2 2 2 6 17 5

0 2 10 13 10 3

1 0 2 13 24 6

3 (= �)

1 5 9 7 15 bR = 55753 = (12172 + 3 �N) modM

= (A�B �M�1 mod N + 3 �N) modM

1 1 9 2 23 4 0 7 0 22 25 M2 mod N = 12580 with bR as input

Montgomery with exact extension

2 6 9 11 19 AB mod N = 9257

5.1. Using specific sets of moduli

The use of speci�c moduli can improve conver-
sion methods using either the Chinese Remainder
Theorem or a Mixed Radix System. Many such
systems have been previously published using small
sets of three or more moduli like f2k�1; 2k; 2k+1g
for themost popular set. The bene�t of such sys-
tems is tw ofold. First, since operations modulo
2k�1, 2k or 2k+1 are reduced to simple logic oper-
ations, RNS operations are easier in such systems.
Second, the values involv ed in CRT or MRS conver-
sion algorithms are simple numbers which greatly
simpli�es the conversion computations.

A recent result published in [6] shows that a con-
version from RNS to binary using the set f2k �
1; 2k; 2k�1� 1g has a O(k) space complexity, and a
dela y equal to one 2k � 1-bit adder and tw ok � 1
adders without any lookup table.

Howev er, as discussed above for applications in
crypto-algorithms, muc h larger systems are needed.
The only tw o systems w ehave found with a pa-
rameterizable number of moduli of the form 2k �
1, are the systems f2m � 1; 22

0m + 1; 22
1m +

1; � � � ; 22km + 1g proposed in [14], and systems
f2n1 � 1; 2n2 � 1; � � � ; 2nL � 1g in [18] where the
exponents n1; n2; � � � ; nL are mutually prime, not
divisible by 3.

The �rst kind of systems are extremely un-

balanced. Actually, the largest modulus approxi-
mately equals the product of all the remaining mod-
uli, i.e., it is of about the same size as

p
M , where

M is the system modulus. The second kind of sys-
tems are also un-balanced when a dynamic range of
say 1024 bits is needed. It is even simply impossi-
ble with 32-bit processors to �nd suÆciently many
such mutually prime moduli pairs of the form 2k�1.
And with 64-bit processors at least 20 pairs of mod-
uli of the form 2k � 1 will be needed, in which case
the system can hardly be considered balanced.

5.2. Using 32-bit prime moduli in the channels

As the operations inside the channels are com-
pletely independent, we can use any representation
for the residues there, that we may �nd convenient.
Employing say 32-bit processors,addition modulo
a 32-bit prime is not that diÆcult, the problem is
modular multiplication. Just as it is possible to use
Montgomery modular multiplication for the very
large operands employed in cryptographic applica-
tions, it is also possible to use this type of modular
multiplication for the operations inside the individ-
ual channels of the proposed system. But when
information is transfered in and out of the channels
(e.g., for broadcasts), it is then necessary to con-
vert into and from the representation used in the
particular channel.

Proceedings of the 15th IEEE Symposium on Computer Arithmetic (ARITH’01)
1063-6889/01 $10.00 © 2001 IEEE

The trick in Montgomery modular multiplication
is to substitute diÆcult modular reductions (say
by a 32-bit prime) by simpler reductions, here by
232. This is done by mapping operands into another
residue system, so with m prime let

for 0 � a < m let [a]m = a 232 mod m

then it is easy to see that

[a+ b]m = j[a]m + [b]mjm
where the outer reduction is an ordinary reduction
modulo m.

Multiplication in this system can be performed
by Montgomery's M-reduce algorithm:

Algorithm 2 M-reduc e(t)

Stimulus: A n inte gert such that 0 � t < rm.
Integer constants m; r;m0; r�1 such
that gcd(m; r) = 1; r > m > 2 and
rr�1 �mm0 = 1.

Response: A n inte geru, u = (tr�1) mod m.

Method: q := ((t mod r)m0) mod r;
u := (t+ qm) div r;
if u � m then u := u�m;

Thus with r = 232, since M-reduce([a]m[b]m) =
ab 232 mod m = [ab]m, the product [ab]m can be
computed with 3 ordinary 32-bit multiplications
and 1 or 2 ordinary additions, given suitable con-
stan ts.Mapping into and out of this residue system
is performed by M-reduce, multiplying with con-
stants jr2jm, respectively 1.

6. Conclusions

With this new approach to modular multiplica-
tion in RNS, w eobserve that base extension is a
key operation. All the complexity is due to this
transformation. Shenoy and Kumaresan proposed
an eÆcient method based on the CRT, by which a
logarithmic time complexity canbe obtained with
n2 processors. Utilizing n parallel RNS channels
the algorithm can be implemented in n + 1 steps,
using one additional channel for an extra residue.

But since suc h an extra residue cannot be ob-
tained for the quotient Q, and if the computation
is to be performed on the set of parallel RNS proces-
sors, some other mechanism must be employed. In
[15] and [7] various �xed-point computations were
used to obtain approximations to � in (4), and in
that way perform the base conversion of bothQ and
R. We realized that the conversion of Q need not
be \exact", an \approximation" bQ is suÆcient to
obtain an bR in the same residue class as the result
R.

Compared to other number systems, RNS can
be considered a real parallel system. Our method
is easily implementable with processors connected
by a bus, where communication is reduced to at
most one broadcast per step.

If modular multiplication is implemented on pro-
cessors which do not support arithmetic on the full
data-width (say 1024 bits), we believe that an RNS
implementation is preferable to a high-radix imple-
mentation. Given a number of smaller (say 32-bit)
processors, parallelism is easier to exploit in RNS
with O(n) processors, than in a redundant ordinary
radix system. And it is not necessary to employ the
full n+~n+1 processors for maximal parallelism, or
almost as good, max(n; ~n)+ 1, any number will do,
ev en a single processor.

References

[1] J.-C. Bajard, L.-S. Didier, and P . Kornerup,
An RNS Montgomery Modular Multiplication
Algorithm, IEEE T ransactionon Computers
47(7), pp. 766{776, 1998.

[2] J.-C. Bajard, L.-S. Didier, P . Kornerup and
F. Rico, Some Improvements on RNS Mont-
gomery Modular Multiplication, SPIE's In-
ternational Symposium on Optical Science and
T echnology 30 July - 4 August 2000, San Diego,
California USA.

[3] E.F. Brickell. A Survey of Hardware Imple-
mentations of RSA. In Gilles Brassard, editor,
A dvances in Cryptology - CRYPTO '89, LNCS-
435, pages 368{370. Springer-Verlag, 1990.

[4] S.E. Eldridge and C. D. Walter. Hardware im-
plementation of Montgomery's modular multi-
plication algorithm. IEEE Transaction on Com-
puters, 42(6):693{699, June 1993.

[5] A. Fiat and A. Shamir. How to prove yourself:
Practical solutions to iden ti�cationand signa-
ture problems. In A dvances in Cryptology - Pro-
ceedings of Crypto'86, pages 186{194, 1986.

[6] A. A. Hiasat and S. H. Abdel-Aty-Zohdy.
Residue-to-binary arithmetic converter for the
moduli set (2k; 2k � 1; 2k�1 � 1). IEEE T rans-
actions on Circuits and Systems II: Analo g and
Digital Signal Processing, 45(2):204-209, 1998.

[7] S. Kaw amura, M. Koike, F. Sano and
A. Shimbo. Cox-Row erArchitecture for Fast
P arallel Montgomery Multiplication. Proc. EU-
ROCRYPT 2000, LNCS 1807, pages 523{538,
Springer Verlag, 2000.

[8] D.E. Knuth. Seminumerical A lgorithms, V ol-
ume 2 of The Art of Computer Programming.
Addison-Wesley , 2 edition, 1981.

Proceedings of the 15th IEEE Symposium on Computer Arithmetic (ARITH’01)
1063-6889/01 $10.00 © 2001 IEEE

[9] P . Kornerup. High-radix modular multiplica-
tion for cryptosystems. In G. Jullien M.J Ir-
win, E. Swartzlander, editors, 11th IEEE Sym-
posium on Computer A rithmetic, pages 277{
283, Windsor, Canada, 1993. IEEE Computer
Societ y Press.

[10] P. Montgomery. Modular multiplication with-
out trial division. Mathematics of Computation,
44(170):519{521, April 1985.

[11] S. Micali and A. Shamir. An improvement
of the Fiat-Shamir identi�cation and signature
scheme. In A dvances in Cryptology - Pr oceed-
ings of Crypto'88, pages 244{247, 1988.

[12] H. Orup. Simplifying Quotient Determina-
tion in High-Radix Modular Multiplication. In
S. Knowles and W. H. McAllister, editors, Pr oc.
12th IEEE Symposium on Computer Arith-
metic. IEEE Computer Society, 1995.

[13] P .P aillier. Low-cost double-size modular ex-
ponentiation or how to stretch your cryptopro-
cessor. In H. Imai and Y. Zheng, editors, Second
International Workshop on Practic e and Theory
in Public Key Cryptography, PKC'99, LNCS-
1560, pages 223-234. Springer Verlag, 1999.

[14] F. Pourbigharaz and H. M. Yassine. A signed-
digit architecture for residue to binary trans-
formation. IEEE T ransactionson Computers,
46(10):1146{50, 1997.

[15] K. Posch and R. Posch. RNS-Modulo Reduc-
tion in Residue Number Systems. IEEE Trans.
on Par alleland Distributed Systems, 6(5):449{
454, May 1995.

[16] R. L. Rivest, A. Shamir, and L. Adleman.
A method for obtaining digital signatures and
public-key cryptosystems. Communications of
the ACM, 21(2):120{126, 1978.

[17] A. P . Shenoy and R. Kumaresan. F ast base
extension using a redundant modulus in RNS.
IEEE T ransactions on Computer, 38(2):292{
296, 1989.

[18] A. Skavantzos and M. Abdallah. Implemen-
tation issues of the tw o-level residue number
system with pairs of conjugate moduli. IEEE
T ransactions on Signal Pr ocessing, 47(3):826{
38, 1999.

[19] N. Szabo and R. I. T anaka. R esidueArith-
metic and its application to Computer Technol-
ogy. McGraw-Hill, 1967.

[20] M. Shand and J. V uillemin. F ast Implemen-
tations of RSA Cryptography. In M.J. Irwin
E. Swartzlander and G. Jullien, editors, Pr oc.
11th IEEE Symposium on Computer Arith-
metic, pages 252{259. IEEE Computer Society,
1993.

[21] N. Takagi. Modular Multiplication Algorithm
with Triangle Addition. In M.J. Irwin, E. Swart-
zlander and G. Jullien, editors, Pr oc. 11th IEEE
Symposium on Computer A rithmetic, pages
272{276. IEEE Computer Society, 1993.

[22] F.J. T aylor. Residue Arithmetic: A T utorial
with Examples. COMPUTER, pages 50{62,
May 1984.

[23] C.D. Walter. Systolic Modular Multiplica-
tion. IEEE T ransactions on Computers, C-
42(3):376{378, March 1993.

Proceedings of the 15th IEEE Symposium on Computer Arithmetic (ARITH’01)
1063-6889/01 $10.00 © 2001 IEEE

